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1 Materials Descriptors for Machine Learning
Over the past decade, a lot of work has been done to represent materials for more accurate ML [27]. These
representations were mainly developed on a solid background in sciences such as condensed matter physics
and materials science. These representations of materials are necessary to extract essential information in a
computationally efficient manner and to satisfy physical or mathematical requirements such as differentiability
and invariance to rotation, translation and permutation [27]. Most representations for crystalline materials utilize
structural information with atomic properties such as atom-centered symmetry functions [5] and smooth overlap of
atomic positions [4]. Structural fragments with a few atoms are used to represent the local structure of materials
[14]. As atoms and their neighborhoods can be described by the graph, GNNs are also adopted to treat the local
information in materials and representative examples are CGCNN and MegNet [8; 35]. Moreover, atomic features
are taken from the elemental properties of each atom and its surrounding environment. These features can be
selected according to the target materials properties [6]. However, to the best of our knowledge, representation
methods that universally encode crystal structures by explicitly treating given target materials properties have not
been reported publicly.

2 Representation Learning in Machine Learning
Representation learning is categorized into unsupervised and supervised methods. In unsupervised representation
learning, a new data representation is automatically discovered without label or target data by minimizing density
divergence or reconstruction loss [3; 18; 26]. Autoencoder [3] is the most popular algorithm in unsupervised
learning owing to its remarkable representation capability. To improve the generalization capability of autoencoders,
variational autoencoder [18] was also proposed based on Bayesian inference. However, unsupervised representation
learning algorithms have an inherent limitation in that the target values cannot be utilized in representation learning.

By contrast, supervised representation learning generates a new data representation based on the label or target
data. Deep metric learning (DML) has been widely studied for supervised representation learning in computer
science [12; 34]. The goal of DML is to train an embedding network f : X → Rm that generates a new m-dimensional
data representation from the input data in X . However, DML has been mainly studied for image classification
tasks of discrete target values [28; 29; 33; 34]. Although a new metric learning loss of DML for continuous target
values was recently proposed [17], it is difficult to apply scientific applications owing to its numerical instability. To
overcome this numerical instability, smooth log-ratio loss (SLRL) [20] was proposed and showed some improvement
in predicting molecular properties. However, no DML methods, including SLRL-based DML, have been applied to
materials science to predict materials properties from the crystal structures.

3 Graph-Based Machine Learning for Materials Science
A crystal structure is natively represented as a mathematical graph G = (V, E , X, S), where V is a set of atoms
in the unit cell; E is a set of chemical bonds between the atoms; X is a matrix of the atomic features; and S is a
matrix of the bond features. In the graph-based machine learning, this graph-shaped crystal structure is entered
as it is without being converted to a vector-shaped data. Graph neural networks (GNNs) are used to process the
graph-structured data.

GNNs for predicting graph-level properties are composed of aggregation layers, readout, and dense (fully-
connected) layers. The purpose of the aggregation layer is to generate latent features of the nodes in the given
graph-structured data. The latent node features H are calculated in the ith aggregation layer as:

H(i) = σ(fa(A,H
(i−1), S)), (1)

where σ is a nonlinear activation function (e.g., sigmoid and tanh); A ∈ R|V|×|V| is an adjacency matrix of the input
graph G; and H(i−1) is a matrix of the latent node features generated in the previous layer. After generating the
latent node features, the readout is applied to generate a graph-level embedding z from the latent node features
generated in the layer aggregation layer. The readout is commonly defined by mean or max operations. For example,
a popular CGCNN [35] generates z using a mean-based readout as:

z =
1

|V|

|V|∑
i=1

H
(L)
i , (2)

where Hi is the ith row vector of H, and L is the number of aggregation layers in GNN. Finally, the target graph-level
property is predicted by feeding the calculated graph-level embedding z to the dense layers.
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Table 1: Selected elemental features and their brief descriptions.

Name Category Unit
Atomic volume Size cm3/mol
Atomic weight Size -
Covalent radius by Bragg Size pm
Fusion heat Heat kJ/mol
Atomic number Electronic -
Electron affinity Electronic eV
First ionization energy Electronic eV
Pauling’s scale of electronegativity Electronic -
Period in periodic table Electronic -

Table 2: Hyperparameter settings of TGNN for each dataset.

Dataset Margin (=α) Initial learning rate L2 coefficient Batch size Neighborhood
atom cutoff (Å)

MPB 2e-1 5e-4 5e-6 48 5
MPS-FE 2e-1 5e-4 5e-6 48 5
MPS-BG 8e-2 5e-4 5e-4 48 4
MPL-FE 2e-1 5e-4 5e-4 16 5
MPL-BG 8e-2 5e-4 5e-4 16 5
HOIP 2e-1 5e-4 5e-6 32 5
NLHM 2e-1 5e-4 5e-6 32 5

4 Implementation Details
We used PyTorch framework [22] and PyTorch-Geometric library [2] to implement GNNs and EMRL. For the
implementation of CGCNN and MEGNet, we used the author’s source code of CGCNN [36] and MEGNet [9].
Implementation details and hyperparameter settings of the GNNs and the EMRL-based ML algorithms are
summarized in Table 1 and 2.

To convert the crystal structures into the mathematical graphs, we used a well-known pymatgen library [1].
Table 1 shows the elemental features used to convert the crystal structures. However, we followed the elemental
features of [35] and [8] in implementing CGCNN and MEGNet, respectively. The bond features were generated by
applying the radial basis function (RBF) to the bond length.

We used an architecture of three aggregation and two dense layers for all GNNs used for the evaluations. The
architecture of TGNN was also fixed for all datasets. The atom-embedding network fv and the tuple-embedding
network ft were implemented as one-layer neural networks with 128 neurons. The bond-embedding network fe
was also implemented as a one-layer neural network with 64 neurons. We stacked two dense layers of 128 neurons,
after the tuple embedding network and the readout. Table 2 shows the hyperparameter settings of TGNN for each
dataset. The hyperparameters expect for the margin, which are common for all GNNs, were applied to the GNNs in
the same values as Table 2. The source code of EMRL is publicly available at Open After the Review Process.

5 Prediction Performances on Benchmark Materials Datasets
To evaluate the effectiveness of EMRL, we conducted experiments to predict materials properties. For our experimen-
tal evaluations, we used seven materials datasets containing about 50,000 materials. The main characteristics and
sources of each dataset are listed in Table 3. In the experiments, we measured the prediction errors of state-of-the-art
GNNs and EMRL-based ML algorithms using mean solute error (MAE) and standard deviation. For all evaluations,
the mean and the standard deviation of the prediction performances were measured by repeating the evaluations 10
times on randomly partitioned training and test datasets for each repetition. In the experiments, we generated
three EMRL-based ML algorithms by exploiting linear regression, fully-connected neural network (FNN) [24], and
XGBoost (GB) [10] as a prediction model g. Brief descriptions of the three EMRL-based ML algorithms are as
follows.

• EMRL-LR: Linear regression is used as a prediction model in EMRL-LR. It directly shows the effectiveness
of the materials representation generated via EMRL in predicting materials properties because linear regression
is the simplest prediction algorithm in ML.

• EMRL-NN: FNN [23] is used as a prediction model in EMRL-NN. It can be used to compare the effectiveness
of the graph representations generated via GNNs and EMRL because GNNs employ FNN as their prediction
model.

• EMRL-GB: GB is the most popular regression algorithm in scientific communities and computer science
fields [10; 11; 25; 37]. EMRL-GB uses GB as a prediction model, and it can be regarded as the most advanced
EMRL-based ML algorithm in the experiments.

We compared the prediction performances of the EMRL-based ML algorithms with five state-of-the-art GNNs:
(1) graph convolutional network (GCN) [19]; (2) graph attention network (GAT) [31]; (3) tuplewise graph neural
network (TGNN) [21]; (4) crystal graph convolutional neural network (CGCNN) [35]; and (5) materials graph
network (MEGNet) [8]. Table 4 summarizes the evaluation results based on MAE. For a fair comparison, we
also compared TGNN and EMRL-based methods as TGNN is adopted as the embedding network for our EMRL
implementation. Furthermore, we compared the performance improvement of EMRL and CGCNN because CGCNN
is the most popular GNN in ML applications for materials science. As shown in Table 4, EMRL-GB significantly
outperformed the state-of-the-art GNNs in predicting materials properties, and the prediction errors were reduced
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Table 3: Characteristics and source of the benchmark materials datasets used for experimental evaluations. In all
datasets, the unit of band gap and formation energy are eV and eV/atom, respectively.

Dataset Type of materials Target property # of materials Range of targets

MPB [15] Binary inorganic materials Band gap 6,838 [0, 1.593]
MPS-FE [15; 35] Inorganic materials Formation energy 3,162 [-4.319, 2.757]
MPS-BG [15; 35] Inorganic materials Band gap 3,162 [0, 8.716]
MPL-FE [15; 35] Inorganic materials Formation energy 45,941 [-4.576, 3.195]
MPL-BG [15; 35] Inorganic materials Band gap 45,941 [0, 16.586]

HOIP [16] Hybrid perovskites Band gap 1,345 [1.025, 5.343]
NLHM [7] Light harvesting materials Band gap 2,233 [0, 9.059]

Table 4: Prediction errors of four GNNs and three EMRL-based ML algorithms on the benchmark datasets. The
errors were measured by mean of MAEs under 10 times repetitions of the evaluations on randomly divided 80%
training and 20% test datasets. The standard deviation of the measured errors was presented in the parenthesis.
Error reduction (Rdc.) is defined as the relative error reduction of EMRL-GB for CGCNN, as shown in Eq. (3). We
compared TGNN and EMRL-based methods in the main text. Two abbreviations FE and BG indicate formation
energy and band gap, respectively. The smallest prediction error for each dataset was highlighted in bold.

Dataset
Graph neural networks EMRL-based ML algorithms

Rdc.
GCN GAT TGNN CGCNN MEGNet EMRL-LR EMRL-NN EMRL-GB

MPB 0.296
(0.007)

0.293
(0.005)

0.271
(0.023)

0.268
(0.035) N/A 0.316

(0.009)
0.219
(0.016)

0.189
(0.015) 29.5%

MPS-FE 0.181
(0.000)

0.177
(0.013)

0.105
(0.017)

0.123
(0.021)

0.081
(0.002)

0.077
(0.006)

0.079
(0.006)

0.076
(0.005) 38.2%

MPS-BG 0.339
(0.006)

0.309
(0.013)

0.301
(0.021)

0.298
(0.041) N/A 0.304

(0.025)
0.267
(0.029)

0.264
(0.021) 11.4%

MPL-FE 0.129
(0.002)

0.122
(0.001)

0.059
(0.007)

0.058
(0.001) N/A 0.047

(0.002)
0.046
(0.001)

0.026
(0.001) 55.2%

MPL-BG 0.501
(0.005)

0.468
(0.004)

0.389
(0.019)

0.402
(0.004) N/A 0.395

(0.005)
0.366
(0.006)

0.337
(0.004) 16.2%

HOIP 0.295
(0.017)

0.253
(0.014)

0.325
(0.054)

0.255
(0.023)

0.193
(0.071)

0.142
(0.004)

0.149
(0.004)

0.142
(0.003) 44.3%

NLHM 0.681
(0.013)

0.573
(0.021)

0.529
(0.056)

0.633
(0.021)

0.315
(0.018)

0.468
(0.016)

0.469
(0.016)

0.461
(0.015) 27.2%

by 11.4%∼55.2% by EMRL-GB over CGCNN. Furthermore, we can notice that EMRL-based methods outperform
TGNN, which directly shows the effectiveness of EMRL in predicting materials property prediction.

Although MEGNet outperformed the other GNNs and showed the smallest error on the NLHM dataset, it was
not applicable to most materials project datasets. Among the evaluation results, the significant improvement by
EMRL on the HOIP dataset is impressive because perovskites have severe non-smooth relations with their band
gaps owing to significantly different band gaps for their similar crystal structures [32]. This evaluation result concurs
with our motivation that the non-smooth relations between the crystal structures and the target properties make
ML-based regression difficult, and these non-smooth relations can be effectively transformed to the smooth relations
via supervised representation learning. In addition to EMRL-BG, EMRL-LR and EMRL-NN also exhibited smaller
prediction errors compared to the GNNs overall. As summarized in Table S3 of SI, these improvements by EMRL
in predicting materials properties were consistent with the evaluation results using the R2 score [13]. In particular,
it is important that the simplest linear regression obtained comparable prediction accuracy with CGCNN just
by exploiting the materials representations generated by EMRL. This result directly shows that the materials
representations generated via EMRL clearly described the target materials properties.

In addition to MAE, we also measured the prediction performance of the machine learning algorithms using
R2 score [13] that is the most widely used criterion to evaluate the regression accuracy. For all datasets and ML
algorithms, the R2 scores were measured by repeating the evaluations 10 times on randomly separated training and
test datasets for each repetition. The mean and the standard deviation of the measured R2 scores were reported.
Table 5 shows the measured R2 scores in predicting materials properties on the benchmark materials datasets.

Although MEGNet showed the best prediction accuracy on the NLHM dataset, it was not applicable in many
datasets as we mentioned in the paper. For all other datasets, EMRL-GB achieved the best prediction accuracy.
The improvements of EMRL-GB over CGCNN in the R2 score were 0.6-12.9%. As shown in the results, the accuracy
improvements by EMRL-GB on the MPS-FE, MPL-FE, and HOIP datasets were marginal because most algorithms
already achieved the R2 scores of 0.9. The accuracy improvements of EMRL-GB were higher than 11% for the
datasets, where the prediction accuracy was relatively low. Furthermore, the EMRL-LR and EMRL-NN also showed
better R2 scores than the state-of-the-art GNNs overall.

6 Embedding Distributions
We also interpreted the distributions of the materials in the imaginary materials spaces of EMRL based on chemical
domain knowledge. Fig. 1 shows the distributions of the materials in the embedding spaces of EMRL and CGCNN.
In the HOIP dataset, as shown in Fig. 1a and c, EMRL generated more continuous materials representations than
CGCNN and established that halogen elements (F, Cl, Br, and I) are more crucial for modulating the band gap
than metal elements (Ge, Sn, and Pb). This embedding result is in accordance with previous reports on HOIPs [16].
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Table 5: R2 scores of four GNNs and three EMRL-based ML algorithms on the benchmark datasets. The standard
deviation of the measured R2 scores was presented in the parenthesis. Accuracy improvement (Imp.) is defined as
the relative improvement of EMRL-GB for CGCNN. The abbreviations FE and BG indicate formation energy and
band gap, respectively. The highest R2 score for each dataset was highlighted by the bold font.

Dataset
Graph neural networks EMRL-based ML algorithms

Imp.
GCN GAT TGNN CGCNN MEGNet EMRL-LR EMRL-NN EMRL-GB

MPB 0.754
(0.016)

0.747
(0.011)

0.751
(0.013)

0.763
(0.013) N/A 0.776

(0.015)
0.827
(0.008)

0.871
(0.012) 12.4%

MPS-FE 0.887
(0.006)

0.889
(0.009)

0.969
(0.012)

0.967
(0.005)

0.978
(0.006)

0.984
(0.006)

0.982
(0.006)

0.985
(0.006) 1.8%

MPS-BG 0.745
(0.011)

0.755
(0.013)

0.761
(0.032)

0.698
(0.009) N/A 0.779

(0.023)
0.771
(0.041)

0.788
(0.032) 11.4%

MPL-FE 0.958
(0.001)

0.959
(0.001)

0.989
(0.001)

0.992
(0.001) N/A 0.995

(0.001)
0.995
(0.001)

0.998
(0.001) 0.6%

MPL-BG 0.702
(0.005)

0.715
(0.003)

0.735
(0.010)

0.733
(0.003) N/A 0.801

(0.004)
0.811
(0.004)

0.833
(0.003) 12.0%

HOIP 0.895
(0.012)

0.901
(0.009)

0.767
(0.153)

0.908
(0.008)

0.907
(0.008)

0.965
(0.005)

0.964
(0.006)

0.967
(0.004) 6.1%

NLHM 0.633
(0.016)

0.771
(0.019)

0.784
(0.058)

0.721
(0.013)

0.904
(0.015)

0.827
(0.018)

0.826
(0.018)

0.828
(0.017) 12.9%
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Figure 1: Two-dimensional t-SNE [30] visualization of the distributions of the materials in the embedding spaces of
EMRL and CGCNN. The X and Y axes in the embedding distributions are two latent features that were calculated
automatically through EMRL or CGCNN. Each point indicates the crystal structure of the material. a and b:
Distributions of the materials in the HOIP and MPS-BG datasets. Each material was colored according to its
band gap, where higher and lower band gaps were marked magenta and cyan, respectively. c: Distribution of the
materials in the HOIP dataset categorized according to their compositions. d: Distribution of the materials in the
MPS-BG dataset colored according to contents of metal atoms, which were calculated by the ratio of the number of
metal atoms to that of all atoms in the unit cell.

In the MPS-BG dataset, both EMRL and CGCNN can distinguish the materials with higher band gaps, which
are marked by magenta. However, the materials were roughly separated into two subgroups depending on their
band gaps by the materials representation of EMRL as shown in Fig. 1b, but these subgroups cannot be easily
recognized in CGCNN. This shows that EMRL can handle uncorrelated feature vectors and target values better
than CGCNN. To understand the nature of two subgroups from EMRL representations, we interpreted them based
on the metal contents in the materials, as the amount of band gap is relevant to the metal non-metal elements
and metals are generally known as good conducting materials with no band gap. By displaying the content of
metal atoms in the unit cell, we were able to observe that EMRL separated the MPS-BG dataset into two groups
of the materials with high and low metal contents. More importantly, the self-organization by EMRL can be
helpful in connecting relevant materials properties, which can be explained in the similar fundamental knowledge.
In the embedding results on the MPS-BG dataset, we observed that EMRL learned the importance of chemical
compositions rather than a direct mapping between the crystal structures and the band gaps. In this viewpoint, we
drew the materials distribution in the embedding space of EMRL for their formation energies. As shown in Fig. 1
of SI, the materials were well-separated according to their formation energies even though EMRL was trained to
predict band gap. In this sense, we extended the applicability of EMRL into transfer learning and experimentally
evaluated the effectiveness of EMRL in the paper.

References
[1] pymatgen. https://pymatgen.org/, 2020 (accessed December 4, 2020).

[2] Pytorch-geometric. https://pytorch-geometric.readthedocs.io, 2020 (accessed December 4, 2020).

4

https://pymatgen.org/
https://pytorch-geometric.readthedocs.io


[3] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. volume 27 of Proceedings of Machine
Learning Research, pages 37–49, 2012.

[4] Albert P Bartók, Risi Kondor, and Gábor Csányi. On representing chemical environments. Phys. Rev. B, 87
(18):184115, 2013.

[5] Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional potential-
energy surfaces. Phys. Rev. Lett., 98(14):146401, 2007.

[6] Pierre-Paul De Breuck, Geoffroy Hautier, and Gian-Marco Rignanese. Machine learning materials properties
for small datasets. arXiv:2004.14766, 2020.

[7] Ivano E. Castelli, Falco Huser, Mohnish Pandey, Hong Li, Kristian S. Thygesen, Brian Seger, Anubhav Jain,
Kristin A. Persson, Gerbrand Ceder, and Karsten W. Jacobsen. New light-harvesting materials using accurate
and efficient bandgap calculations. Adv. Energy Mater., 5(2):1400915, 2015.

[8] Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph networks as a universal machine
learning framework for molecules and crystals. Chem. Mater., 31(9):3564–3572, 2019. doi: 10.1021/acs.
chemmater.9b01294. URL https://doi.org/10.1021/acs.chemmater.9b01294.

[9] Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Github repository of MegNet.
https://github.com/materialsvirtuallab/megnet, 2020 (accessed December 4, 2020).

[10] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794, 2016. doi:
10.1145/2939672.2939785.

[11] Xing Chen, Li Huang, Di Xie, and Qi Zhao. Egbmmda: Extreme gradient boosting machine for mirna-disease
association prediction. Cell Death Dis., 9:3, Sep 2017. doi: https://doi.org/10.1038/s41419-017-0003-x. URL
https://www.nature.com/articles/s41419-017-0003-x.

[12] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with application
to face verification. IEEE Conference on Compute Vision and Pattern Recognition (CVPR), pages 539–546,
2005. doi: 10.1109/CVPR.2005.202.

[13] Norman R. Draper and Harry Smith. Applied Regression Analysis, 3rd Edition. Wiley-Interscience, 1998. ISBN
978-0-471-17082-2.

[14] Olexandr Isayev, Corey Oses, Cormac Toher, Eric Gossett, Stefano Curtarolo, and Alexander Tropsha. Universal
fragment descriptors for predicting properties of inorganic crystals. Nat. Commun., 8(1):1–12, 2017.

[15] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek,
Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson. Commentary: The
materials project: A materials genome approach to accelerating materials innovation. APL Mater., 1(1):011002,
2013. doi: 10.1063/1.4812323.

[16] Chiho Kim, Tran Doan Huan, Sridevi Krishnan, and Rampi Ramprasad. A hybrid organic-inorganic perovskite
dataset. Sci. Data, 4:170057, May 2017.

[17] Sungyeon Kim, Minkyo Seo, Ivan Laptev, Minsu Cho, and Suha Kwak. Deep metric learning beyond binary
supervision. IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[18] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014.

[19] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. Interna-
tional Conference on Learning Representations (ICLR), 2017.

[20] Gyoung S Na, Hyunju Chang, and Hyun Woo Kim. Machine-guided representation for accurate graph-based
molecular machine learning. Phys. Chem. Chem Phys., 22(33):18526–18535, 2020.

[21] Gyoung S. Na, Seunghun Jang, Yea-Lee Lee, and Hyunju Chang. Tuplewise material representation based
machine learning for accurate band gap prediction. J. Phys. Chem. A, 124:10616–10623, 2020. doi: 10.1021/
acs.jpca.0c07802.

[22] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS 2017 Workshop
on Autodiff, 2017.

[23] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain.
Psychol. Rev., 65(6):386–408, 1958. doi: 10.1037/h0042519.

[24] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain.
Psychol. Rev., pages 65–386, 1958.

[25] Daphna Rothschild, Omer Weissbrod, Elad Barkan, Alexander Kurilshikov, Tal Korem, David Zeevi, Paul I.
Costea, Anastasia Godneva, Iris N. Kalka, Noam Bar, Smadar Shilo, Dar Lador, Arnau Vich Vila, Niv Zmora,
Meirav Pevsner-Fischer, David Israeli, Noa Kosower, Gal Malka, Bat Chen Wolf, Tali Avnit-Sagi, Maya
Lotan-Pompan, Adina Weinberger, Zamir Halpern, Shai Carmi, Jingyuan Fu, Cisca Wijmenga, Alexandra
Zhernakova, Eran Elinav, and Eran Segal. Environment dominates over host genetics in shaping human gut
microbiota. Nature, 555:210–215, Aug 2018. doi: https://doi.org/10.1038/nature25973. URL https://www.
nature.com/articles/nature25973?_ga=2.144797053.812497913.1541203200-1854234215.1541203200.

5

https://doi.org/10.1021/acs.chemmater.9b01294
https://github.com/materialsvirtuallab/megnet
https://www.nature.com/articles/s41419-017-0003-x
https://www.nature.com/articles/nature25973?_ga=2.144797053.812497913.1541203200-1854234215.1541203200
https://www.nature.com/articles/nature25973?_ga=2.144797053.812497913.1541203200-1854234215.1541203200


[26] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. volume 5 of Proceedings of Machine
Learning Research, pages 448–455. PMLR, 2009.

[27] Jonathan Schmidt, Mário RGMarques, Silvana Botti, and Miguel AL Marques. Recent advances and applications
of machine learning in solid-state materials science. Npj Comput. Mater., 5(1):83, 2019.

[28] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objectives. Conference on Neural
Information Processing Systems (NIPS), 2016.

[29] Hyun Oh Song, YStefanie Jegelka, Vivek Rathod, and Kevin Murphy. Deep metric learning via facility location.
IEEE Conference on Compute Vision and Pattern Recognition (CVPR), 2017.

[30] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605, 2008.

[31] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. International Conference on Learning Representations (ICLR), 2018.

[32] Aron Walsh. Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide
perovskites. J. Phys. Chem. C, 119(11):5755–5760, 2015.

[33] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing Lin. Deep metric learning with angular loss. IEEE
Conference on Compute Vision and Pattern Recognition (CVPR), 2017.

[34] Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. Distance metric learning for large margin nearest
neighbor classification. Conference on Neural Information Processing Systems (NIPS), 2009.

[35] Tian Xie and Jeffrey C. Grossman. Crystal graph convolutional neural networks for an accurate and interpretable
prediction of material properties. Phys. Rev. Lett., 120:145301, Apr 2018. doi: 10.1103/PhysRevLett.120.145301.
URL https://link.aps.org/doi/10.1103/PhysRevLett.120.145301.

[36] Tian Xie and Jeffrey C. Grossman. Github repository of CGCNN. https://github.com/txie-93/cgcnn,
2020 (accessed December 4, 2020).

[37] Dahai Zhang, Liyang Qian, Baijin Mao, Can Huang, Bin Huang, and Yulin Si. A data-driven design for fault
detection of wind turbines using random forests and xgboost. IEEE Acess, 6:21020–21031, Apr 2018. doi:
10.1109/ACCESS.2018.2818678. URL https://ieeexplore.ieee.org/abstract/document/8329419.

6

https://link.aps.org/doi/10.1103/PhysRevLett.120.145301
https://github.com/txie-93/cgcnn
https://ieeexplore.ieee.org/abstract/document/8329419

	Materials Descriptors for Machine Learning
	Representation Learning in Machine Learning
	Graph-Based Machine Learning for Materials Science
	Implementation Details
	Prediction Performances on Benchmark Materials Datasets
	Embedding Distributions

