Supporting Information

Palladium-Catalyzed Cross-Coupling of Unreactive C(sp³)–H Bonds with Azole C(sp²)–H Bonds by Using Bromide as a Traceless Directing Group

Yan-Zhen Chen, Jian-Guo Fu, Xiao-Ming Ji,* Shu-Sheng Zhang,* Chen-Guo Feng*

The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

E-mail: fengcg@shutcm.edu.cn; zhangss@shutcm.edu.cn; jixiaoming@tongji.edu.cn

Table of Contents

1. General Information	S2
2. General Procedures for the Synthesis of Substrates	S2
3. General Procedures for the Cross-Coupling of $C(sp^3)$ -H/ $C(sp^2)$ -H Bonds	S3
4. Preliminary Mechanistic Studies	S4
5. Characterization of the Substrates	S5
6. Characterization of the Products	S5
7. References	S13
8. NMR Spectra	S14

1. General Information

Pd(OAc)₂ was purchased from Strem Chemicals. All solvents were dried by JC Meyer Solvent Drying System. Unless otherwise noted, the other commercial chemicals were used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on Bruker DRX-600 instrument (600 MHz). High resolution mass spectra were measured on Bruker MicroTOF II ESI-TOF mass spectrometer. NMR spectra were recorded in CDCl₃. ¹H NMR spectra were referenced to residual CHCl₃ at 7.26 ppm, and ¹³C NMR spectra were referenced to the central peak of CDCl₃ at 77.0 ppm. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

2. General Procedures for the Synthesis of Substrates

The known compounds (**1a-1k** and **1m-1r**) were prepared by following the reported procedures.¹⁻³ The known 1,3,4-oxadiazoles were prepared by following the reported procedures.⁴

Procedures for the Synthesis of the Compound 11

1-Bromo-2-(*tert*-pentyl)benzene (11) was made according to the modified procedures.^{5,6} Methyl 2-(2-bromophenyl)acetate (4.58 g, 20 mmol) was dissolved in dry THF (1 M) under nitrogen and LDA (11 mL, 22 mmol, 2 M in THF) was added at -78 °C *via* syringe. After stirring for 10 min at this temperature, MeI (3.12 g, 22 mmol) was added and the mixture was stirred for 2 h at room temperature. The reaction mixture was quenched with water and extracted with EtOAc (3 times). The combined organic layers were dried over sodium sulfate, filtered and evaporated under reduced pressure without further purification to provide desired product methyl 2-(2-bromophenyl)propanoate.

Dry THF (1 M) was added to dissolve the crude product under nitrogen and LDA (11 mL, 22 mmol, 2 M in THF) was added at -78 °C *via* syringe. After stirring for 10 min at this temperature, EtI (3.43 g, 22 mmol) was added and the mixture was stirred for 2 h at room temperature. The reaction mixture was quenched with water and extracted with EtOAc (3 times). The combined organic layers were dried over sodium sulfate, filtered and evaporated under vacuum. The residue was purified on silica gel to give 2-(2-bromophenyl)-2-methylbutanoate as a yellow oil (5.0 g, 92%).

Over a 0 $\$ solution of methyl 2-(2-bromophenyl)-2-methylbutanoate (2.51 g, 9 mmol) in anhydrous THF (45 mL) was added LiAlH₄ (345 mg, 9 mmol) portionwise. The reaction was stirred for 5 h at room temperature. The reaction mixture was quenched with water and extracted with EtOAc (3 times), washed with brine, dried over MgSO₄ and concentrated. The residue was purified on silica gel to give the corresponding alcohol product as a colorless oil (1.35 g, 62%).

Over a solution of the alcohol (1.51 g, 6 mmol) and DMAP (146 mg, 1.2 mmol) in dry DCM (30 mL) was added dry Et_3N (304 mg, 18 mmol). After stirring for 30 min at 0 °C, MsCl (1.37 g, 12 mmol) was added. The reaction was stirred overnight while warming up to room temperature. When completed, Et_2O was added followed by NH_4Cl (aq.). The reaction was extracted with Et_2O (3 times), washed with brine, dried over $MgSO_4$ and concentrated. The crude was used in the next step without further purification.

Over a solution of the mesylate (321 mg, 1 mmol) in anhydrous THF (1mL) under nitrogen was added Super-Hydride (2.1 mL, 1M in THF). The reaction was heated at 70 °C overnight. When completed, the reaction was quenched by addition of NH_4Cl (aq.). The reaction was extracted with Et_2O (3 times), dried over MgSO₄, concentrated and purified on silica gel column to give 1-bromo-2-(*tert*-pentyl)benzene (**1**) as a colorless oil (1.09 g, 80%).

$R^{2} \xrightarrow{r} B^{r} + \underbrace{X \cdot X}_{V} \xrightarrow{R^{3}} R^{3} \xrightarrow{Pd(OAc)_{2} (5 \text{ mol}\%)}_{\text{SPhos (10 mol\%)}} R^{2} \xrightarrow{R^{1} \times X}_{V} \xrightarrow{X}_{V} \xrightarrow{R^{3} \times = C, N}_{16 \text{ h, } N_{2}} R^{2} \xrightarrow{R^{2} \times X}_{V} \xrightarrow{R^{3} \times = C, N}_{Y = 0, S}$

3. General Procedures for the Cross-Coupling of C(sp³)-H/C(sp²)-H Bonds

A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with $Pd(OAc)_2$ (2.2 mg, 0.01 mmol), SPhos (8.2 mg, 0.02 mmol), CsOPiv (93.6 mg, 0.4 mmol), the corresponding aryl bromide **1** (0.2 mmol), oxadiazole **2** (0.3 mmol, 1.5 equiv) and DMF (4 mL). The reaction was frozen with liquid nitrogen and then the tube was evacuated and backfilled with nitrogen (5 times). The mixture was stirred at 110 °C (preheated oil bath) for 16 hours. After cooling to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed with water (3 times), dried over Na₂SO₄ and concentrated

under reduced pressure. The residue was purified by preparative silica gel TLC with petroleum ether/ethyl acetate to give the corresponding products.

4. Preliminary Mechanistic Studies

4.1 Mechanistic Studies

A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with the corresponding Pd complex **4** (0.1 mmol, 1 equiv),² SPhos (82.1 mg, 0.2 mmol), 2-phenyl-1,3,4-oxadiazole **2a** (21.9 mg, 0.15 mmol), CsOPiv (46.8 mg, 0.2 mmol), and DMF (2 mL). The reaction was frozen with liquid nitrogen and then the tube was evacuated and backfilled with nitrogen (5 times). The mixture was stirred at 110 °C (preheated oil bath) for 16 hours. After cooling to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed with water (3 times), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography (PTLC) affording cross-coupling product **3a** as a white solid.

4.2 Kinetic Isotope Effect Studies

A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with $Pd(OAc)_2$ (2.2 mg, 0.01 mmol), SPhos (8.21 mg, 0.02 mmol), CsOPiv (93.6 mg, 0.4 mmol), 2-phenyl-1,3,4-oxadiazole **2a** (0.3 mmol, 1.5 equiv), aryl bromide **1m** (0.1 mmol), **1m**- d^6 (0.1 mmol) and DMF (4 mL). The reaction was frozen with liquid nitrogen and then the tube was evacuated and backfilled with nitrogen (5 times). The mixture was stirred at 110 °C (preheated oil bath) for30 mins. After cooling to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed with water (3 times), dried over Na₂SO₄ and concentrated under reduced pressure. The product was analyzed by ¹H NMR after purification by preparative silica gel TLC with petroleum ether/ethyl acetate.

5. Characterization of the Substrates

1-Bromo-2-*(tert-***pentyl)benzene (11):** colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 2.04 (q, *J* = 7.5 Hz, 2H), 1.45 (s, 6H), 0.64 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 146.07, 135.63, 129.40, 127.34, 127.01, 122.54, 40.20, 32.30, 28.16, 9.35. MS (EI): (M⁺): 225.9.

6. Characterization of the Products

2-(2-Methyl-2-phenylpropyl)-5-phenyl-1,3,4-oxadiazole (**3a**): white solid (49.0 mg, 88%). ¹H NMR (600 MHz, CDCl₃) δ 7.84 – 7.79 (m, 2H), 7.50 – 7.46 (m, 1H), 7.46 – 7.42 (m, 2H), 7.40 (dd, *J* = 8.4, 1.1 Hz, 2H), 7.36 – 7.31 (m, 2H), 7.25 – 7.21 (m, 1H), 3.24 (s, 2H), 1.51 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 164.93, 164.63, 147.23, 131.41, 128.90, 128.34, 126.65, 126.32, 125.56, 123.93, 40.01, 38.13, 28.50. HRMS (ESI-TOF) *m*/*z*: calcd for C₁₈H₁₈N₂ONa⁺: 301.1311 (M + Na)⁺, found: 301.1327.

2-(2-(4-(*Tert***-butyl)phenyl)-2-methylpropyl)-5-phenyl-1,3,4-oxadiazole (3b):** white solid (57.0 mg, 85%). ¹H NMR (600 MHz, CDCl₃) δ 7.79 – 7.75 (m, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 3.22 (s, 2H), 1.50 (s, 6H), 1.32 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 164.98, 164.56, 148.98, 144.07, 131.35, 128.81, 126.59, 125.28, 125.11, 123.90, 40.15, 37.74, 34.27, 31.30, 28.41. HRMS (ESI-TOF) *m/z*: calcd for C₂₂H₂₆N₂ONa⁺ :357.1937 (M + Na)⁺, found: 357.1941.

2-(2-(4-Methoxyphenyl)-2-methylpropyl)-5-phenyl-1,3,4-oxadiazole (3c): white solid (57.2 mg, 93%). ¹H NMR (600 MHz, CDCl₃) δ 7.86 – 7.83 (m, 2H), 7.51 – 7.47 (m, 1H), 7.47 – 7.43 (m, 2H), 7.32 – 7.28 (m, 2H), 6.88 – 6.84 (m, 2H), 3.78 (s, 3H), 3.20 (s, 2H), 1.49 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 165.02, 164.62, 157.94, 139.36, 131.42, 128.91, 126.66, 126.65, 124.00, 113.63, 55.24, 40.19, 37.60, 28.68. HRMS (ESI-TOF) *m/z*: calcd for C₁₉H₂₁N₂O₂⁺ : 309.1598 (M + H)⁺, found: 309.1606.

4-(2-Methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)aniline (3d): brown oil (29.4 mg, 50%). ¹H NMR (600 MHz, CDCl₃) δ 7.91 – 7.85 (m, 2H), 7.52 – 7.42 (m, 3H), 7.19 – 7.14 (m, 2H), 6.68 – 6.61 (m, 2H), 3.63 (brs, 2H), 3.17 (s, 2H), 1.46 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) 165.16, 164.56, 144.57, 137.23, 131.34, 128.88, 126.64, 126.37, 123.97, 114.93, 40.12, 37.41, 28.59. HRMS (ESI-TOF) *m/z*: calcd for C₁₈H₂₀N₃O⁺ : 294.1601 (M + H)⁺, found: 294.1604.

N-(**4**-(**2**-methyl-1-(**5**-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)phenyl)acetamide (3e): yellow solid (54.8 mg, 82%). ¹H NMR (600 MHz, CDCl₃) δ 7.87 –7.83 (m, 2H), 7.65 (s, 1H), 7.50 – 7.41 (m, 5H), 7.34 – 7.29 (m, 2H), 3.20 (s, 2H), 2.14 (s, 3H), 1.48 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 168.41, 164.90, 164.66, 142.99, 136.25, 131.47, 128.94, 126.66, 126.09, 123.81, 119.85, 39.93, 37.82, 28.57, 24.44. HRMS (ESI-TOF) *m*/*z*: calcd for C₂₀H₂₁N₃O₂Na⁺ :358.1526 (M + Na)⁺, found 358.1537.

2-(2-(4-Fluorophenyl)-2-methylpropyl)-5-phenyl-1,3,4-oxadiazole (3f): white solid (42.6 mg, 72%). ¹H NMR (600 MHz, CDCl₃) δ 7.85 – 7.82 (m, 2H), 7.52 – 7.43 (m, 3H), 7.37 – 7.32 (m, 2H), 7.01 (t, J = 8.7 Hz, 2H), 3.21 (s, 2H), 1.50 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) 164.71, 164.67, 161.33 (d, J = 245.2 Hz), 142.89 (d, J = 3.2 Hz), 131.51, 128.97, 127.24 (d, J = 7.7 Hz), 126.62, 123.87, 115.01 (d, J = 21.0 Hz), 40.11, 37.83, 28.75. ¹⁹F NMR (565 MHz, CDCl₃) δ -117.07. HRMS (ESI-TOF) *m/z*: calcd for C₁₈H₁₇FN₂ONa⁺ : 319.1217 (M + Na)⁺, found 319.1227.

4-(2-Methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)benzaldehyde (3g): yellow solid (27.6 mg, 45%). ¹H NMR (600 MHz, CDCl₃) 9.99 (s, 1H), 7.88 – 7.83 (m, 2H), 7.82 – 7.77 (m, 2H), 7.60 – 7.55 (m, 2H), 7.52 – 7.45 (m, 1H), 7.45 – 7.41 (m, 2H), 3.28 (s, 2H), 1.56 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 191.78, 164.70, 164.31, 154.24, 134.72, 131.59, 129.82, 128.98, 126.58, 126.42, 123.72, 39.64, 38.74, 28.49. HRMS (ESI-TOF) *m/z*: calcd for C₁₉H₁₈N₂O₂Na⁺ : 329.1260 (M + Na)⁺, found 329.1264.

Methyl-4-(2-methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)benzoate (3h): yellow solid (46.5mg, 69%). ¹H NMR (600 MHz, CDCl₃) δ 8.01 – 7.98 (m, 2H), 7.82 – 7.79 (m, 2H), 7.50 – 7.45 (m, 3H), 7.43 (t, J =7.5 Hz, 2H), 3.90 (s, 3H), 3.26 (s, 2H), 1.53 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 166.82, 164.66, 164.46, 152.48, 131.49, 129.66, 128.93, 128.28, 126.61, 125.71, 123.77, 52.01, 39.67, 38.46, 28.44. HRMS (ESI-TOF) m/z: calcd for C₂₀H₂₀N₂O₃Na⁺ : 359.1366 (M + Na)⁺, found 359.1379.

1-(4-(2-Methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)phenyl)ethan-1-one (3i): white soild (38.6 mg, 60%). ¹H NMR (600 MHz, CDCl₃) δ 7.94 – 7.89 (m, 2H), 7.82 – 7.78 (m, 2H), 7.51 – 7.45 (m, 3H), 7.43 (t, J =7.5 Hz, 2H), 3.26 (s, 2H), 2.57 (s, 3H), 1.54 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 197.61, 164.66, 164.41, 152.65, 135.32, 131.53, 128.93, 128.44, 126.58, 125.91, 123.75, 39.64, 38.50, 28.44, 26.54. HRMS (ESI-TOF) *m*/*z*: calcd for C₂₀H₂₀N₂O₂Na⁺ : 343.1417 (M + Na)⁺, found 343.1428.

2-(2-Methyl-2-(*m***-tolyl)propyl)-5-phenyl-1,3,4-oxadiazole (3j):** yellow solid (53.8 mg, 92%). ¹H NMR (600 MHz, CDCl₃) δ 7.86 – 7.82 (m, 2H), 7.51 – 7.47 (m, 1H), 7.47 – 7.43 (m, 2H), 7.25 – 7.18 (m, 3H), 7.05 (dd, J = 7.1, 1.9 Hz, 1H), 3.22 (s, 2H), 2.34 (s, 3H), 1.50 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 165.02, 164.63, 147.31, 137.78, 131.41, 128.91, 128.24, 127.05, 126.66, 126.36, 124.00, 122.61, 40.01, 38.03, 28.50, 21.65. HRMS (ESI-TOF) *m/z*: calcd for C₁₉H₂₀N₂ONa⁺ : 315.1468 (M + Na)⁺, found 315.1475.

2-(2-(3-Methoxyphenyl)-2-methylpropyl)-5-phenyl-1,3,4-oxadiazole (3k): yellow oil (53.6 mg, 87%). ¹H NMR (600 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H), 7.52 – 7.46 (m, 1H), 7.47 – 7.43 (m, 2H), 7.26 (t, *J* = 8.0 Hz, 1H), 6.99 (dd, *J* = 7.8, 1.0Hz, 1H), 6.94 (t, *J* = 2.2 Hz, 1H), 6.78 (dd, *J* = 8.2, 2.3 Hz, 1H), 3.79 (s, 3H), 3.22 (s, 2H), 1.50 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 164.89, 164.65, 159.58, 149.11, 131.41, 129.29, 128.90, 126.66, 123.96, 118.07, 112.32, 110.93, 55.18, 39.92, 38.17, 28.46. HRMS (ESI-TOF) *m/z*: calcd for C₁₉H₂₀N₂O₂Na⁺ : 331.1417 (M + Na)⁺, found 331.1423.

2-(2-Methyl-2-phenylbutyl)-5-phenyl-1,3,4-oxadiazole (3l): white solid (48.4 mg, 83%). ¹H NMR (600 MHz, CDCl₃) δ 7.83 – 7.77 (m, 2H), 7.51 – 7.45 (m, 1H), 7.46-7.40 (m, 2H), 7.39 – 7.28 (m, 4H), 7.25 – 7.19 (m, 1H), 3.26 (d, *J* = 14.4 Hz, 1H), 3.22 (d, *J* = 14.4 Hz, 1H), 2.03 – 1.97 (m, 1H), 1.80 – 1.71 (m, 1H), 1.46 (s, 3H), 0.77 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 164.93, 164.59, 145.24, 131.36, 128.87, 128.27, 126.62, 126.24, 126.17, 123.94, 41.58, 38.90, 34.75, 23.56, 8.63. HRMS (ESI-TOF) *m/z*: calcd for C₁₉H₂₀N₂ONa⁺ : 315.1468 (M + Na)⁺, found 315.1477.

2-(2-Methyl-2-phenyl-3-((triisopropylsilyl)oxy)propyl)-5-phenyl-1,3,4-oxadiazole (3m): yellow oil (65.2 mg, 72%). ¹H NMR (600 MHz, CDCl₃) δ 7.81 – 7.75 (m, 2H), 7.48 – 7.45 (m, 1H), 7.43 – 7.40 (m, 4H), 7.33 (t, *J*=7.7Hz, 2H), 7.23 (t, *J*=7.3Hz, 1H), 3.95 (d, *J* = 9.6 Hz, 1H), 3.79 (d, *J* = 9.6 Hz, 1H), 3.47 (d, *J* = 15 Hz, 1H), 3.44 (d, *J* = 15 Hz, 1H), 1.54 (s, 3H), 1.15 – 1.06 (m, 3H), 1.06 – 1.02 (m, 18H). ¹³C NMR (151 MHz, CDCl₃) δ 165.20, 164.50, 143.68, 131.29, 128.82, 128.14, 126.59, 126.56, 126.48, 123.96, 72.00, 43.81, 34.05, 21.99, 17.96, 11.93. HRMS (ESI-TOF) *m/z*: calcd for C₂₇H₃₈N₂O₂SiNa⁺ : 473.2595 (M + Na)⁺, found 473.2610.

N-4-dimethyl-*N*-(2-methyl-2-phenyl-3-(5-phenyl-1,3,4-oxadiazol-2-yl)propyl)benzenesulfona mide (3n): colorless oil (89.6 mg, 97%). ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, *J* = 7.0 Hz, 1H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.48-7.46 (m, 1H), 7.45 – 7.39 (m, 4H), 7.33 – 7.30 (m, 4H), 7.23 (t, *J* = 7.4Hz, 1H), 3.65 (d, *J* = 15.2 Hz, 1H), 3.49 (d, *J* = 14.0 Hz, 1H), 3.38 (d, *J* = 15.2 Hz, 1H), 3.18 (d, *J* = 14.0 Hz, 1H), 2.41 (s, 3H), 2.27 (s, 3H), 1.66 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 164.56, 164.45, 143.51, 143.12, 134.17, 131.40, 129.70, 128.86, 128.50, 127.48, 126.99, 126.61, 126.51, 123.81, 62.13, 42.50, 38.09, 35.66, 22.83, 21.44. HRMS (ESI-TOF) *m*/*z*: calcd for C₂₆H₂₇N₃O₃SNa⁺ : 484.1664 (M + Na)⁺, found 484.1682.

2-Methyl-2-phenyl-3-(5-phenyl-1,3,4-oxadiazol-2-yl)propanenitrile (30): white solid (46.4 mg, 80%). ¹H NMR (600 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 7.55 – 7.47 (m, 5H), 7.41(t, *J* =7.7 Hz, 2H), 7.35 (t, *J* =7.3Hz, 1H), 3.58 (dd, *J* =15, 3.6 Hz, 2H), 1.92 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 165.47, 161.71, 138.09, 131.87, 129.26, 129.06, 128.65, 126.92, 125.37, 123.46, 121.86, 40.82, 38.00,

26.50. HRMS (ESI-TOF) m/z: calcd for C₁₈H₁₅N₃ONa⁺ : 312.1107 (M + Na)⁺, found 312.1117.

6-(3-((3r,5r,7r)-Adamantan-1-yl)-4-methoxyphenyl)-*N*-(**4-(2-methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)phenyl)-2-naphthamide (3p):** white solid (96.6 mg, 70%). ¹H NMR (600 MHz, CDCl₃) δ 8.37 (s, 1H), 8.11 (s, 1H), 8.02 (s, 1H), 7.98 – 7.90 (m, 3H), 7.90 – 7.85 (m, 2H), 7.81 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.61 (d, *J* = 2.4 Hz, 1H), 7.54 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.49-7.43 (m, 3H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.3 Hz, 1H), 3.91 (s, 3H), 3.23 (s, 2H), 2.19 (s, 6H), 2.11 (s, 3H), 1.81 (s, 6H), 1.69 (s, 2H), 1.52 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 165.76, 164.90, 164.69, 158.90, 143.43, 141.04, 139.00, 136.33, 135.27, 132.46, 131.58, 131.46, 131.32, 129.29, 128.96, 128.76, 127.33, 126.73, 126.71, 126.30, 125.91, 125.68, 124.71, 123.88, 123.86, 120.21, 112.10, 55.15, 40.59, 39.98, 37.92, 37.19, 37.10, 29.08, 28.57. HRMS (ESI-TOF) *m/z*: calcd for C₄₆H₄₆N₃O₃⁺: 688.3534 (M + H)⁺, found 688.3551.

(*S*)-2-ethoxy-4-(2-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)amino)-2-oxoethyl)-*N*-(4-(2-m ethyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)phenyl)benzamide (3q): yellow solid (90.0 mg, 62%). ¹H NMR (600 MHz, CDCl₃) δ 10.05 (s, 1H), 8.22 (d, *J* = 7.9 Hz, 1H), 7.88 – 7.82 (m, 2H), 7.64 – 7.59 (m, 2H), 7.47 – 7.41 (m, 3H), 7.40 – 7.35 (m, 2H), 7.24 – 7.16 (m, 2H), 7.11 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.05 (td, *J* = 7.2, 1.8 Hz, 1H), 6.96 (dd, *J* = 8.0, 1.5 Hz, 2H), 6.92 (d, *J* = 1.5 Hz, 1H), 5.42-5.35 (m, 1H), 4.20 – 4.04 (m, 2H), 3.56 (s, 2H), 3.22 (s, 2H), 2.94 (s, 2H), 2.61 (s, 2H), 1.94 (s, 1H), 1.77 – 1.68 (m, 2H), 1.67 – 1.55 (m, 4H), 1.56 – 1.48 (m, 10H), 1.43 (m, 1H), 0.91 (dd, *J* = 6.6, 1.6 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 168.73, 164.89, 164.63, 162.86, 156.77, 152.46, 142.86, 141.10, 138.64, 136.77, 132.70, 131.38, 128.89, 127.86, 127.71, 126.64, 126.20, 125.00, 123.83, 122.78, 122.17, 120.24, 119.85, 113.01, 65.00, 49.84, 46.61, 43.95, 39.96, 37.83, 28.52, 26.71, 25.28, 24.07, 22.72, 22.47, 14.77. HRMS (ESI-TOF) *m*/*z*: calcd for C₄₅H₅₄N₅O₄⁺ : 728.4170 (M + H)⁺ found 728.4190.

N-(4-(2-methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)phenyl)-2-(11-oxo-10,11-dihydr odibenzo[*b*,*f*]oxepin-2-yl)acetamide (3r): yellow oil (71.5 mg, 66%). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 2.4 Hz, 1H), 7.89 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.84 – 7.81 (m, 2H), 7.58 (td, *J* = 7.5, 1.4 Hz, 1H), 7.52 – 7.44 (m, 3H), 7.43 – 7.37 (m, 5H), 7.32 – 7.29 (m, 2H), 7.24 (s, 1H), 7.08 (d, *J* = 8.4 Hz, 1H), 5.21 (s, 2H), 3.73 (s, 2H), 3.18 (s, 2H), 1.47 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 190.82, 168.80, 164.85, 164.65, 160.69, 143.35, 140.30, 136.35, 135.91, 135.46, 132.90, 132.45, 131.46, 129.47, 129.31, 128.93, 128.34, 127.87, 126.66, 126.11, 125.30, 123.80, 121.65, 119.91, 73.63, 43.57, 39.92, 37.84, 28.53. HRMS (ESI-TOF) *m*/*z*: calcd for C₃₄H₂₉N₃O₄Na⁺ : 566.2050 (M + Na)⁺, found 566.2063.

2-(2-Methyl-2-phenylpropyl)-5-(*p*-tolyl)-1,3,4-oxadiazole (3u) : yellow oil (53.0 mg, 91%). ¹H NMR (600 MHz, CDCl₃) δ 7.73 – 7.69 (m, 2H), 7.41 – 7.38 (m, 2H), 7.35 – 7.31 (m, 2H), 7.25 – 7.21 (m, 3H), 3.22 (s, 2H), 2.40 (s, 3H), 1.51 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 164.77, 164.64, 147.30, 141.89, 129.59, 128.33, 126.60, 126.29, 125.57, 121.19, 40.01, 38.11, 28.49, 21.56. HRMS (ESI-TOF) *m/z*: calcd for C₁₉H₂₀N₂ONa⁺ : 315.1468 (M +Na)⁺, found 315.1478.

2-(4-(*Tert***-butyl)phenyl)-5-(2-methyl-2-phenylpropyl)-1,3,4-oxadiazole (3v):** yellow solid (57.6 mg, 86%). ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 7.7 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 3.23 (s, 2H), 1.51 (s, 6H), 1.34 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 164.67, 164.65, 154.95, 147.27, 128.31, 126.46, 126.28, 125.85, 125.54, 121.11, 39.96, 38.08, 34.97, 31.06, 28.48. HRMS (ESI-TOF) *m*/*z*: calcd for C₂₂H₂₆N₂ONa⁺ : 357.1937 (M + Na)⁺, found 357.1952.

2-(4-Methoxyphenyl)-5-(2-methyl-2-phenylpropyl)-1,3,4-oxadiazole (3w): yellow oil (49.2 mg,

80%). ¹H NMR (600 MHz, CDCl₃) δ 7.78 – 7.72 (m, 2H), 7.42 – 7.36 (m, 2H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 6.96 – 6.91 (m, 2H), 3.85 (s, 3H), 3.21 (s, 2H), 1.50 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 164.52, 164.36, 162.04, 147.30, 128.34, 128.28, 126.24, 125.55, 116.47, 114.29, 55.36, 39.95, 38.06, 28.46. HRMS (ESI-TOF) *m*/*z*: calcd for C₁₉H₂₀N₂O₂Na⁺ : 331.1417 (M + Na)⁺, found 331.1430.

4-(5-(2-Methyl-2-phenylpropyl)-1,3,4-oxadiazol-2-yl)phenol (3x): yellow solid (32.5 mg, 55%). ¹H NMR (600 MHz, (CD₃)₂SO) δ 10.25 (s, 1H), 7.60 – 7.54 (m, 2H), 7.44 – 7.37 (m, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.19 (t, *J* = 7.3 Hz, 1H), 6.91 – 6.85 (m, 2H), 3.23 (s, 2H), 1.42 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 164.04, 163.81, 160.53, 147.27, 128.09, 128.06, 125.98, 125.64, 116.06, 114.20, 38.80, 37.78, 28.44. HRMS (ESI-TOF) *m/z*: calcd for C₁₈H₁₈N₂O₂Na⁺ : 317.1260 (M + Na)⁺, found 317.1266.

2-(4-Fluorophenyl)-5-(2-methyl-2-phenylpropyl)-1,3,4-oxadiazole (3y): white solid (47.0 mg, 79%). ¹H NMR (600 MHz, CDCl₃) δ 7.82 – 7.78 (m, 2H), 7.40 – 7.38(m, 2H), 7.35 – 7.32 (m, 2H), 7.26 – 7.20 (m, 1H), 7.15 – 7.10 (m, 2H), 3.23 (s, 2H), 1.51 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 164.92, 164.56 (d, *J* =252.9 Hz), 163.81, 147.15, 128.87 (d, *J* = 8.8 Hz), 128.33, 126.33, 125.57, 120.25 (d, *J* = 3.4 Hz), 116.21 (d, *J* = 22.1 Hz), 40.01, 38.13, 28.50. ¹⁹F NMR (565 MHz, CDCl₃) δ -107.30. HRMS (ESI-TOF) *m/z*: calcd for C₁₈H₁₇FN₂ONa⁺: 319.1217 (M +Na)⁺, found 319.1226.

2-(2-Methyl-2-phenylpropyl)-5-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazole (3z): white solid (50.4 mg, 73%). ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.41 – 7.38 (m, 2H), 7.37 – 7.31 (m, 2H), 7.27 – 7.21 (m, 1H), 3.26 (s, 2H), 1.52 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 165.55, 163.46, 146.97, 133.04 (q, J = 32.9 Hz), 128.36, 127.11, 126.93, 126.39, 125.95 (q, J = 3.8 Hz), 125.57, 123.54 (q, J = 272.7 Hz), 40.08, 38.20, 28.52. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.08. HRMS (ESI-TOF) *m/z*: calcd for C₁₉H₁₇F₃N₂ONa⁺: 369.1185 (M + Na)⁺, found 369.1199.

2-(2-Methyl-2-phenylpropyl)-5-(naphthalen-2-yl)-1,3,4-oxadiazole (3aa): yellow solid (50.7 mg, 77%). ¹H NMR (600 MHz, CDCl₃) δ 8.20 (s, 1H), 7.93 (dd, J = 8.6, 1.7 Hz, 1H), 7.89 – 7.86 (m, 2H), 7.86 – 7.82 (m, 1H), 7.58 – 7.50 (m, 2H), 7.44 – 7.40 (m, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.29 – 7.23 (m, 1H), 3.26 (s, 2H), 1.53 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 164.95, 164.75, 147.23, 134.47, 132.71, 128.80, 128.67, 128.33, 127.84, 127.75, 126.97, 126.92, 126.27, 125.60, 122.96, 121.11, 40.05, 38.14, 28.49. HRMS (ESI-TOF) *m*/*z*: calcd for C₂₂H₂₀N₂ONa⁺ : 351.1468 (M + Na)⁺, found 351.1475.

2-(Furan-2-yl)-5-(2-methyl-2-phenylpropyl)-1,3,4-oxadiazole (3ab): yellow oil (41.3 mg,77%). ¹H NMR (600 MHz, CDCl₃) δ 7.58 (dd, J = 1.8, 0.8 Hz, 1H), 7.39 – 7.37 (m, 2H), 7.34 – 7.31 (m, 2H), 7.25 – 7.19 (m, 1H), 6.93 (dd, J = 3.5, 0.8 Hz, 1H), 6.54 (dd, J = 3.5, 1.8 Hz, 1H), 3.21 (s, 2H), 1.50 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 164.26, 157.54, 147.13, 145.41, 139.48, 128.33, 126.34, 125.46, 113.51, 111.93, 39.72, 38.11, 28.41. HRMS (ESI-TOF) *m/z*: calcd for C₁₆H₁₆N₂O₂Na⁺ : 291.1104 (M + Na)⁺, found 291.1114.

2-(2-Methyl-2-phenylpropyl)-5-(thiophen-2-yl)-1,3,4-oxadiazole (3ac): white solid (43.7 mg, 77%). ¹H NMR (600 MHz, CDCl₃) δ 7.50 – 7.47 (m , 2H), 7.41 – 7.36 (m, 2H), 7.35 – 7.31 (m, 2H), 7.26 – 7.19 (m, 1H), 7.10 (dd, *J* = 5.0, 3.7 Hz, 1H), 3.21 (s, 2H), 1.51 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 164.33, 160.87, 147.13, 129.74, 129.31, 128.33, 127.96, 126.35, 125.53, 125.27, 39.87, 38.09, 28.45. HRMS (ESI-TOF) *m*/z: calcd for C₁₆H₁₆N₂OSNa⁺ : 307.0876 (M + Na)⁺, found 307.0883.

2-(2-Methyl-2-phenylpropyl)-5-(pyridin-3-yl)-1,3,4-oxadiazole (3ad): yellow solid (39.2 mg, 70%). ¹H NMR (600 MHz, CDCl₃) δ 8.96 (d, J = 2.5 Hz, 1H), 8.71 (dd, J = 4.9, 1.7 Hz, 1H), 8.11 (dt, J = 8.0, 1.9 Hz, 1H), 7.41 – 7.35 (m, 3H), 7.34 – 7.31 (m, 2H), 7.26 – 7.20 (m, 1H), 3.25 (s, 2H), 1.52 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 165.44, 162.51, 152.13, 147.61, 146.88, 133.82, 128.35, 126.42, 125.53, 123.63, 120.36, 40.02, 38.17, 28.51. HRMS (ESI-TOF) *m/z*: calcd for C₁₇H₁₇N₃ONa⁺ : 302.1264 (M + Na)⁺, found 302.1269.

2-(2-Methyl-2-phenylpropyl)benzo[*d*]**oxazole (3ae):** yellow oil (49.3 mg, 77%). ¹H NMR (600 MHz, CDCl₃) δ 7.71 – 7.63 (m, 1H), 7.45 – 7.39 (m, 3H), 7.36 – 7.30 (m, 2H), 7.32 – 7.26 (m, 2H), 7.25 – 7.19 (m, 1H), 3.23 (s, 2H), 1.52 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 165.01, 150.69, 148.07, 141.26, 128.27, 126.14, 125.46, 124.43, 123.99, 119.64, 110.28, 43.08, 38.49, 28.50. HRMS (ESI-TOF) *m/z*: calcd for C₁₇H₁₈NO⁺ : 252.1383(M + H)⁺, found 252.1389.

2-(2-Methyl-2-phenylpropyl)benzo[*d*]thiazole (3af): yellow oil (33.7mg, 50%). ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.44 – 7.39 (m, 3H), 7.38 –7.34 (m, 2H), 7.32 – 7.25 (m, 2H), 3.47 (s, 2H), 1.48 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 168.76, 152.46, 147.47, 135.57, 128.38, 126.33, 126.21, 125.62, 124.59, 122.51, 121.26, 48.98, 38.81, 28.79. HRMS (ESI-TOF) *m/z*: calcd for C₁₇H₁₈NS⁺ : 268.1154 (M + H)⁺, found 268.1162.

7. References

- (1) Z. Wu, D. Ma, B. Zhou, X. Ji, X. Ma, X. Wang, Y. Zhang, *Angew. Chem, Int. Ed.* 2017, 56, 12288.
- (2) T. Čarn ý, R. Rocaboy, A. Clemenceau, O. Baudoin, Angew. Chem., Int. Ed., 2020, 59, 18980.
- (3) X. Guo, S. He, Z. Xu, L. Chen, Z. Li, B. Song, J. Zuo, Z. Lin, W. Yang, *Nat. Commun.*, 2021, 12, 1304.
- (4) J. Hédouin, C. Schneider, I. Gillaizeau, C. Hoarau. Org. Lett. 2018, 20, 6027.
- (5) P. Alvarez-Bercedo, A. Flores-Gaspar, A. Correa, R. Martin. J. Am. Chem. Soc.2010, 132, 466.
- (6) Á. Guti érrez-Bonet, F. Juli á Hern ández, B. Luis, R. Martin. J. Am. Chem. Soc. 2016, 138, 384.

8. NMR Spectra

8.1 NMR Spectra of the Substrates

↓ ↓ ↓ ↓ ↓ ↓ ↓ 3g

- 3.902 - 3.255 - 1.530

7.181 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1781 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1743 7.1723 7.1723 7.1723 7.1723 7.1723 7.1723 7.1723 7.1723 7.1723 7.1723 7.1723 7.1723 7.1

81,01053 81,010555 81,010555 81,010555 81,010555 81,0105555 81,010555

— 3.226

- 1.423

- 1.500

- 3.209

8.3 NMR Spectra for Kinetic Isotope Effect Studies

