Access to hexahydroazepinone heterocycles via palladium-catalysed C(sp³)–H alkenylation/ring-opening of cyclopropanes

Kévin Saint-Jacques[‡], Carolyn L. Ladd[‡] and André B. Charette*

Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3

Table of Contents

General methods	S3
Selected optimization and control experiments	S4
Optimization of the continuous flow reaction	S14
Mechanism	S21
Experimental procedures and characterization data	S22
General procedure for synthesis of the starting material and characterization data	S22
General Procedures for the Pd-catalyzed cyclization under batch conditions	S36
Procedure for the 0.6 mmol scale under continuous flow conditions (feed tank)	S37
Characterization Data for Compounds 2a-4r	S38
References	S48
X-Ray data	S49
¹ H, ¹³ C, ¹⁹ F spectra of novel compounds	S58

General Methods: Commercial reagents were used as supplied or purified by standard techniques where necessary.¹ All non-aqueous reactions were run under argon atmosphere with flame-dried glassware using standard techniques for manipulating air-sensitive compounds.² Anhydrous solvents were obtained by filtration through drying columns according to the method of Grubbs³ or by distillation over calcium hydride or sodium. Flash chromatography was performed using 230-400 mesh silica according to the method of Still⁴ or on an automatic purification system (Santai Sepabean) using pre-packed normal phase silica cartridges SepaFlash® HP from Santai Technologies, Inc. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates (Merck 60 F254) and visualized by UV absorbance (254 nm), potassium permanganate (KMnO₄), and/or cerium ammonium molybdate (CAM) stains.

Nuclear magnetic resonance spectra were recorded on an Avance AV400 MHz, Avance AV 300 MHz, or DRX 400 MHz (1 H, 13 C, 19 F, 1D NOESY) spectrometer. Chemical shifts for 1 H NMR spectra are recorded in parts per million (ppm) from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CHCl₃, δ = 7.26 ppm). The data was reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, br = broad, d = doublet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, ddd = doublet of doublets of doublets, t = triplet, q = quadruplet, quintet = quint, m = multiplet), integration, coupling constant (Hz) and assignment. Chemical shifts for 13 C NMR spectra were recorded in parts per million from tetramethylsilane using the central peak of CDCl₃ (77.16 ppm) as the internal standard. All 13 C NMR spectra were obtained with complete proton decoupling. Starting materials were reported as a mixture of rotamers. Infrared spectra were taken on a Bruker Alpha Platinum ATR (neat) and are reported in reciprocal centimeters (cm $^{-1}$). Melting points were obtained using a Büchi melting point apparatus and are uncorrected. High-resolution mass spectra were performed by the Centre régional de spectrométrie de masse de l'Université de Montréal.

Selected optimization and control experiments

Table S1: Control experiments

Entry	Variation from Standard Conditions	Yield (%) ^a
1	No Pd(OAc) ₂	0 (100) ^b
2	No tBu ₃ P•HBF ₄	$0(100)^{b}$
3	No K ₂ CO ₃	$0(100)^{b}$

^aYields were calculated based on ¹H NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard. ^bUnreacted starting material.

Procedure: A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with **1aa** (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol), tBu₃P•HBF₄ (5.78 mg, 0.020 mmol) and K₂CO₃ (41.5 mg, 0.30 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes (2.00 mL) was then added and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further rinsed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole mixture was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Table S2: Additive screening

Entry	Additive	Yield (%) ^a
1	PivOH	86 (0)°
2	AdOH	88 (0)°
3	$Ag_2CO_3^b$	89 (0)°

^aYields were calculated based on ¹H NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard. ^b0.5 equivalents were used. ^cUnreacted starting material.

Procedure for entry 1 and 2: A 5.0-mL microwave vial containing an oven dried stirring bar was charged with 1aa (51.6 mg, 0.20 mmol) and 30 mol% of Additive and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol), tBu₃P•HBF₄ (5.78 mg, 0.020 mmol), and K₂CO₃ (41.5 mg, 0.30 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes (2.00 mL) was then added and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further washed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole mixture was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Procedure for entry 3: A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with **1aa** (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol), *t*Bu₃P•HBF₄ (5.78 mg, 0.020 mmol), K₂CO₃ (41.5 mg, 0.30 mmol), and **Ag₂CO₃** (27.6 mg, 0.10 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes (2.00 mL) was then added and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further washed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an

internal standard, the whole mixture was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Table S3: Catalyst screening

Entry	Catalyst	Yield (%) ^a
1	Pd(dba) ₂	3 (93) ^b
2°	Pd(dba) ₂	92 (0) ^b
3	Pd_2dba_3	3 (93) ^b
4	$Pd(TFA)_2$	66 (15) ^b
5	$PdCl_2$	9 (85) ^b
6	$Pd(OAc)_2$	$88(0)^{b}$

^aYields were calculated based on ¹H NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard. ^bUnreacted starting material. ^cEntry performed using 30 mol% pivalic acid as an additive.

Procedure: A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with **1aa** (51.6 mg, 0.20 mmol) and taken into a glovebox. The Catalyst (0.010 mmol, 5 mol%), $tBu_3P \cdot HBF_4$ (5.78 mg, 0.020 mmol), and K_2CO_3 (41.5 mg, 0.30 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes (2.00 mL) was then added and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further washed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole mixture was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Table S4: Ligand screening

Entry	Ligand	Yield (%) ^a
1	Xphos	$65(0)^{b}$
2	Davephos	47 (44) ^b
3	Xantphos	88 (0) ^b
4	PCy_3	91 (0) ^b
5	$tBu_3P \bullet HBF_4$	$88(0)^{b}$
6	<i>t</i> Bu ₂ MeP∙HBF ₄	47 (52) ^b
7	PPh_3	53 (28) ^b
8	dppf	57 (28) ^b
9	rac-BINAP	$96(0)^{b}$
10	$P(4-FC_6H_4)_3$	$16(75)^{b}$
11	$P(4-MeOC_6H_4)_3$	28 (62) ^b
12°	$tBu_3P \bullet HBF_4$	$85(2)^{d}$
13°	PCy_3	$78 (0)^{d}$
14°	PPh_3	12 (73) ^b
15°	DavePhos	$77(10)^{d}$
16e	Xantphos	8 (87) ^b
17 ^f	Xantphos	$0(99)^{b}$

^aYields were calculated based on ¹H NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard. ^bUnreacted starting material. ^cDMF as solvent. ^dYield of the other isomer (**3a**). ^ePd(dba)₂ was used as catalyst. [†]30 mol% of pivalic acid was used as an additive.

Procedure: A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with **1aa** (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol), the Ligand (0.020 mmol, 10 mol%), and K₂CO₃ (41.5 mg, 0.30 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes (2.00 mL) was then added and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further washed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole mixture was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Table S5: Base screening

Entry	Base	Yield (%) ^a
1	K_2CO_3	$88(0)^{b}$
2	Na_2CO_3	14 (84) ^b
3	Cs_2CO_3	93 (0) ^b
4	Rb_2CO_3	$92(0)^{b}$
5	KOtBu	$23 (0)^{b}$
6	K_3PO_4	$30 (69)^{b}$
7	KOAc	93 (0) ^b
8	DIPEA	81 (8) ^d
9°	DIPEA	$79 (8)^{d}$
10 ^e	Cs_2CO_3	$78 (0)^{b}$
11 ^e	KOAc	40 (56) ^b
$12^{\rm f}$	$\mathrm{Et}_{3}\mathrm{N}$	17 (83) ^b
13	Matrix Innov. MP-carbonate resin	95 (0) ^b

^aYields were calculated based on ¹H NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard. ^bUnreacted starting material. ^cDMF was used as solvent. ^dYield of the other isomer **3a**. ^cPCy₃ was used as ligand. ^fEt₃N was used as a solvent.

Procedure (entries 1-7, 10, 11, 13): A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with 1aa (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol), *t*Bu₃P•HBF₄ (5.78 mg, 0.020 mmol) and the Base (0.30 mmol, 1.5 equiv) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylene (2.00 mL) was then added and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further washed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole mixture was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Procedure (entries 8-9, 10, 12): A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with **1aa** (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol) and *t*Bu₃P•HBF₄ (5.78 mg, 0.020 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. The solvent (2.00 mL) and the base (0.30 mmol, 1.5 equiv) were then added and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further washed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole mixture was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Table S6: Solvent screening

Entry	Solvent	Yield(%) ^a
1	Chlorobenzene	13 (83) ^b
2	DMF	85 (2)°
3	Dioxane	$89 (0)^{b}$
4	Isobutanol	27 (60) ^b
5	Benzene	$84 (0)^{b}$
6	DMA	$80 (0)^{b}$
7	Xylenes	$88 (0)^{b}$
8	Toluene	$70~(0)^{b}$
9	CPME	68 (32) ^b

^aYields were calculated based on ¹H NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard. ^bUnreacted starting material. ^cYield of the other isomer **3a**.

Procedure: A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with **1aa** (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol), $tBu_3P \cdot HBF_4$ (5.78 mg, 0.020 mmol) and K₂CO₃ (41.5 mg, 0.30 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. The Solvent

(2.00 mL) was then added and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further washed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole mixture was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Table S7: Catalyst and ligand loading

Entry	Pd (x mol%): L (y mol%)	Yield (%) ^a
1	5:5	88 (0) ^b
2	10:10	83 (0) ^b
3	2.5:5	$89(0)^{b}$
4	10:20	$85(0)^{b}$
5	5:10	$88(0)^{b}$

^aYields were calculated based on ¹H NMR using 1,3,5-trimethoxybenzene (TMB) as an internal standard. ^bUnreacted Starting material.

Procedure: A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with **1aa** (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (x mmol), tBu₃P•HBF₄ (y mmol) and K₂CO₃ (41.5 mg, 0.30 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes (2.00 mL) was then added and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further washed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole mixture was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Table S8: Yield vs time for the reactions in xylenes and DMF

Entry	Time (h)	Yield in Xylenes (%)	Yield in DMF (%)
1	0.5	0 (91) ^b	28 (70) ^b
2	1	19 (81) ^b	52 (45) ^b
3	3	20 (76) ^b	$88(0)^{b}$
4	6	56 (40) ^b	$90 (0)^{b}$
5	9	$88(0)^{b}$	
6	16	88 (0) ^b	85 (2)°
7	48		77 (10)°

^aYields were calculated based on ¹H NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard.

Procedure: A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with **1aa** (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol), *t*Bu₃P•HBF₄ (5.78 mg, 0.020 mmol) and K₂CO₃ (41.5 mg, 0.30 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes or DMF (2.00 mL) was then added and the reaction was heated to 110 °C for Time. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further washed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole mixture was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

^bUnreacted starting material. ^cYield of the other isomer **3a**.

Table S9: Microwave reaction

Entry	Base	Solvent	Yield in DMF (%)
1	DIPEA	DMF	55 (30) ^b
2	K_2CO_3	Xylenes: DMF (17:3)	88 (0) ^c

^aYields were calculated based on ¹H NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard. ^bYield of the other isomer **3a**. ^cUnreacted starting material.

Procedure (entry 1): A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with **1aa** (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol) and *t*Bu₃P•HBF₄ (5.78 mg, 0.020 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes (2.00 mL) and DIPEA (52 μL, 0.30 mmol) were then added and the reaction was heated to 150 °C for 40 min under microwave irradiation (Biotage Initiator® microwave). The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further washed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole mixture was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Procedure (entry 2): A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with 1aa (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol), tBu₃P•HBF₄ (5.78 mg, 0.020 mmol) and K₂CO₃ (41.5 mg, 0.30 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes (2.00 mL) was then added and the reaction was heated to 150 °C for 40 min under microwave irradiation (Biotage Initiator® microwave). The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further washed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole mixture was dissolved in

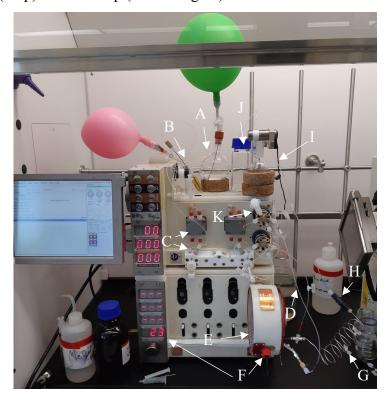
CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Note: Caution must be taken when performing reactions under microwave irradiation as specific reaction conditions might cause formation of a palladium mirror and/or deposit of palladium black which upon intense heating led to the cracking of the reaction vial.

Optimization of the continuous flow reaction

Use of a packed bed column filled with the supported base (injection loop):

To optimize the reaction conditions under continuous flow, a R-Series Vapourtec® flow system (R2+ pump, R4 heating module), an Omnifit® glass column, and standard 1/16'' x 0.04'' tubing PFA tubing were used. The set-up is shown below:



A. Solvent feed tank under argon atmosphere; **B.** HPLC pump and pressure sensor; **C.** Omnifit® column; **D.** Temperature controller; **E.** 40 cm drop tubing; **F.** 100 psi back pressure regulator; **G.** Six-way valve with 2-mL injection loop; **H.** Waste; **I.** Collection flask

Procedure: A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with **1aa** (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol) and tBu₃P•HBF₄ (5.78 mg, 0.020 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. DMF (2.00 mL) was then added and the homogeneous solution was loaded into the injection loop and pumped (flow rate = 0.015 mL/min) through the pre-heated (150 °C) Omnifit® packed bed column containing Matrix Innovation MP-carbonate supported resin (>0.5 mmol/g, V = 0.6 mL) (residence time = 40 min). The whole reaction mixture was collected in a flask (5 mL) and the mixture was concentrated under reduced pressure. The resulting solid was dissolved in a 1:1 mixture of water: EtOAc (10 mL) and transferred into a separatory funnel. The layer separated and the aqueous layer was washed with EtOAc (2 x 5 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure to afford the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard. Product **2a** was obtained in 23% NMR yield along with 69% of unreacted starting material **1aa**.

Homogeneous conditions (injection loop and reagent feed tank):

To optimize the conditions in flow chemistry, a R-Series Vapourtec® flow system (R2+ pump, R4 heating module) and standard 1/16" x 0.04" tubing PFA tubing were used. The set-up used for both optimization (loop) and scale-up (bottle reagent) is shown below.

A. Solvent feed tank under argon atmosphere; **B.** Reaction feed tank: reaction mixture under argon atmosphere; **C.** HPLC pump and pressure sensor; **D.** 40 cm drop tubing; **E.** Coil reactor (Stainless steel, PFA or Copper); **F.** Temperature controller; **G.** 100 cm cooling loop; **H.** 100 psi back pressure regulator; **I.** Collection flask; **J.** Waste; **K.** Six-way valve with 2-mL injection loop (used for optimization).

General procedure for the optimization study of the continuous flow reaction under homogeneous conditions (injection loop) (Table S10-S14)

General procedure for the optimization: A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with 1aa (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol) and tBu₃P•HBF₄ (5.78 mg, 0.020 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. The solvent (2.00 mL) and base (1.5 equiv) were then added and the homogeneous solution was loaded into the injection loop and pumped through the reactor coil that was pre-heated at the selected temperature. The reaction solvent was used as the carrier solvent. The whole reaction mixture was collected in a flask (5 mL) and the mixture was concentrated under reduced pressure. The resulting solid was dissolved in a 1:1 mixture of water: EtOAc (10 mL) and transferred into a separatory funnel. The layer separated and the aqueous layer was washed with EtOAc (2 x 5 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure to afford the crude product. 1,3,5-Trimethoxybenzene was then added as an internal standard, the whole was dissolved in CDCl₃. The yield was calculated based on the integration of ¹H NMR signals of the product relative to those of the internal standard.

Table S10: Solvent mixture screening^a

Entry	Solvent	Yield (%) ^b
1°	DMF	41 (40) ^d
2	Xylenes: DMF (1:3)	53 (34) ^d
3	Xylenes: DMF (1:1)	31 (53) ^d
4	Xylenes: DMF (3:1)	$78 (19)^{d}$
5	Xylenes: DMF (17:3)	23 (69) ^d
6	Toluene: DMF (3:1)	26 (44) ^d

^aUnless otherwise noted: base: DIPEA, reactor: stainless steel, reactor temperature: 150 °C, residence time: 40 min, flow rate: 0.125 mL/min. ^bYields were calculated based on

Table S11: Temperature screening^a

Entry	Temperature (°C)	Yield (%) ^b
1	110	<5 (83)°
2	140	51 (43)°
3	150	78 (19)°
4	160	53 (19)°
5	180	59 (21)°
6	190^{d}	63 (17)°

^a Unless otherwise noted: solvent: xylenes:DMF (3:1), base: DIPEA, reactor: stainless steel, residence time: 40 min, flow rate: 0.125 mL/min. ^bYields were calculated based on ¹H NMR using 1,3,5-trimethoxybenzene (TMB) as an internal standard. ^cYield of unreacted starting material. ^d20 min as residence time.

Table S12: Residence time screening^a

Entry	Residence time (min)/ Flow rates (mL/min)	Yield (%) ^b
1	20/0.250	31 (65)°
2	30/0.175	43 (49) ^c
3	40/0.125	78 (19)°
4	60/0.075	37 (50)°

^a Unless otherwise noted: solvent: xylenes:DMF (3:1), base: DIPEA, reactor: stainless steel, reactor temperature: 150 °C. ^bYields were calculated based on ¹H NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard. ^cYield of unreacted starting material.

 $^{^1\}mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard. $^c\mathrm{Performed}$ at 140 $^o\mathrm{C}.^d\mathrm{Yield}$ of unreacted starting material.

Table S13: Base screening^a

Entry	Base	Yield (%) ^a
1 ^b	DIPEA	47 (40)°
2	DIPEA	78 (19)°
3^{d}	DIPEA	79 (10)°
4	Et_3N	e
5	iPr_2NH	33 (39)
6	2,6-Lutidine	7 (78)

^a Unless otherwise noted: solvent: xylenes:DMF (3:1), reactor: stainless steel, reactor temperature: 150 °C, residence time: 40 min, flow rate: 0.125 mL/min. aYields were calculated based on ¹H NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard. b1.1 equiv used. eYield of unreacted starting material. d4.5 equiv used. eClogging was observed.

Table S14: Reactor material screening and other miscellaneous conditions^a

Entry	5-mL Reactor material	Yield (%) ^b
1	PFA	c
2	Stainless steel	78 (19)°
3^{d}	Stainless steel	63 (0)°
4 ^e	Stainless steel	74 (0) ^c
5	Copper	f
6^{g}	Stainless steel	85 (0)

^a Unless otherwise noted: solvent: xylenes:DMF (3:1), base: DIPEA, reactor temperature: 150 °C, residence time: 40 min, flow rate: 0.125 mL/min. ^bYields were calculated based on ¹H NMR analysis using 1,3,5-trimethoxybenzene (TMB) as an internal standard. ^cUnreacted starting material. ^dIncreased catalytic loading, Pd(OAc)₂ 10 mol% and 20 mol% P(tBu)₃•HBF4. ^c Increased catalytic loading, Pd(OAc)₂ 10 mol% and 20 mol% P(tBu)₃•HBF4 and nitric acid wash as described above. ^fHigh amount of copper leaching into the reaction mixture. ^gIncreased reaction scale 0.6 mmol.

During the optimization and as observed by others, palladium (0) deposition on the stainless-steel reactor coil was suspected, thus leading to diminished reaction yield and reproducibility issues. As mentioned by Kappe⁵, it is possible to clean the reactor in between runs by washing it with diluted nitric acid. The following procedure was used.

Nitric acid wash procedure:

After the reaction, the whole set-up was washed with MeOH (flow rate of 2.50 mL/min) for 5 min. The reactor was heated to 60 °C and then washed with 20% aqueous nitric acid (flow rate of 2.50 mL/min) for 5 min or until the yellow solution (indicative of dissolved palladium particle) became colorless. The system was then washed with MeOH as above and after which it was ready to be used in the next reaction.

A. Reaction stream (yellow) while washing the reactor coil with 20% aqueous nitric acid (flow rate: 2.50 mL/min, 60 °C); **B.** Reaction stream (colorless) after washing; **C.** Collected solution of the aqueous nitric acid and MeOH wash.

Mechanism

The proposed mechanism of the optimized reaction is as followed:

Reaction mechanism for the formation of hexahydroazepinone via a CMD transition state.

Experimental procedures and characterization data

General procedure 1 for synthesis of the starting materials and characterization data (1aa, 1ab, 1ac, 1b-r) (procedure for 1aa shown below). Starting materials not listed below were obtained commercially and the reagents were used without further purification. 2-Halocycloalkenyl carboxylic acids were synthesized via a Vilsmeier-Haack formylation⁵ followed by Pinnick oxidation as reported in the literature (Scheme 1).^{6,7}

The precursors to the ring opening reaction were reported as a mixture of rotamers.^{8,9}

2-Bromo-N-cyclopropylcyclohex-1-ene-1-carboxamide (S1). To a flamed-dried, 100mL flask and cooled under argon was added DCM (60 mL), cat. DMF (0.23 mL, 2.93 mmol), and 2-bromocyclohex-1-ene-1-carboxylic acid (2.00 g, 9.75 mmol). To this was slowly added oxalyl chloride (1.5 mL, 17.97 mmol) and bubbling was immediately observed. The reaction was stirred for 1 h and it turned yellow, then cyclopropylamine (0.75 mL, 10.7 mmol) was added followed by Et₃N (2.04 mL, 14.6 mmol) leading to the formation of a white gas over the reaction mixture that disappeared after a few moments. The reaction mixture was stirred for 16 h and then transferred to a separatory funnel. The organics were washed with Na₂CO₃ (3x50 mL) and brine (1x50 mL). The combined organic layers were dried over Mg₂SO₄, filtered, and concentrated under reduced pressure to give a brownish oil. The residue was dissolved in DCM and purified by flash chromatography (40% EtOAc:hexanes) as eluent to give S1 as a white solid (2.09 g, 88%). A can also be purified via trituration using hexanes as solvent. mp: 98-101 °C; R_f: 0.18 (30%) EtOAc:hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 6.07-5.97 (brs, 1H, N-H), 2.77 (dtt, J = 7.5, 3.4, 3.4 Hz, 1H, N-CH_{cyclopropane}), 2.51-2.35 (m, 4H, CH₂-C(-Br)=C and CH₂-C(-C=O)=C-), 1.75-1.66 (m, 4H, CH₂-CH₂-CH₂-CH₂-cyclohexene), 0.87-0.77 (m, 2H, CH₂-CH₂-cyclopropane), 0.64-0.56 (m, 2H, CH₂-CH₂cyclopropane); ¹³C NMR (CDCl₃, 101 MHz): δ 170.6, 135.2, 120.8, 36.2, 29.1, 24.1, 22.6, 18.4, 6.5; **FTIR** (cm-1) (neat): 3267, 2940, 2922, 1627, 1536, 1444, 1301, 1058, 1014, 726, 673; **HRMS** (ESI, Pos) calc. for $C_{10}H_{15}[^{79}Br]NO$ (M+H)+: 244.03315 found: 244.03343 m/z, calc. for $C_{10}H_{15}[^{81}Br]NO (M+H)+: 246.03144 \text{ found: } 246.03111 \text{ m/z.}$

2-Bromo-N-cyclopropyl-N-methylcyclohex-1-ene-1-carboxamide (1aa). To a 250-mL round bottomed flask containing 50 mL of THF was added intermediate S1 (2.09 g, 8.55 mmol). The reaction was cooled to 0 °C and NaH, 54% wt. oil dispersion (396 mg, 9.40 mmol) was added. After stirring for 15 min, MeI (1.08 mL, 17.1 mmol) was added dropwise. The reaction stirred for 16 h before quenching with 75 mL brine and 75 mL of EtOAc. The reaction was transferred to a 250-mL separatory funnel. The layers were then separated, and the aq. layer was then washed with EtOAc (3x50 mL). The combined organics were then washed with brine (1x50 mL), dried over Na₂SO₄ anhydrous, filtered and concentrated under reduced pressure to give **1aa** as white solid (97% yield, 2.14 g, 8.29 mmol) after flash chromatography (0-30% hexanes:ethyl acetate). All starting materials are reported as mixtures of rotamers. mp: 50-52 °C; R_f: 0.29 (30%) EtOAc:hexanes); ¹H NMR (CD₃OD, 400 MHz): δ 3.00-2.68 (m, 4H, N-CH₃ and N-CH_{cyclopropane}), 2.61-2.45 (m, 2H, CH₂-C(-Br)=C), 2.38-2.11 (m, 2H, CH₂-C(-C=O)=C-), 1.84-1.70 (m, 4H, CH₂-C(-C=O)=C-) CH₂-CH₂-CH₂-cH₂-cyclohexene), 0.89-0.67 (m, 4H, CH₂-CH₂-cyclopropane); ¹³C NMR (CD₃OD, 400 MHz): δ 174.9, 174.4, 137.1, 136.1, 36.6, 36.3, 35.9, 33.9, 32.6, 30.7, 30.0, 29.4, 25.3, 25.1, 22.5, 22.4, 8.8, 7.2, 6.9, 6.7; **FTIR** (cm⁻¹) (neat): 2933, 2885, 1635, 1381, 1363, 1025, 756; **HRMS** (ESI, Pos) calc. for $C_{11}H_{17}[^{79}Br]NO (M+H)^+$ 258.04880: found: 258.04842 m/z, calc. for $C_{11}H_{17}[^{81}Br]NO$ $(M+H)^+$ 260.04676 : found 260.04712 m/z.

2-Chloro-*N***-cyclopropyl-***N***-methylcyclohex-1-ene-1-carboxamide** (1ab). The title compound 1ab was prepared according to the general procedure on a 6.23 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 1ab as a light yellow oil (1.08 g, 5.17 mmol, 83% over 2 steps). **R**_f: 0.30 (30% EtOAc:hexanes); ¹**H NMR** (CD₃OD, 400 MHz): δ 2.98-2.69 (m, 4H, N-CH₃ and N-CH_{cyclopropane}), 2.47-2.09 (m, 4H, CH₂-C(-Cl)=C(-C=O)-CH₂), 1.84-1.66 (m, 4H, CH₂-CH₂-CH₂-CH₂-CH₂cyclohexene), 0.89-0.65 (m, 4H, CH₂-CH₂cyclopropane</sub>); ¹³C NMR (CD₃OD, 101 MHz): δ 174.3, 173.7, 133.8, 132.9, 130.0, 129.7, 35.7, 33.9, 33.7, 32.3, 30.6, 29.1,

28.5, 24.5, 24.4, 22.5, 22.4, 8.8, 7.2, 6.8; **FTIR** (cm⁻¹) (neat): 2933, 2860, 1633, 1435, 1383, 1364, 1026, 986, 737; **HRMS** (ESI, Pos) calc. for $C_{11}H_{17}[^{35}C1]NO$ (M+H)⁺: 214.09932 found: 214.09933 m/z, calc. for $C_{11}H_{17}[^{37}C1]NO$ (M+H)⁺: 216.09637 found: 216.09714 m/z.

N-Cyclopropyl-*N*-methylcyclohex-1-ene-1-carboxamide (1ac). The title compound 1ac was prepared according to the general procedure on a 7.93 mmol-scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 1ac as a light yellow oil (1.28 g, 7.14 mmol, 90% over two steps). **R**_f: 0.15 (20% EtOAc:hexanes); ¹H NMR (CD₃OD, 400 MHz): δ 5.94 (s(br), 1H, CH₂-C(-H)=C(C=O)), 2.96 (s, 3H, N-CH₃), 2.74-2.68 (m, 1H, N-CH_{cyclopropane}), 2.27-2.11 (m, 4H, CH₂-C(-H)=C(-C=O)-CH₂), 1.77-1.61 (m, 4H, CH₂-CH₂-CH₂-CH₂-CH₂-cyclohexene), 0.85-0.76 (m, 2H, CH_{trans}H_{cis}-CH_{tr}

2-Bromo-5-(*tert***-butyl)-***N***-cyclopropyl-***N***-methylcyclohex-1-ene-1-carboxamide** (**1b**). The title compound **1b** was prepared using the general procedure on a 3.36 mmol-scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give **1b** as a white solid (276 mg, 0.820 mmol, 25% over two steps). **mp:** 57-61 °C; **R**_f: 0.63 (30% EtOAc:hexanes); ¹**H NMR** (CD₃OD, 400 MHz): δ 3.03-2.69 (m, 4H, N-CH₃ and N-CH_{cyclopropyl}), 2.65-2.51 (m, 2H, C-H_{cyclohexene}), 2.39-1.84 (m, 3H, C-H_{cyclohexene}), 1.51-1.37 (m, 2H, C-H_{cyclohexene}), 0.96-0.67 (m, 13H, CH₂-CH_{2cyclopropyl} and C-(CH₃)₃); ¹³C NMR (CD₃OD, 101 MHz): δ 175.1, 174.8, 174.5, 174.3, 137.0, 136.9, 136.2, 135.9, 121.0, 120.9, 120.6, 120.4, 44.68, 44.63, 44.5, 44.3, 38.1, 38.0, 37.8, 37.7, 37.5, 36.1, 35.8, 34.0, 33.9, 33.0, 32.6, 31.83, 31.75, 31.21, 31.15, 30.74, 30.65, 27.6, 27.5, 26.9, 26.83, 26.78, 26.68, 9.3, 8.6, 7.3, 7.2, 7.1, 6.7, 6.6; **FTIR** (cm⁻¹) (neat): 2957, 2867, 1637,

1434, 1364, 1024, 749; **HRMS** (ESI, Pos) calc. for $C_{15}H_{25}[^{79}Br]NO$ (M+H)⁺: 314.11140 found: 314.11217 m/z, calc. for $C_{15}H_{25}[^{81}Br]NO$ (M+H)⁺: 316.10936 found: 316.10956 m/z.

4-Bromo-*N***-cyclopropyl-***N***-methyl-1,2,5,6-tetrahydro-**[**1,1'-biphenyl]-3-carboxamide** (**1c**). The title compound **1c** was prepared using the general procedure on a 2.13 mmol-scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give **1c** as a white solid (389 mg, 1.16 mmol, 55% over two steps). **mp:** 62-65 °C; **R**_f: 0.27 (20% EtOAc:hexanes); ¹**H NMR** (CD₃OD, 400 MHz): δ 7.33-7.16 (m, 5H, C-H_{aryl}), 3.07-2.25 (m, 9H, N-CH₃, N-CH_{cyclopropyl} and **C-H**_{cyclohexene}), 2.07-1.91 (m, 2H, C-H_{cyclohexene}), 0.93-0.66 (m, 4H, CH₂-CH_{2cyclopropyl}); ¹³**C NMR** (CDCl₃, 101 MHz): δ 172.3, 172.1, 171.5, 171.4, 144.8, 144.7, 144.5, 135.8, 135.6, 135.0, 134.5, 128.7, 126.8, 126.71, 126.66, 119.3, 119.1, 118.9; **FTIR** (cm⁻¹) (neat): 3058, 3024, 2923, 1634, 1383, 1027, 952, 699; **HRMS** (ESI, Pos) calc. for C₁₇H₂₁[⁷⁹Br]NO (M+H)⁺: 334.08010 found: 334.08090 *m/z*, calc. for C₁₇H₂₁[⁸¹Br]NO (M+H)⁺: 336.07806 found: 336.07893 *m/z*.

2-Bromo-*N***-cyclopropyl-***N***-5,5-trimethylcyclohex-1-ene-1-carboxamide (1d).** The title compound **1d** was prepared using the general procedure on a 1.84 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give **1d** as a light yellow oil (325 mg, 1.14 mmol, 62% over two steps). **R**_f: 0.38 (30% EtOAc:hexanes); ¹**H NMR** (CD₃OD, 400 MHz): δ 2.98-2.68 (m, 4H, N-CH₃, N-CH_{cyclopropyl}), 2.59-2.49 (m, 2H, C-H_{cyclohexene}), 2.16-1.90 (m, 2H, C-H_{cyclohexene}), 1.59-1.50 (m, 2H, C-H_{cyclohexene}), 1.06-0.97 (m, 6H, CH₂-C-(CH₃)₂-CH₂), 0.92-0.66 (m, 4H, CH₂-CH₂cyclopropyl); ¹³C NMR (CD₃OD, 101 MHz): δ 174.8, 174.2, 136.2, 135.2, 119.8, 119.6, 43.2, 42.8, 37.9, 37.7, 35.9, 34.5, 34.2, 34.0, 32.5, 30.7, 29.5, 28.2, 28.0, 27.7, 9.0, 7.2, 6.8; **FTIR** (cm⁻¹) (neat): 2951, 2924, 1635, 1383, 1364, 1031, 560; **HRMS** (ESI, Pos) calc. for C₁₃H₂₁[⁷⁹Br]NO (M+H)⁺: 286.08010 found: 286.08048 *m/z*, calc. for C₁₃H₂₁[⁸¹Br]NO (M+H)⁺: 288.07806 found: 288.07854 *m/z*.

4-Bromo-1-cyano-N-cyclopropyl-N-methyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-

carboxamide (1e). The title compound **1e** was prepared using the general procedure on a 1.14 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give **1e** as a white solid (233 mg, 0.570 mmol, 50% over two steps). **mp:** 141-144 °C; **R**_f: 0.14 (20% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 7.49 (t, J = 7.8 Hz, 2H, **C-H**_{aryl}), 7.43-7.31 (m, 3H, **C-H**_{aryl}), 3.11-2.59 (m, 8H, N-**CH**₃, N-**CH**_{cyclopropyl} and **C-H**_{cyclohexene}), 2.39-2.16 (m, 2H, **C-H**_{cyclohexene}), 1.06-0.63 (m, 4H, **CH**₂-**CH**_{2cyclopropyl}); ¹³**C NMR** (CDCl₃, 101 MHz): 170.9, 170.1, 138.6, 138.3, 133.1, 132.2, 129.4, 129.3, 128.69, 128.65, 125.63, 125.59, 121.9, 121.8, 118.8, 118.3, 40.7, 40.5, 40.0, 39.9, 35.2, 34.3, 34.1, 33.7, 33.6, 33.5, 31.3, 29.8, 8.7, 6.8, 6.6, 6.4; **FTIR** (cm⁻¹) (neat): 3091, 3009, 2967, 2940, 2224, 1638, 1604, 1497, 1420, 1208, 772, 741, 698, 550; **HRMS** (ESI, Pos) calc. for C₁₈H₂₀[⁷⁹Br]N₂O (M+H)⁺: 359.07535 found: 359.07611 m/z, calc. for C₁₈H₂₀[⁸¹Br]N₂O (M+H)⁺: 361.07331 found: 361.07404 m/z.

2-Bromo-*N***-cyclopropyl-***N***-methylcyclopent-1-ene-1-carboxamide** (**1f**). The title compound **1f** was prepared using the general procedure on a 5.23 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give **1f** as a light yellow oil (984 mg, 4.03 mmol, 77% over two steps). **R**_f: 0.25 (30% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 2.99-2.55 (m, 8H, N-CH₃, N-CH_{cyclopropyl} and C-H_{cyclopentene}), 2.06-1.94 (m, 2H, C-H_{cyclohexene}), 0.85-0.58 (m, 4H, CH₂-CH_{2cyclopropyl}); ¹³C NMR (CDCl₃, 101 MHz): δ 170.0, 138.6, 119.4, 118.9, 40.6, 35.6, 34.7, 34.3, 33.7, 31.1, 29.5, 22.8, 22.3, 7.8, 6.6; **FTIR** (cm⁻¹) (neat): 2929, 2852, 1624, 1422, 1107, 1027, 740; **HRMS** (ESI, Pos) calc. for C₁₀H₁₅[⁷⁹Br]NO (M+H)⁺: 244.03315 found: 244.03378 *m/z*, calc. for C₁₀H₁₅[⁸¹Br]NO (M+H)⁺: 246.03111 found: 246.03159 *m/z*.

2-Bromo-*N***-cyclopropyl-***N***-methylcyclohept-1-ene-1-carboxamide** (**1g**). The title compound **1g** was prepared using the general procedure on a 1.83 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give **1g** as a light yellow oil (258 mg, 0.945 mmol, 53% over two steps). **R**_f: 0.26 (30% EtOAc:hexanes); ¹**H NMR** (CD₃OD, 400 MHz): δ 3.00-2.66 (m, 6H, N-CH₃, N-CH_{cyclopropyl} and C-H_{cycloheptane}), 2.46-2.25 (m, 2H, C-H_{cycloheptane}), 1.91-1.59 (m, 6H, C-H_{cycloheptane}), 0.90-0.66 (m, 4H, CH₂-CH_{2cyclopropyl}); ¹³C NMR (CDCl₃, 101 MHz): δ 173.9, 173.1, 140.6, 139.4, 137.0, 131.9, 123.1, 122.7, 41.4, 41.2, 39.0, 38.8, 35.4, 35.3, 33.6, 32.1, 31.6, 31.2, 31.1, 30.9, 30.8, 30.7, 30.6, 29.50, 29.45, 26.5, 26.44, 26.38, 26.3, 25.6, 25.3, 9.1, 6.4, 6.6, 6.3; **FTIR** (cm⁻¹) (neat): 2923, 2851, 1635, 1380, 1026, 740; **HRMS** (ESI, Pos) calc. for C₁₂H₁₉[⁷⁹Br]NO (M+H)⁺: 272.06445 found: 272.06449 *m/z*, calc. for C₁₂H₁₉[⁸¹Br]NO (M+H)⁺: 274.06241 found: 274.06277 *m/z*.

(*Z*)-2-Bromo-*N*-cyclopropyl-*N*-methylcyclooct-1-ene-1-carboxamide (1h). The title compound 1h was prepared using the general procedure on a 3.72 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 1h as a light yellow oil (827 mg, 2.90 mmol, 78% over two steps). R_f: 0.37 (30% EtOAc:hexanes); ¹H NMR (CD₃OD, 400 MHz): δ 3.09-2.66 (m, 5H, N-CH₃, N-CH_{cyclopropyl} and C-H_{cyclooctene}), 2.62-2.37 (m, 2H, C-H_{cyclooctene}), 2.23-2.12 (m, 1H, C-H_{cyclooctene}), 1.83-1.41 (m, 8H, C-H_{cyclooctene}), 0.87-0.66 (m, 4H, CH₂-CH_{2cyclopropyl}); ¹³C NMR (CD₃OD, 101 MHz): δ 175.2, 174.6, 139.2, 138.2, 37.1, 37.0, 35.9, 33.7, 32.43, 32.36, 31.8, 31.1, 30.8, 30.6, 29.1, 27.5, 27.4, 26.4, 9.2, 7.3, 6.9, 6.7; FTIR (cm⁻¹) (neat): 2925, 2850, 1634, 1381, 1027, 663; HRMS (ESI, Pos) calc. for C₁₃H₂₁[⁷⁹Br]NO (M+H)⁺: 286.08010 found:

286.08061 m/z, calc. for $C_{13}H_{21}[^{81}Br]NO (M+H)^+$: 288.07806 found: 288.07861 m/z.

Synthesis benzylic substituted 2-halocycloalkenyl amides (1i-r)

Using the arylmethyl bromide and amide **S1**, the *N*-arylmethyl-substituted compounds were prepared using the general alkylation procedure described for **1aa**.

N-Benzyl-2-bromo-*N*-cyclopropylcyclohex-1-ene-1-carboxamide (1i). The title compound 1i was prepared from amide S1 on a 1.84 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 1i as a light yellow oil (412 mg, 1.23 mmol, 67%). R_f: 0.51 (30% EtOAc:hexanes); ¹H NMR (CD₃OD, 400 MHz): δ 7.40-7.21 (m, 5H, C-H_{aryl}), 4.82-4.66 (m, 1H, C-H_{benzylic}), 4.52-4.40 (m, 1H, C-H_{benzylic}), 2.80-2.73 (m, 1H, N-CH_{cyclopropyl}), 2.59-2.43 (m, 2H, C-H_{cyclohexene}), 2.39-2.27 (m, 2H, C-H_{cyclohexene}), 1.85-1.57 (m, 4H, C-H_{cyclohexene}), 0.94-0.67 (m, 4H, CH₂-CH_{2cyclopropyl}); ¹³C NMR (CD₃OD, 101 MHz): δ 175.0, 138.7, 138.5, 136.9, 135.8, 129.8, 129.4, 129.2, 128.7, 128.5, 128.4, 122.0, 120.9, 53.8, 50.7, 36.6, 36.5, 31.3, 30.2, 30.1, 29.8, 25.2, 25.0, 22.5, 22.3, 8.8, 7.4, 7.2; FTIR (cm⁻¹) (neat): 3062, 2932, 1632, 1433, 1400, 1027, 698; HRMS (ESI, Pos) calc. for C₁₇H₂₁[⁷⁹Br]NO (M+H)⁺: 334.08010 found: 334.08065 *m/z*, calc. for C₁₇H₂₁[⁸¹Br]NO (M+H)⁺: 336.07806 found: 336.07877 *m/z*.

2-Bromo-*N*-**cyclopropyl-***N*-**(4-methoxybenzyl)cyclohex-1-ene-1-carboxamide (1j).** The title compound **1j** was prepared from amide **S1** using DMF at 70 °C for 16 h on a 1.43 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give **1j** as a light yellow oil (425 mg, 1.16 mmol, 81%). **R**_f: 0.39 (30% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 7.30-7.20 (m, 2H, **C-H**_{aryl, o-CH2}), 6.89-6.78 (m, 2H, **C-H**_{aryl, o-OMe}), 4.82-4.21 (m, 2H, **C-H**_{benzylic}), 3.81-3.74 (m, 3H, O-**CH**₃), 2.68-2.60 (m, 1H, N-**CH**_{cyclopropyl}), 2.53-2.13 (m, 4H, **C-H**_{cyclohexene}), 2.00-1.55 (m, 4H, **C-H**_{cyclohexene}), 0.95-0.60 (m, 4H, **CH**₂-**CH**₂-**cyclopropyl**); ¹³**C NMR** (CDCl₃, 101 MHz): δ 172.6, 172.3, 159.2, 159.1, 158.9, 135.8, 134.8, 133.4, 129.9, 129.8, 129.7, 129.3, 128.6, 120.3, 119.4, 114.1, 114.0, 113.7, 65.0, 55.4, 55.3, 52.2, 49.1, 35.62, 35.57, 29.6, 29.33, 29.29, 28.2, 24.3, 24.1, 21.5, 21.4, 8.5, 8.4, 6.8, 6.7; **FTIR** (cm⁻¹) (neat): 3006, 2934, 1631, 1612, 1600, 1510, 1243, 1174, 1030, 813; **HRMS** (ESI, Pos) calc. for C₁₈H₂₃[⁷⁹Br]NO₂ (M+H)⁺: 364.09067 found: 364.09204 *m/z*, calc. for C₁₈H₂₃[⁸¹Br]NO₂ (M+H)⁺: 366.08862 found: 366.08936 *m/z*.

2-Bromo-*N***-cyclopropyl-***N***-(4-methylbenzyl)cyclohex-1-ene-1-carboxamide (1k).** The title compound **1k** was prepared from amide **S1** on a 0.819 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give **1k** a light yellow oil (205 mg, 0.589 mmol, 72%). **R**_f: 0.52 (30% EtOAc:hexanes); ¹**H NMR** (CD₃OD, 400 MHz): δ 7.25-7.07 (m, 4H, **C-H**_{aryl}), 4.77-4.62 (m, 1H, **C-H**_{benzylic}), 4.47-4.34 (m, 1H, **C-H**_{benzylic}), 2.77-2.69 (m, 1H, N-**CH**_{cyclopropyl}), 2.59-2.44 (m, 2H, **C-H**_{cyclohexene}), 2.41-2.25 (m, 5H, C_{aryl}-**CH₃** and **C-H**_{cyclohexene}), 1.85-1.58 (m, 4H, **C-H**_{cyclohexene}), 0.92-0.66 (m, 4H, **CH₂-CH**_{2cyclopropyl}); ¹³**C NMR** (CD₃OD, 101 MHz): δ 175.0, 138.6, 138.1, 137.0, 135.9, 135.6, 135.3, 130.4, 130.0, 129.3, 128.5, 121.9, 120.8, 53.6, 50.4, 36.6, 36.5, 31.2, 30.2, 30.1, 29.7, 25.3, 25.1, 22.5, 22.4, 21.13, 21.10, 8.8, 7.4, 7.2; **FTIR** (cm⁻¹) (neat): 3009, 2935, 1633, 1514, 1397, 1056, 1025, 754; **HRMS** (ESI, Pos) calc. for C₁₈H₂₃[⁷⁹Br]NO (M+H)⁺: 348.09575 found: 348.09578 *m/z*, calc. for C₁₈H₂₃[⁸¹Br]NO (M+H)⁺: 350.09371 found: 350.09431 *m/z*.

2-Bromo-N-cyclopropyl-N-(2-(trifluoromethyl)benzyl)cyclohex-1-ene-1-carboxamide

(11). The title compound 11 was prepared from amide S1 on a 1.23 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 11 as a white solid (437 mg, 1.08 mmol, 88%). mp: 44-48 °C; R_f: 0.26 (20% EtOAc:hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.69-7.28 (m, 4H, C-H_{aryl}), 5.00-4.49 (m, 2H, CH_{2benzylic}), 2.90-2.74 (m, 1H, N-CH_{cyclopropyl}), 2.60-2.26 (m, 4H, C-H_{cyclohexene}), 1.89-1.40 (m, 4H, C-H_{cyclohexene}), 0.99-0.54 (m, 4H, CH₂-CH_{2cyclopropyl}); ¹³C NMR (CDCl₃, 101 MHz): δ 173.3, 173.0, 136.9, 135.8, 134.4, 132.3, 132.1, 128.4, 127.7, 127.6 (q, J = 30.1 Hz), 127.4, 126.9, 126.3 (q, J = 5.8 Hz), 125.8 (q, J = 5.8 Hz), 124.5 (q, J = 274.3 Hz), 121.0, 119.9, 48.8 (q, J = 3.3 Hz), 46.4 (q, J = 3.3 Hz), 35.7, 35.5, 30.7, 29.4, 29.2, 29.1, 24.3, 24.0, 21.5, 21.3, 7.9, 6.5; ¹⁹F NMR (CDCl₃, 400 MHz): -61.42; FTIR (cm⁻¹) (neat): 3014, 2938, 2863, 1639, 1608, 1457, 1309, 1161, 1111, 1035, 767, 651; HRMS (ESI, Pos) calc. for C₁₈H₂₀[⁷⁹Br]F₃NO (M+H)⁺: 402.06749 found: 402.06820 m/z, calc. for C₁₈H₂₀[⁸¹Br]F₃NO (M+H)⁺: 404.06616 found: 404.06544 m/z.

2-Bromo-N-cyclopropyl-N-(4-(trifluoromethyl)benzyl)cyclohex-1-ene-1-carboxamide

(1p). The title compound 1m was prepared from amide S1 on a 0.819 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 1m as a light golden oil (291 mg, 0.721 mmol, 88%). $\mathbf{R_f}$: 0.56 (30% EtOAc:hexanes); $^1\mathbf{H}$ NMR (CD₃OD, 400 MHz): δ 7.71-7.48 (m, 4H, C- \mathbf{H}_{aryl}), 4.94-4.86 (m, 1H, C $\mathbf{H}_{benzylic}$), 4.60-4.46 (m, 1H, CH $_{benzylic}$), 2.87-2.79 (m, 1H, N-CH $_{cyclopropyl}$), 2.61-2.46 (m, 2H, C- $\mathbf{H}_{cyclohexene}$), 2.41-2.32 (m, 2H, C- $\mathbf{H}_{cyclohexene}$), 1.86-1.60 (m, 4H, C- $\mathbf{H}_{cyclohexene}$), 0.93-0.70 (m, 4H, CH $_2$ -CH $_2$ cyclopropyl); 13 C NMR (CDCl₃, 101 MHz): δ 172.6, 172.1, 141.8, 141.4, 135.3, 134.3, 129.1 (q, J = 32.2 Hz), 128.3, 127.4, 125.5 (q, J = 3.6 Hz), 125.1 (q, J = 3.6 Hz), 124.0 (q, J = 272.1 Hz), 120.6, 52.1, 49.3, 35.34, 35.27, 29.8, 29.0, 28.1, 24.0, 23.8,

21.2, 21.1, 8.2, 8.1, 6.5; ¹⁹**F NMR** (CD₃OD, 400 MHz): -63.86; **FTIR** (cm⁻¹) (neat): 3012, 2934, 1634, 1397, 1110, 1064, 814; **HRMS** (ESI, Pos) calc. for $C_{18}H_{20}^{[79}Br]F_3NO$ (M+H)⁺: 402.06749 found: 402.06750 m/z, calc. for $C_{18}H_{20}^{[81}Br]F_3NO$ (M+H)⁺: 404.06544 found: 404.06613 m/z.

2-Bromo-N-cyclopropyl-N-(3-methoxybenzyl)cyclohex-1-ene-1-carboxamide (1n). The title compound 1n was prepared from amide S1 on a 1.23 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 1n as a light yellow oil (406 mg, 1.12 mmol, 91%). R_f: 0.40 (30% EtOAc:hexanes); ¹H NMR (CD₃OD, 400 MHz): δ 7.30-7.18 (m, 1H, C-H_{aryl}), 6.93-6.79 (m, 3H, C-H_{aryl}), 4.80-4.64 (m, 1H, CH_{benzylic}), 4.46-4.38 (m, 1H, CH_{benzylic}), 3.80-3.74 (m, 3H, O-CH₃), 2.82-2.74 (m, 1H, N-CH_{cyclopropyl}), 2.60-2.29 (m, 4H, C-H_{cyclohexene}), 1.84-1.59 (m, 4H, C-H_{cyclohexene}), 0.93-0.69 (m, 4H, CH₂-CH_{2cyclopropyl}); ¹³C NMR (CD₃OD, 101 MHz): δ175.0, 174.9, 140.3, 140.1, 137.0, 135.8, 130.9, 130.4, 122.0, 121.4, 120.9, 120.6, 114.5, 114.2, 114.0, 55.71, 55.66, 53.7, 50.64, 36.6, 36.5, 31.3, 30.23, 30.15, 29.8, 25.2, 25.0, 22.5, 22.4, 8.7, 7.4 FTIR (cm⁻¹) (neat): 3009, 2936, 2860, 1628, 1611, 1601, 1489, 1401, 1259, 1042, 982, 780, 744, 695; HRMS (ESI, Pos) calc. for C₁₈H₂₃[⁷⁹Br]NO₂ (M+H)⁺: 364.09067 found: 364.09227 *m/z*, calc. for C₁₈H₂₃[⁸¹Br]NO₂ (M+H)⁺: 366.09011 found: 366.08862 *m/z*.

2-Bromo-*N***-(2-cyanobenzyl)-***N***-cyclopropylcyclohex-1-ene-1-carboxamide (10).** The title compound **10** was prepared from amide **S1** on a 1.23 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give **10** as a white solid (370 mg, 1.03 mmol, 84%). **mp:** 44-48 °C; **R**_f: 0.20 (20% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 7.69-7.57 (m, 2H, **C-H**_{aryl, o,p-CN}), 7.53 (td, $J_I = 7.4$ Hz, $J_2 = 1.3$ Hz, 1H, **C-H**_{aryl, m-CN}), 7.46-7.31 (m, 1H, **C-H**_{aryl, o-CM2}), 5.08 (d, $J_I = 15.3$ Hz, 1H, **CH**_{benzylic}), 4.69-4.57 (m, 1H, **CH**_{benzylic}), 2.78 (tt, $J_I = 7.0$ Hz, $J_2 = 1.0$ Hz, $J_2 = 1.0$ Hz, $J_3 = 1.0$ Hz, $J_4 = 1.0$ Hz, $J_5 = 1.0$ Hz, $J_5 = 1.0$ Hz, $J_7 = 1.0$ Hz, J_7

= 4.3 Hz, 1H, N-CH_{cyclopropyl}), 2.56-2.17 (m, 4H, C-H_{cyclohexene}), 1.87-1.66 (m, 4H, C-H_{cyclohexene}), 0.97-0.62 (m, 4H, CH₂-CH_{2cyclopropyl}); ¹³C NMR (CDCl₃, 101 MHz): δ 173.0, 141.5, 135.3, 133.24, 133.17, 133.03, 132.6, 129.6, 128.1, 128.0, 127.8, 120.0, 117.7, 111.8, 50.7, 48.0, 35.6, 35.5, 30.3, 29.3, 29.2, 28.8, 24.2, 24.0, 21.4, 21.3, 8.8, 7.1; FTIR (cm⁻¹) (neat): 3052, 2932, 2858, 2224, 1660, 1609, 1357, 1257, 726; HRMS (ESI, Pos) calc. for C₁₈H₂₀[⁷⁹Br]N₂O (M+H)⁺: 359.07535 found: 359.07602 m/z, calc. for C₁₈H₂₀[⁸¹Br]N₂O (M+H)⁺: 361.07331 found: 361.07410 m/z.

2-Bromo-*N***-(4-cyanobenzyl)-***N***-cyclopropylcyclohex-1-ene-1-carboxamide (1p).** The title compound **1p** was prepared from amide **S1** on a 1.23 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give **1p** as a white solid (371 mg, 1.03 mmol, 84%). **mp:** 83-86 °C; **Rf**: 0.17 (20% EtOAc:hexanes); ¹**H NMR** (CD₃OD, 400 MHz): δ 7.77-7.64 (m, 2H, **C-H**_{aryl, o-CN}), 7.56-7.46 (m, 2H, **C-H**_{aryl, m-CN}), 4.94-4.83 (m, 1H, **CH**_{benzylic}), 4.59-4.44 (m, 1H, **CH**_{benzylic}), 2.88-2.79 (m, 1H, N-**CH**_{cyclopropyl}), 2.62-2.44 (m, 2H, **C-H**_{cyclohexene}), 2.41-2.30 (m, 2H, **C-H**_{cyclohexene}), 1.86-1.57 (m, 4H, **C-H**_{cyclohexene}), 0.94-0.68 (m, 4H, **CH₂-CH₂**_{cyclopropyl}); ¹³**C NMR** (CD₃OD, 101 MHz): δ 175.2, 144.7, 136.7, 133.7, 133.4, 130.0, 129.5, 121.2, 199.6, 112.1, 50.7, 36.6, 31.6, 30.1, 25.2, 22.5, 9.0, 7.3; **FTIR** (cm⁻¹) (neat): 3004, 2937, 2223, 1636, 1600, 1452, 1302, 1031, 763; **HRMS** (ESI, Pos) calc. for C₁₈H₂₀[⁷⁹Br]N₂O (M+H)⁺: 359.07535 found: 359.07610 *m/z*, calc. for C₁₈H₂₀[⁸¹Br]N₂O (M+H)⁺: 361.07331 found: 361.07414 *m/z*.

2-Bromo-N-(2-chlorobenzyl)-N-cyclopropylcyclohex-1-ene-1-carboxamide (1q). The title compound 1q was prepared from amide S1 on a 0.819 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 1q as a white solid (272 mg, 0.737 mmol, 90%). mp: 59-61 °C; R_f: 0.47 (30% EtOAc:hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.44-7.22 (m, 4H, C-H_{aryl}), 4.77-4.50 (m, 2H, CH_{2benzylie}), 2.91-2.64 (m, 1H, N-CH_{cyclopropyl}), 2.60-2.23 (m, 4H, C-H_{aryl}), 4.77-4.50 (m, 2H, CH_{2benzylie}), 2.91-2.64 (m, 1H, N-CH_{cyclopropyl}), 2.60-2.23 (m, 4H, C-H_{aryl}), 4.77-4.50 (m, 2H, CH_{2benzylie}), 2.91-2.64 (m, 1H, N-CH_{cyclopropyl}), 2.60-2.23 (m, 4H, C-H_{aryl}), 4.77-4.50 (m, 2H, CH_{2benzylie}), 2.91-2.64 (m, 1H, N-CH_{cyclopropyl}), 2.60-2.23 (m, 4H, C-H_{aryl}), 4.77-4.50 (m, 2H, CH_{2benzylie}), 2.91-2.64 (m, 1H, N-CH_{cyclopropyl}), 2.60-2.23 (m, 4H, C-H_{aryl}), 4.77-4.50 (m, 2H, CH_{2benzylie}), 2.91-2.64 (m, 1H, N-CH_{cyclopropyl}), 2.60-2.23 (m, 4H, C-H_{aryl}), 4.77-4.50 (m, 2H, CH_{2benzylie}), 2.91-2.64 (m, 1H, N-CH_{cyclopropyl}), 2.60-2.23 (m, 4H, C-H_{aryl}), 4.77-4.50 (m, 2H, CH_{2benzylie}), 2.91-2.64 (m, 1H, N-CH_{cyclopropyl}), 2.60-2.23 (m, 4H, C-H_{cyclopropyl}), 2.60-2.23 (m, 4H, C-H_{cyclopropyl})

H_{cyclohexene}), 1.85-1.52 (m, 4H, **C-H**_{cyclohexene}), 0.95-0.68 (m, 4H, **CH**₂-**CH**_{2cyclopropyl}); ¹³**C NMR** (CDCl₃, 101 MHz): δ 172.9, 135.8, 135.3, 133.2, 129.9, 129.5, 129.4, 128.8, 128.6, 128.4, 127.2, 127.0, 119.8, 50.0, 47.4, 35.7, 30.5, 29.4, 29.1, 29.0, 24.3, 24.2, 21.6, 21.4, 8.3, 7.0; **FTIR** (cm⁻¹) (neat): 3012, 2934, 2860, 1635, 1396, 1298, 1036, 748, 643; **HRMS** (ESI, Pos) calc. for $C_{17}H_{20}[^{79}Br][^{35}Cl]NO$ (M+H)⁺: 368.04113 found: 368.04144 m/z, calc. for $C_{17}H_{20}[^{81}Br][^{35}Cl]NO$ (M+H)⁺: 370.03908 found: 370.03945 m/z, calc. for $C_{17}H_{20}[^{79}Br][^{37}Cl]NO$ (M+H)⁺: 372.03613 found: 372.03713 m/z.

2-Bromo-*N*-(**2-bromobenzyl**)-*N*-cyclopropylcyclohex-1-ene-1-carboxamide (1r). The title compound 1r was prepared from amide S1 on a 0.819 mmol scale and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 1r as a white solid (300 mg, 0.729 mmol, 89%). mp: 84-87 °C; R_f: 0.46 (30% EtOAc:hexanes); ¹H NMR (CD₃OD, 400 MHz): δ 7.63-7.14 (m, 4H, C-H_{aryl}), 4.89-4.83 (m, 2H, CH_{2benzylic}), 2.94-2.71 (m, 1H, N-CH_{cyclopropyl}), 2.62-2.19 (m, 4H, C-H_{cyclohexene}), 1.86-1.50 (m, 4H, C-H_{cyclohexene}), 0.98-0.70 (m, 4H, CH₂-CH_{2cyclopropyl}); ¹³C NMR (CD₃OD, 101 MHz): δ 175.1, 137.8, 137.7, 137.0, 135.7, 134.2, 133.9, 130.4, 130.1, 130.0, 129.1, 128.6, 123.83, 123.78, 122.3, 121.3, 53.8, 51.4, 36.6, 32.0, 30.6, 30.1, 30.0, 25.2, 25.0, 22.5, 22.3, 8.7, 8.5, 7.6, 7.2; FTIR (cm⁻¹) (neat): 3006, 2966, 2863, 1637, 1567, 1463, 1398, 1296, 1057, 1032, 750; HRMS (ESI, Pos) calc. for C₁₇H₂₀[⁷⁹Br]₂NO (M+H)⁺: 411.99062 found: 411.99068 *m/z*, calc. for C₁₇H₂₀[⁷⁹Br][⁸¹Br]NO (M+H)⁺: 413.98857 found: 413.98917 *m/z*, calc. for C₁₇H₂₀[⁸¹Br]₂NO (M+H)⁺: 415.98652 found: 415.98708 *m/z*.

tert-Butyl (2-bromocyclohex-1-ene-1-carbonyl)(cyclopropyl)carbamate (S2). To a solution of amide S1 (450 mg, 1.84 mmol) in ACN (10 mL) was sequentially added di-*tert*-butyl dicarbonate (443 mg, 2.03 mmol) and 4-dimethylaminopyridine (11.3 mg, 0.092 mmol). When

TLC analysis showed complete consumption of starting material (overnight), the reaction mixture was concentrated to dryness. The residue was dissolved in DCM and purified by flash chromatography using a gradient of 0-40% (EtOAc:hexanes) to afford **S2** as a colorless oil (343 mg, 1.00 mmol, 54%). **R**_f: 0.7 (30% EtOAc:hexanes); ¹H NMR (CD₃OD, 400 MHz): δ 2.65-2.57 (m, 1H, N-CH_{cyclopropyl}), 2.50-2.42 (m, 2H, C-H_{cyclohexene}), 2.33-2.24 (m, 2H, C-H_{cyclohexene}), 1.80-1.67 (m, 4H, C-H_{cyclohexene}), 1.53 (s, 9H, C-(CH₃)₃), 1.02-0.93 (m, 2H, CH₂-CH_{2cyclopropyl}), 0.72-0.65 (m, 2H, CH₂-CH_{2cyclopropyl}); ¹³C NMR (CDCl₃, 101 MHz): δ 172.0, 154.1, 135.6, 134.6, 128.3, 128.1, 117.7, 68.4, 35.1, 28.6, 27.0, 23.4, 20.6, 8.5, 8.0; **FTIR (cm**⁻¹) (neat): 2978, 2935, 1736, 1690, 1675, 1282, 1249, 1160, 1143, 1108, 729; **HRMS** (ESI, Pos) calc. for C₁₅H₂₂[⁷⁹Br]NNaO₃ (M+Na)⁺: 366.06753 found: 366.06854 *m/z*, calc. for C₁₅H₂₂[⁸¹Br]NNaO₃ (M+Na)⁺: 368.06548 found: 368.06572 *m/z*.

Benzyl (2-bromocyclohex-1-ene-1-carbonyl)(cyclopropyl)carbamate (S3). To a flame-dried, 100-mL round bottom and cooled in an acetone/dry ice bath under argon, was sequentially added amide S1 (500 mg, 2.05 mmol), THF (20 mL) and *n*-butyllithium (2.5 M solution in hexanes (1.07 mL, 2.25 mmol). The resulting mixture was stirred for 30 min. Then benzyl chloroformate (0.32 mL, 2.25 mmol) was added and the reaction mixture stirred for 16 h at room temperature. The reaction mixture was diluted with equal parts of ethyl acetate and brine, and then the aqueous layer was washed with EtOAc (3x50 mL). The combined organics were washed with brine, dried over Na₂SO₄ anhydrous, filtered and concentrated under reduced pressure to give a rusty brown oil. The residue was dissolved in DCM and purified by flash chromatography using 10% EtOAc:hexanes as the eluent to afford S3 as a colorless oil (542 mg, 1.43 mmol, 70%). R_f: 0.55 (30% EtOAc:hexanes); ¹H NMR (CD₃OD, 400 MHz): δ 7.46-7.31 (m, 5H, C-H_{aryl}), 5.28-5.15 (m, 2H, CH_{2benzylic}), 2.66 (tt, J = 7.0, 3.9 Hz, 1H, N-CH_{cyclopropyl}), 2.36-1.98 (m, 4H, C-H_{cyclohexene}), 1.60-1.45 (m, 4H, C-H_{cyclohexene}), 1.01-0.85 (m, 2H, CH₂-CH_{2cyclopropyl}), 0.77-0.67 (m, 2H, CH₂-CH_{2cyclopropyl}); ¹³C NMR (CDCl₃, 101 MHz): δ 172.5, 154.5, 136.1, 135.11, 128.8, 128.6, 118.2, 68.9, 35.5, 29.1, 27.5, 23.9, 21.1, 9.0, 8.5; FTIR (cm⁻¹) (neat): 3032, 2937, 1736, 1682, 1272, 1232,

1185, 728, 696; **HRMS** (ESI, Pos) calc. for $C_{18}H_{21}[^{79}Br]NO_3$ (M+H)⁺: 378.06993 found: 378.07077 m/z, calc. for $C_{18}H_{21}[^{81}Br]NO_3$ (M+H)⁺: 380.06789found: 380.06896m/z.

General Procedures for the Pd-catalyzed cyclization under batch conditions

Procedure A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with 2-cycloalkenyl bromide (0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol), tBu₃P•HBF₄ (5.78 mg, 0.020 mmol) and K₂CO₃ (41.5 mg, 0.30 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes (2.00 mL) or DMF (2.00 mL) was then added and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further rinsed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product that was then purified by flash chromatography over silica gel using a solvent gradient of 10% to 50% ethyl acetate/hexanes to give products **2a-4r**.

Procedure B: A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with 2-cycloalkenyl bromide (0.20 mmol) and pivalic acid (30 mol%, 0.06 mmol, 6.1 mg) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol), tBu₃P•HBF₄ (5.78 mg, 0.020 mmol) and K₂CO₃ (41.5 mg, 0.30 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes (2.00 mL) or DMF (2.00 mL) was then added and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further rinsed with EtOAc (10 mL). The filtrate was concentrated under reduced pressure to yield the crude product that was then purified by flash chromatography over silica gel using a solvent gradient of 10% to 50% ethyl acetate/hexanes to give products **2a-4r**.

Procedure C: A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with **1aa** (51.6 mg, 0.20 mmol) and taken into a glovebox. Pd(OAc)₂ (2.27 mg, 0.010 mmol) and tBu₃P•HBF₄ (5.78 mg, 0.020 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. Xylenes (2.00 mL) or DMF (2.00 mL) was then added followed by DIPEA (0.053 mL, 0.30 mmol) and the reaction was heated to 110 °C for 16 h. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), filtered over a cotton-Celite® plug that was further rinsed with EtOAc (10 mL). The filtrate was concentrated under

reduced pressure to yield the crude product that was then purified by flash chromatography over silica gel using a solvent gradient of 10% to 50% ethyl acetate/hexanes to give products **2a-4r**.

Procedure for the 0.6 mmol scale under continuous flow conditions (feed tank).

A 5.0-mL microwave vial containing an oven-dried magnetic stir bar was charged with 1aa (154.8 mg, 0.6 mmol) and taken into a glovebox. Pd(OAc)₂ (13.6 mg, 0.060 mmol) and tBu₃P•HBF₄ (34.7 mg, 0.120 mmol) were then sequentially added to the vial that was then crimp-sealed and taken out of the glovebox. A 3:1 (v/v) mixture of xylenes and DMF (6.00 mL) was then added followed by DIPEA (468 µL, 2.7 mmol). The reaction mixture was stirred at room temperature until the solution became homogeneous (ca. 5 min). A color change was observed going from colorless to orange then to light yellow. Using the afore mentioned set-up for homogeneous conditions, the reaction mixture was pumped (flow rate = 0.125 mL/min) through the 5 mL stainless steel reactor (bottle reagent) that was pre-heated to 150 °C (residence time = 40 min). The volume corresponding to the reaction mixture was collected in a flask (15 mL) and the mixture was concentrated under reduced pressure. The resulting solid was dissolved with a mixture of water:EtOAc (1:1, 10 mL) and transferred into a separatory funnel. The layer were separated and the aqueous layer was washed with EtOAc (2x5 mL). The combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure to afford the crude product. Flash chromatography over silica gel using a solvent gradient of 10% to 50% ethyl acetate/hexanes afforded product 2a as a brownish oil (90 mg, 85%).

Characterization data for compounds 2a-4r.

2-Methyl-2,3,6,7,8,9-hexahydro-1*H***-benzo**[*c*]azepin-1**-one** (2a). The title compound 2a was prepared by the general procedure **A** using xylenes as the solvent on a 0.200 mmol scale (51.6 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 2a as a golden oil (31.5 mg, 0.178 mmol, 89%). Reaction was also run on a 2.0 mmol (516 mg) scale to give 2a in 91% (0.324 g, 1.82 mmol) using general procedure **A**. The reaction was conducted in flow chemistry using general procedure **D** on a 2.0 mmol (516 mg) scale to yield 74% of 2a (0.264 g, 1.48 mmol), reaction performed twice. **R**_f: 0.29 (20% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 5.89 (d, J = 7.4 Hz, 1H, N-C(-**H**)=C(-**H**)-CH₂), 5.39 (q, J = 7.2 Hz, 1H, N-C(-**H**)=C(-**H**)-CH₂), 3.14 (s, 3H, N-CH₃), 2.49 (dd, J = 7.2, 0.6 Hz, 2H, C=C-CH₂-C(-H)=C), 2.36-2.29 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 2.24-2.16 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 1.64-1.55 (m, 4H, CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-Cl₂-C₂-C₃, 22.2; **FTIR** (cm⁻¹) (neat):2929, 2858, 1660, 1604, 1431, 1343, 1244, 1040, 775, 718; **HRMS** (ESI, Pos) calc. for C₁₁H₁₅NO (M+H)⁺ : 178.12264 found: 178.12251 m/z.

8-(*tert*-Butyl)-2-methyl-2,3,6,7,8,9-hexahydro-1*H*-benzo[*c*]azepin-1-one (2b). The title compound 2b was prepared by the general procedure B using xylenes as the solvent on a 0.200 mmol scale (62.9 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 2b as a white solid (44.5 mg, 0.190 mmol, 95%). **mp:** 70-73°C; **R**_f: 0.33 (20% EtOAc:hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 5.94 (d, J = 7.4 Hz, 1H, N-C(-H)=C(-H)-CH₂), 5.43 (q, J = 7.2 Hz, 1H, N-C(-H)=C(-H)-CH₂), 3.19 (s, 3H, N-CH₃), 2.62-2.53 (m, 1H, C-Hcyclohexene/azepinone), 2.51-2.37 (m, 2H, C-Hcyclohexene/azepinone), 2.36-2.17 (m, 2H, C-Hcyclohexene/azepinone), 2.09-1.97 (m, 1H, C-Hcyclohexene/azepinone), 1.27-1.09 (m, 1H, C-Hcyclohexene/azepinone), 0.87 (s, 9H, (CH₃)₃-C); ¹³C NMR

(CDCl₃, 101 MHz): δ 171.1, 146.9, 131.1, 128.1, 115.7, 44.0, 36.2, 33.5, 32.4, 30.5, 28.3, 27.4, 24.1; **FTIR** (cm⁻¹) (neat): 2972, 2948, 1661, 1600, 1427, 1269, 1053, 1032, 1010, 752; **HRMS** (ESI, Pos) calc. for C₁₅H₂₄NO (M+H)⁺: 234.18524 found: 234.18537 *m/z*.

2-Methyl-8-phenyl-2,5,6,7,8,9-hexahydro-1H-benzo[c]azepin-1-one (**2c**). The title compound **2c** was prepared by the general procedure **A** using xylenes as the solvent on a 0.200 mmol scale (66.9 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes) to give **2c** as an orange oil (50.6 mg, 0.200 mmol, 100%). **mp:** 76-80 °C; **R**_f: 0.20 (20% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 7.33-7.15 (m, 5H, C-H_{aryl}), 5.98 (d, J = 7.4 Hz, 1H, N-C(-**H**)=C(-**H**)-CH₂), 5.45 (q, J = 7.4 Hz, 1H, N-C(-**H**)=C(-**H**)-CH₂), 3.21 (s, 3H, N-C**H**₃), 2.81-2.68 (m, 2H, C-H_{cyclohexene/azepinone)}, 2.66-2.58 (m, 1H, C-H_{cyclohexene/azepinone}), 2.54-2.38 (m, 3H, C-H_{cyclohexene/azepinone}), 2.35-2.30 (m, 1H, C-H_{cyclohexene/azepinone}), 1.99-1.91 (m, 1H, C-H_{cyclohexene/azepinone}), 1.81-1.71 (m, 1H, C-H_{cyclohexene/azepinone}); ¹³**C NMR** (CDCl₃, 101 MHz): δ 170.5, 146.8, 146.2, 131.2, 128.5, 127.7, 127.0, 126.2, 115.6, 39.7, 36.2, 34.3, 32.6, 30.6, 29.8; **FTIR** (cm⁻¹) (neat): 3008, 2974, 2965, 1653, 1593, 1372, 1255, 1055, 702; **HRMS** (ESI, Pos) calc. for $C_{17}H_{20}NO$ (M+H)⁺: 254.15394 found: 254.15414 m/z.

2,8,8-Trimethyl-2,3,6,7,8,9-hexahydro-1*H***-benzo**[*c*]azepin-1**-one** (2d). The title compound 2d was prepared by the general procedure A using xylenes as the solvent on a 0.200 mmol scale (57.2 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes) to give 2d an orange oil (35.0 mg, 0.170 mmol, 85%). $\mathbf{R_f}$: 0.35 (20% EtOAc:hexanes); $^1\mathbf{H}$ NMR (CDCl₃, 400 MHz): δ 5.90 (d, J = 7.4 Hz, 1H, N-C(- \mathbf{H})=C(- \mathbf{H})-CH₂), 5.42 (q, J = 7.2 Hz, 1H, N-C(- \mathbf{H})=C(- \mathbf{H})-CH₂), 3.16 (s, 3H, N-CH₃), 2.51 (d, J = 7.2 Hz, 2H, C=C-CH₂-C(- \mathbf{H})=C), 2.23 (td, J = 6.5, 2.2 Hz, 2H, CH₂-CH₂-C(CH₃)₂-CH₂Cyclohexene</sub>), 2.13 (br s, 2H, CH₂-CH₂-C(CH₃)₂-CH₂Cyclohexene 1.38 (t, J = 6.5 Hz, 2H, CH₂-CH₂-C(CH₃)₂-CH₂Cyclohexene), 0.90 (s, 6H, CH₂-CH₂-C(CH₃)₂-CH₂Cyclohexene)

CH_{2Cyclohexene}); ¹³C NMR (CDCl₃, 101 MHz): δ 171.0, 145.8, 131.1, 126.8, 115.7, 40.2, 36.2, 35.4, 30.6, 30.0, 28.7, 27.9; **FTIR** (cm⁻¹) (neat): 2950, 2922, 1719, 1659, 1607, 1273, 1263, 1050, 1012, 691; **HRMS** (ESI, Pos) calc. for C₁₃H₂₀NO (M+H)⁺: 206.15394 found: 206.15419 *m/z*.

2-Methyl-1-oxo-8-phenyl-2,3,6,7,8,9-hexahydro-1*H*-benzo[*c*]azepine-8-carbonitrile

(2e). The title compound 2e was prepared by the general procedure A using xylenes as the solvent on a 0.200 mmol scale (71.9 mg) and then purified by flash chromatography (0-30%) EtOAc:hexanes) to give a yellow oil in 95% yield (53.0 mg, 0.190 mmol). Rf: 0.18 (30%) EtOAc:hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.51-7.45 (m, 2H, C-H_{aryl}), 7.42-7.35 (m, 2H, C- \mathbf{H}_{aryl}), 7.34-7.29 (m, 1H, C- \mathbf{H}_{aryl}), 5.97 (dd, J = 7.4, 1.0 Hz, 1H, N-C(- \mathbf{H})=C(-H)-CH₂), 5.48 (q, $J = 7.2 \text{ Hz}, 1\text{H}, \text{N-C(-H)=C(-H)-CH}_2), 3.18 \text{ (s, 3H, N-CH}_3), 3.03-2.68 \text{ (m, 4H, C-H)}_3$ Hcyclohexene/azepinone), 2.56-2.47 (m, 1H, C-H_{cyclohexene/azepinone}), 2.43-2.33 (m, 1H, Hcyclohexene/azepinone), 2.26-2.18 (m, 1H, C-H_{cyclohexene/azepinone}), 2.15-2.03 1H, C-H_{cvclohexene/azepinone}); ¹³C NMR (CDCl₃, 101 MHz): δ 169.3, 146.6, 139.6, 131.3, 129.4, 129.1, 128.3, 125.9, 125.8, 125.0, 122.4, 115.5, 40.9, 38.1, 36.2, 32.7, 30.4, 30.1; **FTIR** (cm⁻¹) (neat): 3058, 2957, 2938, 2234, 1747, 1661, 1600, 1496, 1388, 1263, 1052, 697; **HRMS** (ESI, Pos) calc. for C18H19N2O $(M+H)^+$: 279.14919 found: 279.14913 m/z.

2-Methyl-3,6,7,8-tetrahydrocyclopenta[*c*]azepin-1(2*H*)-one (2f). The title compound 2f was prepared by the general procedure **B** using xylenes as the solvent on a 0.200 mmol scale (48.8 mg) and then purified by flash chromatography (40% Et₂O in pentane to give an orange oil in 65% yield (21.3 mg, 0.130 mmol). **R**_f: 0.15 (20% Et₂O in Hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 5.86 (d, J = 8.3 Hz, 1H, N-C(-H)=C(-H)-CH₂), 5.13 (dt, J = 8.3, 6.3 Hz, 1H, N-C(-H)=C(-H)-CH₂), 3.14 (s, 3H, N-CH₃), 2.76-2.67 (m, 4H, C=C-CH₂-C(-H)=C and CH₂-C(-CH₂)=C(-C=O)-CH₂), 2.54 (t, J = 7.6 Hz, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 1.85 (quint, J = 7.6 Hz, 4H, CH₂-CH₂-C(H₂Cyclopentene); ¹³C NMR (CDCl₃, 101 MHz): δ 166.9, 153.3, 132.8, 131.5, 39.4, 36.4, 34.4, 26.2,

21.8; **FTIR** (cm⁻¹) (neat): 2953, 2853, 2220, 1721, 1651, 1602, 1538, 1437, 1408, 1305, 727; **HRMS** (ESI, Pos) calc. for $C_{10}H_{14}NO$ (M+H)⁺: 164.10699 found: 164.10709 m/z.

2-Methyl-3,6,7,8,9,10-hexahydrocyclohepta[*c*]azepin-1(2*H*)-one (2g). The title compound 2g was prepared by the general procedure B using xylenes as the solvent on a 0.200 mmol scale (54.4 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes) to give an pale yellow oil in 69% yield (24.6 mg, 0.138 mmol). **R**_f: 0.29 (20% EtOAc:hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 5.92 (d, *J* = 7.2 Hz, 1H, N-C(-H)=C(-H)-CH₂), 5.48 (q, *J* = 7.3 Hz, 1H, N-C(-H)=C(-H)-CH₂), 3.16 (s, 3H, N-CH₃), 2.56 (d, *J* = 7.2 Hz, 2H, C=C-CH₂-C(-H)=C), 2.48-2.43 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 2.41-2.36 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 1.77-1.69 (m, 2H, CH₂-CH

(*Z*)-2-Methyl-2,3,6,7,8,9,10,11-octahydro-1*H*-cycloocta[*c*]azepin-1-one (2h). The title compound 2h was prepared by the general procedure C using xylenes as the solvent on a 0.200 mmol scale (57.2 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes) to give an orange oil in 67% yield (27.6 mg, 0.134 mmol). R_f: 0.29 (20% EtOAc:hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 5.96 (d, *J* = 7.2 Hz, 1H, N-C(-H)=C(-H)-CH₂), 5.47 (q, *J* = 7.3 Hz, 1H, N-C(-H)=C(-H)-CH₂), 3.18 (s, 3H, N-CH₃), 2.54 (d, *J* = 7.2 Hz, 2H, C=C-CH₂-C(-H)=C), 2.45-2.41 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 2.35-2.31 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 1.66-1.57 (m, 4H, CH₂-CH

calc. for $C_{13}H_{20}NO(M+H)^+$: 206.15394 found: 206.15291 m/z.

2-Benzyl-2,3,6,7,8,9-hexahydro-1*H***-benzo**[*c*]**azepin-1-one** (**2i,**). The title compound **2i** was prepared by the general procedure **A** using xylenes as the solvent on a 0.200 mmol scale (66.9 mg) and then purified by flash chromatography (0%-20% EtOAc:hexanes) to give a white solid in 90% yield (45.5 mg, 0.179 mmol). **mp:** 68-71 °C; **R**_f: 0.43 (20% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 7.32-722 (m, 5H, Ar-H), 5.94 (d, J = 7.4 Hz, 1H, N-C(-**H**)=C(-H)-CH₂), 5.46 (q, J = 7.3 Hz, 1H, N-C(-H)=C(-H)-CH₂), 4.82 (s, 2H, N-CH₂-Ph), 2.48 (d, J = 7.2 Hz, 2H, C=C-CH₂-C(-H)=C), 2.42-2.34 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 2.25-2.16 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 1.61 (quint, J = 3.1 Hz, 4H, CH₂-CH₂-CH₂-CH₂-CH₂-Cyclohexene); ¹³C NMR (CDCl₃, 101 MHz): δ 170.7, 147.4, 138.1, 130.14, 128.6, 128.0, 127.9, 127.4, 116.9, 51.5, 32.0, 31.2, 26.8, 22.8, 22.4; **FTIR** (cm⁻¹) (neat): 3033, 2930, 2900, 1662, 1601, 1494, 746; **HRMS** (ESI, Pos) calc. for C₁₇H₂₀NO (M+H)⁺: 254.15394, found: 254.15438.

2-(4-Methoxybenzyl)-2,3,6,7,8,9-hexahydro-1*H***-benzo**[*c*]**azepin-1-one** (**2j**). The title compound **2j** was prepared by the general procedure **A** using DMF as the solvent on a 0.200 mmol scale (72.9 mg) and then purified by flash chromatography (0-20% EtOAc:hexanes) to give a pale yellow oil in 95% yield (54.0 mg, 0.190 mmol). **R**_f: 0.51 (20% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 7.25-7.20 (m, 2H, **C-H**_{Aryl, *m*-OMe}), 6.85-6.80 (m, 2H,**C-H**_{Aryl, *o*-OMe}), 5.93 (d, J = 7.4 Hz, 1H, N-C(-**H**)=C(-H)-CH₂), 5.44 (q, J = 7.2 Hz, 1H, N-C(-H)=C(-**H**)-CH₂), 4.74 (s, 2H, N-C**H**₂-Ph) 3.77 (s, 3H, -O-C**H**₃), 2.45 (d, J = 7.1 Hz, 2H, C=C-C**H**₂-C(-H)=C), 2.39-2.33 (m, 2H, **CH**₂-C(-CH₂)=C(-C=O)-CH₂), 2.22-2.15 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-**CH**₂), 1.60 (quint, J = 3.1, 4H, CH₂-C**H**₂-C**H**₂-CH₂-CH₂-chhexene); ¹³C **NMR** (CDCl₃, 101 MHz): δ 170.6, 159.0, 147.3,

130.36, 130.03, 129.32, 128.0, 116.9, 114.0, 55.4, 50.9, 31.9, 31.2, 26.8, 22.7, 22.3; **FTIR** (cm⁻¹) (neat): 3050, 3005, 2997, 2931, 2858, 1659, 1605, 1510, 1402, 1300, 1241, 1033, 970, 726; **HRMS** (ESI, Pos) calc. for $C_{18}H_{22}NO_2$ (M+H)⁺: 284.16451 found: 284.16574 m/z.

2-(4-Methylbenzyl)-2,3,6,7,8,9-hexahydro-1*H***-benzo**[*c*]azepin-1**-one** (**2k**). The title compound **2k** was prepared by the general procedure **A** using DMF as the solvent on a 0.200 mmol scale (69.7 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes) to give a pale yellow oil in 95% yield (50.7 mg, 0.190 mmol). **R**_f: 0.50 (20% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 7.18 (d, J = 8.0 Hz, 2H, **C-H**_{Aryl, m-Me}), 7.10 (d, J = 7.8 Hz, 2H, **C-H**_{Aryl, o-Me}), 5.93 (d, J = 7.4, 1H, N-C(-H)=C(-H)-CH₂), 5.44 (q, J = 7.2 Hz, 1H, N-C(-H)=C(-H)-CH₂), 4.77 (s, 2H, N-CH₂-Ar), 2.47 (d, J = 7.0 Hz, 2H, C=C-CH₂-C(-H)=C), 2.40-2.34 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 2.31 (s, 3H, Ar-CH₃), 2.23-2.17 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 1.60 (quint, J = 3.1 Hz, 4H, CH₂-CH₂-CH₂-CH₂-CH₂-Cyclohexene</sub>); ¹³C NMR (CDCl₃, 101 MHz): δ 170.7, 147.3, 137.0, 135.2, 130.1, 129.3, 128.0, 127.9, 116.9, 51.2, 32.0, 31.2, 26.8, 22.8, 22.4, 21.2; FTIR (cm⁻¹) (neat): 3004, 2924, 1659, 1606, 1514, 1211, 1180, 703; HRMS (ESI, Pos) calc. for C₁₈H₂₂NO (M+H)⁺: 268.16959 found: 268.16927 *m/z*.

2-(2-(Trifluoromethyl)benzyl)-2,3,6,7,8,9-hexahydro-1H-benzo[c]azepin-1-one (21).

The title compound **21** was prepared by the general procedure **A** using DMF as the solvent on a 0.200 mmol scale (80.5 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes) to give an yellow pale oil in 89% yield (57.4 mg, 0.178 mmol). **R**_f: 0.34 (30% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 7.64 (d, J = 7.7 Hz, 1H, **C-H**_{Aryl, o-CF₃), 7.48 (t, J = 7.5 Hz, 1H, **C-H**_{Aryl, m-CF₃), 7.36-7.31 (m, 2H, **C-H**_{Aryl}), 5.88 (d, J = 7.4 Hz, 1H, N-C(-**H**)=C(-H)-CH₂), 5.48 (q, J = 7.3 Hz, 1H, N-C(-H)=C(-H)-CH₂), 5.07 (s, 2H, N-C**H**₂-Ar), 2.59 (d, J = 7.2 Hz, 2H, C=C-C**H**₂-C(-H)=C), 2.43-2.36 (m, 2H, **CH**₂-C(-CH₂)=C(-C=O)-CH₂), 2.28-2.22 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂)}} C=O)-CH₂), 1.64 (qt, J = 3.2 Hz, 4H, CH₂-CH₂

2-(4-(Trifluoromethyl)benzyl)-2,3,6,7,8,9-hexahydro-1H-benzo[c]azepin-1-one (2m).

The title compound **2m** was prepared by the general procedure **A** using xylenes as the solvent on a 0.200 mmol scale (80.5 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes) to give a pale light oil in 96% yield (61.6 mg, 0.192 mmol). **R**_f: 0.44 (20% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 7.55 (d, J = 8.0 Hz, 2H, **C-H**_{Aryl, o-CF3}), 7.39 (d, J = 8.0 Hz, 2H, **C-H**_{Aryl, m-CF3}), 5.94 (d, J = 7.4 Hz, 1H, N-C(-**H**)=C(-**H**)-CH₂), 5.49 (q, J = 7.2 Hz, 1H, N-C(-**H**)=C(-**H**)-CH₂), 4.84 (s, 2H, N-C**H**₂-Ar), 2.49 (d, J = 7.2 Hz, 2H, C=C-C**H**₂-C(-H)=C), 2.39-2.31 (m, 2H, C**H**₂-C(-CH₂)=C(-C=O)-C**H**₂), 2.25-2.17 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-C**H**₂), 1.60 (quint, J = 3.13 Hz, 4H, CH₂-C**H**₂-C**H**₂-C**H**₂-CH₂

2-(3-Methoxybenzyl)-2,3,6,7,8,9-hexahydro-1H-benzo[c]azepin-1-one (2n). The title compound **2n** was prepared by the general procedure **A** using DMF as solvent on a 0.200 mmol scale (72.9 mg) and then purified by flash chromatography (30% EtOAc:hexanes) to give a yellow pale oil in 93% yield (52.5 mg, 0.186 mmol). **R**_f: 0.37 (20% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 7.21 (t, J = 7.9 Hz, 2H, **C-H**_{Aryl, m-OMe}), 6.86 (d, J = 7.6 Hz, 2H, **C-H**_{Aryl, p-OMe}), 6.83

(br s, 1H, C-H_{Aryl, o-OMe and o-CH2), 6.78 (dd, J = 8.3, 2.5 Hz, 1H, C-H_{Aryl, o-OMe), 5.94 (d, J = 7.4 Hz, 1H, N-C(-H)=C(-H)-CH₂), 5.46 (q, J = 7.2 Hz, 1H, N-C(-H)=C(-H)-CH₂), 4.80 (s, 2H, N-CH₂-Ar), 3.78 (s, 3H, O-CH₃), 2.50 (d, J = 7.1 Hz, 1H, C=C-CH₂-C(-H)=C), 2.40-2.33 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 2.23-2.17 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-CH₂), 1.63-1.58 (m. 4H, CH₂-CH₂}}

2-((1-Oxo-1,3,6,7,8,9-hexahydro-2*H*-benzo[*c*]azepin-2-yl)methyl)benzonitrile (2o). The title compound 2o was prepared by the general procedure **A** using DMF as the solvent on a 0.200 mmol scale (71.9 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes) to give a colorless oil in 86 % yield (48.0 mg, 0.172 mmol). **R**_f: 0.28 (20% EtOAc:hexanes); ¹**H NMR** (CDCl₃, 400 MHz): δ 7.63 (dd, *J* = 7.6, 1.0 Hz, 1H, **C-H**_{Aryl, o-CN}), 7.54 (td, *J* = 7.6, 1.3 Hz, 1H, **C-H**_{Aryl, p-CN}), 7.48 (br d, *J* = 7.6 Hz, 1H, **C-H**_{Aryl, o-CH}), 7.35 (td, *J* = 7.6, 1.2 Hz, 1H, **C-H**_{Aryl, m-CN}), 6.00 (d, *J* = 7.4 Hz, 1H, N-C(-**H**)=C(-**H**)-CH₂), 5.51 (q, *J* = 7.2 Hz, 1H, N-C(-**H**)=C(-**H**)-CH₂), 5.04 (s, 2H, N-C**H**₂-Ar), 2.51 (d. *J* = 7.2 Hz, 2H, C=C-C**H**₂-C(-H)=C), 2.42-2.34 (m, 2H, **CH**₂-C(-CH₂)=C(-C=O)-CH₂), 2.26-2.16 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-C**H**₂) 1.61 (quint, *J* = 3.1 Hz, 4H, CH₂-C**H**₂-CH₂-C

4-((1-Oxo-1,3,6,7,8,9-hexahydro-2*H*-benzo[*c*]azepin-2-yl)methyl)benzonitrile (2p). The title compound 2p was prepared by the general procedure A using xylenes as the solvent on a 0.200 mmol scale (71.9 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes)

to give a light yellow oil in 99% yield (55.0 mg, 0.198mmol). $\mathbf{R_f}$: 0.19 (20% EtOAc:hexanes); ${}^{1}\mathbf{H}$ NMR (CDCl₃, 400 MHz): δ 7.59 (d, J = 8.2 Hz, 2H, \mathbf{C} - $\mathbf{H}_{Aryl, o\text{-CN}}$), 7.39 (d, J = 8.2 Hz, 2H, \mathbf{C} - $\mathbf{H}_{Aryl, o\text{-CN}}$), 5.94 (d, J = 7.4 Hz, 1H, N-C(- \mathbf{H})=C(- \mathbf{H})-CH₂), 5.50 (q, J = 7.2 Hz, 1H, N-C(- \mathbf{H})=C(- \mathbf{H})-CH₂), 4.83 (s, 2H, N-CH₂-Ar), 2.50 (d, J = 7.2 Hz, 2H, C=C- \mathbf{C} - \mathbf{H}_{2} -C(- \mathbf{H}_{2} -C), 2.39-2.30 (m, 2H, \mathbf{C} - \mathbf{H}_{2} -C(-CH₂)=C(-C=O)-CH₂), 2.26-2.18 (m, 2H, CH₂-C(-CH₂)=C(-C=O)- \mathbf{C} - \mathbf{H}_{2}), 1.61 (quint, J = 3.0 Hz, 4H, CH₂- \mathbf{C} - \mathbf{H}_{2} -CH₂-

2-(2-Chlorobenzyl)-2,3,6,7,8,9-hexahydro-1H-benzo[c]azepin-1-one (**2q**). The title compound **2q** was prepared by the general procedure **A** using DMF as the solvent on a 0.200 mmol scale (73.7 mg) and then purified by Preparative TLC using 30% EtOAc:hexanes to give a colorless oil in 80% yield (60.0 mg, 0.160 mmol). **R**_f: 0.22; ¹**H NMR** (CDCl₃, 400 MHz): δ 7.37-32 (m, 1H, **C-H**_{Aryl o-Cl}), 7.28-7.15 (m, 3H, **C-H**_{Aryl m,p-Cl}), 5.93 (d, J = 7.4 Hz, 1H, N-C(-**H**)=C(-H)-CH₂), 5.46 (q, J = 7.2 Hz, 1H, N-C(-H)=C(-H)-CH₂), 4.96 (s, 2H, N-CH₂-Ar), 2.56 (d, J = 7.1 Hz, 2H, C=C-**CH**₂-C(-H)=C), 2.41-2.36 (m, 2H, **CH**₂-C(-CH₂)=C(-C=O)-CH₂), 2.26-2.20 (m, 2H, CH₂-C(-CH₂)=C(-C=O)-**CH**₂), 1.68-1.57 (m. 4H, CH₂-**CH**₂-**CH**₂-**CH**₂-CH₂cyclohexene); ¹³**C NMR** (CDCl₃, 101 MHz): δ170.8, 147.8, 135.2, 133.5, 130.3, 129.6, 129.0, 128.6, 128.0, 127.1, 116.9, 49.2, 32.1, 31.3, 26.9, 22.8, 22.3; **FTIR** (cm⁻¹) (neat): 3058, 2929, 2856, 1659, 1609, 1573, 1471, 1440, 1401, 1281, 1007, 747, 730, 443; **HRMS** (ESI, Pos) calc. for C₁₇H₁₉[³⁵Cl]NO (M+H)⁺ : 288.11497 found: 288.11551 m/z, calc. for C₁₇H₁₉[³⁷Cl]NO (M+H)⁺ : 290.11202 found: 290.11295 m/z.

1,2,3,4,7,13-Hexahydro-5H-benzo[5,6]azepino[2,1-a]isoindol-5-one (4r). The title compound 4r was prepared by the general procedure A using DMF as the solvent on a 0.200 mmol scale (82.6 mg) and then purified by flash chromatography (0-30% EtOAc:hexanes) to give an

orange oil in 70% yield (35.8 mg, 0.140 mmol). $\mathbf{R_f}$: 0.25 (20% EtOAc:hexanes); $^1\mathbf{H}$ NMR (CDCl₃, 400 MHz): δ 7.38-7.33 (m, 1H, \mathbf{C} - \mathbf{H}_{Aryl}), 7.25-7.18 (m, 2H, \mathbf{C} - \mathbf{H}_{Aryl}), 7.17-7.13 (m, 1H, \mathbf{C} - \mathbf{H}_{Aryl}), 5.48 (t, J = 6.5, 1H, \mathbf{C} - \mathbf{H}_{alkene}), 4.91 (s, 2H, N- \mathbf{C} H₂-Ar), 3.68 (d, J = 6.5, 2H, C= \mathbf{C} - \mathbf{C} H₂-C(-H)= \mathbf{C}), 2.31-2.23 (m, 4H, \mathbf{C} H₂-C(-CH₂)= \mathbf{C} (-C=O)- \mathbf{C} H₂), 1.73-1.64 (m, 4H, CH₂- \mathbf{C} H₂- \mathbf{C} H₂- \mathbf{C} H₂-CH₂

References:

¹Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*; 3rd ed., Pergamon Press, Oxford, **1988**.

² Shriver, D.H; Drezdzon, M.A. *The Manipulation of Air-Sensitive Compounds;* 2nd Edition; Wiley: New York, **1986.**

³ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518.

⁴ Still, W. C.; Kahn, M.; Mitra, A. J. J. Org. Chem. 1978, 43, 2923.

⁵ Hone, C. A.; Lopatka, P.; Munday, R.; O'Kearney-McMullan, A.; Kappe, C. O. *ChemSusChem* **2019**, *12*, 326.

⁶ Gogoi, Junali; Gogoi, Pranjal; Boruah, Romesh C. Eur. J. Org. Chem., 2014, 16, 3483.

⁷ Ren, H.; Knochel, P. Angew. Chem. Int. Ed. **2006**, 45, 3462.

⁸ Lipshutz, B.H; McCarthy, K.E; Hungate, R.W, J. Org. Chem. 1984, 49, 1218.

⁹ Lewin, A.H.; Frucht, M.; Chen, K.V.J; Benedetti, E.; Di Blasio, B. Tetrahedron 1975, 31, 207.

X-Ray Data

Crystal properties for 1aa (CCDC 2104571)

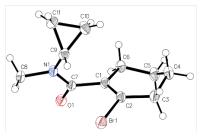


Table 1 Crystal data and structure refinement for CHA233.

Identification code CHA233
Empirical formula C₁₁H₁₆BrNO
Formula weight 258.16
Temperature/K 120
Crystal system monoclinic

 α / $^{\circ}$ 90

 $\beta/^{\circ}$ 99.1440(10)

γ/° 90

Volume/Å³ 1127.99(7)

 $Z \qquad \qquad 4 \\ \rho_{calc} g/cm^3 \qquad \qquad 1.:$

 $\rho_{calc}g/cm^3$ 1.520 μ/mm^{-1} 3.114 F(000)528.0

Crystal size/mm³ $0.17 \times 0.12 \times 0.05$ Radiation $GaK\alpha (\lambda = 1.34139)$ 2Θ range for data collection/ $^{\circ}$ 7.346 to 146.936

Index ranges $-15 \le h \le 15, -13 \le k \le 12, -15 \le l \le 16$

Reflections collected 27326

Independent reflections $3440 [R_{int} = 0.0425, R_{sigma} = 0.0264]$

Data/restraints/parameters 3440/0/128

Goodness-of-fit on F^2 1.096

Final R indexes [I>=2 σ (I)] R₁ = 0.0284, wR₂ = 0.0739 Final R indexes [all data] R₁ = 0.0304, wR₂ = 0.0751

Largest diff. peak/hole / e Å $^{-3}$ 0.47/-0.41

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for CHA233. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	$\boldsymbol{\mathcal{Y}}$	Z	U(eq)
Br1	4692.0(2)	6927.6(2)	5092.2(2)	29.16(7)
O1	1049.6(11)	6660.9(11)	3881.0(9)	26.6(2)
N1	1896.5(11)	5196.0(11)	5384.3(11)	22.5(2)
C1	2249.7(13)	7736.7(13)	5575.6(11)	20.7(2)
C2	3481.9(14)	8074.8(13)	5738.5(13)	22.5(2)
C3	4068.3(15)	9347.6(16)	6375.3(15)	29.6(3)
C4	3109.6(16)	10119.4(16)	7016.0(15)	31.3(3)
C5	1818.1(16)	10206.8(15)	6203.9(14)	29.6(3)
C6	1273.7(14)	8740.8(14)	5940.2(13)	24.8(3)
C7	1699.3(13)	6478.6(13)	4877.8(12)	20.9(2)
C8	1503.2(15)	3959.0(14)	4653.4(14)	27.5(3)
C9	2664.8(14)	4936.6(13)	6537.1(13)	24.5(2)
C10	2346.7(19)	5600.1(16)	7650.8(14)	33.5(3)
C11	2107.6(17)	4061.1(16)	7435.8(14)	30.5(3)

Table 3 Anisotropic Displacement Parameters (Å $^2 \times 10^3$) for CHA233. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U_{11}	$\mathbf{U_{22}}$	U_{33}	U_{23}	U_{13}	U_{12}
Br1	25.40(9)	25.21(9)	37.73(10)	-3.91(5)	7.70(6)	1.31(5)
O1	30.3(5)	25.0(4)	23.0(4)	1.2(4)	-0.6(4)	-3.1(4)
N1	27.1(5)	15.8(4)	23.7(5)	-1.5(4)	2.0(4)	-1.8(4)
C1	25.9(6)	14.8(5)	20.8(5)	0.3(4)	1.6(4)	0.4(4)
C2	25.6(6)	17.4(5)	24.4(6)	-1.3(4)	3.8(5)	0.9(4)
C3	29.6(7)	24.0(6)	34.8(7)	-6.3(5)	4.1(6)	-6.3(5)
C4	37.0(7)	23.2(6)	33.0(7)	-7.6(5)	2.9(6)	-1.0(6)
C5	37.7(7)	17.3(5)	32.6(7)	-2.7(5)	1.7(6)	4.3(5)
C6	26.4(6)	19.1(5)	28.4(6)	-0.6(5)	3.1(5)	3.6(5)
C7	21.4(5)	18.0(5)	23.5(5)	-1.2(4)	3.8(4)	-0.9(4)
C8	32.4(7)	19.2(6)	31.3(7)	-5.8(5)	6.3(5)	-5.1(5)
C9	28.6(6)	18.5(5)	25.5(6)	2.2(4)	1.4(5)	1.5(5)
C10	52.4(10)	22.3(6)	24.4(6)	0.4(5)	1.7(6)	6.5(6)
C11	38.3(8)	22.2(6)	30.9(7)	6.0(5)	5.4(6)	1.3(5)

Table 4 Bond Lengths for CHA233.

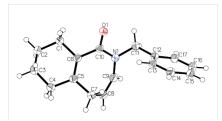
Atom Atom		Length/Å	Aton	1 Atom	Length/Å
Br1	C2	1.9174(14)	C2	C3	1.4965(19)
O1	C7	1.2339(17)	C3	C4	1.527(2)
N1	C7	1.3542(17)	C4	C5	1.524(2)
N1	C8	1.4631(17)	C5	C6	1.5261(19)
N1	C9	1.4417(18)	C9	C10	1.492(2)
C1	C2	1.330(2)	C9	C11	1.505(2)
C1	C6	1.5151(19)	C10	C11	1.505(2)
C1	C7	1.5029(18)			

Table 5 Bond Angles for CHA233.

Aton	n Aton	1 Atom	Angle/°	Aton	1 Aton	n Atom	Angle/°
C7	N1	C8	118.83(12)	C4	C5	C6	110.04(12)
C7	N1	C9	124.28(11)	C1	C6	C5	112.36(12)
C9	N1	C8	116.03(11)	O1	C7	N1	122.58(12)
C2	C1	C6	120.48(12)	O1	C7	C1	118.58(12)
C2	C1	C7	123.90(12)	N1	C7	C1	118.80(11)
C7	C1	C6	115.04(11)	N1	C9	C10	120.99(12)
C1	C2	Br1	120.72(10)	N1	C9	C11	118.46(12)
C1	C2	C3	126.00(13)	C10	C9	C11	60.27(10)
C3	C2	Br1	113.25(11)	C9	C10	C11	60.29(10)
C2	C3	C4	111.24(13)	C10	C11	C9	59.44(10)
C5	C4	C3	110.14(12)				

Table 6 Torsion Angles for CHA233.

A	B	C	D	Angle/°	A B	\mathbf{C}	D	Angle/°
Br1	C2	C3	C4	- 172.36(10)	C6 C1	C7	N1	- 113.84(14)
N1	C9	C10	C11	107.29(15)	C7N1	C9	C10	59.48(19)
N1	C9	C11	C10	- 111.40(15)	C7N1	C9	C11	130.07(14)
C1	C2	C3	C4	9.6(2)	C7C1	C2	Br1	-0.93(19)
C2	C1	C6	C5	13.31(18)	C7 C1	C2	C3	176.99(13)
C2	C1	C7	O1	107.47(16)	C7 C1	C6	C5	- 158.29(12)
C2	C1	C7	N1	74.88(18)	C8N1	C7	O1	10.1(2)
C2	C3	C4	C5	-43.59(17)	C8 N1	C7	C1	- 172.36(12)


Table 6 Torsion Angles for CHA233.

				Angle/°				~
C3	C40	C 5	C6	63.49(17)	C8N1	C9	C10	131.35(14)
				-47.28(17)				
C6	C10	C2	Br1	- 171.76(10)	C9 N1	C7	O1	178.98(13)
C6	C10	$\mathbb{C}2$	C3	6.2(2)	C9N1	C7	C1	-3.5(2)
C6	C10	27	O1	63.80(17)				

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for CHA233.

Atom	X	y	z	U(eq)
H3A	4365.39	9970.91	5799.21	35
Н3В	4800.66	9073.01	6957.46	35
H4A	3016.7	9628.67	7750.14	38
H4B	3420.88	11055.38	7228.48	38
H5A	1916.23	10667.02	5457.26	36
H5B	1232.77	10757.22	6593.04	36
H6A	973.43	8381.39	6649.89	30
H6B	546.93	8794.46	5299.99	30
H8A	955.37	4238.3	3931.2	41
H8B	1051.2	3328.47	5098.96	41
H8C	2244.89	3498.7	4450.53	41
H9	3577.63	4794.46	6523.58	29
H10A	1611.04	6216.26	7570.78	40
H10B	3049.61	5869.69	8267.5	40
H11A	1229.05	3752.98	7223.63	37
H11B	2668.44	3406.2	7920.75	37

Crystal properties for 2i (CCDC 2104570)

Table 1 Crystal data and structure refinement for lauvin2.

 $\begin{tabular}{ll} Identification code & lauvin2 \\ Empirical formula & $C_{17}H_{19}NO$ \\ Formula weight & 253.33 \\ Temperature/K & 100 \\ \end{tabular}$

Crystal system orthorhombic

 Space group
 Pna21

 a/Å
 9.1178(3)

 b/Å
 18.3487(7)

 c/Å
 8.0923(3)

 $\alpha/^{\circ}$ 90 $\beta/^{\circ}$ 90 $\gamma/^{\circ}$ 90

Volume/Å³ 1353.84(8)

 $\begin{array}{ccc} Z & 4 \\ \rho_{calc}g/cm^3 & 1.243 \\ \mu/mm^{-1} & 0.596 \\ F(000) & 544.0 \end{array}$

Crystal size/mm³ $0.23 \times 0.1 \times 0.09$ Radiation $CuK\alpha (\lambda = 1.54178)$

2Θ range for data collection/° 10.834 to 144.098

Index ranges $-11 \le h \le 11, -21 \le k \le 18, -9 \le 1 \le 9$

Reflections collected 17932

Independent reflections 2599 [$R_{int} = 0.0431$, $R_{sigma} = 0.0281$]

Data/restraints/parameters 2599/1/173

Goodness-of-fit on F² 1.048

Final R indexes [I>=2 σ (I)] R₁ = 0.0351, wR₂ = 0.0915 Final R indexes [all data] R₁ = 0.0355, wR₂ = 0.0923

Largest diff. peak/hole / e Å-3 0.18/-0.20 Flack parameter 0.1(3)

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for lauvin2. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	y	Z	U(eq)
O1	4945.8(14)	1745.3(7)	6668.0(17)	29.4(3)
N1	3926.8(16)	2767.7(9)	5605.8(18)	26.3(3)
C1	4331(2)	937.7(10)	3804(2)	29.8(4)
C2	4139(2)	630.2(11)	2069(3)	32.9(4)
C3	5410(2)	868.7(11)	967(3)	33.7(4)
C4	5461(2)	1694.4(11)	822(3)	34.1(4)
C5	5200(2)	2085.0(10)	2436(2)	27.6(4)
C6	4681(2)	1744.2(10)	3773(3)	26.8(4)
C7	5557(2)	2890.5(10)	2477(3)	31.8(4)
C8	4203(2)	3318.6(10)	2891(2)	30.9(4)
C9	3499(2)	3240.5(9)	4312(2)	30.0(4)
C10	4559.2(18)	2090.6(10)	5439(2)	25.3(4)
C11	3606(2)	3041.9(10)	7278(2)	29.2(4)
C12	4622.0(19)	3652.7(10)	7804(2)	25.7(4)
C13	6130.1(19)	3613.8(10)	7523(2)	29.3(4)
C14	7050(2)	4164.3(10)	8063(2)	31.8(4)
C15	6478(2)	4761.4(11)	8898(2)	33.6(4)
C16	4981(2)	4810.0(10)	9177(3)	35.2(5)
C17	4057(2)	4256.4(10)	8626(3)	31.4(4)

Table 3 Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for lauvin2. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
O1	34.4(6)	28.0(7)	25.7(7)	2.6(5)	-2.3(5)	-0.2(5)
N1	28.7(7)	25.0(8)	25.3(8)	-1.8(6)	-0.4(6)	-1.3(5)
C1	36.5(9)	24.9(10)	28.1(9)	-0.1(7)	-0.3(8)	-2.2(7)
C2	39.7(9)	26.9(9)	32.0(9)	-4.1(7)	-0.1(8)	-2.9(8)
C3	42.3(11)	30.8(10)	28.0(9)	-5.2(7)	2.1(8)	1.5(7)
C4	46.7(11)	30.2(11)	25.6(9)	1.3(7)	2.5(9)	1.0(7)
C5	30.8(8)	24.3(9)	27.8(9)	1.4(7)	-1.7(7)	1.0(6)
C6	29.5(8)	24.3(9)	26.7(9)	-0.3(7)	-2.3(7)	0.9(7)
C7	39.7(10)	27.0(10)	28.7(9)	3.3(7)	1.4(8)	-4.5(7)
C8	42.1(10)	21.4(9)	29.3(10)	2.6(7)	-6.0(8)	-1.2(7)
C9	33.1(9)	23.8(9)	33.0(10)	-1.8(7)	-6.0(8)	0.8(7)
C10	25.0(8)	23.5(9)	27.5(9)	1.0(7)	-1.2(7)	-4.9(6)
C11	32.1(8)	28.1(9)	27.4(9)	-2.6(7)	1.9(7)	-1.9(7)

Table 3 Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for lauvin2. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C12	31.1(9)	23.5(9)	22.5(9)	0.8(6)	-0.5(6)	1.0(6)
C13	32.1(9)	26.5(9)	29.4(9)	-2.4(7)	-0.3(8)	4.5(7)
C14	31.5(9)	32.0(9)	31.9(9)	-1.0(7)	-3.3(8)	1.1(7)
C15	40.5(11)	25.7(10)	34.6(11)	-2.2(7)	-4.5(8)	-3.1(7)
C16	43.7(10)	26.1(10)	35.9(11)	-5.8(8)	3.0(8)	3.2(8)
C17	33.4(9)	29.6(9)	31.2(9)	-0.7(8)	3.5(8)	2.5(7)

Table 4 Bond Lengths for lauvin2.

		0			
Atom Atom		Length/Å	Atom Atom		Length/Å
01	C10	1.231(2)	C6	C10	1.495(3)
N1	C9	1.414(2)	C7	C8	1.501(3)
N1	C10	1.376(2)	C8	C9	1.325(3)
N1	C11	1.473(2)	C11	C12	1.515(2)
C1	C2	1.523(3)	C12	C13	1.396(2)
C1	C6	1.514(3)	C12	C17	1.391(3)
C2	C3	1.526(3)	C13	C14	1.384(3)
C3	C4	1.520(3)	C14	C15	1.389(3)
C4	C5	1.509(3)	C15	C16	1.386(3)
C5	C6	1.336(3)	C16	C17	1.393(3)
C5	C7	1.514(2)			

Table 5 Bond Angles for lauvin2.

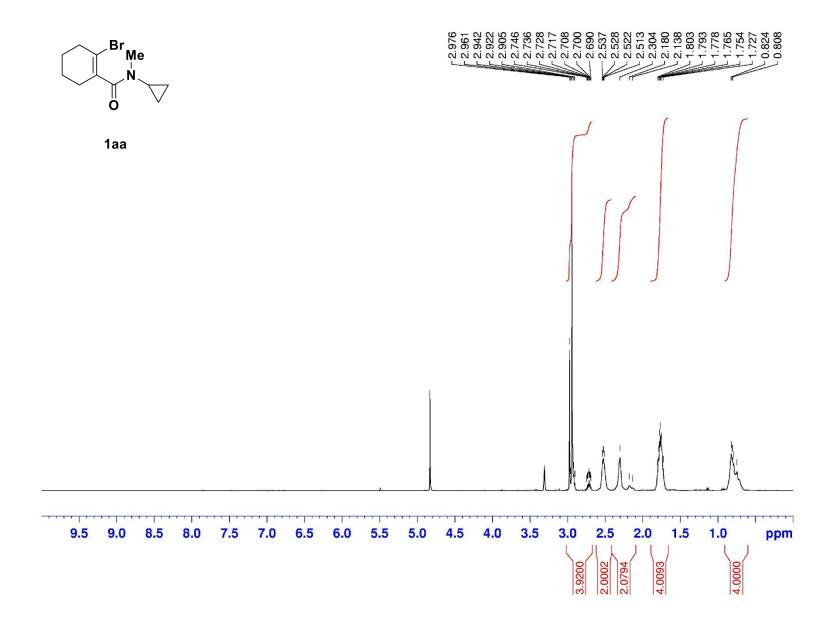
Atom Atom Atom		Angle/°	Aton	Atom Atom Atom		Angle/°	
C9	N1	C11	114.56(15)	C9	C8	C7	122.40(17)
C10	N1	C9	126.62(16)	C8	C9	N1	125.11(17)
C10	N1	C11	118.80(15)	O1	C10	N1	120.34(18)
C6	C1	C2	111.79(16)	O1	C10	C6	119.25(16)
C1	C2	C3	110.17(16)	N1	C10	C6	120.25(15)
C4	C3	C2	110.72(16)	N1	C11	C12	112.90(15)
C5	C4	C3	113.70(17)	C13	C12	C11	121.25(16)
C4	C5	C7	116.68(17)	C17	C12	C11	119.80(16)
C6	C5	C4	122.29(17)	C17	C12	C13	118.92(17)
C6	C5	C7	121.03(18)	C14	C13	C12	120.56(17)
C5	C6	C1	123.06(18)	C13	C14	C15	120.09(17)
C5	C6	C10	123.88(16)	C16	C15	C14	120.02(18)

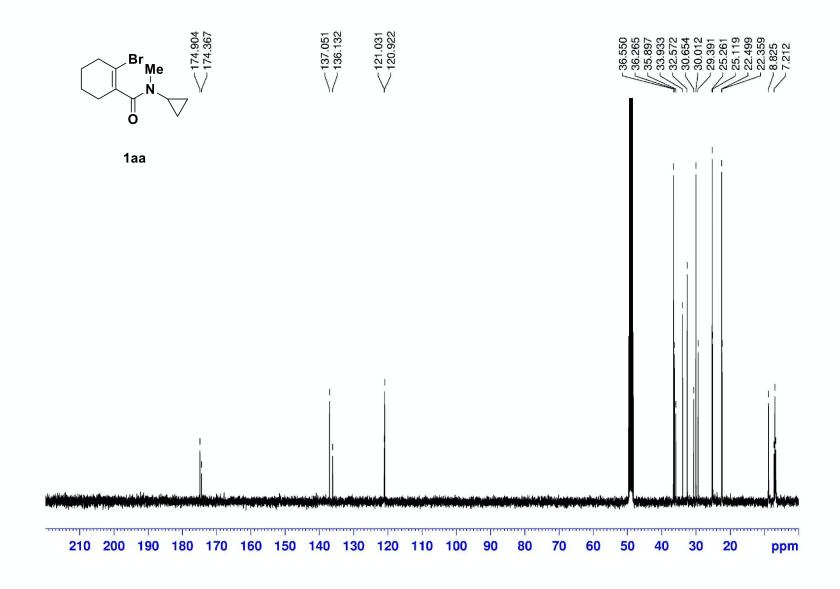
Table 5 Bond Angles for lauvin2.

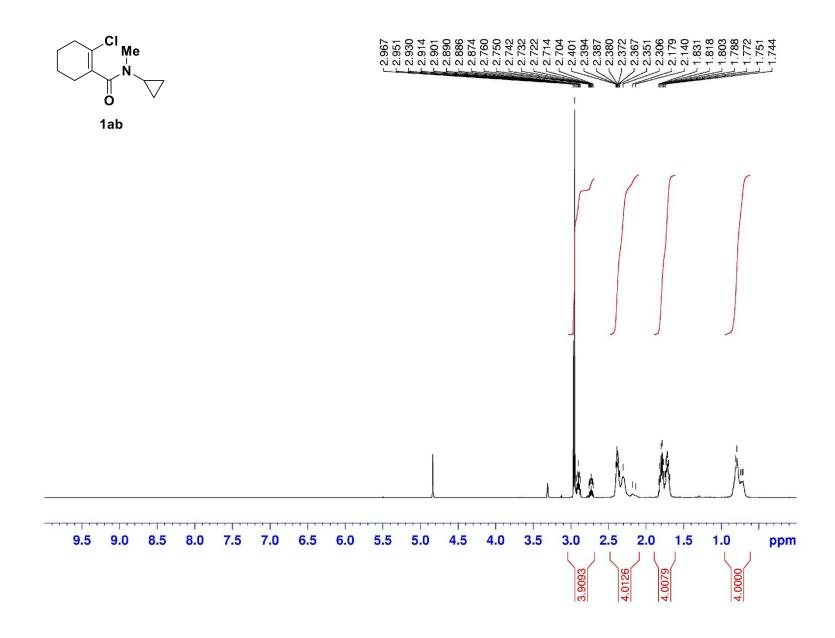
Atom A	tom Atom	Angle/°	Atom Ator	n Atom	Angle/°
C10 C	6 C1	112.65(16)	C15 C16	C17	119.76(17)
C8 C'	7 C5	109.83(16)	C12 C17	C16	120.65(18)

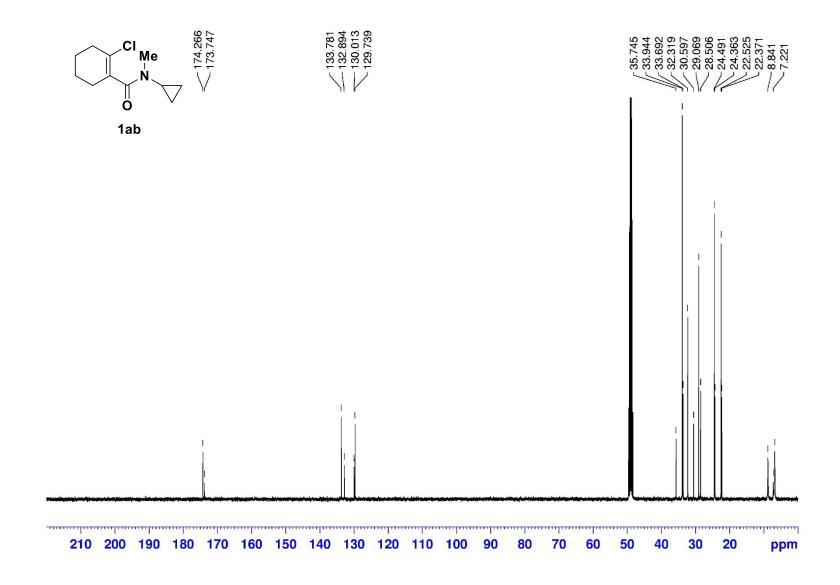
Table 6 Torsion Angles for lauvin2.

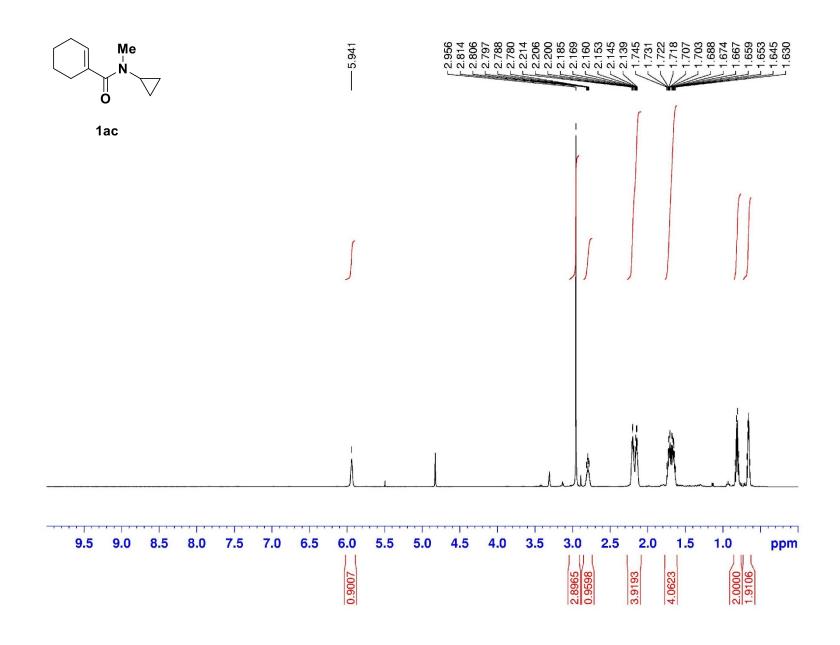
A B	C	D	Angle/°			C	D	Angle/°
N1 C11	C12	2C13	-44.1(2)	C7	C5	C6	C10	-6.8(3)
N1 C11	C12	2C17	137.71(18)	C7	C8	C9	N1	1.1(3)
C1 C2	C3	C4	-61.2(2)	C9	N1	C10	O1	176.56(16)
C1 C6	C10	O1	36.8(2)	C9	N1	C10	C6	-8.0(3)
C1 C6	C10)N1	- 138.64(16)	C9	N1	C11	C12	-73.42(19)
C2 C1	C6	C5	-19.3(3)	C10	N1	C9	C8	-35.6(3)
C2 C1	C6	C10	167.73(16)	C10	N1	C11	C12	108.16(17)
C2 C3	C4	C5	42.5(2)	C11	N1	C9	C8	146.13(19)
C3 C4	C5	C6	-12.9(3)	C11	N1	C10	O1	-5.2(2)
C3 C4	C5	C7	167.08(16)	C11	N1	C10	C6	170.20(16)
C4 C5	C6	C1	1.0(3)	C11	C12	C13	C14	- 177.67(18)
C4 C5	C6	C10	173.19(18)	C11	C12	C17	C16	177.46(17)
C4 C5	C7	C8	119.92(19)	C12	C13	C14	·C15	0.2(3)
C5 C6	C10	O1	- 136.04(18)	C13	C12	C17	C16	-0.7(3)
C5 C6	C10)N1	48.5(3)	C13	C14	C15	C16	-0.6(3)
C5 C7	C8	C9	62.0(2)	C14	C15	C16	C17	0.3(3)
C6 C1	C2	C3	48.5(2)	C15	C16	C17	C12	0.3(3)
C6 C5	C7	C8	-60.1(2)	C17	C12	C13	C14	0.5(3)
C7 C5	C6	C1	- 178.98(17)					

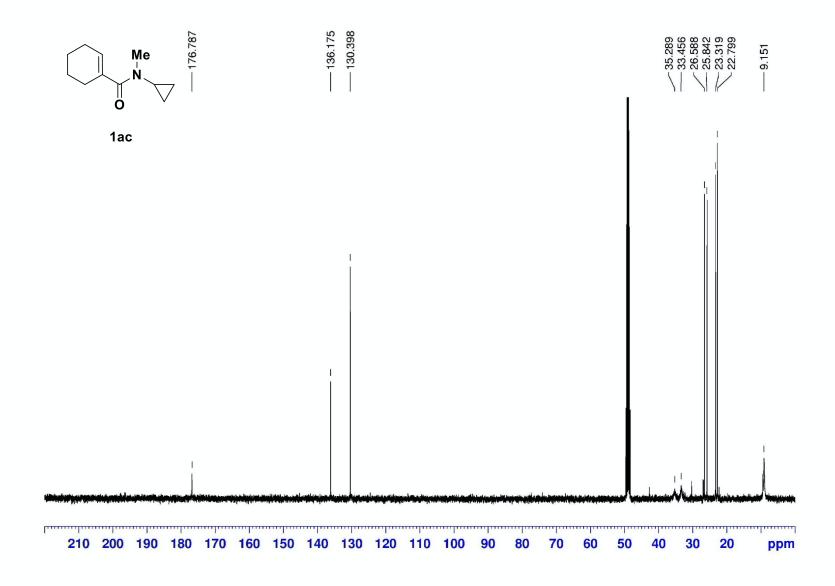

Table 7 Hydrogen Atom Coordinates ($\mathring{A}\times 10^4$) and Isotropic Displacement Parameters ($\mathring{A}^2\times 10^3$) for lauvin2.

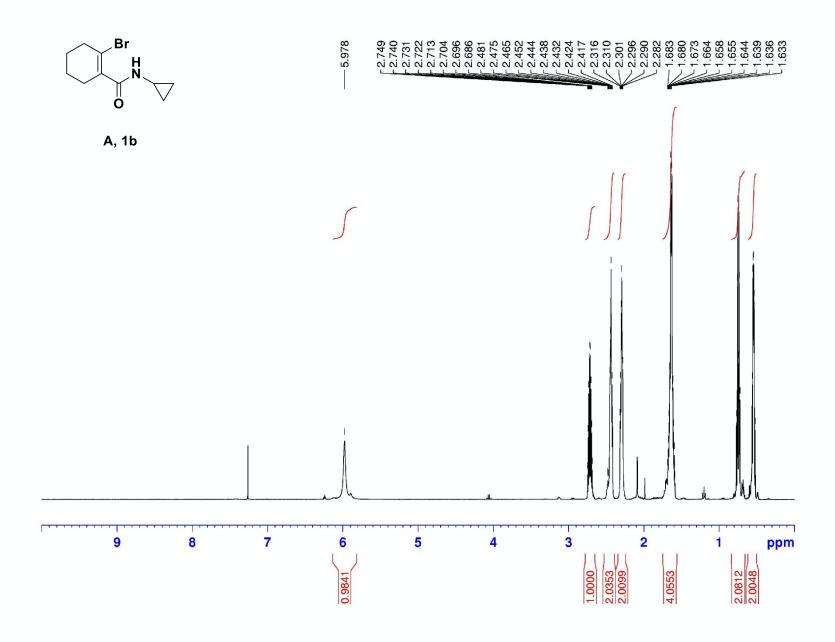

Atom	\boldsymbol{x}	y	z	U(eq)
H1A	3419.5	858.1	4442.56	36
H1B	5134.75	673.84	4368.86	36
H2A	3202.05	805.51	1595.3	39
H2B	4102.5	91.43	2119.28	39
H3A	6345.04	689.89	1438.42	40
Н3В	5292.52	651.77	-145.27	40

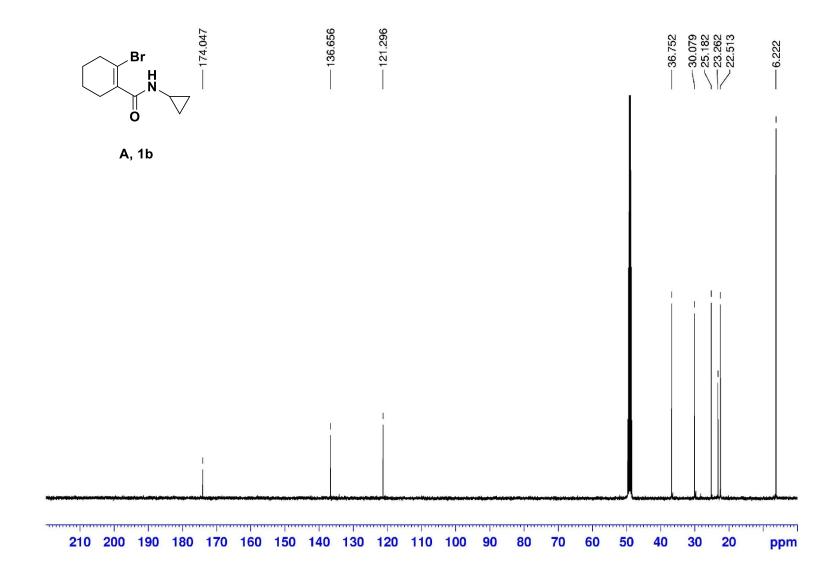

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for lauvin2.

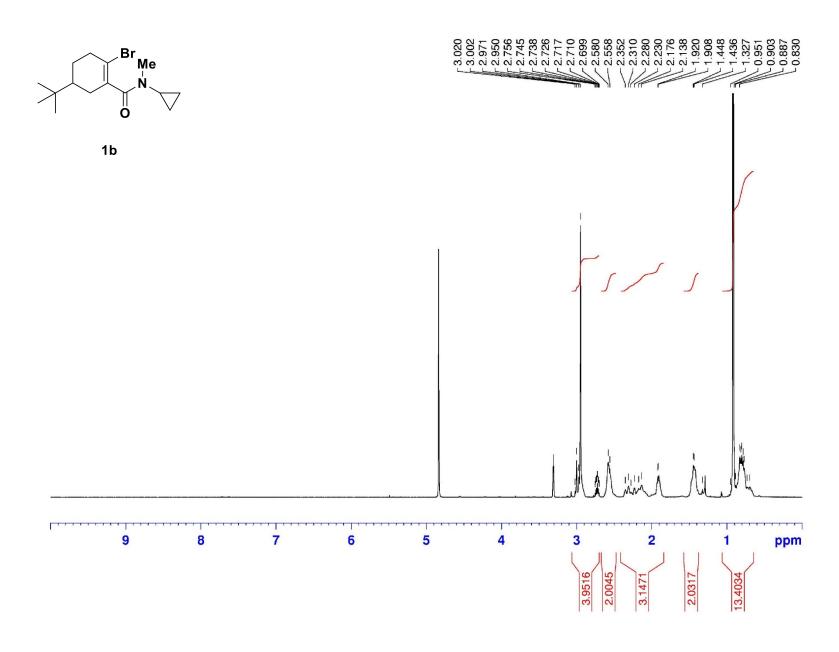

Atom	\boldsymbol{x}	y	z	U(eq)
H4A	6431.61	1839.41	384.63	41
H4B	4709.42	1852.87	15.12	41
H7A	6324.4	2984.7	3314.76	38
H7B	5937.45	3045.85	1386.46	38
H8	3837.66	3657.85	2105.8	37
H9	2639.94	3524.37	4475.54	36
H11A	3692.69	2635.08	8076.19	35
H11B	2581.1	3219.57	7312.77	35
H13	6528.32	3206.1	6955.08	35
H14	8075.22	4133.63	7863.16	38
H15	7111.76	5136.6	9276.97	40
H16	4586.97	5219.31	9742.55	42
H17	3030.91	4291.59	8813.75	38

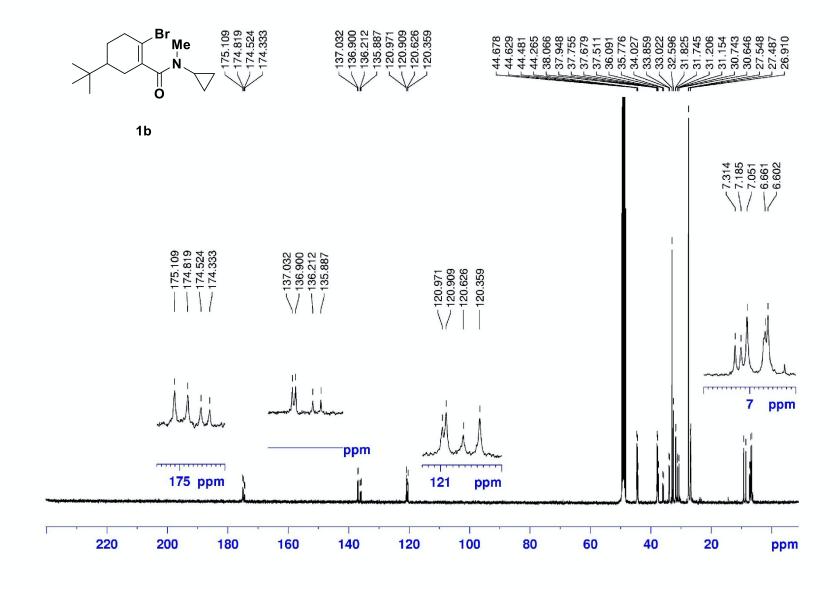

NMR spectra of novel compounds

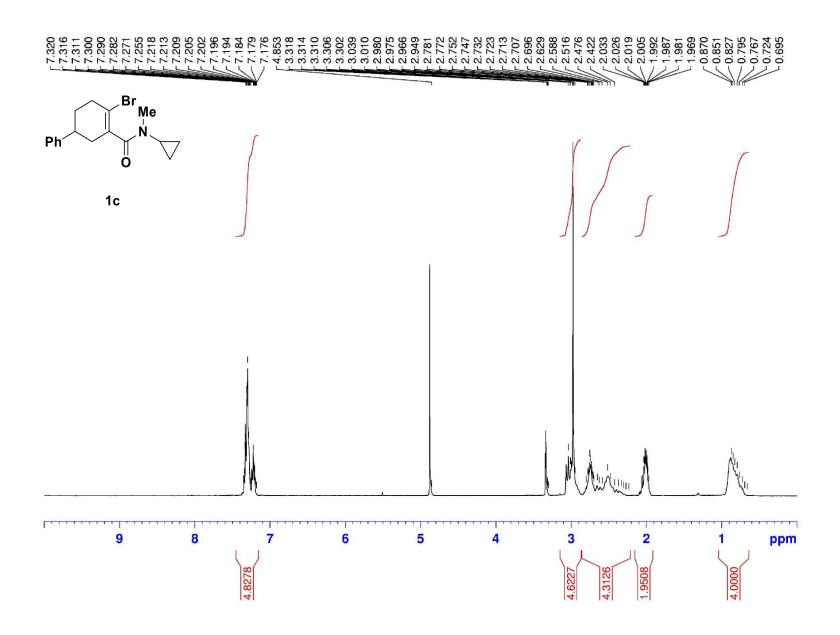


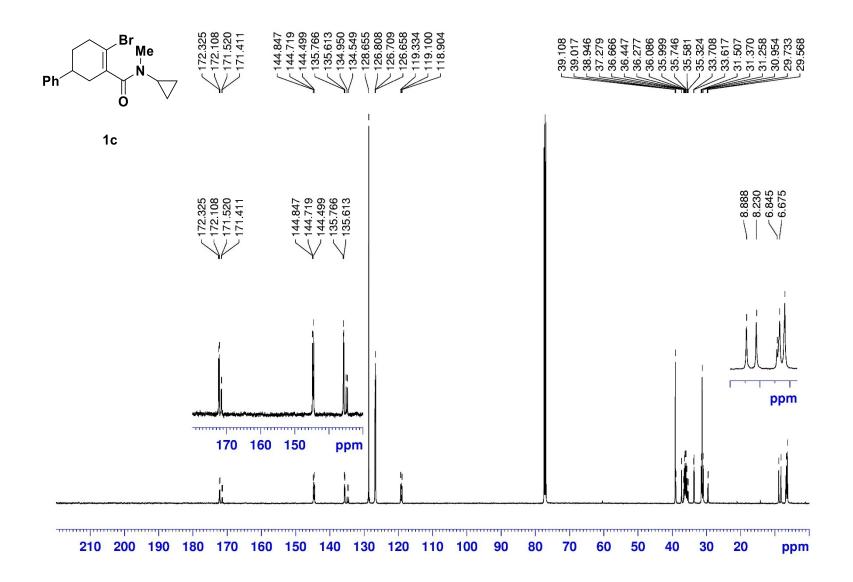


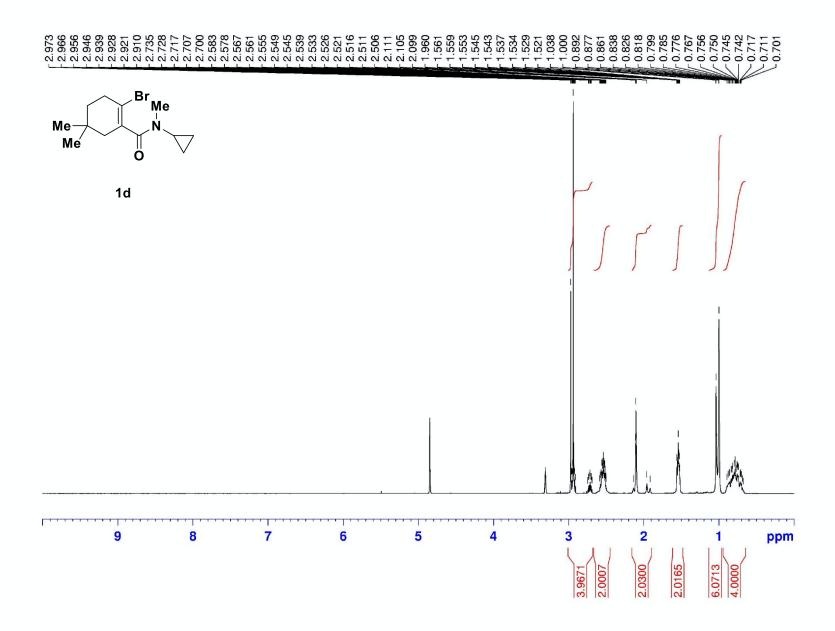


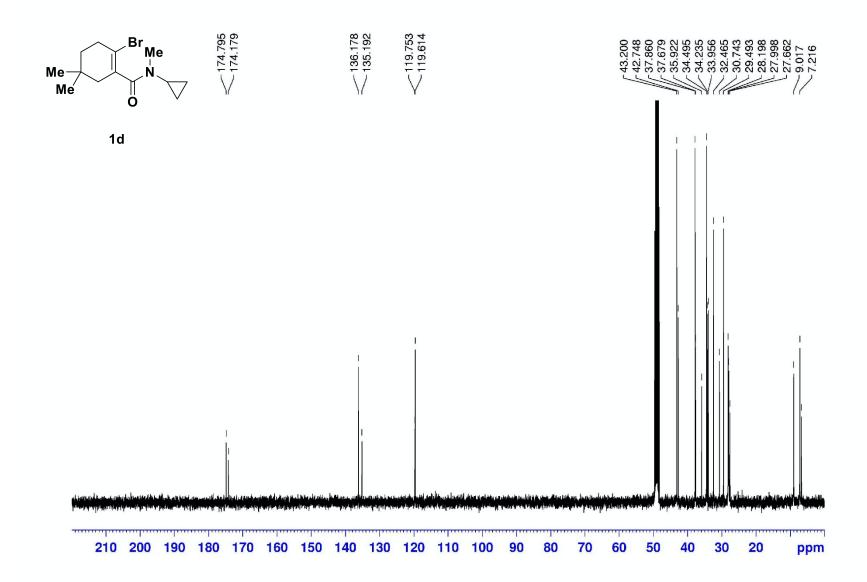


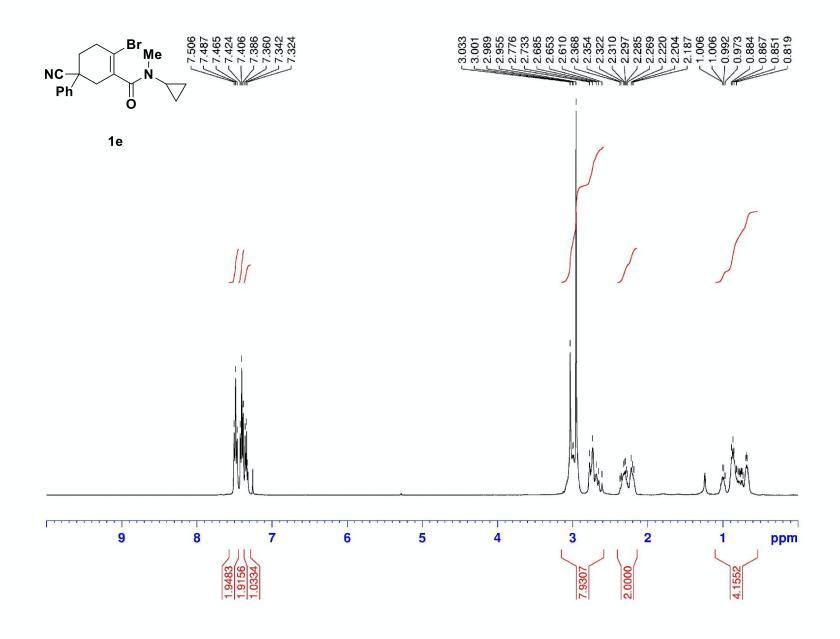


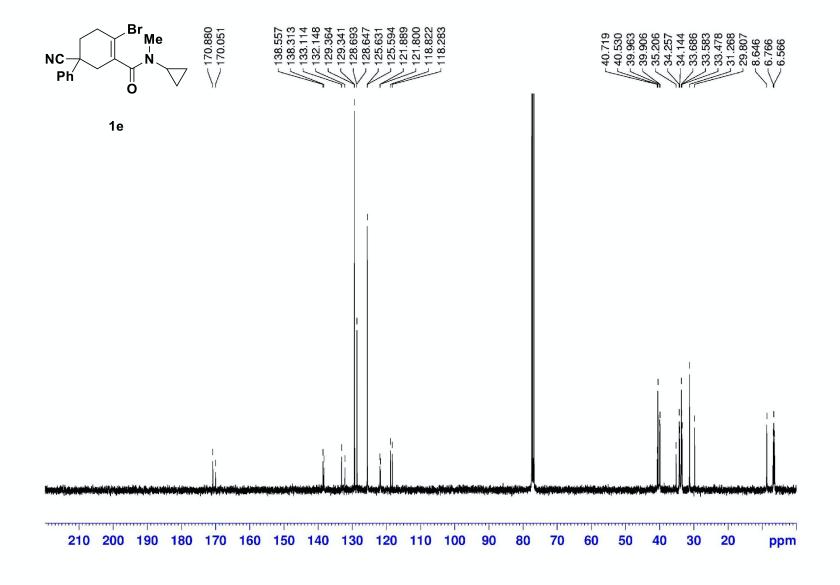


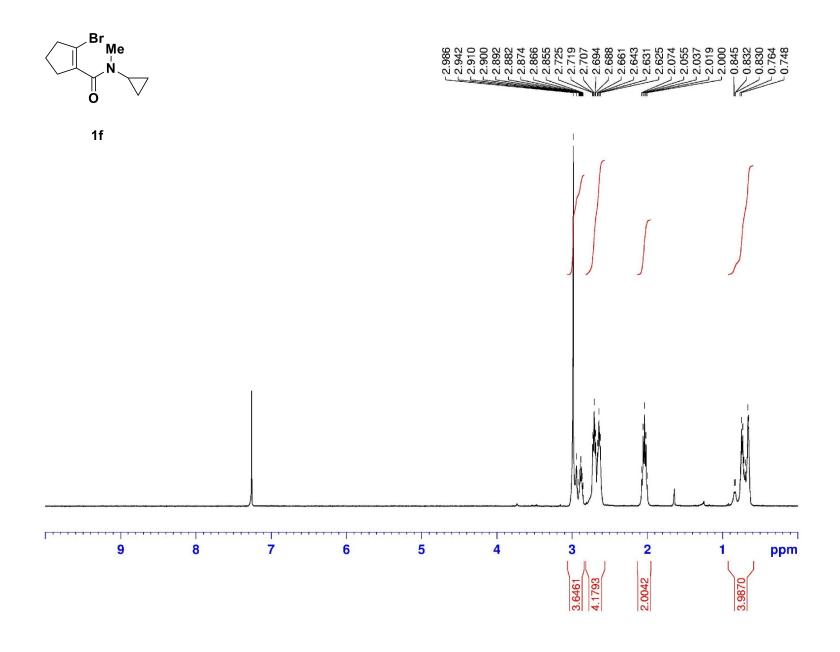




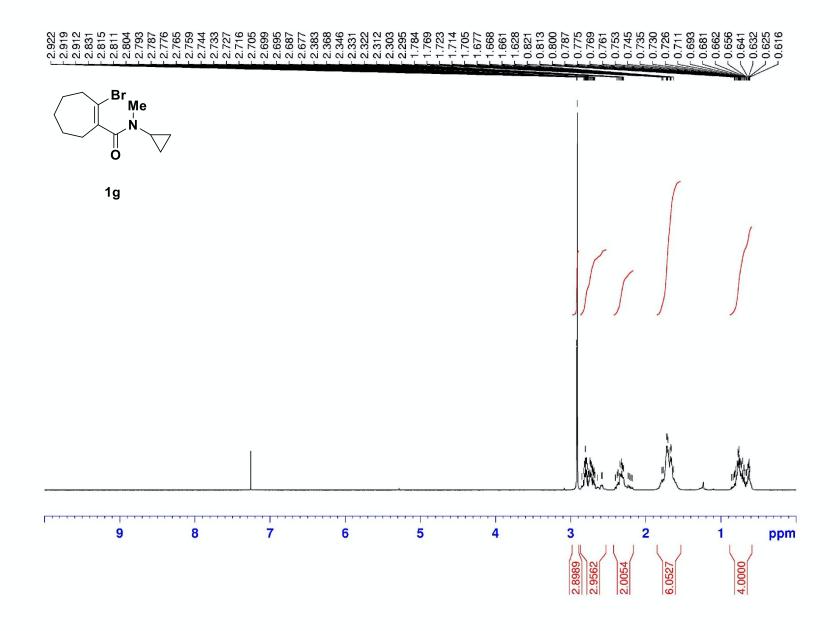


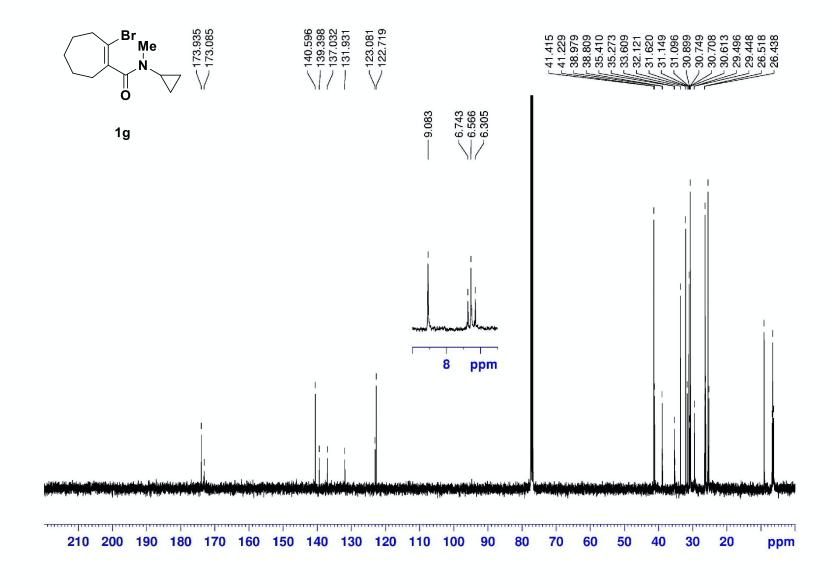


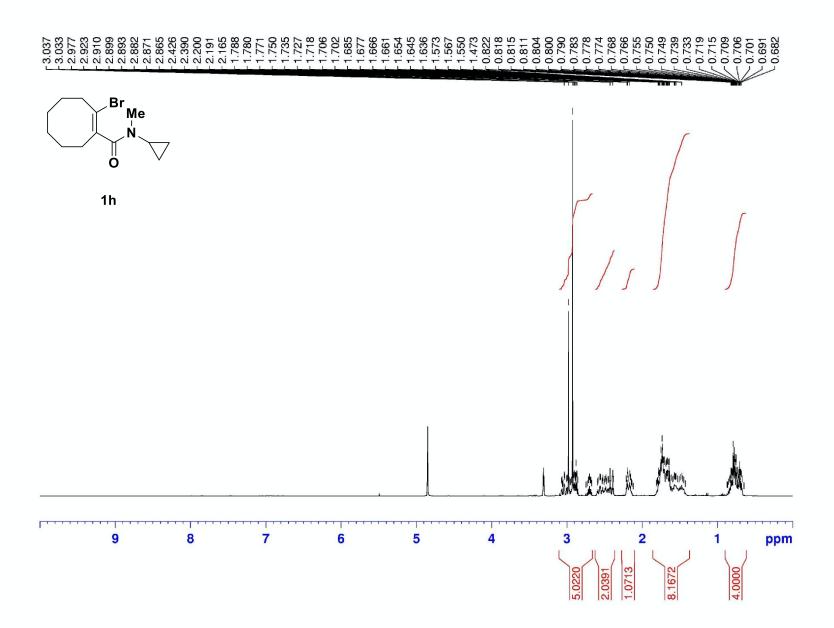


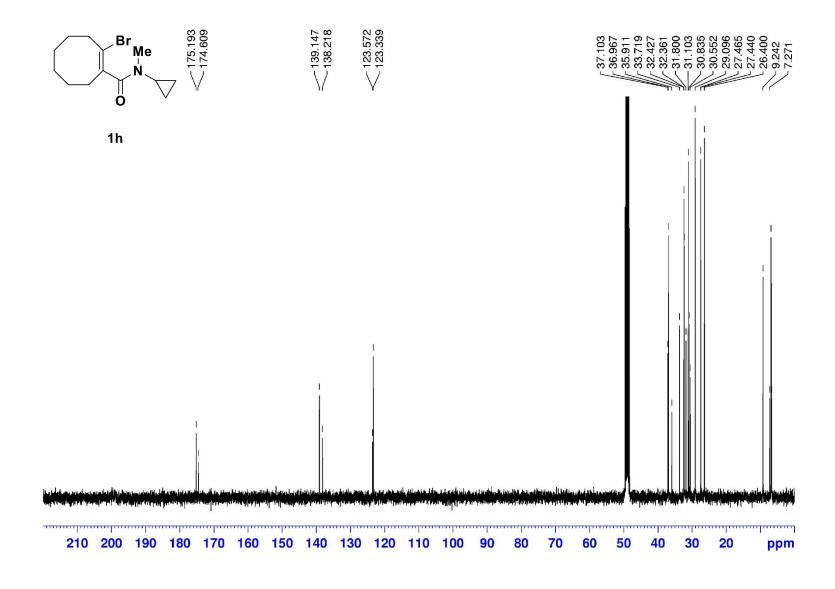


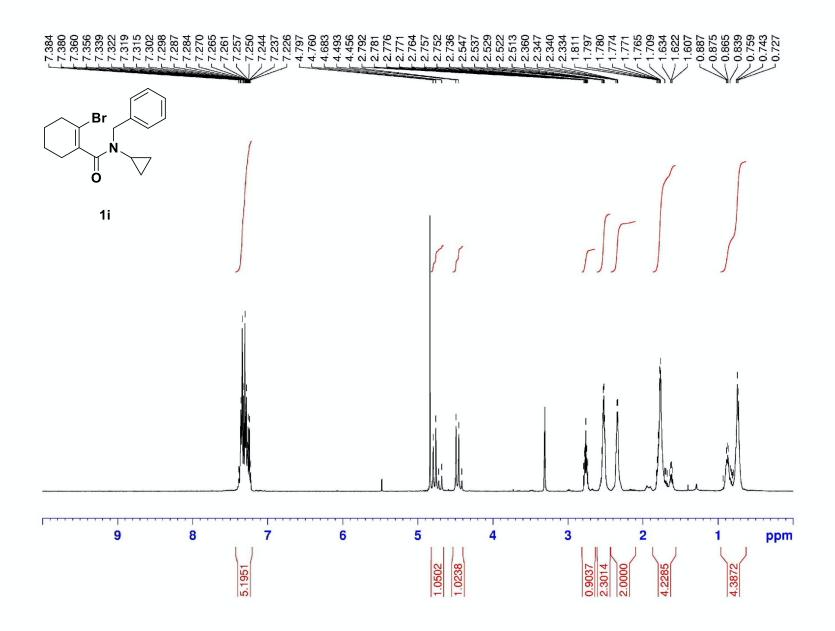


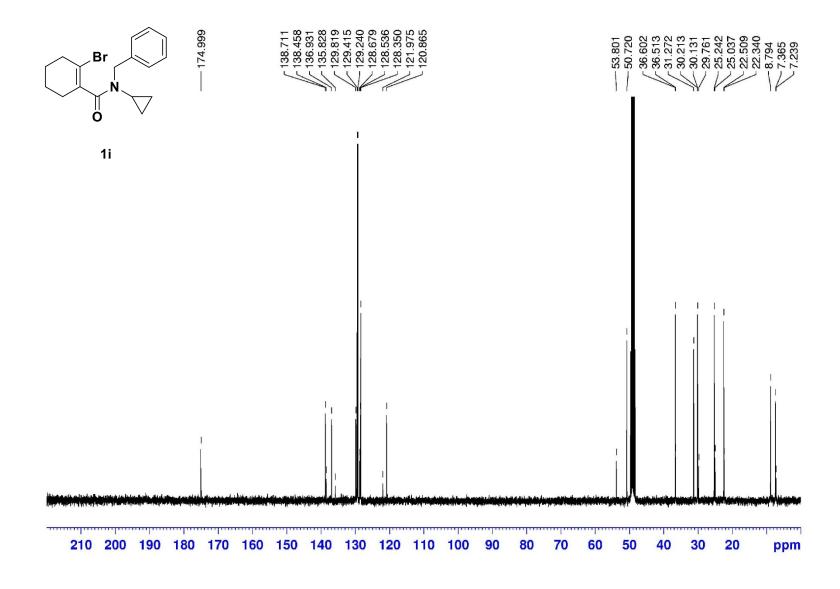


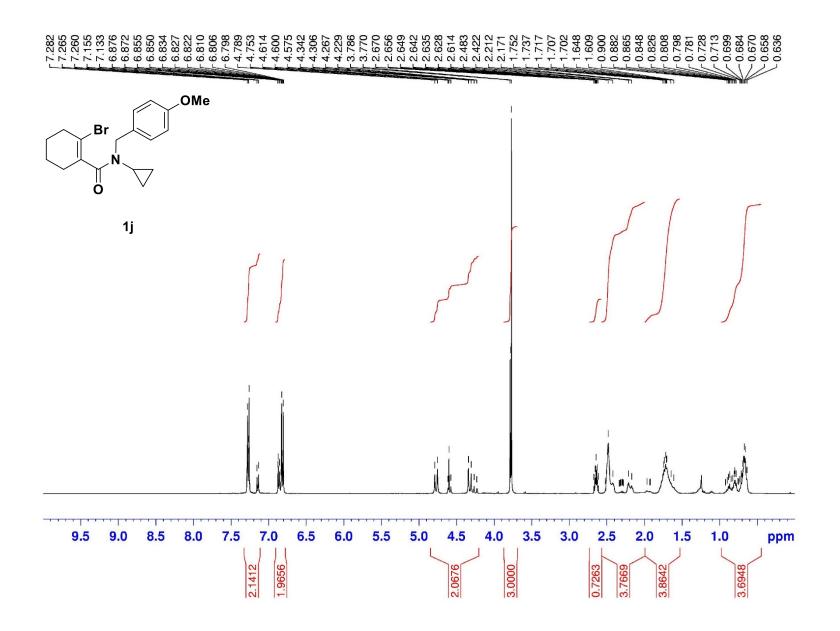


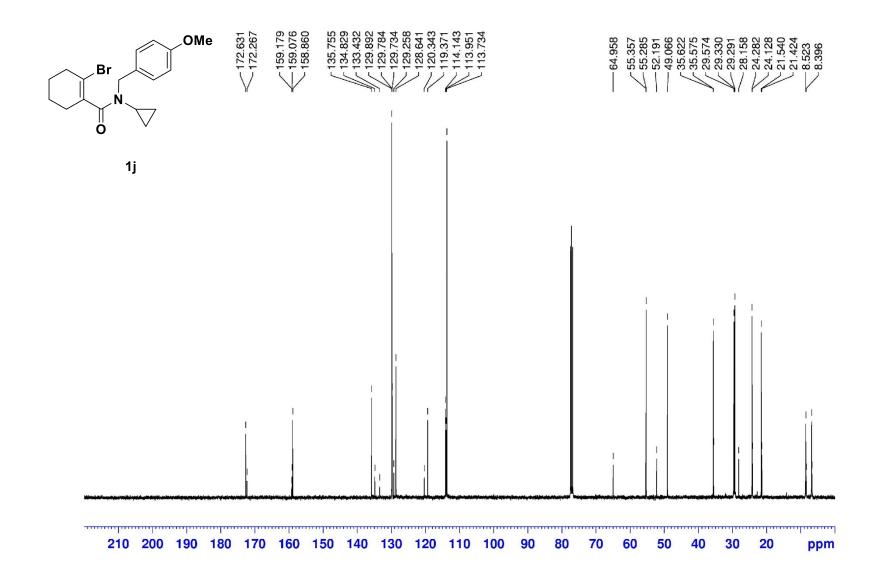


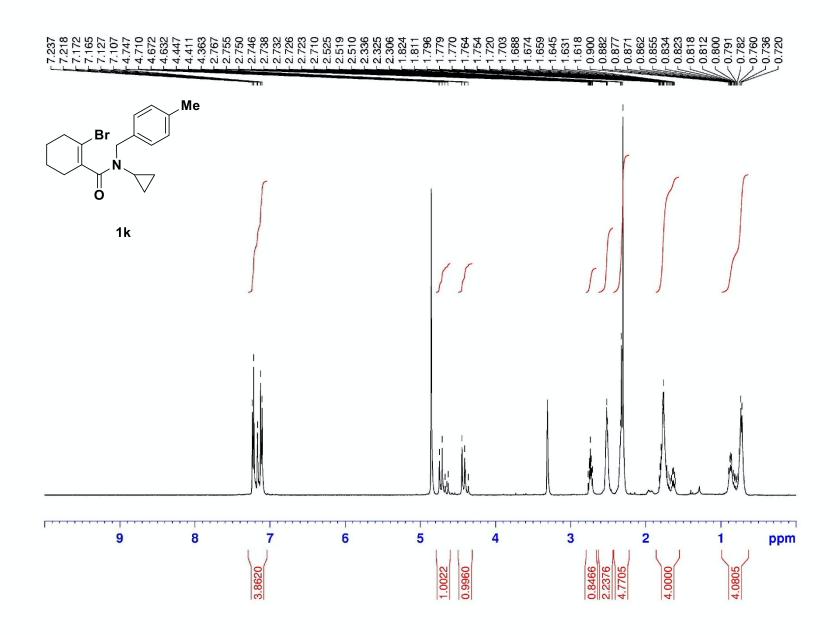


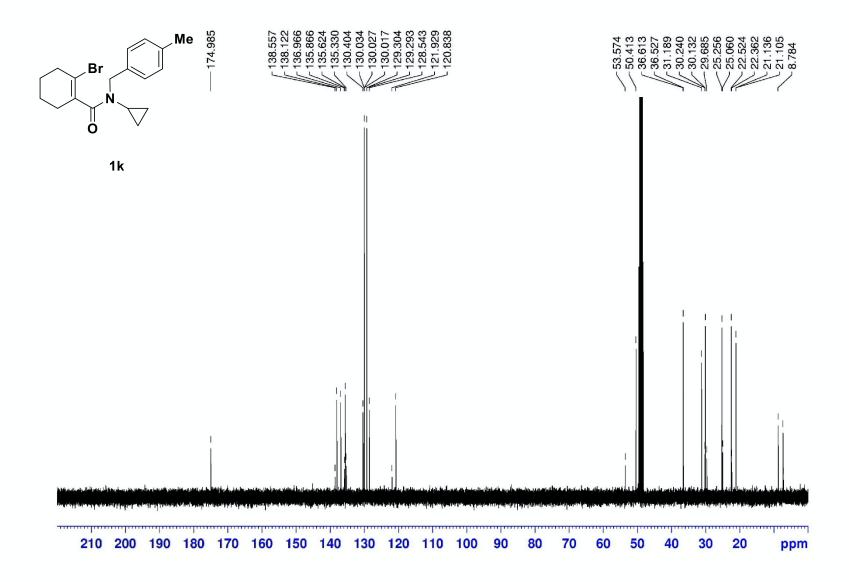


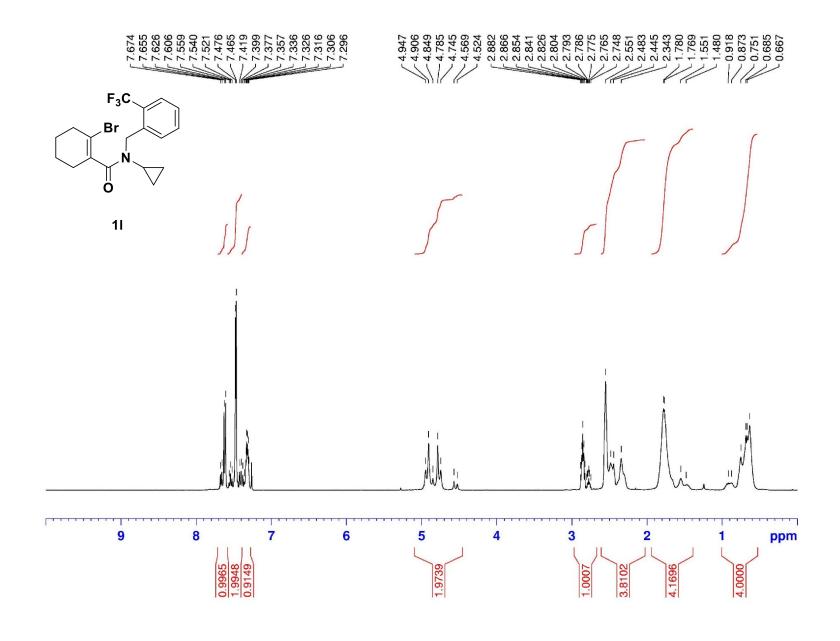


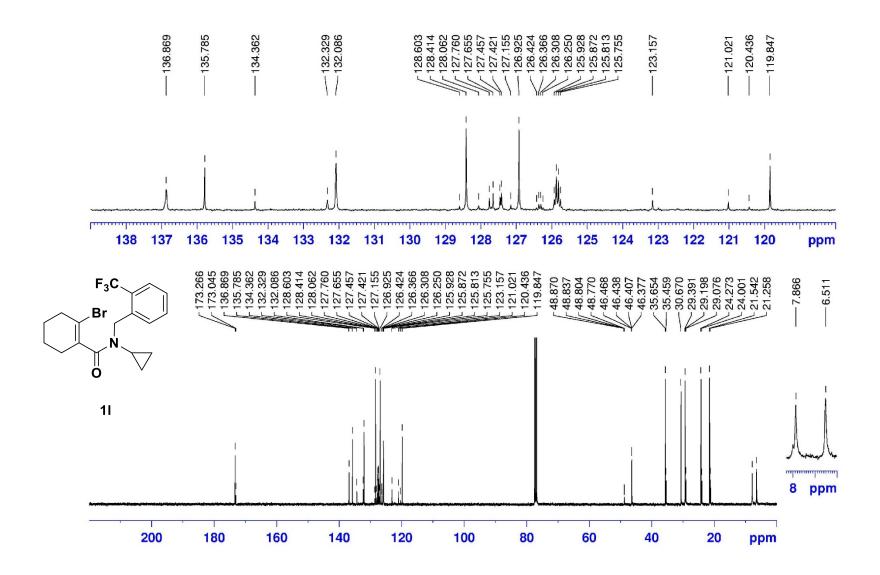


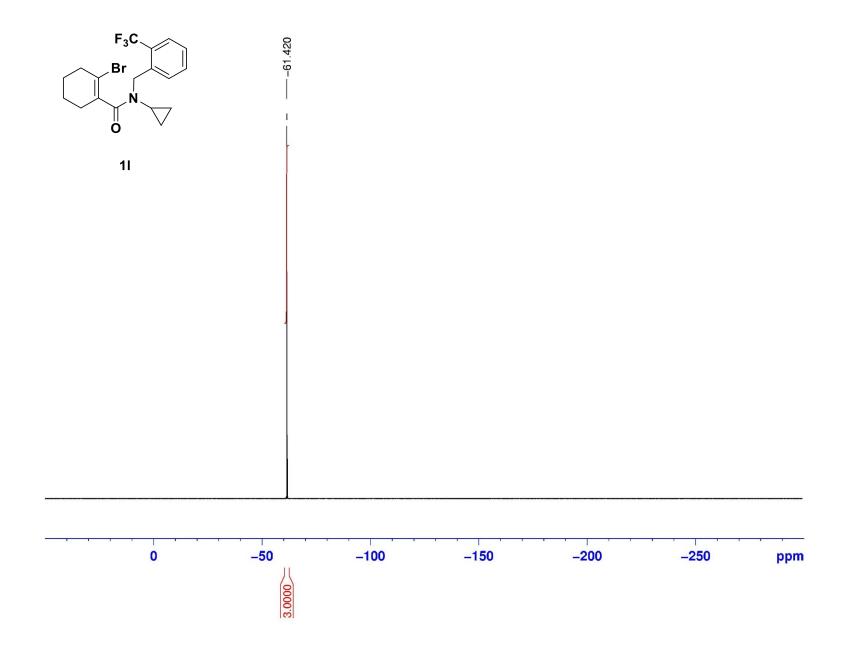


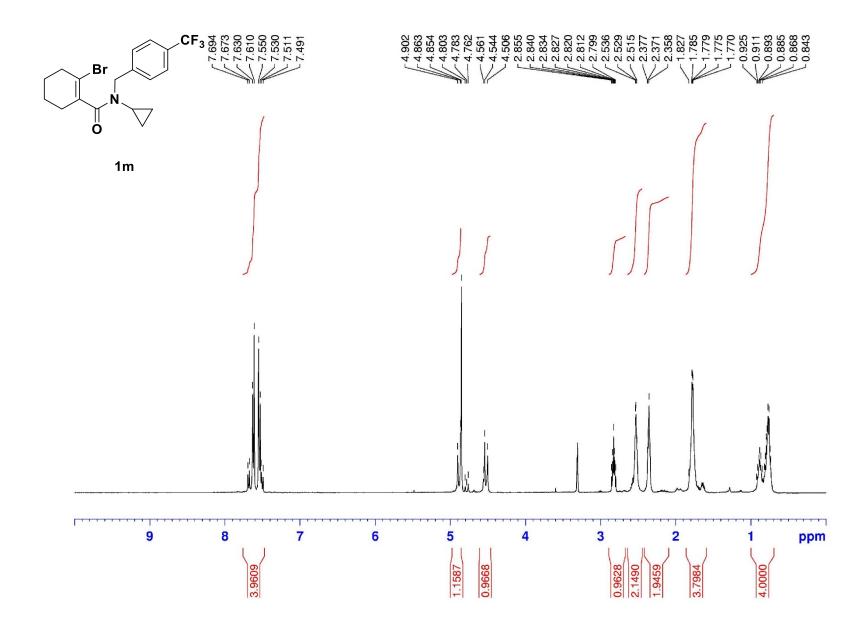


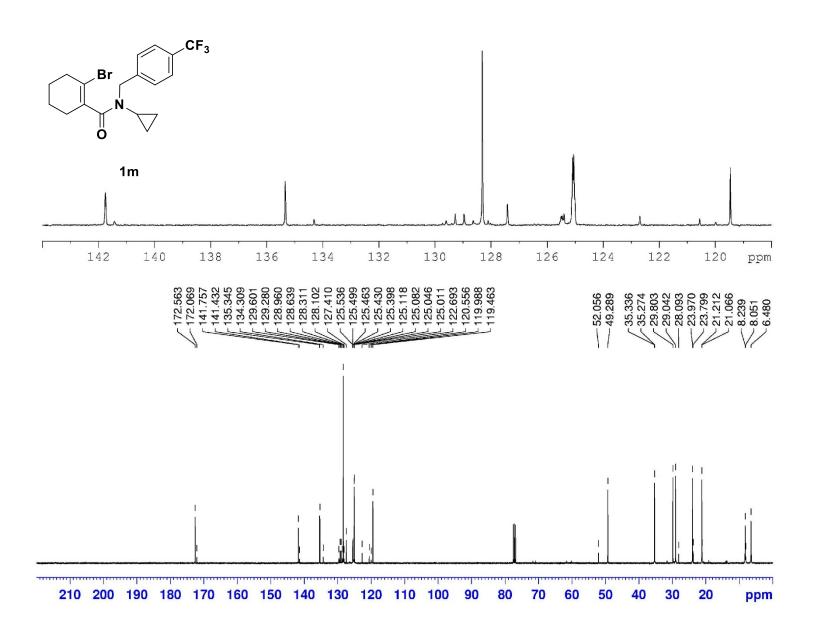


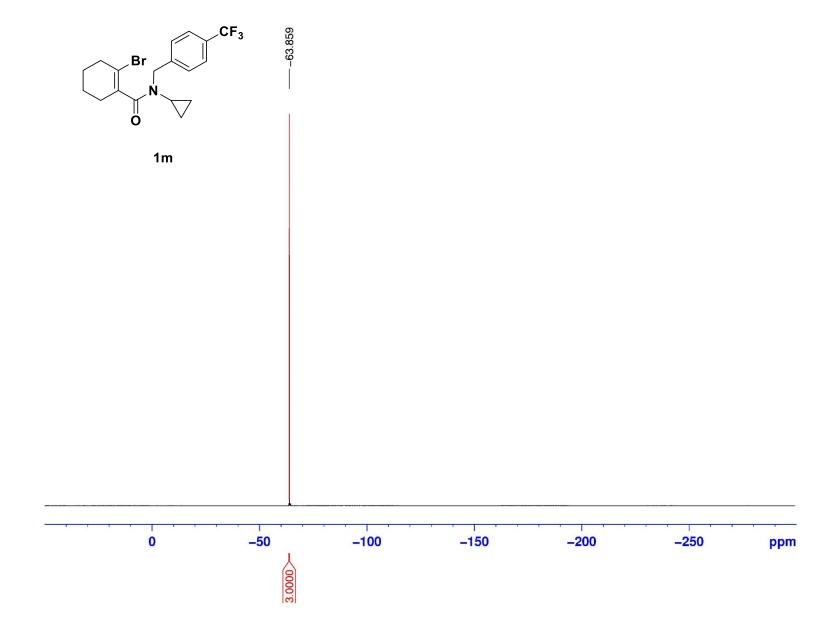


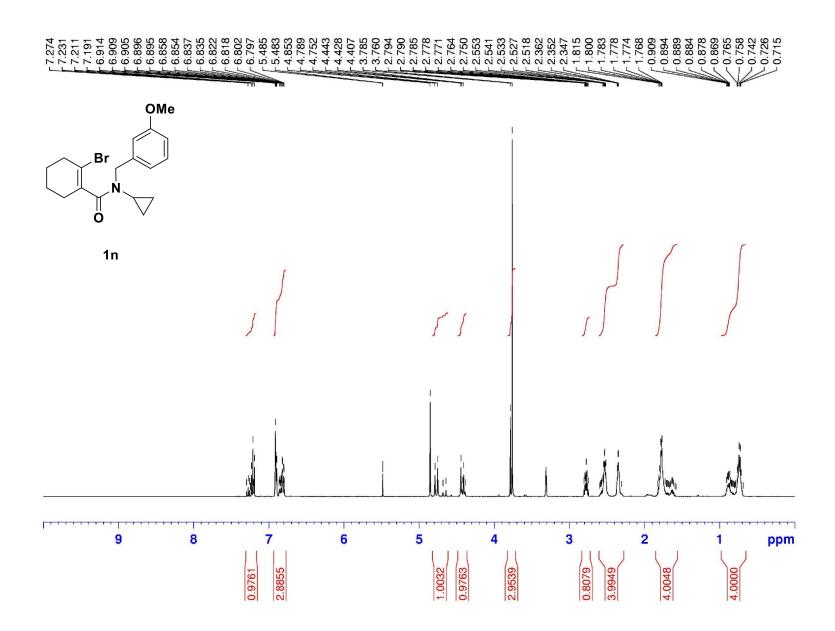


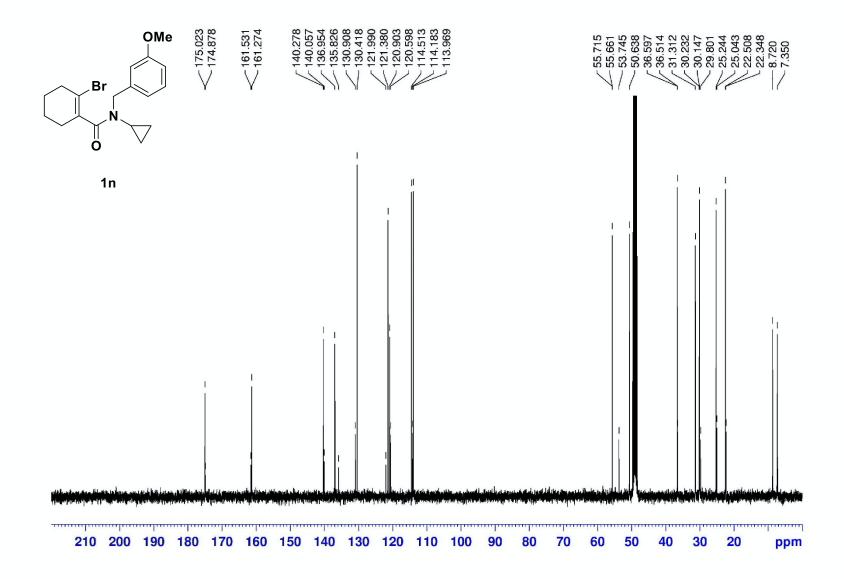


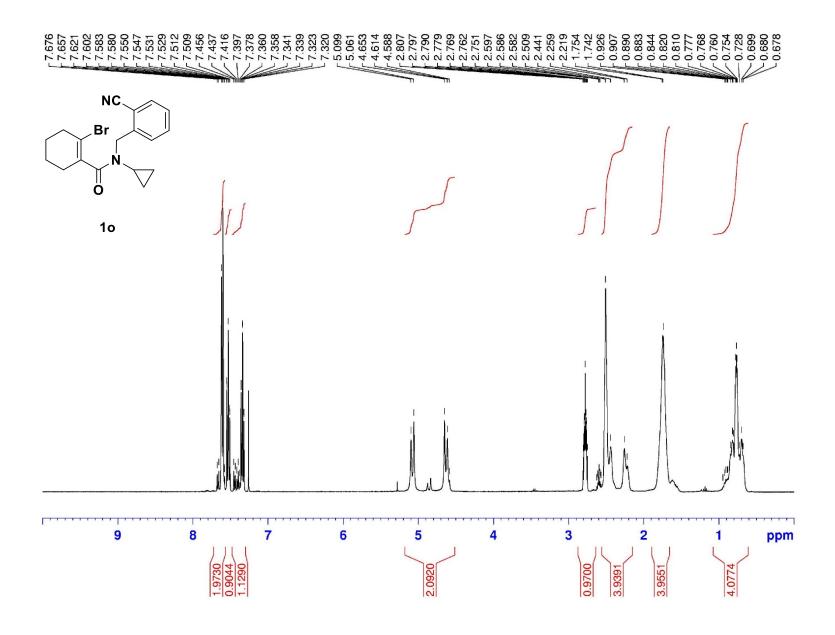


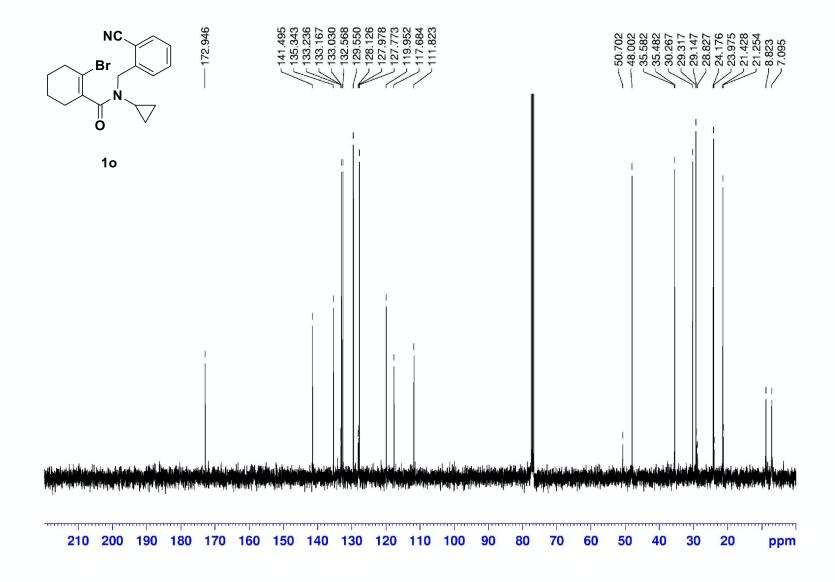


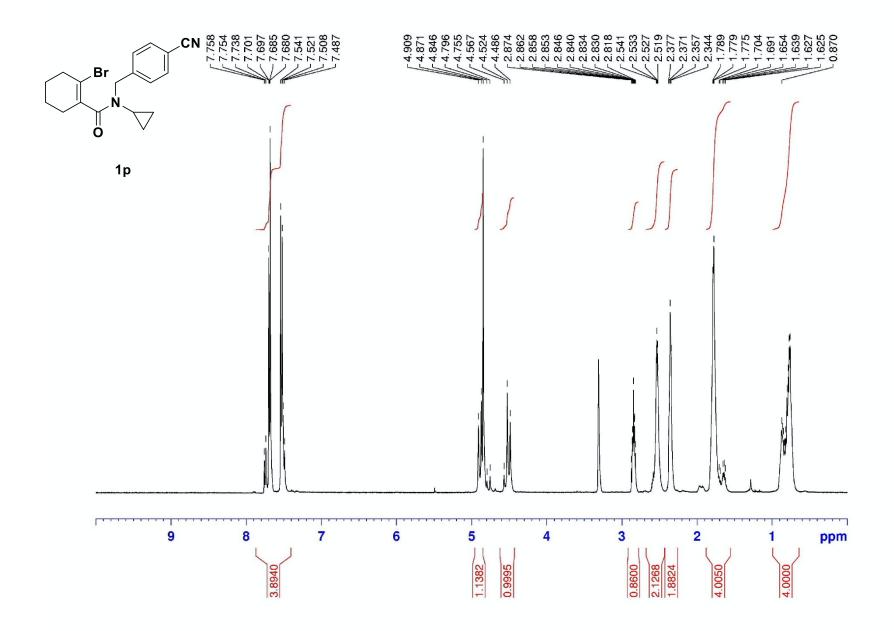


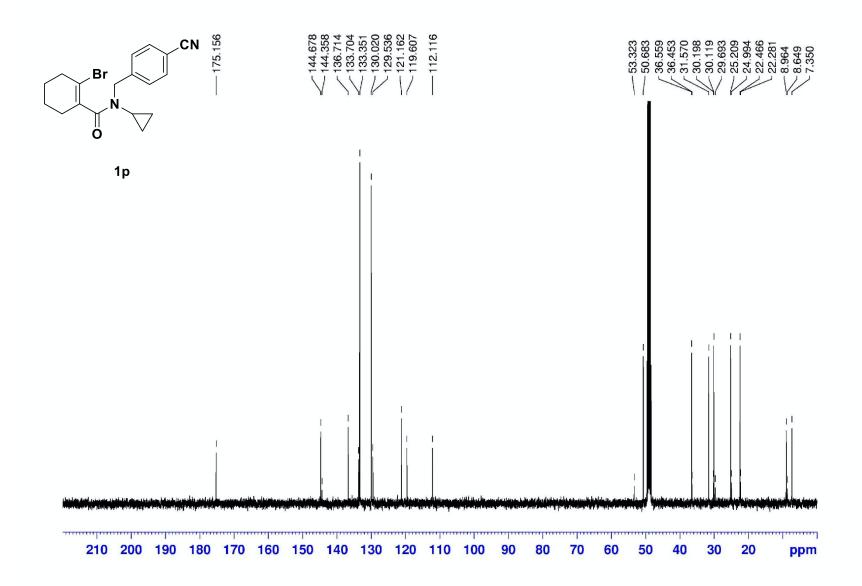


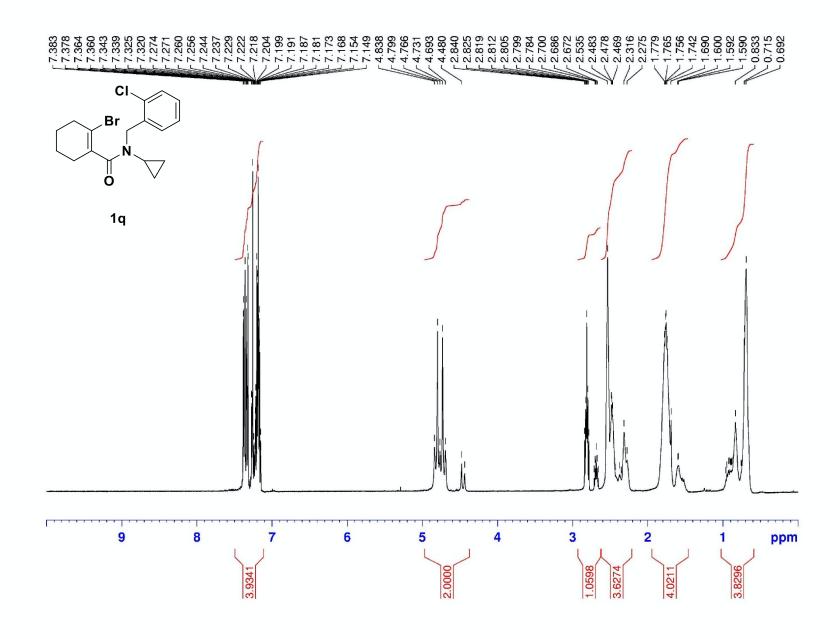


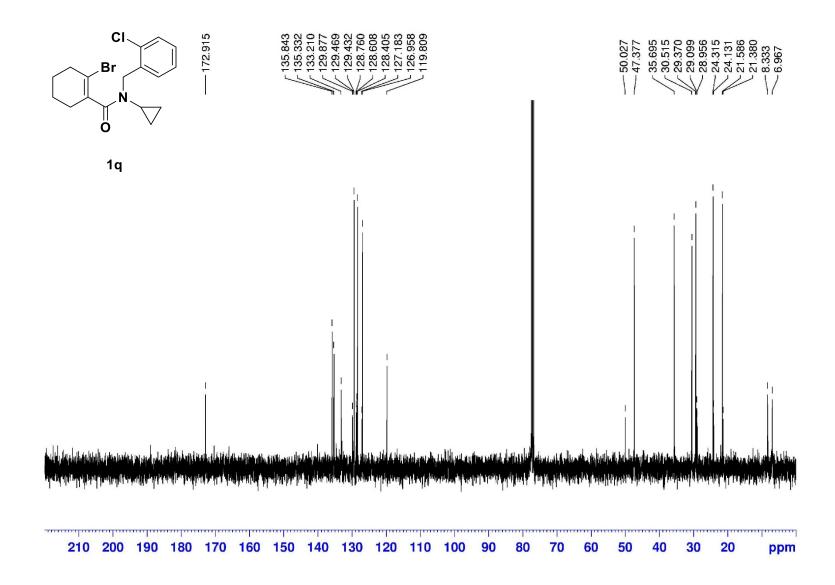


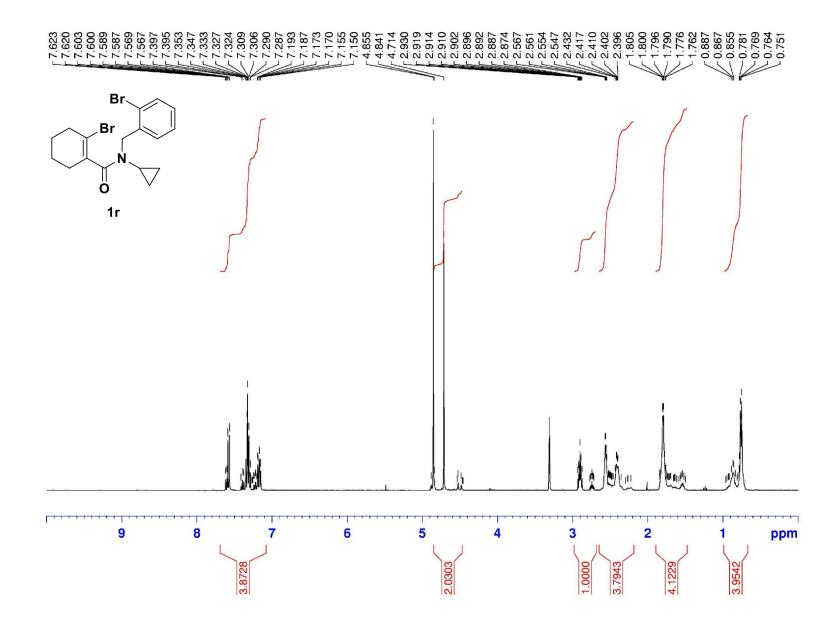


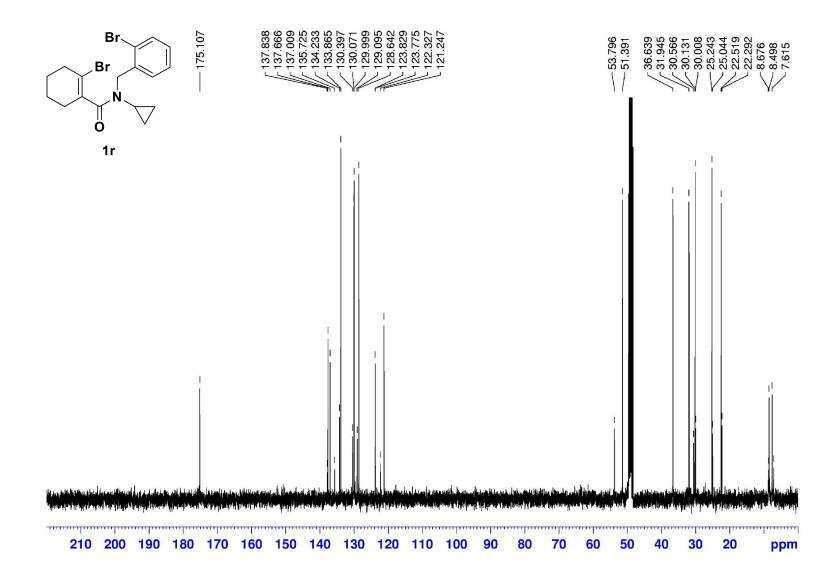


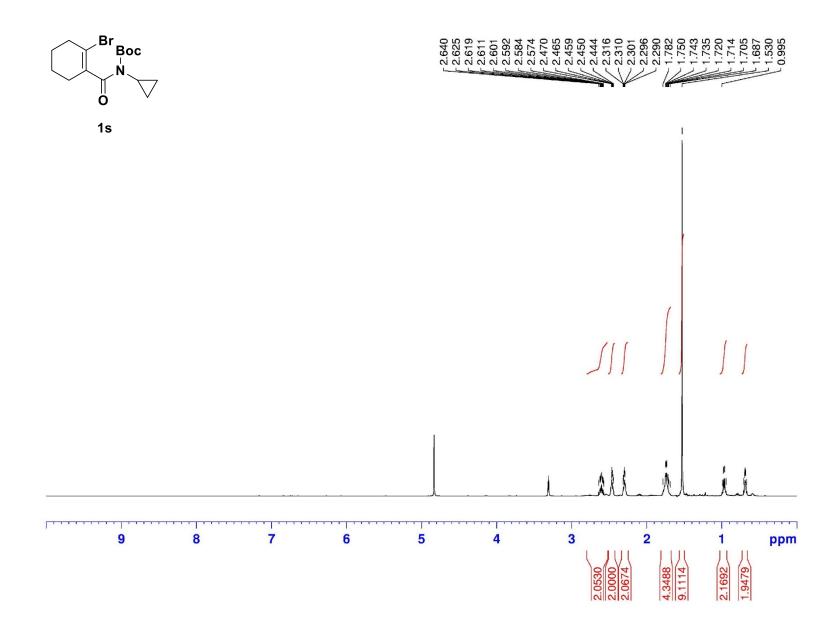


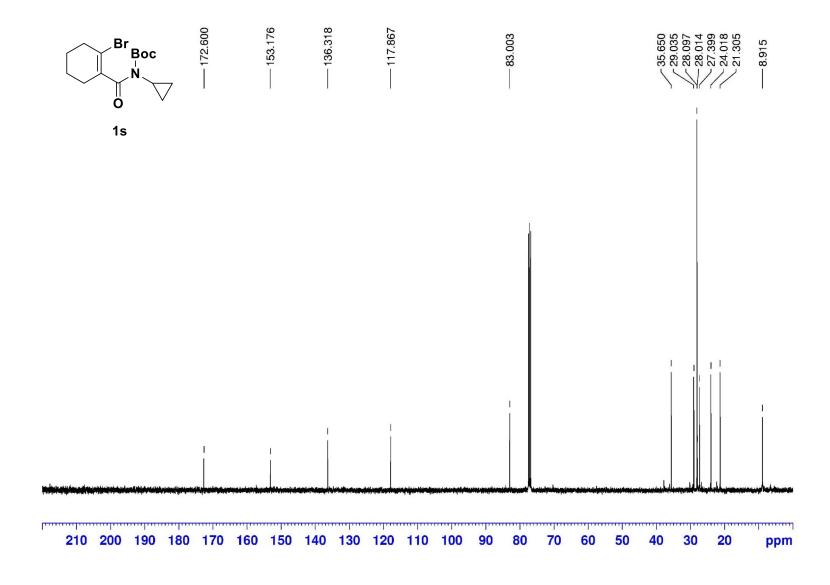


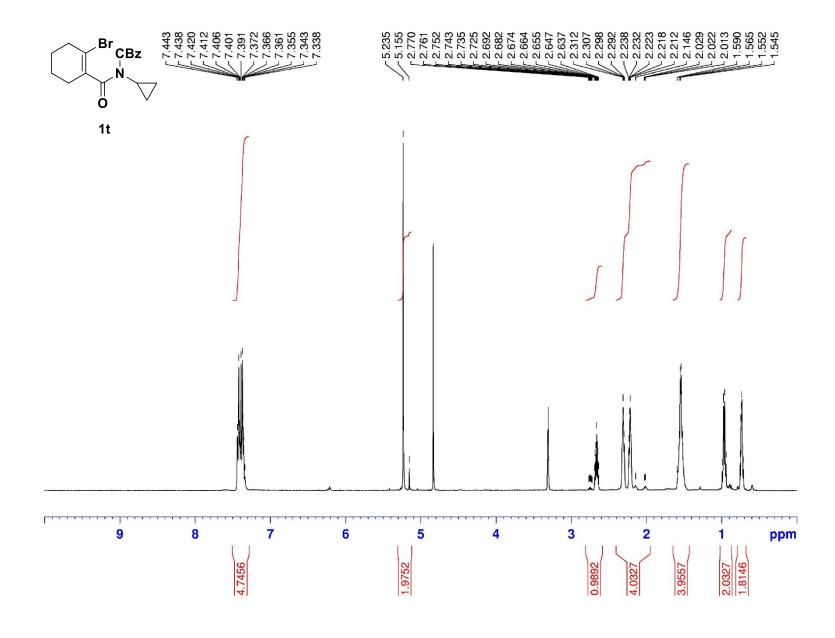


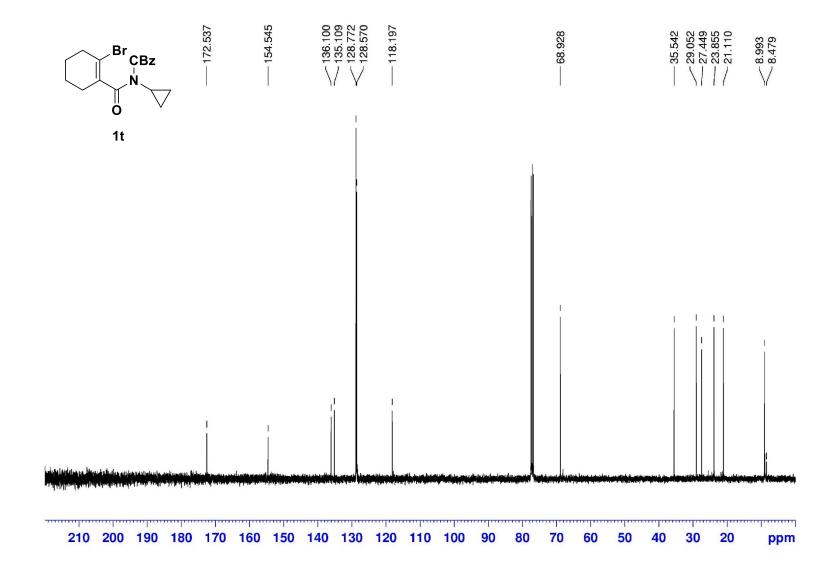


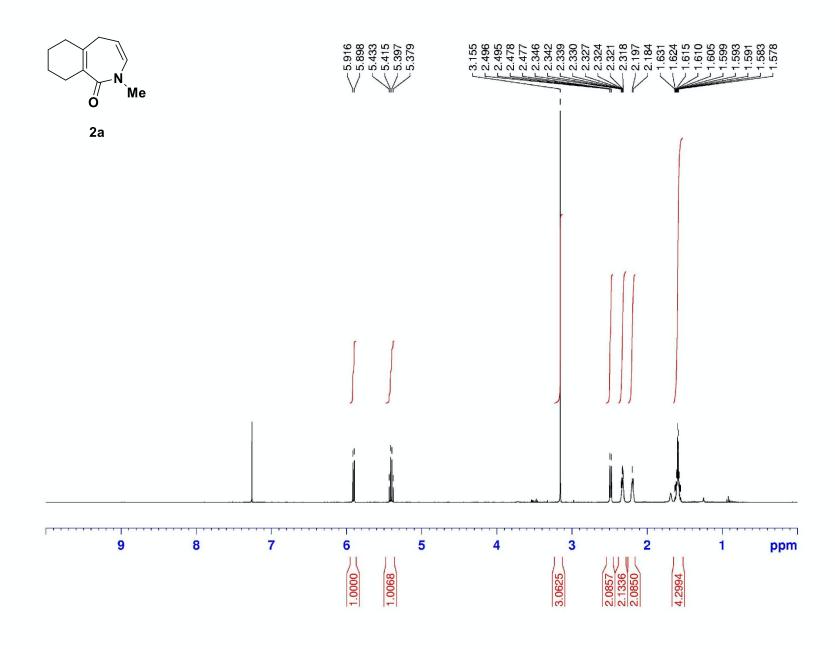


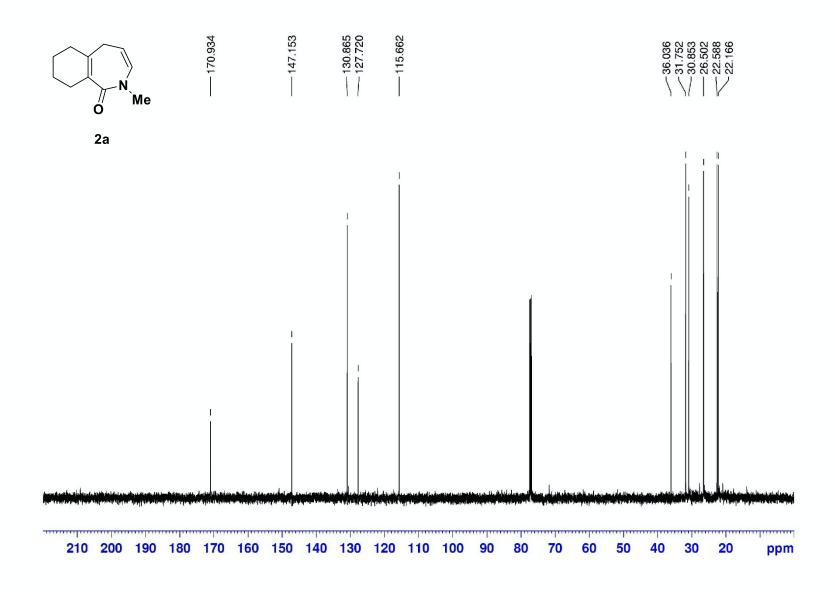


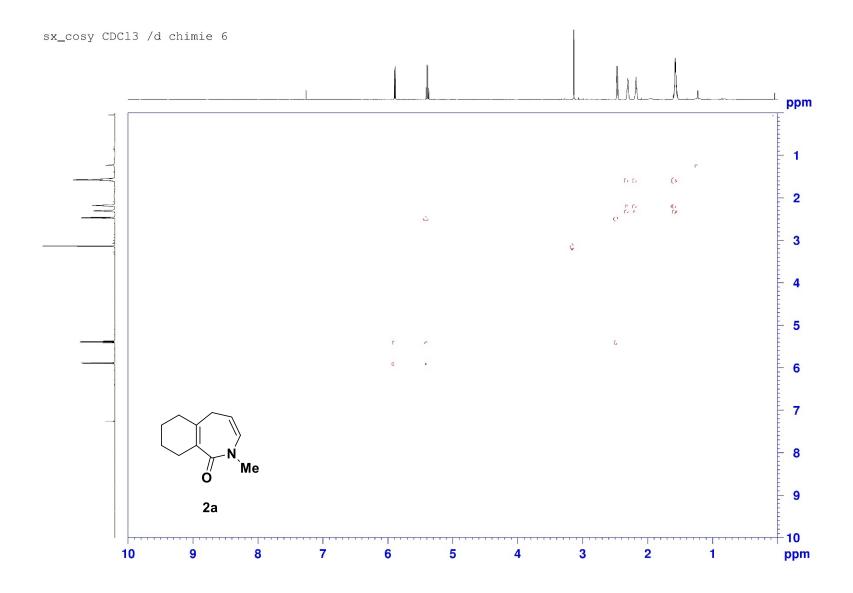


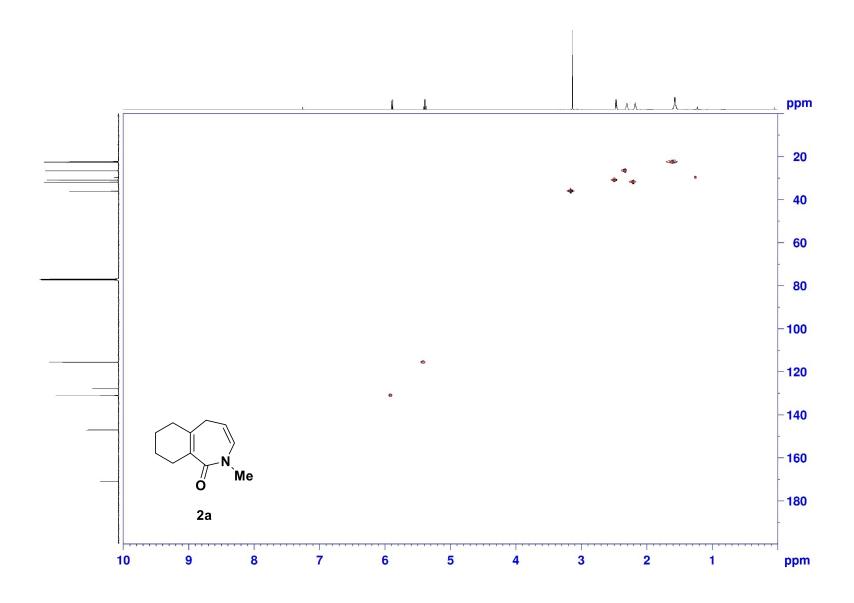


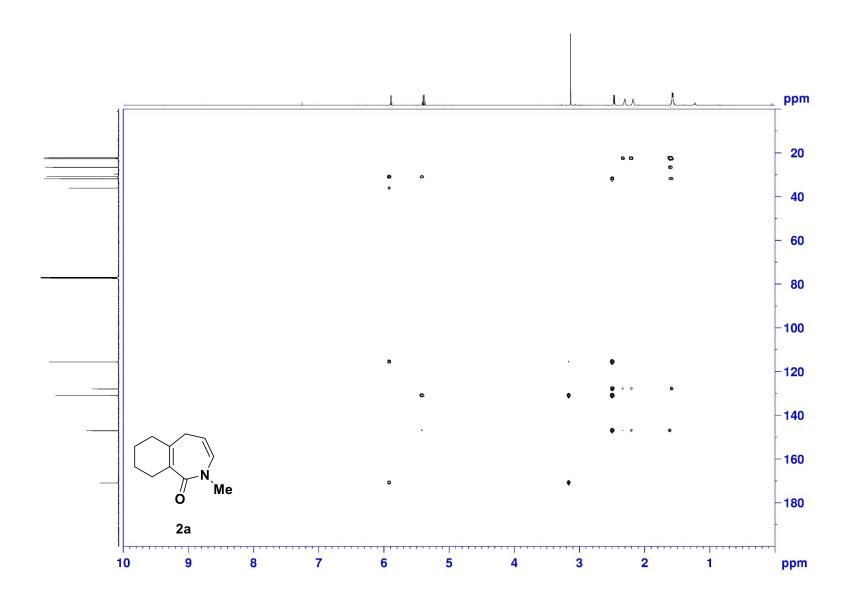


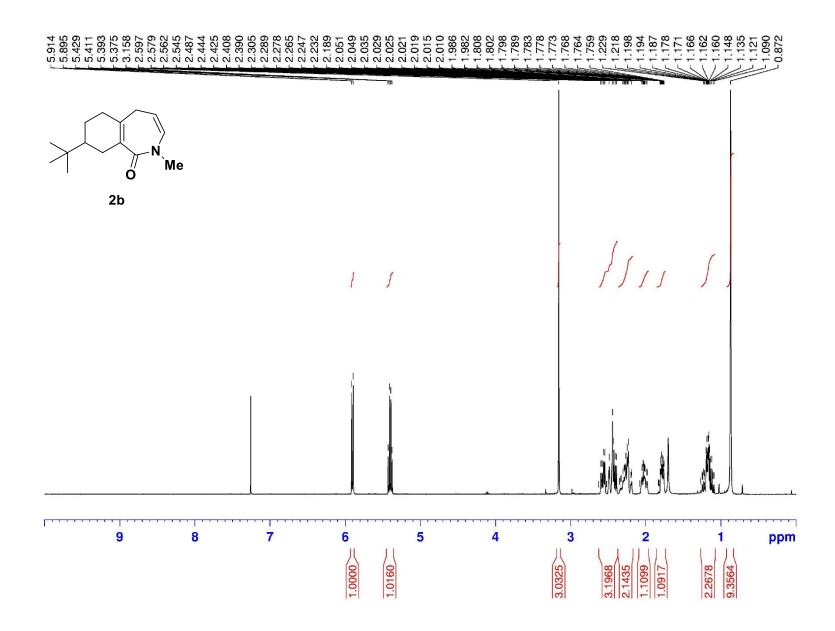


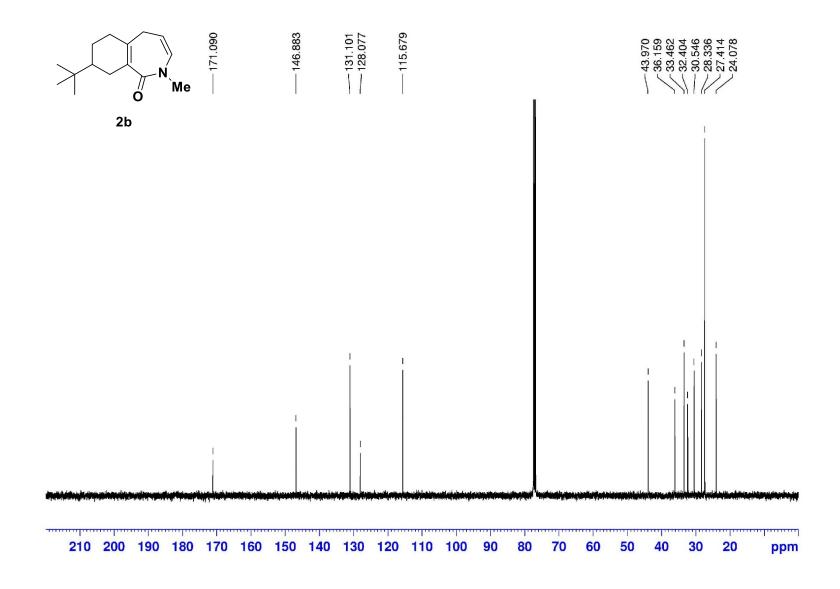


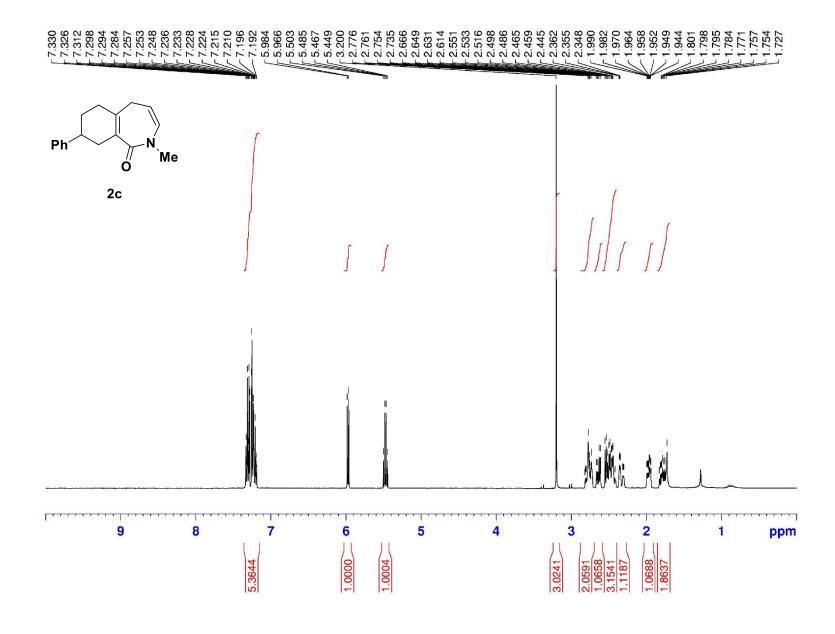


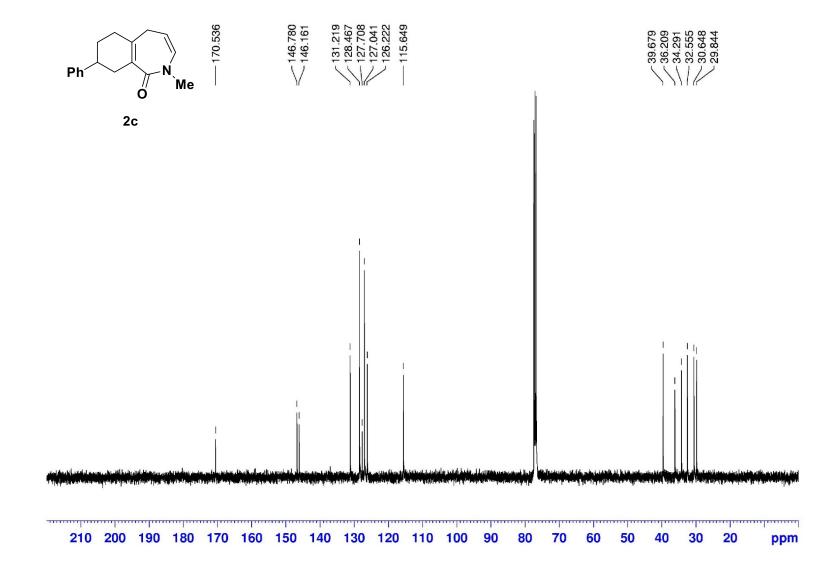


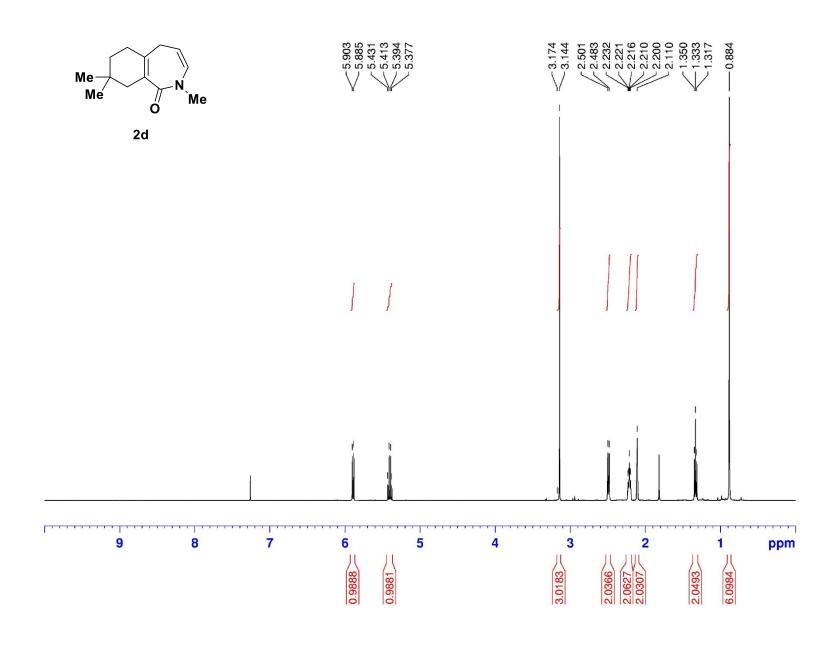




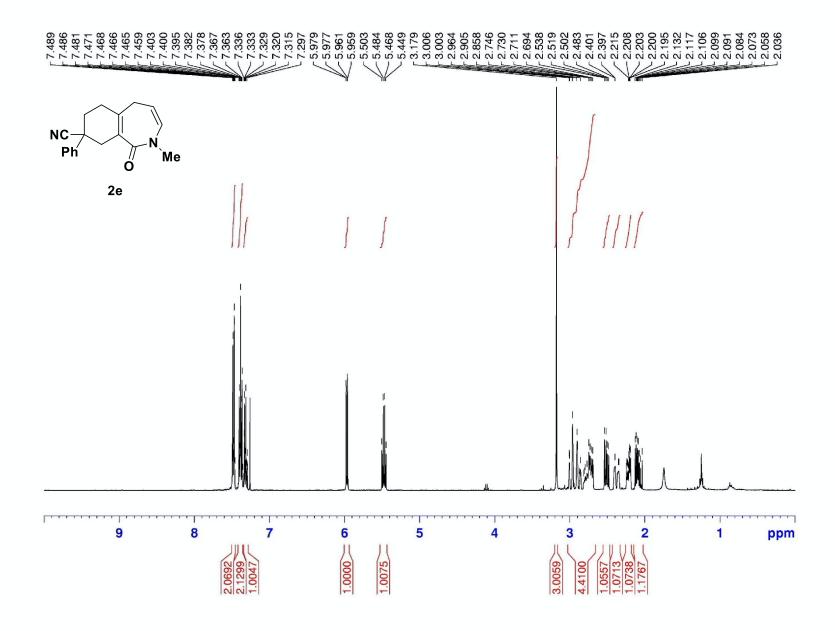


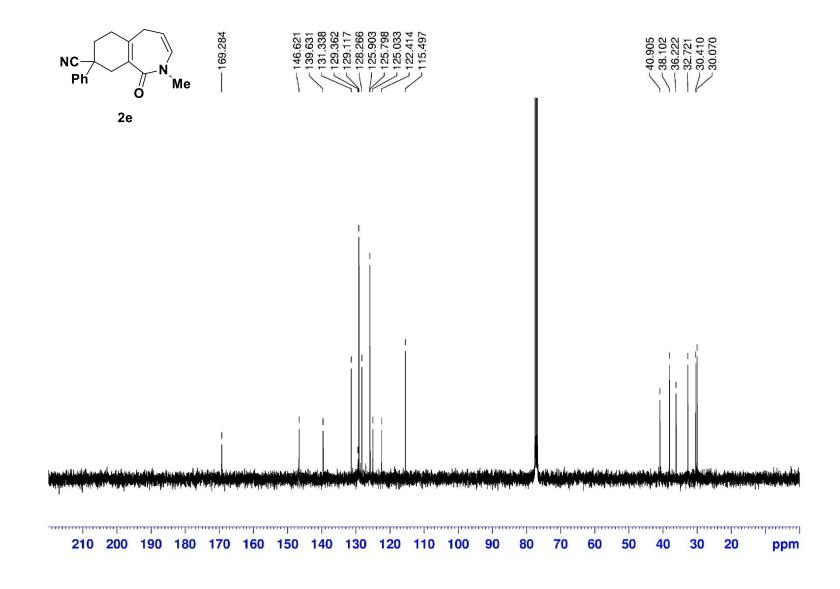


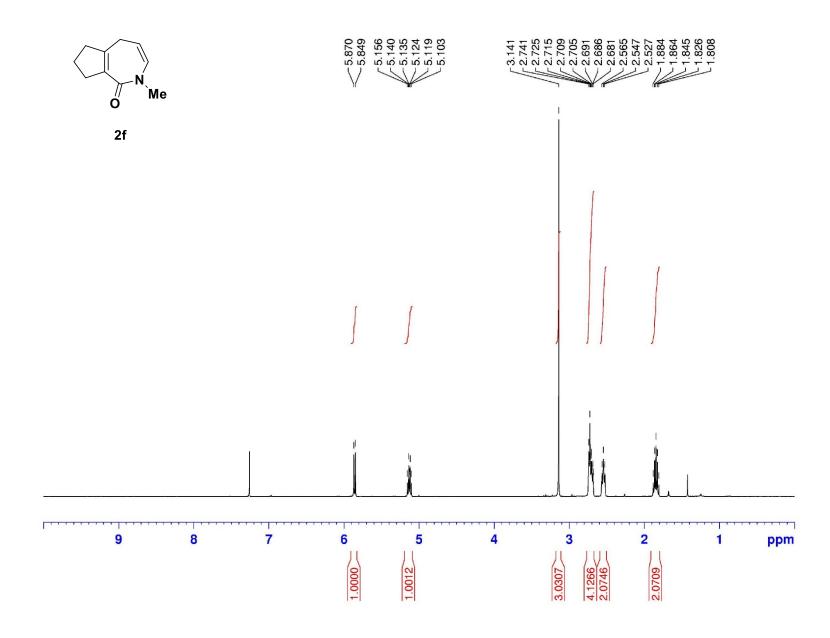


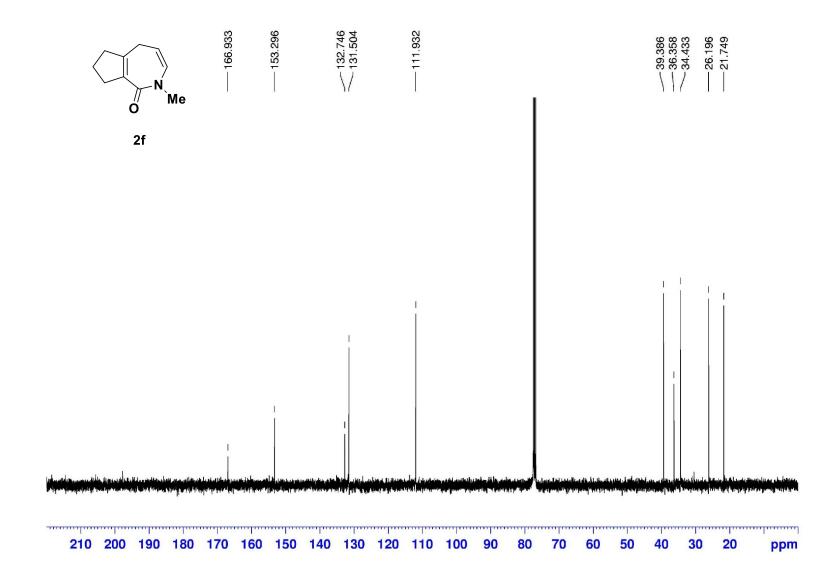


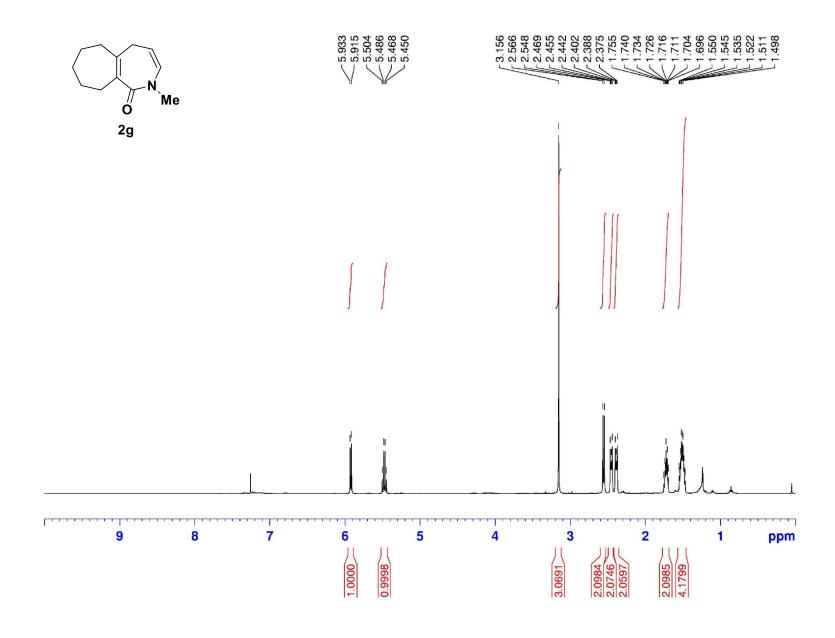


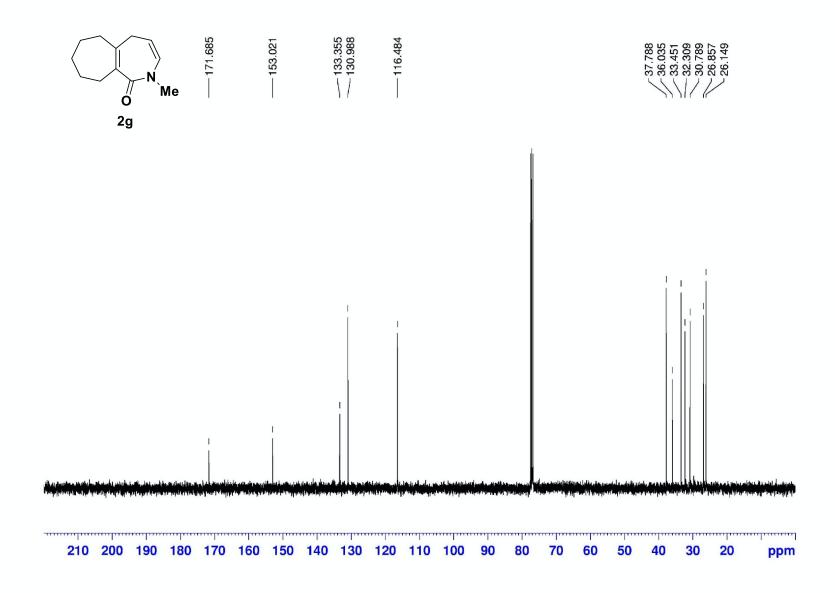


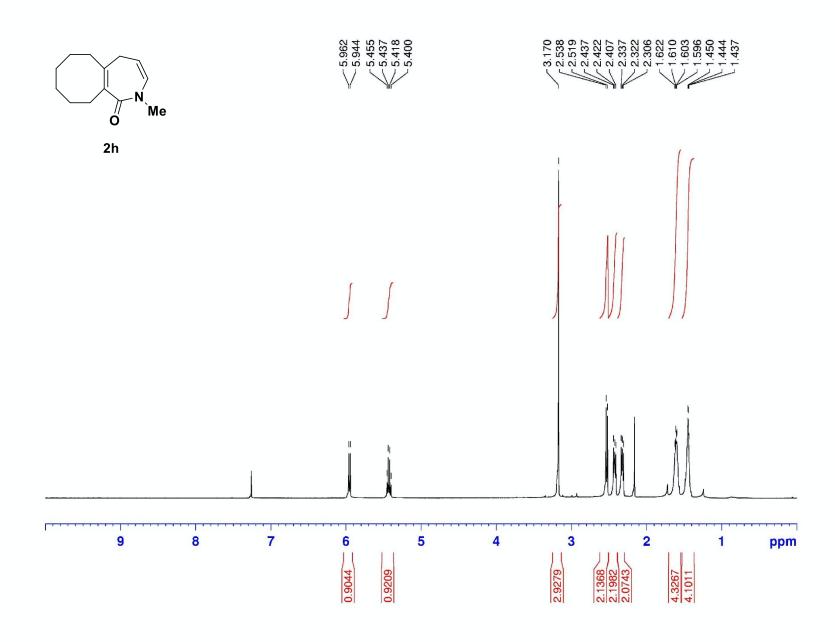


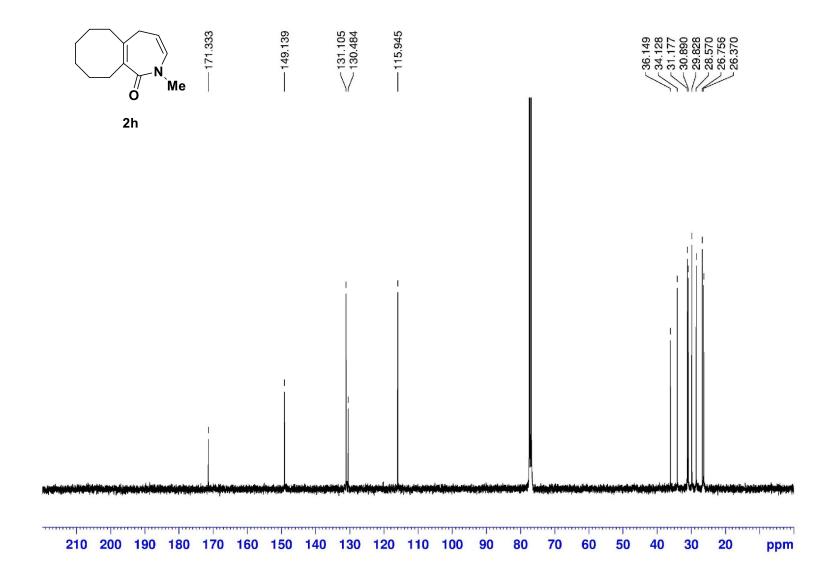


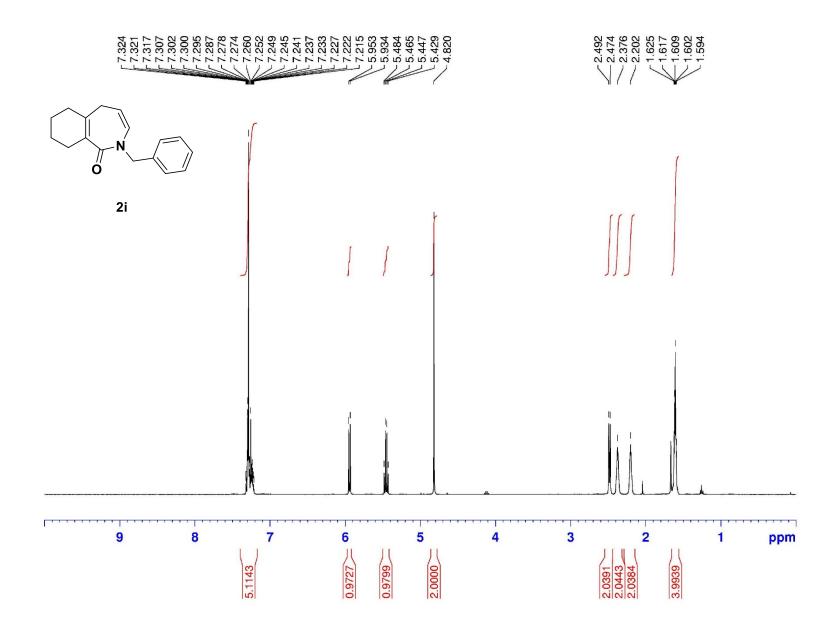


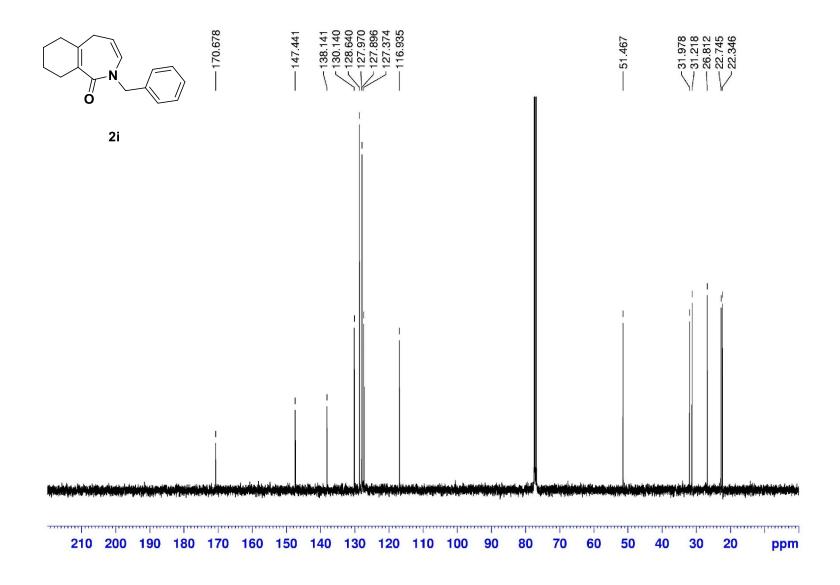


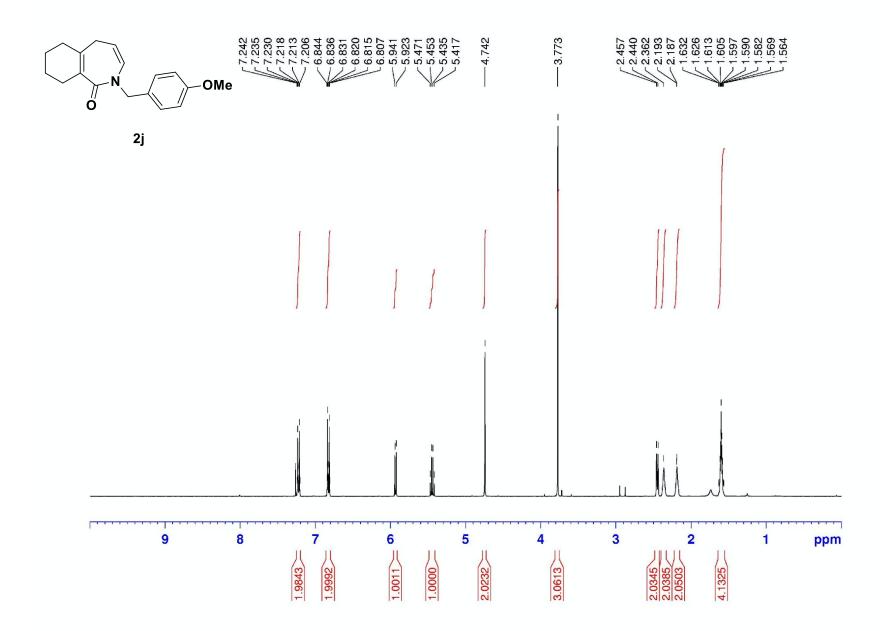


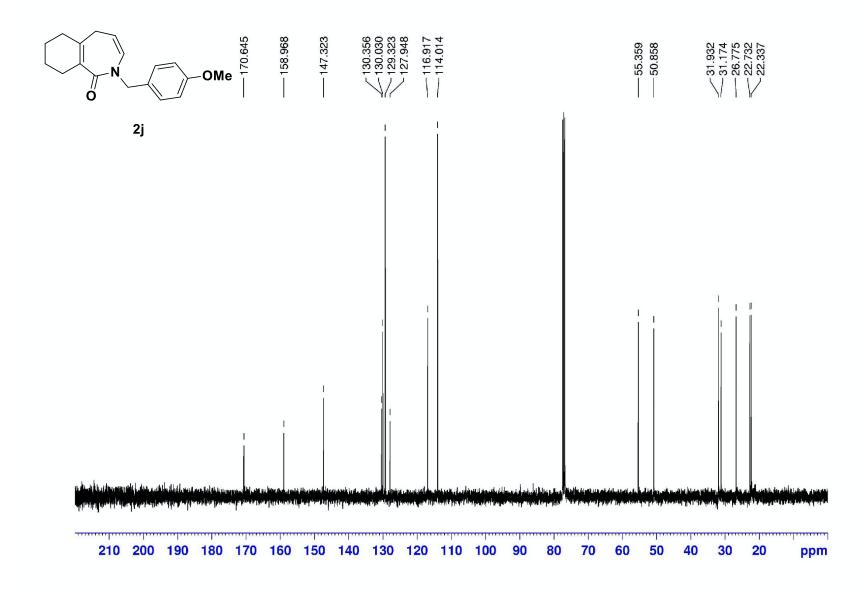


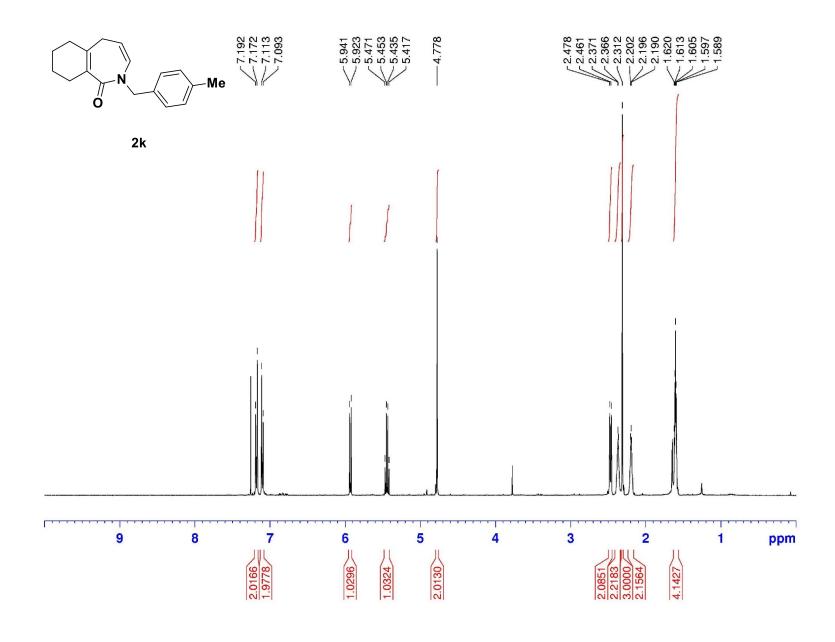


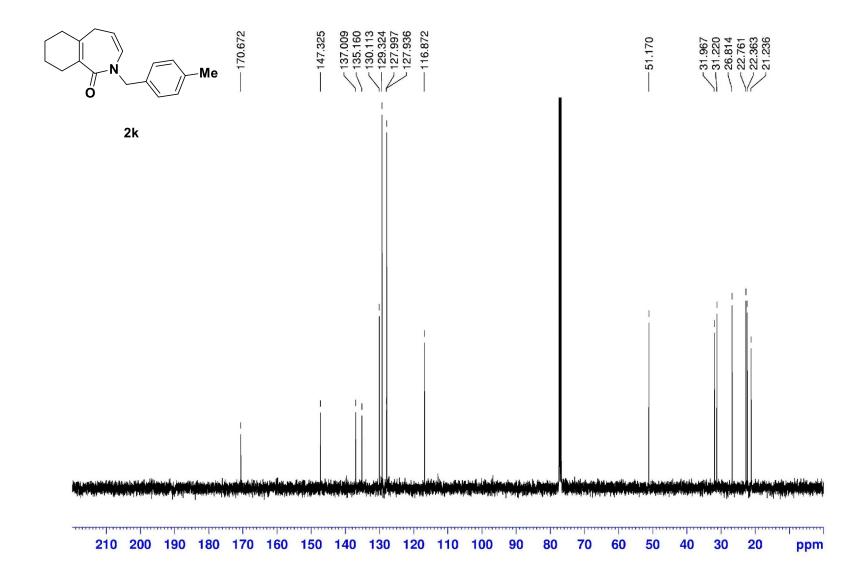


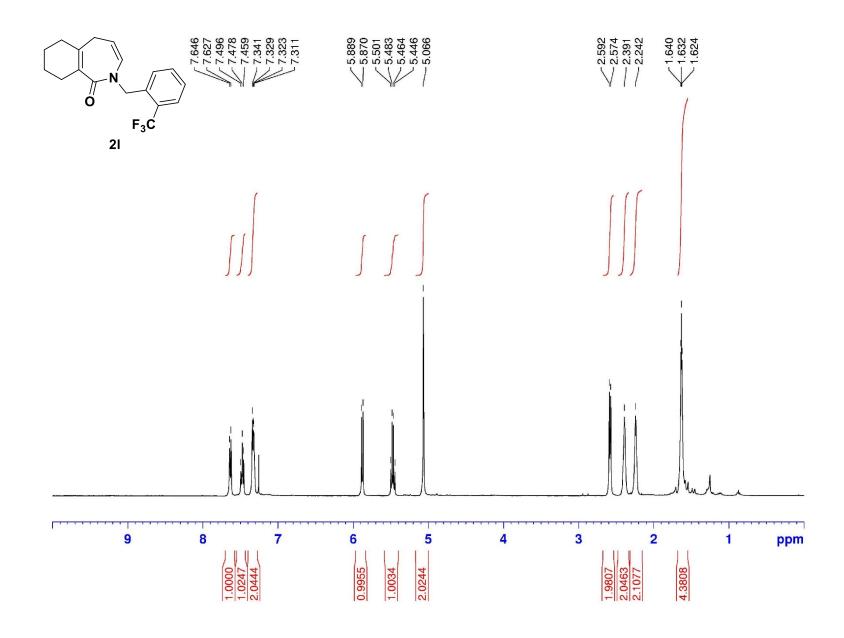


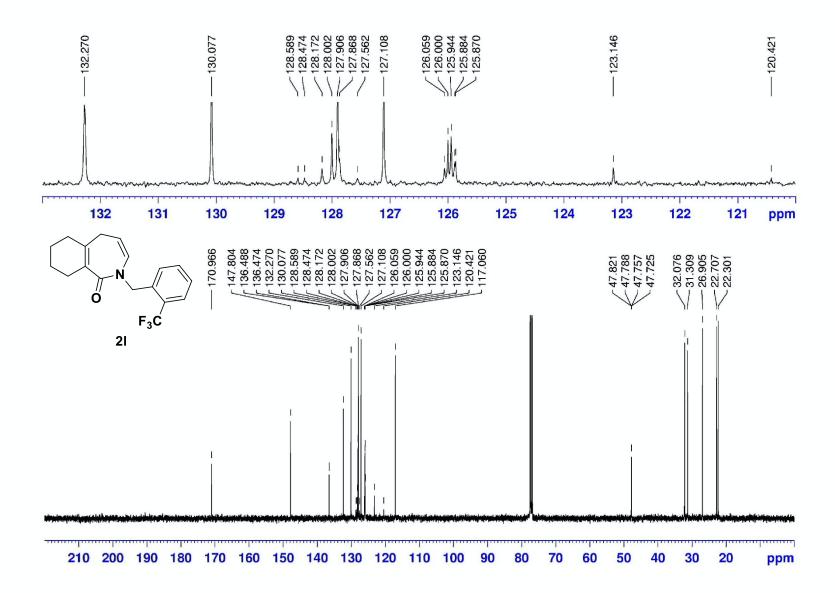


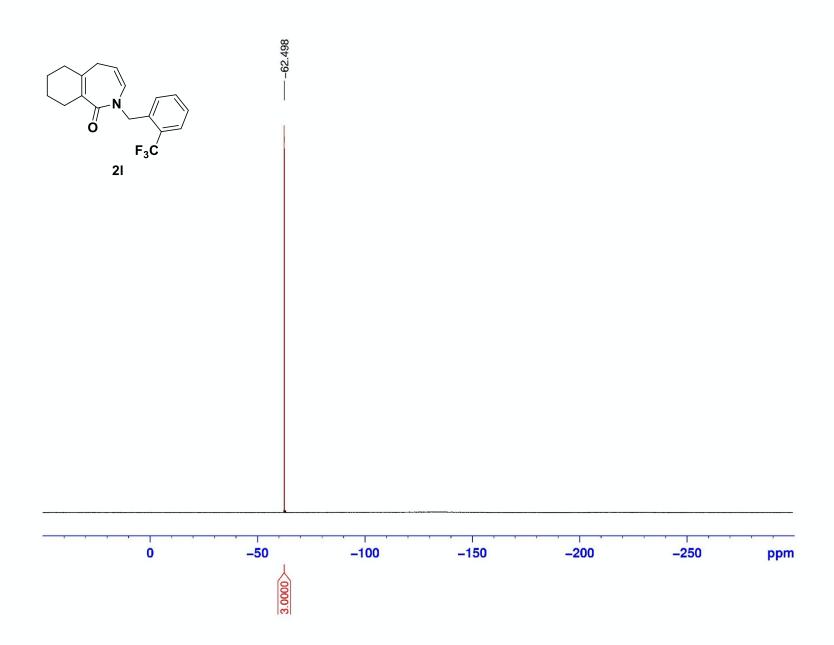


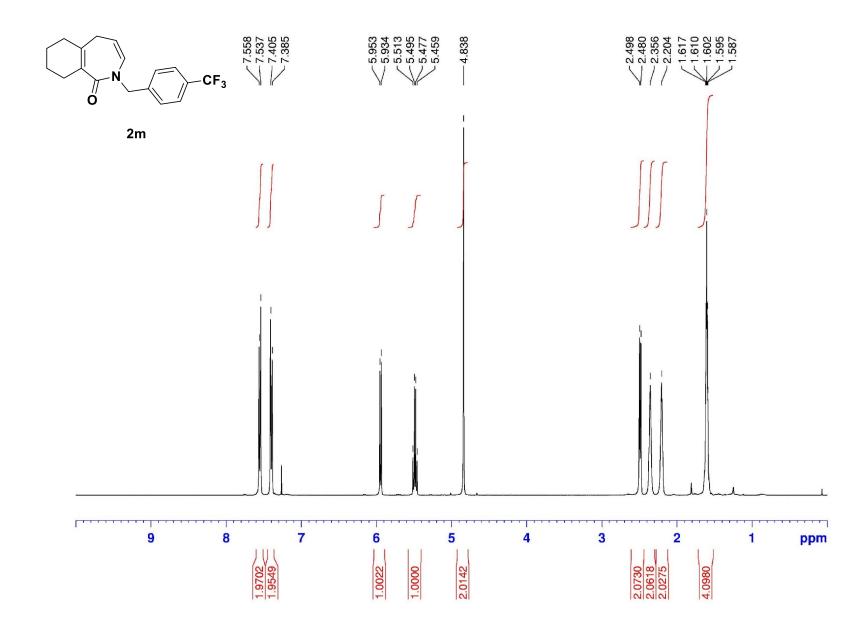


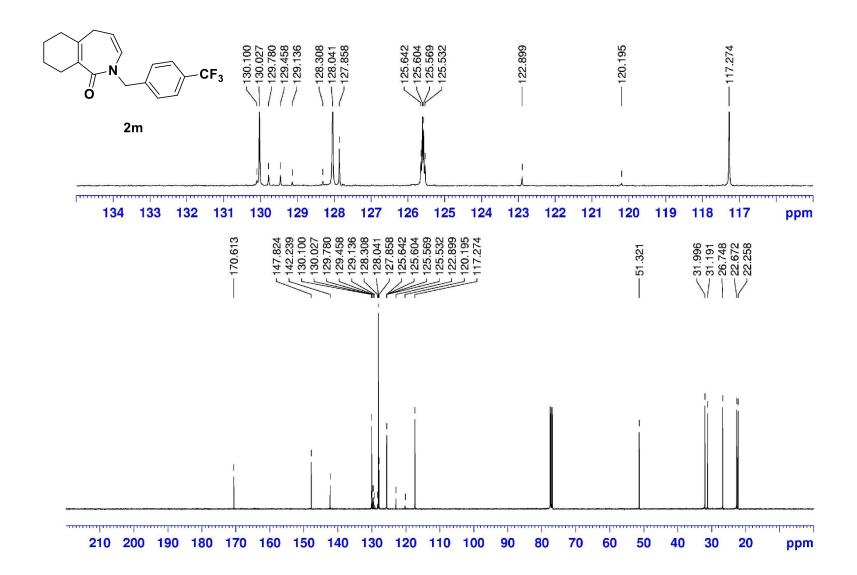


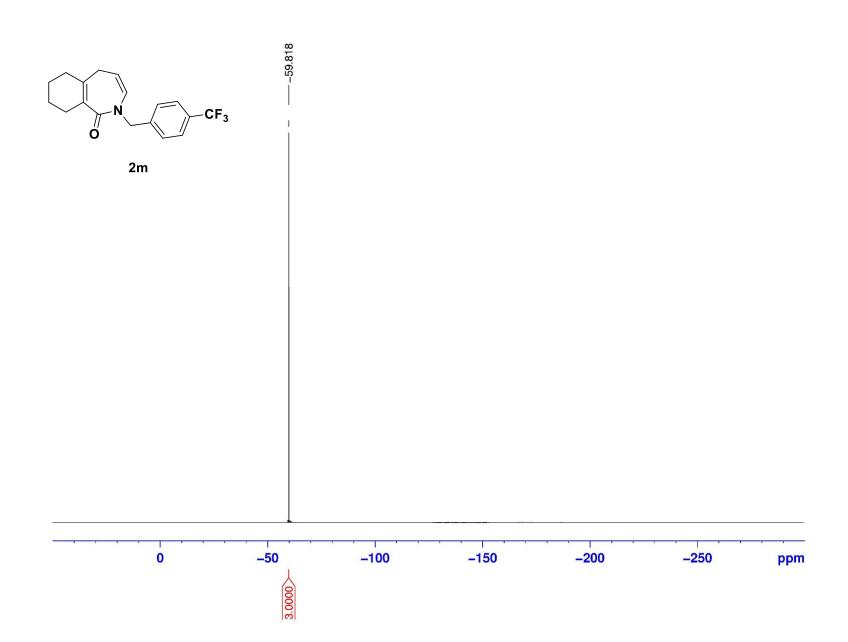


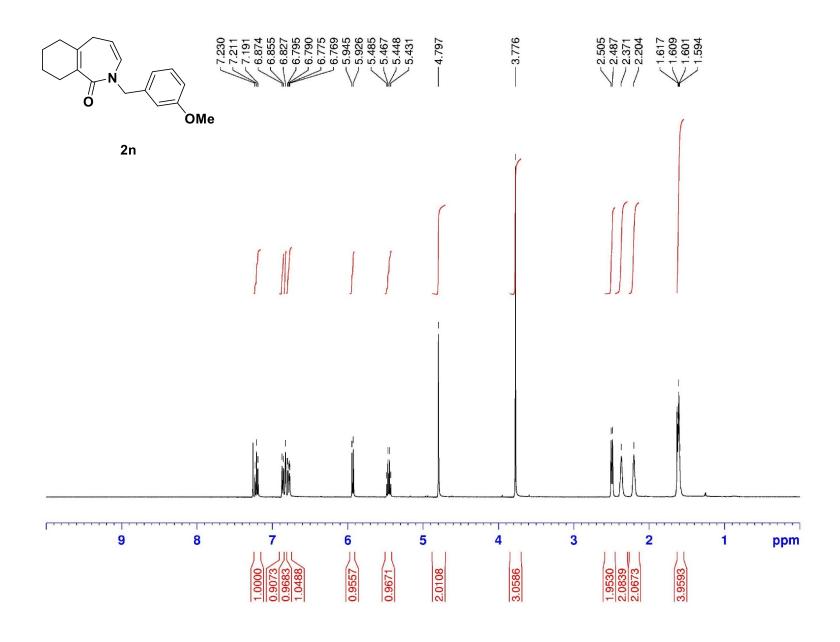


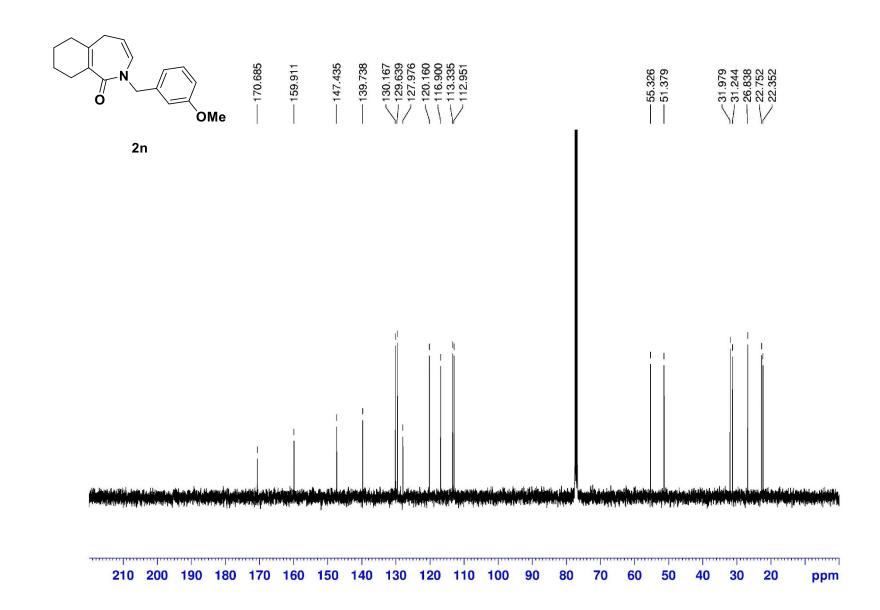


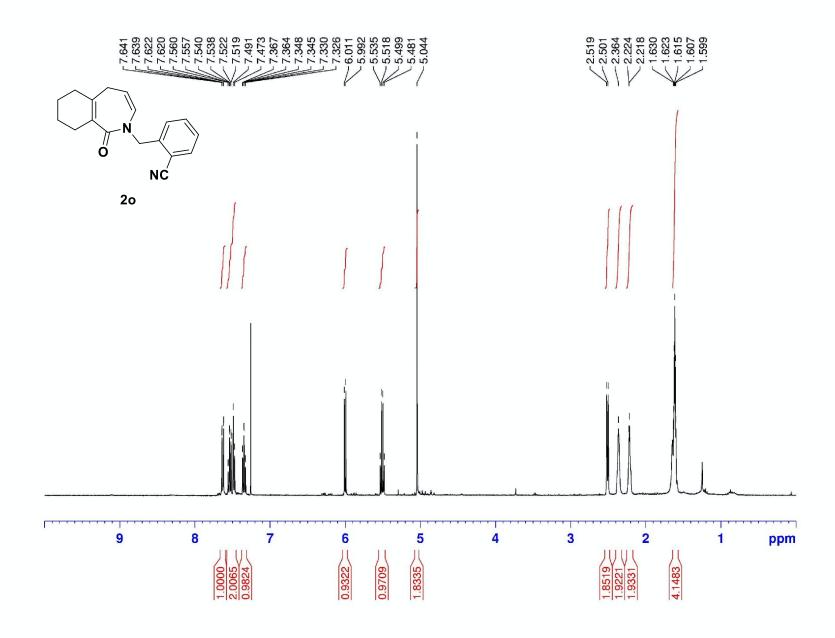


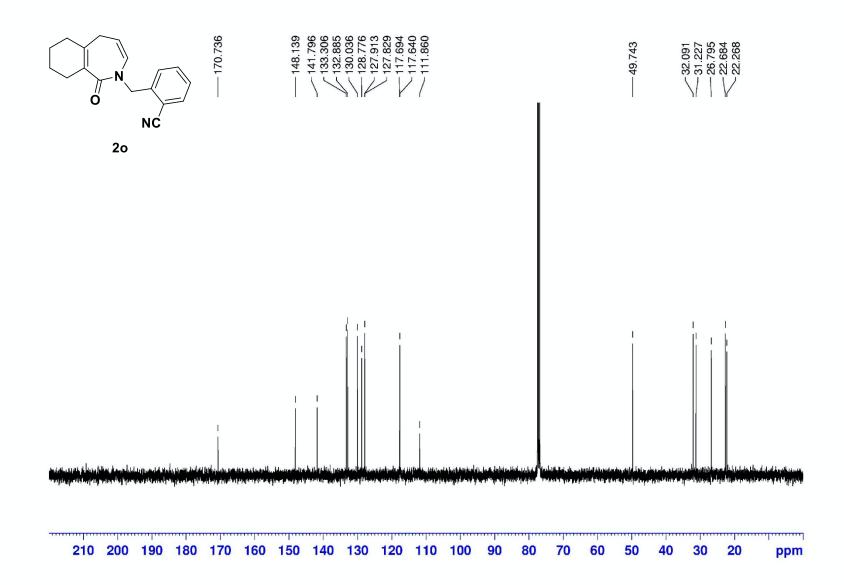


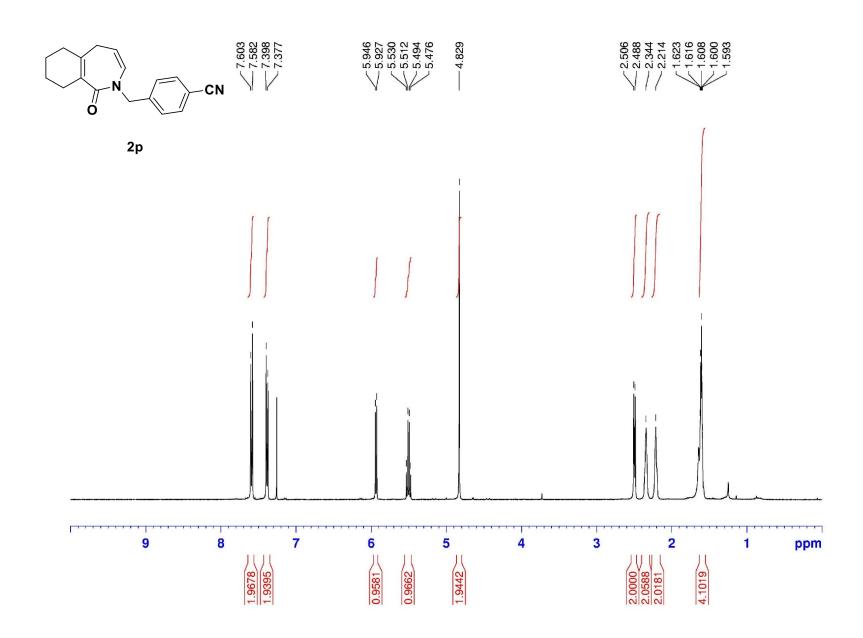


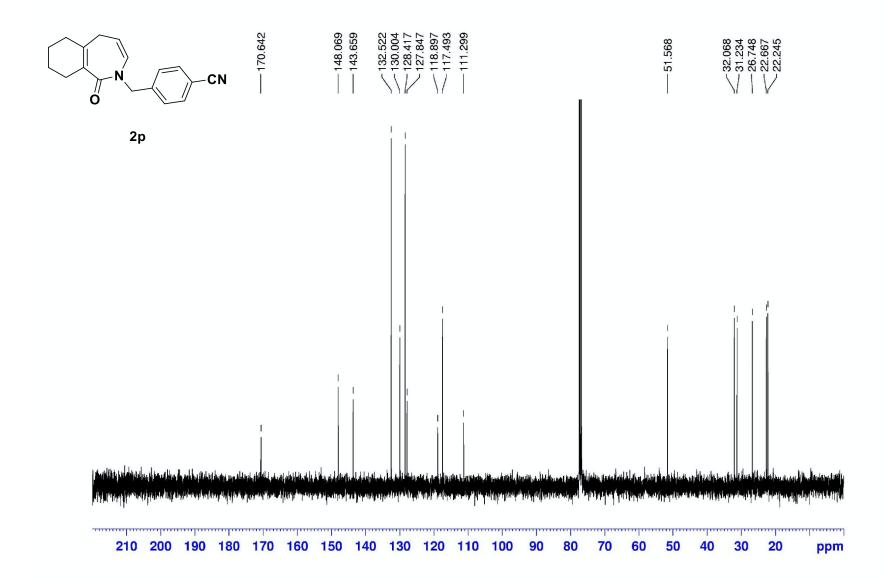


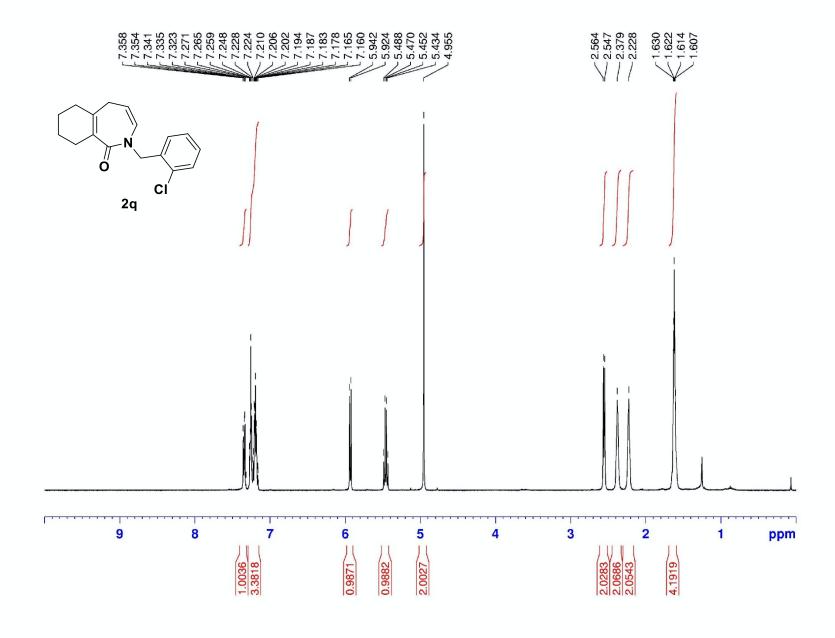


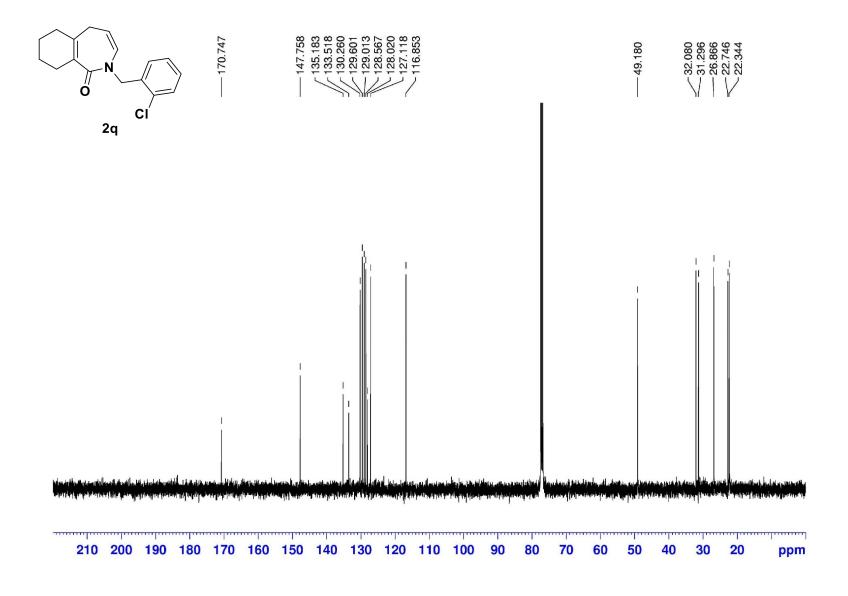


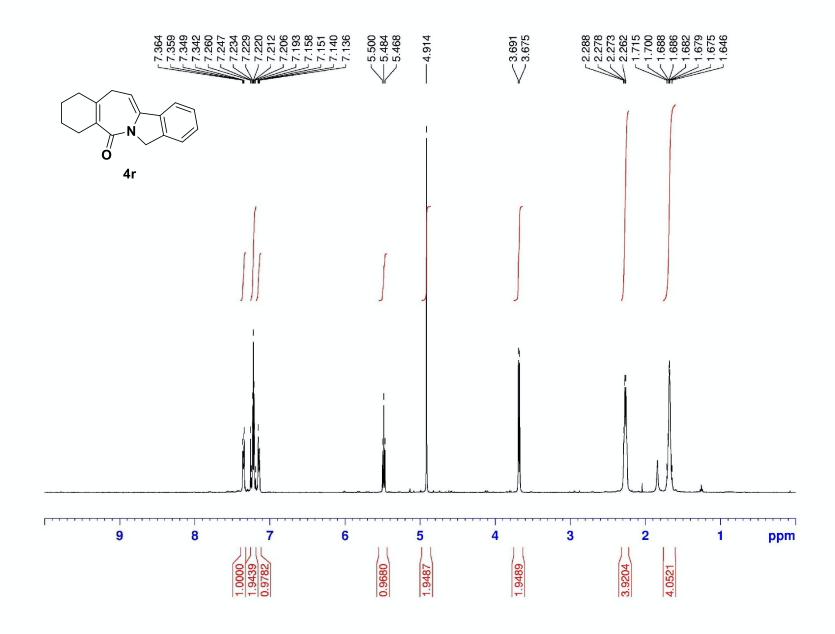


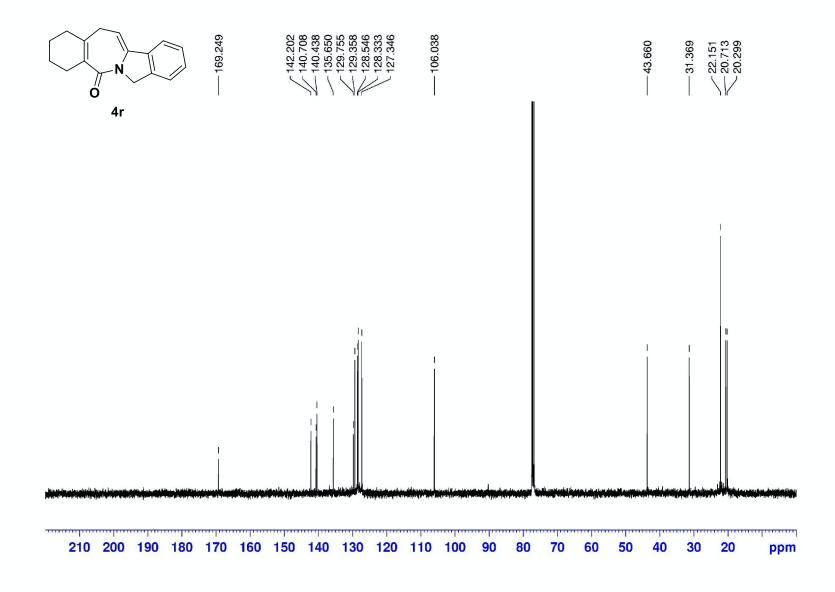


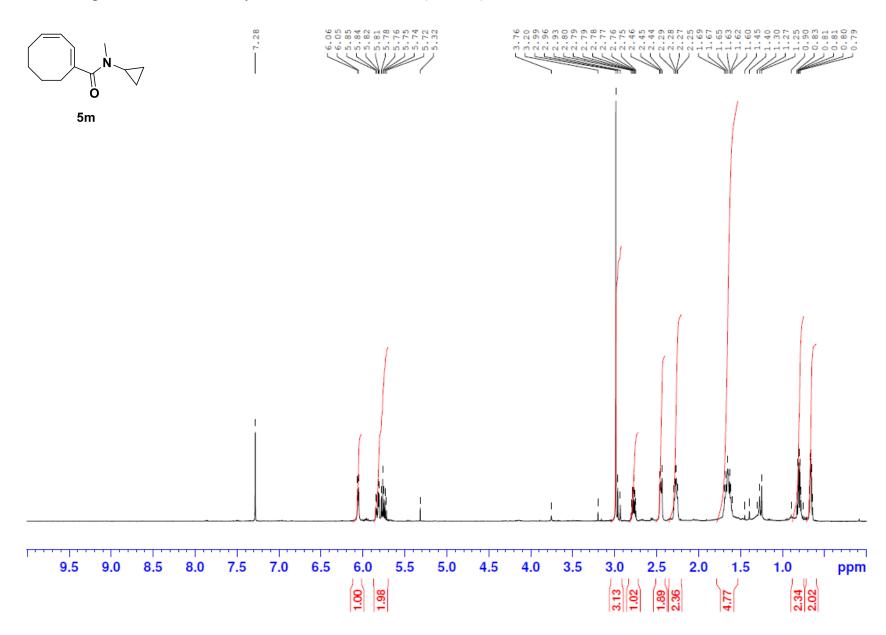


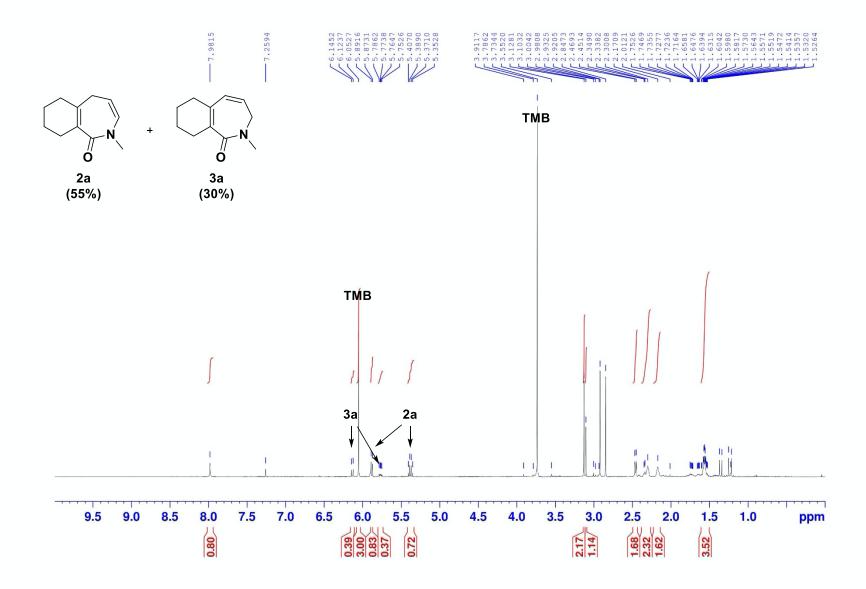












NMR: Side product from the beta-hydride elimination reaction (SM: 5m)

NMR: Mixture of 2a:3a with 1,3,5-trimethoxybenzene (TMB)(25.6 mg, 152 µmol) as an internal standard

