Supporting information

SO₂ capture by 2-pyridineethanol through the formation of a

zwitterionic liquid

Zonghua Wang, Dezhong Yang*

School of Science, China University of Geosciences, Beijing 100083, China Email: yangdz@cugb.edu.cn

Experimental Sections

Materials and Characterizations

2-PyEtOH (99%) was supplied by Alfa Aesar and it was dried by 4Å molecular sieve before use. SO₂ (\geq 99.9%) and N₂ (\geq 99.99%) were provided by Beijing ZG Special Gases Sci. and Tech. Co. Ltd. A Perkin-Elmer Frontier spectrometer with an attenuated total reflection (ATR) accessory was used to record the FTIR spectra. ¹H NMR (600 MHz) and ¹³C NMR (151 MHz) spectra were recorded on a Bruker spectrometer using CDCl₃ as the internal solvent, and the chemical shifts values were referenced to TMS.

Absorption and desorption of SO₂

2-PyEtOH (~1.0 g) was added into a glass tube with a diameter of 10 mm, which was sealed with a rubber lid equipped with two needles. One needle was SO₂ outlet, and the other one was SO₂ inlet. The tube was partially immersed in a water bath at 20 °C. Then, SO₂ was bubbled into 2-PyEtOH in the tube at a flow rate of ~50 mL/min, which was controlled by a flowmeter. The weight of the tube was determined at regular time by an electronic balance with an accuracy of ± 0.1 mg. The wight difference of the tube before and after SO₂ uptake was considered as the mass of SO₂ captured by the absorbent. In the low SO₂ partial pressure experiments, the pressure of SO₂ was obtained by tuning the flow rates of SO₂ and N₂.

In the desorption process, the tube was placed in a water bath at 50 $^{\circ}$ C, and N₂ was bubbled through the solution at a flow rate of ~60 mL/min.

Fig. S1 The schematic diagram of SO₂ absorption and desorption process by 2-PyEtOH. 1, 2 - Gas cylinders; 3, 4 - Pressure gauges; 5, 6 - Pressure reducing valves; 7, 8 - Needle valves; 9, 10 - Gas flowmeters; 11 - Needles; 12 - Tube; 13 - Thermometers; 14 - Water bath; 15 – Safety bottle; 16 - NaOH aqueous solution

Table	S1 .	Comparison	of	2-PyEtOH	with	DESs	and	ILs	in	SO_2	capacity	and	desorption
temper	ature												

	SO ₂ capacity (g	g SO ₂ /g solvent)	Desorption	
Solvents	T /°C	1.0 atm	temperature /°C	References
2-PyEtOH	20	1.16	50	This work
BmimCl	50	0.75	140	1
[Emim][Cl][SCN] (1:1)	20	1.22	120	2
[P ₆₆₆₁₄][4-CNC ₆ H ₄ COO]	20	0.40	120	3
[P ₆₆₆₁₄][4-Br-PhCOO]	20	0.39	120	4
[P ₆₆₆₁₄][4-Cl-PhCOO]	20	0.39	120	4
EmimCl-TEG (2:1)	20	1.06	100	5
Bet-EG (1:3)	40	0.366	90	6
BmimCl-Im (2:1)	20	1.32	80	7
BmimCl-EU (2:1)	20	1.18	80	8
EmimCl-EG (2:1)	20	1.15	80	9
EmimCl-SN (1:1)	20	1.13	80	10
[Emim][SCN]	20	1.13	80	11
[Et ₂ NEmim][Tetz]	20	1.10	80	12
[E ₃ mim][Tetz]	20	0.95	80	13
EmimCl-TEG (1:1)	20	0.91	80	5
[C ₁₀ mim][Tetz]	20	0.74	80	13
[P ₆₆₆₁₄][Tetz]	20	0.43	80	14
[Na(TX-10)][SCN]	20	0.422	80	15
PPZBr-Gly (1:6)	20	0.35	80	16

References

- K. Y. Lee, C. S. Kim, H. Kim, M. Cheong, D. K. Mukherjee and K. D. Jung, *Bull. Korean Chem. Soc.*, 2010, 31, 1937-1940.
- 2 D. Yang, G. Cui and M. Lv, *Energy Fuels*, 2018, **32**, 10796-10800.
- 3 G. Cui, F. Zhang, X. Zhou, H. Li, J. Wang and C. Wang, Chem. Eur. J., 2015, 21, 5632-5639.
- 4 G. K. Cui, J. J. Zheng, X. Y. Luo, W. J. Lin, F. Ding, H. R. Li and C. M. Wang, *Angew. Chem. Int. Ed.*, 2013, **52**, 10620-10624.
- 5 D. Yang, S. Zhang, D.-e. Jiang and S. Dai, *Phys. Chem. Chem. Phys.*, 2018, **20**, 15168-15173.
- 6 K. Zhang, S. Ren, Y. Hou and W. Wu, J. Hazard. Mater., 2017, **324**, 457-463.
- 7 Y. Chen, B. Jiang, H. Dou, L. Zhang, X. Tantai, Y. Sun and H. Zhang, *Energy Fuels*, 2018, **32**, 10737-10744.
- 8 B. Jiang, H. Zhang, L. Zhang, N. Zhang, Z. Huang, Y. Chen, Y. Sun and X. Tantai, ACS Sustainable Chem. Eng., 2019, 7 8347-8357.
- 9 D. Yang, Y. Han, H. Qi, Y. Wang and S. Dai, ACS Sustainable Chem. Eng., 2017, 5, 6382-6386.
- 10 D. Yang, S. Zhang and D.-e. Jiang, ACS Sustainable Chem. Eng., 2019, 7 9086-9091.
- 11 C. M. Wang, J. J. Zheng, G. K. Cui, X. Y. Luo, Y. Guo and H. R. Li, Chem. Commun., 2013, 49, 1166-1168.
- 12 D. Z. Yang, M. Q. Hou, H. Ning, J. Ma, X. C. Kang, J. L. Zhang and B. X. Han, *ChemSusChem*, 2013, 6, 1191-1195.
- 13 G. K. Cui, C. M. Wang, J. J. Zheng, Y. Guo, X. Y. Luo and H. R. Li, *Chem. Commun.*, 2012, 48, 2633-2635.
- 14 C. M. Wang, G. K. Cui, X. Y. Luo, Y. J. Xu, H. R. Li and S. Dai, J. Am. Chem. Soc., 2011, 133, 11916-11919.
- 15 F. Ding, J. J. Zheng, Y. Q. Chen, K. H. Chen, G. K. Cui, H. R. Li and C. M. Wang, *Ind. Eng. Chem. Res.*, 2014, 53, 18568-18574.
- 16 G. Cui, J. Liu, S. Lyu, H. Wang, Z. Li and J. Wang, ACS Sustainable Chem. Eng., 2019, 7, 14236-14246.