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Experimental section 

Synthesis of V-NDC precursor: The V-NDC precursor was synthesized through a two-step 

hydrothermal method. 3 mmol VO2 and 1.5 mmol 1,4-naphthalene formic acid (H2NDC, 

Aladdin) were dissolved in 30 mL of ultra-pure water at room temperature. The solution was 

stirred vigorously for 1.5 h. The uniformly mixed solution was transferred to a 50 mL 

polytetrafluoron reactor and maintained at 180 ℃ for 24 h. At last, the sample was collected, 

washed for three times. The product was placed in an oven at 60 ℃ for drying. 

 

Synthesis of book-like lamellar V2O3@C: The as-prepared V-NDC precursor (0.1-0.2 g) 

was put loosely in a ceramic boat and calcined for 4 h under argon atmosphere in a tubular 

furnace. The calcining temperature was 800 ℃, and the heating rate was 2 ℃ min-1. After 

cooling down, the V2O3@C composites were obtained. 

 

Characterization: The crystal structure was determined using XRD (Bruker D8 Advance, 
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Copper target, Kα X-ray wavelength 1.5418 Å), field emission scanning electron microscopy 

(SEM, Hitachi S-8100) and transmission electron microscopy (TEM, Ht-7700, TecnaiG2 20S-

Twin). In order to observe the lattice spacing, a high-resolution transmission electron 

microscope (HRTEM) was used. Energy dispersive X-ray spectroscopy (EDX) was used for 

elemental mapping to determine the elements, and the composition was analyzed by X-ray 

photoelectron spectroscopy (XPS, EscalAB250). The sample powders were vacuum-dried for 

2 h, and then a piece of sample was prepared by pressing into a small tablet. After that, the 

sample tablet was put on a holder with double-sided adhesive for testing. The standard peak 

position of carbon at 284.8 eV was used to calibrate. In order to demonstrate the presence of 

carbon coating, Raman spectroscopy (Renishaw in Via) was used to measure the chemical state 

of the carbon layer at 532 nm. The mass content of carbon was determined by 

thermogravimetric analysis (TGA, Setaram Labsys Evo SDT Q600). Prior to the BET test, the 

sample was degassed at 120 ℃ for 12 h in a vacuum to remove water adsorbed on the surface, 

and then physical adsorption isotherms (adsorption-desorption branch) were recorded in 

nitrogen at 77 K using a specific surface area tester (ASAP Micromeritics Tristar 2460).  

 

Electrochemical tests: The samples were first mixed with the book-like lamellar V2O3@C 

(70 wt%) and conductive carbon black (20 wt%),, then PVDF (polyvinylidene fluoride, 10 wt%) 

was added in a ratio of 7:2:1. NMP (n-methylpyrrolidone, 6.54 wt %) was used as diluent to 

disperse the mixture. The evenly-mixed slurry was coated on a carbon paper, dried in a vacuum 

oven at 80 ℃ for 24 h, and cut into 12 mm discs. The counter electrode was aluminum, while 

the diaphragm was fiberglass. The composition of the electrolyte was AlCl3:[EMIm]Cl=1.3:1, 
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and the electrolyte volume/mass=62.5 μL mg-1. The water and oxygen levels were less than 

0.01 ppm in the glove box (MIKROUNA, Super1220/750/900). The cycling and rate-

performance were measured by using the galvanostatic charge-discharge mode. The tests were 

carried out on a battery tester (NEWARE, CT-4008). When the voltage range was 0.01-2.0 V, 

Electrochemical workstation (CHI660e) was used to test cyclic voltammetry and 

electrochemical impedance spectra. 

 

 

   

   

Fig. S1 (a) SEM image of the book-like lamellar V2O3@C calcined at 600 ℃; (b) SEM image, 

(c) TEM image, (d) SAED pattern, and (e) line-scanning curves of V2O3@C calcined at 800 ℃. 

(f) XRD patterns of V-NDC and V2O3@C. 
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Fig. S2 (a) EDS spectrum and (b) TGA curve of V2O3@C. (c) XRD pattern of the sample after 

TGA measurement. (d) Raman spectrum of V2O3@C. 

 

 

 

 

  

Fig. S3 (a) Adsorption-desorption isothermal and (b) pore-size distribution of V2O3@C. 
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Fig. S4 XPS spectra of V2O3@C: (a) full survey spectrum, (b) C 1s, (c) V 2p, and (d) O 1s.  

 

 

 

Fig. S5 (a) Charge-discharge curves of V-NDC at 0.3 A g-1. (b) Charge-discharge curves and (c) 

cycling performance of V-NDC with a loading of 2.23 mg cm-2 cycling at 0.2 A g-1. 
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Fig. S6 (a) Capacity and (b) charge-discharge curves of pure V2O3 at 0.3 A g-1. 

 

 

Fig. S7 CV profiles of V-NDC at a scanning rate of 0.1 mV s-1. 

 

 

Fig. S8 Charge-discharge profiles of V2O3@C during rate-performance measurements. 
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Fig. S9 (a) Charge-discharge profiles and (b) cycling performance of V-NDC at ‒10 ℃. 

 

 

 

 

  

Fig. S10 Ex-situ XRD patterns of V2O3@C composite at different potentials during (a) 

discharge and (b) charge. 
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Fig. S11 (a) SEM image, (b-f) Al, Cl, C, O, V elemental mapping images and (g) EDS spectrum 

of V2O3@C after 50 cycles at 0.3 A g-1. 

 

 

  

Fig. S12 EIS spectra of different samples at (a) room temperature and (b) ‒10 ℃. 

1 2 3 4 5 6 7 8

V
ClAl

Si

V

O

C

In
te

n
s
it
y
 (

a
.u

.)

Energy (keV)

Cl

(g)

5 10 15 20 25 30 35
0

2000

4000

6000

8000

10000

 

 

 V-NDC before cycle 

 V
2
O

3
@C before cycle 

 V-NDC after 50 cycle 

 V
2
O

3
@C after 50 cycle

 -
Z

"/
o
h
m

 Z'/ohm

(b)



S9 

  

  

Fig. S13 (a,b) SEM images, (c,d) TEM images of V2O3@C after 50 cycles at 0.3 A g-1 at ‒10 ℃. 
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Fig. S14 (a) SEM images, (b-f) elemental mapping and (g) EDS spectrum of V2O3@C after 50 

cycles at 0.3 A g-1 at ‒10 ℃. 

 

  

Fig. S15 The log(i) vs. log(v) of (a) oxidization and (b) reduction peaks. 

1 2 3 4 5 6 7 8

Al
VCl

Si

O

V

C

In
te

n
s
it
y
 (

a
.u

.)

Energy (keV)

(g)

Cl

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

peak 1; b
1
=0.59

peak 1; b
2
=0.81

peak 1; b
3
=0.72

peak 1; b
4
=0.71

 Linear fit of peak 1

 Linear fit of peak 2

 Linear fit of peak 3

 Linear fit of peak 4

L
o
g

 (
c
u
rr

e
n
t,

 m
A

)

Log (scan rate, mV s
-1
)

(a)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0
 

 peak 
5
; b

5
=0.54

 peak 
6
; b

6
=0.55

 Linear fit of peak 5

 Linear fit of peak 6

L
o

g
 (

c
u

rr
e

n
t,

 m
A

)

Log (scan rate, mV s
-1
)

(b)



S11 

  

  

Fig. S16 (a,b) SEM images, (c) TEM images and (d) XRD pattern of V2O3@C after 100 cycles 

at 0.3 A g-1. 

 

 

Table S1. Comparison on the electrochemical performance of some Al-ion battery cathodes.  

 

Composite 
Cycling 

rate 

Cycle 

number 

Capacity 

(mAh g‒1) 
Ref. 

Defect-free soft carbon 0.5 A g-1 1000 77.7 1 

Potassium-rich 

cryptomelane nanowires  
0.02 A g-1 60 109 2 

One-Dimensional TiS2 

nanobelt arrays 
1C 90 150 3 

δ-MnO2 nanofibers  0.1 A g-1 15 59 4 

Dense integration of 

graphene paper 
2 A g-1  8000 27.1 5 
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VO2  0.05 A g-1 100 116 6 

NiCo2S4 nanosheet 0.2 A g-1 1000 64 7 

 Co-P 0.2 A g-1 400 85.1 8 

 Co9S8  0.2 A g-1 250 120 9 

WS2 1 A g-1 500 119 10 

Graphene nanosheet 0.1 A g-1 1640 90 11 

TiO2 100 C 4000 20 12 

V2O3@C 0.3 A g-1 500 242.5 
This 

work 
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