Supporting Information

Palladium-Catalyzed Cross-Coupling of Unreactive $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{H}$ Bonds with Azole $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathbf{H}$ Bonds by Using

 Bromide as a Traceless Directing Group

 Bromide as a Traceless Directing Group}

Yan-Zhen Chen, Jian-Guo Fu, Xiao-Ming Ji,* Shu-Sheng Zhang,* Chen-Guo Feng*

Abstract

The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

E-mail: fengcg@shutcm.edu.cn; zhangss@ shutcm.edu.cn; jixiaoming@tongji.edu.cn

Table of Contents

\qquad
2. General Procedures for the Synthesis of Substrates ..S2
3. General Procedures for the Cross-Coupling of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H} / \mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ Bonds......................... S 3
4. Preliminary Mechanistic Studies ...S4
5. Characterization of the Substrates ...
6. Characterization of the Products ..S5
7. References ..S13
8. NMR Spectra...S14

1. General Information

$\mathrm{Pd}(\mathrm{OAc})_{2}$ was purchased from Strem Chemicals. All solvents were dried by JC Meyer Solvent Drying System. Unless otherwise noted, the other commercial chemicals were used without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DRX-600 instrument (600 MHz). High resolution mass spectra were measured on Bruker MicroTOF II ESI-TOF mass spectrometer. NMR spectra were recorded in CDCl_{3}. ${ }^{1} \mathrm{H}$ NMR spectra were referenced to residual CHCl_{3} at 7.26 ppm , and ${ }^{13} \mathrm{C}$ NMR spectra were referenced to the central peak of CDCl_{3} at 77.0 ppm . Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). Multiplicities are reported using the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet.
2. General Procedures for the Synthesis of Substrates

1a

1b

1c

1d

1e

1f

19

1h

1j

1k

11

1m

1n

10

The known compounds ($\mathbf{1 a - 1 k}$ and $\mathbf{1 m - 1 r}$) were prepared by following the reported procedures. ${ }^{1-3}$ The known 1,3,4-oxadiazoles were prepared by following the reported procedures. ${ }^{4}$

Procedures for the Synthesis of the Compound 11

1-Bromo-2-(tert-pentyl)benzene (11) was made according to the modified procedures. ${ }^{5,6}$ Methyl 2-(2-bromophenyl)acetate ($4.58 \mathrm{~g}, 20 \mathrm{mmol}$) was dissolved in dry THF (1 M) under
nitrogen and LDA ($11 \mathrm{~mL}, 22 \mathrm{mmol}, 2 \mathrm{M}$ in THF) was added at $-78^{\circ} \mathrm{C}$ via syringe. After stirring for 10 min at this temperature, $\operatorname{MeI}(3.12 \mathrm{~g}, 22 \mathrm{mmol})$ was added and the mixture was stirred for 2 h at room temperature. The reaction mixture was quenched with water and extracted with EtOAc (3 times). The combined organic layers were dried over sodium sulfate, filtered and evaporated under reduced pressure without further purification to provide desired product methyl 2-(2-bromophenyl)propanoate.

Dry THF (1 M) was added to dissolve the crude product under nitrogen and LDA ($11 \mathrm{~mL}, 22$ mmol, 2 M in THF) was added at $-78{ }^{\circ} \mathrm{C}$ via syringe. After stirring for 10 min at this temperature, EtI ($3.43 \mathrm{~g}, 22 \mathrm{mmol}$) was added and the mixture was stirred for 2 h at room temperature. The reaction mixture was quenched with water and extracted with EtOAc (3 times). The combined organic layers were dried over sodium sulfate, filtered and evaporated under vacuum. The residue was purified on silica gel to give 2-(2-bromophenyl)-2-methylbutanoate as a yellow oil (5.0 g , 92\%).

Over a $0^{\circ} \mathrm{C}$ solution of methyl 2-(2-bromophenyl)-2-methylbutanoate ($2.51 \mathrm{~g}, 9 \mathrm{mmol}$) in anhydrous THF (45 mL) was added $\mathrm{LiAlH}_{4}(345 \mathrm{mg}, 9 \mathrm{mmol})$ portionwise. The reaction was stirred for 5 h at room temperature. The reaction mixture was quenched with water and extracted with EtOAc (3 times), washed with brine, dried over MgSO_{4} and concentrated. The residue was purified on silica gel to give the corresponding alcohol product as a colorless oil ($1.35 \mathrm{~g}, 62 \%$).

Over a solution of the alcohol ($1.51 \mathrm{~g}, 6 \mathrm{mmol}$) and DMAP ($146 \mathrm{mg}, 1.2 \mathrm{mmol}$) in dry DCM $(30 \mathrm{~mL})$ was added dry $\mathrm{Et}_{3} \mathrm{~N}(304 \mathrm{mg}, 18 \mathrm{mmol})$. After stirring for 30 min at $0^{\circ} \mathrm{C}, \mathrm{MsCl}(1.37 \mathrm{~g}$, 12 mmol) was added. The reaction was stirred overnight while warming up to room temperature. When completed, $\mathrm{Et}_{2} \mathrm{O}$ was added followed by $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.). The reaction was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 times), washed with brine, dried over MgSO_{4} and concentrated. The crude was used in the next step without further purification.

Over a solution of the mesylate ($321 \mathrm{mg}, 1 \mathrm{mmol}$) in anhydrous THF (1 mL) under nitrogen was added Super-Hydride ($2.1 \mathrm{~mL}, 1 \mathrm{M}$ in THF). The reaction was heated at $70{ }^{\circ} \mathrm{C}$ overnight. When completed, the reaction was quenched by addition of $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.). The reaction was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 times), dried over MgSO_{4}, concentrated and purified on silica gel column to give 1-bromo-2-(tert-pentyl)benzene (11) as a colorless oil (1.09 g, 80\%).

3. General Procedures for the Cross-Coupling of $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathrm{H} / \mathrm{C}\left(\mathrm{sp}^{2}\right)$-H Bonds

A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol})$, SPhos ($8.2 \mathrm{mg}, 0.02 \mathrm{mmol}$), CsOPiv ($93.6 \mathrm{mg}, 0.4 \mathrm{mmol}$), the corresponding aryl bromide $\mathbf{1}(0.2 \mathrm{mmol})$, oxadiazole 2 (0.3 $\mathrm{mmol}, 1.5$ equiv) and DMF (4 mL). The reaction was frozen with liquid nitrogen and then the tube was evacuated and backfilled with nitrogen (5 times). The mixture was stirred at $110{ }^{\circ} \mathrm{C}$ (preheated oil bath) for 16 hours. After cooling to room temperature, the reaction mixture was diluted with $\mathrm{EtOAc}(15 \mathrm{~mL})$, washed with water (3 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated
under reduced pressure. The residue was purified by preparative silica gel TLC with petroleum ether/ethyl acetate to give the corresponding products.

4. Preliminary Mechanistic Studies

4.1 Mechanistic Studies

A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with the corresponding Pd complex 4 ($0.1 \mathrm{mmol}, 1$ equiv), ${ }^{2}$ SPhos ($82.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-phenyl-1,3,4-oxadiazole 2a ($21.9 \mathrm{mg}, 0.15 \mathrm{mmol}$), CsOPiv ($46.8 \mathrm{mg}, 0.2$ mmol), and DMF (2 mL). The reaction was frozen with liquid nitrogen and then the tube was evacuated and backfilled with nitrogen (5 times). The mixture was stirred at $110{ }^{\circ} \mathrm{C}$ (preheated oil bath) for 16 hours. After cooling to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed with water (3 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography (PTLC) affording cross-coupling product $\mathbf{3 a}$ as a white solid.

4.2 Kinetic Isotope Effect Studies

and

$1 \mathrm{~m} / 1 \mathrm{~m}-\mathrm{d}_{6}=1: 1$

SPhos ($10 \mathrm{~mol} \%$)
$\xrightarrow{\text { CsOPiv (2 equiv) }}$
$\mathrm{N}_{2}, 26 \%$ yield
$K_{H} / K_{\mathrm{D}}=1: 1$
and

$3 m / 3 m-d_{5}=1: 1$

A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol})$, SPhos $(8.21 \mathrm{mg}, 0.02 \mathrm{mmol})$, CsOPiv ($93.6 \mathrm{mg}, 0.4 \mathrm{mmol}$), 2-phenyl-1,3,4-oxadiazole 2a (0.3 mmol , 1.5 equiv), aryl bromide $\mathbf{1 m}(0.1 \mathrm{mmol}), \mathbf{1 m}-\boldsymbol{d}^{6}(0.1 \mathrm{mmol})$ and DMF $(4 \mathrm{~mL})$. The reaction was frozen with liquid nitrogen and then the tube was evacuated and backfilled with nitrogen (5 times). The mixture was stirred at $110{ }^{\circ} \mathrm{C}$ (preheated oil bath) for 30 mins. After cooling to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed with water (3 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The product was analyzed by ${ }^{1} \mathrm{H}$ NMR after purification by preparative silica gel TLC with petroleum ether/ethyl acetate.

5. Characterization of the Substrates

1-Bromo-2-(tert-pentyl)benzene (11): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 0.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 146.07, 135.63, 129.40, 127.34, 127.01, 122.54, 40.20, 32.30, 28.16, 9.35. MS (EI): (M^{+}): 225.9.

6. Characterization of the Products

2-(2-Methyl-2-phenylpropyl)-5-phenyl-1,3,4-oxadiazole (3a): white solid ($49.0 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J$ $=8.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.93,164.63,147.23,131.41,128.90,128.34,126.65,126.32,125.56,123.93$, 40.01, 38.13, 28.50. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}^{+}: 301.1311(\mathrm{M}+\mathrm{Na})^{+}$, found: 301.1327.

2-(2-(4-(Tert-butyl)phenyl)-2-methylpropyl)-5-phenyl-1,3,4-oxadiazole (3b): white solid (57.0 $\mathrm{mg}, 85 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.98,164.56,148.98,144.07,131.35,128.81,126.59,125.28$, 125.11, 123.90, 40.15, 37.74, 34.27, 31.30, 28.41. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{ONa}^{+}$: $357.1937(\mathrm{M}+\mathrm{Na})^{+}$, found: 357.1941.

2-(2-(4-Methoxyphenyl)-2-methylpropyl)-5-phenyl-1,3,4-oxadiazole (3c): white solid (57.2 mg , $93 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.02,164.62,157.94,139.36,131.42,128.91,126.66,126.65,124.00,113.63,55.24$, 40.19, 37.60, 28.68. HRMS (ESI-TOF) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}: 309.1598(\mathrm{M}+\mathrm{H})^{+}$, found: 309.1606 .

4-(2-Methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)aniline (3d): brown oil (29.4 mg, $50 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H})$, $6.68-6.61(\mathrm{~m}, 2 \mathrm{H}), 3.63$ (brs, 2H), 3.17 ($\mathrm{s}, 2 \mathrm{H}$), 1.46 ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 165.16, 164.56, 144.57, 137.23, 131.34, 128.88, 126.64, 126.37, 123.97, 114.93, 40.12, 37.41, 28.59. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}^{+}: 294.1601(\mathrm{M}+\mathrm{H})^{+}$, found: 294.1604.

\boldsymbol{N}-(4-(2-methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)phenyl)acetamide (3e): yellow solid ($54.8 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.41$ (m, 5H), $7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.41,164.90$, 164.66, 142.99, 136.25, 131.47, 128.94, 126.66, 126.09, 123.81, 119.85, 39.93, 37.82, 28.57, 24.44. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}^{+}: 358.1526(\mathrm{M}+\mathrm{Na})^{+}$, found 358.1537.

2-(2-(4-Fluorophenyl)-2-methylpropyl)-5-phenyl-1,3,4-oxadiazole (3f): white solid (42.6 mg, $72 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.01(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 164.71, 164.67, 161.33 (d, $J=245.2 \mathrm{~Hz}), 142.89(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 131.51,128.97,127.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 126.62,123.87$, $115.01\left(\mathrm{~d}, J=21.0 \mathrm{~Hz}\right.$) $40.11,37.83,28.75 .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.07 . \mathrm{HRMS}$ (ESI-TOF) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{ONa}^{+}: 319.1217(\mathrm{M}+\mathrm{Na})^{+}$, found 319.1227.

4-(2-Methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)benzaldehyde (3g): yellow solid ($27.6 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.99(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.77(\mathrm{~m}, 2 \mathrm{H})$, $7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.78,164.70,164.31,154.24,134.72,131.59,129.82,128.98,126.58,126.42$, 123.72, 39.64, 38.74, 28.49. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}: 329.1260(\mathrm{M}+$ $\mathrm{Na})^{+}$, found 329.1264 .

Methyl-4-(2-methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)benzoate (3h): yellow solid ($46.5 \mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45$ $(\mathrm{m}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.82,164.66,164.46,152.48,131.49,129.66,128.93,128.28,126.61,125.71,123.77,52.01,39.67$, 38.46, 28.44. HRMS (ESI-TOF) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}: 359.1366(\mathrm{M}+\mathrm{Na})^{+}$, found 359.1379 .

1-(4-(2-Methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)phenyl)ethan-1-one (3i): white soild ($38.6 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.51$ $-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.61,164.66,164.41,152.65,135.32,131.53,128.93,128.44,126.58,125.91,123.75$, 39.64, 38.50, 28.44, 26.54. HRMS (ESI-TOF) $m / z:$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}: 343.1417(\mathrm{M}+\mathrm{Na})^{+}$, found 343.1428 .

2-(2-Methyl-2-(m-tolyl)propyl)-5-phenyl-1,3,4-oxadiazole (3j): yellow solid (53.8 $\mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.25-$ $7.18(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.02,164.63,147.31,137.78,131.41,128.91,128.24,127.05,126.66,126.36$, $124.00,122.61,40.01,38.03,28.50,21.65$. HRMS (ESI-TOF) $m / z:$ calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}^{+}$: $315.1468(\mathrm{M}+\mathrm{Na})^{+}$, found 315.1475 .

2-(2-(3-Methoxyphenyl)-2-methylpropyl)-5-phenyl-1,3,4-oxadiazole (3k): yellow oil (53.6 mg , 87%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.89,164.65,159.58$, 149.11, 131.41, 129.29, 128.90, 126.66, 123.96, 118.07, 112.32, 110.93, 55.18, 39.92, 38.17, 28.46. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}: 331.1417(\mathrm{M}+\mathrm{Na})^{+}$, found 331.1423.

2-(2-Methyl-2-phenylbutyl)-5-phenyl-1,3,4-oxadiazole (31): white solid ($48.4 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.28$ $(\mathrm{m}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H})$, $1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.93$, $164.59,145.24,131.36,128.87,128.27,126.62,126.24,126.17,123.94,41.58,38.90,34.75,23.56$, 8.63. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}^{+}: 315.1468(\mathrm{M}+\mathrm{Na})^{+}$, found 315.1477.

2-(2-Methyl-2-phenyl-3-((triisopropylsilyl)oxy)propyl)-5-phenyl-1,3,4-oxadiazole (3m): yellow oil ($65.2 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H})$, $7.43-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.15-1.06(\mathrm{~m}, 3 \mathrm{H}), 1.06-$ $1.02(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.20,164.50,143.68,131.29,128.82,128.14$, $126.59,126.56,126.48,123.96,72.00,43.81,34.05,21.99,17.96,11.93$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:$ calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SiNa}^{+}$: $473.2595(\mathrm{M}+\mathrm{Na})^{+}$, found 473.2610.

\boldsymbol{N}-4-dimethyl- N-(2-methyl-2-phenyl-3-(5-phenyl-1,3,4-oxadiazol-2-yl)propyl)benzenesulfona mide (3n): colorless oil ($89.6 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.65(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.56,164.45$, 143.51, 143.12, 134.17, 131.40, 129.70, 128.86, 128.50, 127.48, 126.99, 126.61, 126.51, 123.81, 62.13, 42.50, 38.09, 35.66, 22.83, 21.44. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SNa}^{+}: 484.1664$ (M $+\mathrm{Na})^{+}$, found 484.1682.

2-Methyl-2-phenyl-3-(5-phenyl-1,3,4-oxadiazol-2-yl)propanenitrile (3o): white solid (46.4 mg, $80 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=15,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $165.47,161.71,138.09,131.87,129.26,129.06,128.65,126.92,125.37,123.46,121.86,40.82,38.00$,

6-(3-((3r,5r,7r)-Adamantan-1-yl)-4-methoxyphenyl)- N -(4-(2-methyl-1-(5-phenyl-1,3,4-oxadiazol-2 -yl)propan-2-yl)phenyl)-2-naphthamide (3p): white solid ($96.6 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{dd}, J$ $=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49-7.43 (m, 3H), $7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 2.19(\mathrm{~s}$, $6 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 6 \mathrm{H}), 1.69(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.76$, 164.90, 164.69, 158.90, 143.43, 141.04, 139.00, 136.33, 135.27, 132.46, 131.58, 131.46, 131.32, $129.29,128.96,128.76,127.33,126.73,126.71,126.30,125.91,125.68,124.71,123.88,123.86$, $120.21,112.10,55.15,40.59,39.98,37.92,37.19,37.10,29.08,28.57$. HRMS (ESI-TOF) $m / z:$ calcd for $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}: 688.3534(\mathrm{M}+\mathrm{H})^{+}$, found 688.3551 .

(S)-2-ethoxy-4-(2-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)amino)-2-oxoethyl)-N-(4-(2-m ethyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)phenyl)benzamide (3q): yellow solid (90.0 $\mathrm{mg}, 62 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 2 \mathrm{H})$, $7.64-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=7.6$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.42-5.35 (m, 1H), $4.20-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 2 \mathrm{H}), 1.94(\mathrm{~s}$, $1 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 10 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{dd}, J=6.6$, $1.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.73,164.89,164.63,162.86,156.77,152.46,142.86$, $141.10,138.64,136.77,132.70,131.38$, 128.89, 127.86, 127.71, 126.64, 126.20, 125.00, 123.83, $122.78,122.17,120.24,119.85,113.01,65.00,49.84,46.61,43.95,39.96,37.83,28.52,26.71,25.28$, 24.07, 22.72, 22.47, 14.77. HRMS (ESI-TOF) m/z: calcd for $\mathrm{C}_{45} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{+}$: $728.4170(\mathrm{M}+\mathrm{H})^{+}$ found 728.4190.

N-(4-(2-methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propan-2-yl)phenyl)-2-(11-oxo-10,11-dihydr odibenzo[b,f]oxepin-2-yl)acetamide (3r): yellow oil ($71.5 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 8.17(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.82$, $168.80,164.85,164.65,160.69,143.35,140.30,136.35,135.91,135.46,132.90,132.45,131.46$, 129.47 , 129.31, 128.93, 128.34, 127.87, 126.66, 126.11, 125.30, 123.80, 121.65, 119.91, 73.63, 43.57, 39.92, 37.84, 28.53. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}^{+}: 566.2050(\mathrm{M}+\mathrm{Na})^{+}$, found 566.2063.

2-(2-Methyl-2-phenylpropyl)-5-(p-tolyl)-1,3,4-oxadiazole (3u) : yellow oil (53.0 $\mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21$ $(\mathrm{m}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.77, 164.64, 147.30, 141.89, 129.59, 128.33, 126.60, 126.29, 125.57, 121.19, 40.01, 38.11, 28.49, 21.56. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}^{+}: 315.1468(\mathrm{M}+\mathrm{Na})^{+}$, found 315.1478 .

2-(4-(Tert-butyl)phenyl)-5-(2-methyl-2-phenylpropyl)-1,3,4-oxadiazole (3v): yellow solid (57.6 mg, $86 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.67,164.65,154.95,147.27,128.31,126.46,126.28,125.85$, $125.54,121.11,39.96,38.08,34.97,31.06,28.48$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{ONa}^{+}$: $357.1937(\mathrm{M}+\mathrm{Na})^{+}$, found 357.1952.

2-(4-Methoxyphenyl)-5-(2-methyl-2-phenylpropyl)-1,3,4-oxadiazole (3w): yellow oil (49.2 mg,
$80 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.52,164.36,162.04,147.30,128.34,128.28,126.24,125.55,116.47,114.29$, 55.36, 39.95, 38.06, 28.46. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}: 331.1417(\mathrm{M}+\mathrm{Na})^{+}$, found 331.1430 .

4-(5-(2-Methyl-2-phenylpropyl)-1,3,4-oxadiazol-2-yl)phenol (3x): yellow solid ($32.5 \mathrm{mg}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 10.25(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.04,163.81,160.53,147.27,128.09,128.06,125.98,125.64,116.06,114.20,38.80$, 37.78, 28.44. HRMS (ESI-TOF) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}: 317.1260(\mathrm{M}+\mathrm{Na})^{+}$, found 317.1266.

2-(4-Fluorophenyl)-5-(2-methyl-2-phenylpropyl)-1,3,4-oxadiazole (3y): white solid ($47.0 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.92, $164.56(\mathrm{~d}, J=252.9 \mathrm{~Hz}), 163.81,147.15,128.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 128.33,126.33,125.57,120.25(\mathrm{~d}, J=$ 3.4 Hz), $116.21(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 40.01,38.13,28.50 .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-107.30$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{ONa}^{+}: 319.1217(\mathrm{M}+\mathrm{Na})^{+}$, found 319.1226.

2-(2-Methyl-2-phenylpropyl)-5-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazole (3z): white solid (50.4 $\mathrm{mg}, 73 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.55,163.46,146.97,133.04(\mathrm{q}, J=32.9 \mathrm{~Hz}), 128.36,127.11,126.93,126.39$, $125.95(\mathrm{q}, J=3.8 \mathrm{~Hz}), 125.57,123.54(\mathrm{q}, ~ J=272.7 \mathrm{~Hz}), 40.08,38.20,28.52 .{ }^{19} \mathrm{~F}$ NMR $(565 \mathrm{MHz}$, CDCl_{3}) δ-63.08. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{ONa}^{+}: 369.1185(\mathrm{M}+\mathrm{Na})^{+}$, found 369.1199 .

2-(2-Methyl-2-phenylpropyl)-5-(naphthalen-2-yl)-1,3,4-oxadiazole (3aa): yellow solid (50.7 mg, 77%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.86(\mathrm{~m}, 2 \mathrm{H})$, $7.86-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}$, $1 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.95,164.75,147.23,134.47$, $132.71,128.80,128.67,128.33,127.84,127.75,126.97,126.92,126.27,125.60,122.96,121.11,40.05$, 38.14, 28.49. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}^{+}: 351.1468(\mathrm{M}+\mathrm{Na})^{+}$, found 351.1475 .

2-(Furan-2-yl)-5-(2-methyl-2-phenylpropyl)-1,3,4-oxadiazole (3ab): yellow oil ($41.3 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=3.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 164.26,157.54,147.13,145.41,139.48,128.33,126.34,125.46$, 113.51, 111.93, 39.72, 38.11, 28.41. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}: 291.1104$ $(\mathrm{M}+\mathrm{Na})^{+}$, found 291.1114 .

2-(2-Methyl-2-phenylpropyl)-5-(thiophen-2-yl)-1,3,4-oxadiazole (3ac): white solid (43.7 mg, 77\%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.19(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 164.33,160.87,147.13,129.74,129.31,128.33,127.96,126.35,125.53,125.27,39.87,38.09,28.45$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OSNa}^{+}: 307.0876(\mathrm{M}+\mathrm{Na})^{+}$, found 307.0883.

2-(2-Methyl-2-phenylpropyl)-5-(pyridin-3-yl)-1,3,4-oxadiazole (3ad): yellow solid (39.2 $\mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{dd}, J=4.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dt}, J=$ $8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.44,162.51,152.13,147.61,146.88,133.82,128.35,126.42$, $125.53,123.63,120.36,40.02,38.17,28.51$. HRMS (ESI-TOF) $m / z:$ calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{ONa}^{+}$: $302.1264(\mathrm{M}+\mathrm{Na})^{+}$, found 302.1269.

2-(2-Methyl-2-phenylpropyl)benzo[d]oxazole (3ae): yellow oil ($49.3 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-$ $7.19(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.01,150.69,148.07$, 141.26, 128.27, 126.14, 125.46, 124.43, 123.99, 119.64, 110.28, 43.08, 38.49, 28.50. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}^{+}: 252.1383(\mathrm{M}+\mathrm{H})^{+}$, found 252.1389 .

2-(2-Methyl-2-phenylpropyl)benzo[d]thiazole (3af): yellow oil (33.7 mg, 50\%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.76,152.46$, 147.47, 135.57, 128.38, 126.33, 126.21, 125.62, 124.59, 122.51, 121.26, 48.98, 38.81, 28.79. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NS}^{+}$: $268.1154(\mathrm{M}+\mathrm{H})^{+}$, found 268.1162.

7. References

(1) Z. Wu, D. Ma, B. Zhou, X. Ji, X. Ma, X. Wang, Y. Zhang, Angew. Chem, Int. Ed. 2017, 56, 12288.
(2) T. Čarný, R. Rocaboy, A. Clemenceau, O. Baudoin, Angew. Chem., Int. Ed., 2020, 59, 18980.
(3) X. Guo, S. He, Z. Xu, L. Chen, Z. Li, B. Song, J. Zuo, Z. Lin, W. Yang, Nat. Commun., 2021, 12, 1304.
(4) J. Hédouin, C. Schneider, I. Gillaizeau, C. Hoarau. Org. Lett. 2018, 20, 6027.
(5) P. Alvarez-Bercedo, A. Flores-Gaspar, A. Correa, R. Martin. J. Am. Chem. Soc.2010, 132, 466.
(6) Á. Gutiérrez-Bonet, F. Juliá-Hernández, B. Luis, R. Martin. J. Am. Chem. Soc. 2016, 138, 384.

8. NMR Spectra

8.1 NMR Spectra of the Substrates

8．2 NMR Spectra of the Products

Nơo	${ }^{N}$	$\bigcirc{ }^{\circ}$	べ万o	8 \％
¢ ¢	¢	－	へ大亍	－i¢
V	｜	－uve	V	11

10

$3 g$

$\stackrel{R}{*}$	N～	～		「う「品	\％\％\％
$\stackrel{\text { ® }}{\text { ¢ }}$	do	\％	言 $\bar{\sim}$	N犬	¢¢¢
｜	V	｜	\al V	\downarrow	\／

$\stackrel{\text { ®. }}{\text { N/ }}$

3h

																,			
			-	产							¢					\bigcirc			
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\stackrel{5.0}{f 1}$		4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

Nio
$\stackrel{0}{\circ}$

3h

$3 m$

3m

3n

3n

$\begin{array}{llllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f}{100}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

毋.

$3 q$
$\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{l}100 \\ f 1(\mathrm{ppm})\end{array}\end{array}$

¢ ${ }_{0}^{0}$	$\stackrel{\text { ² }}{\sim}$	O¢M	¢0\％	「 $\mathrm{N}_{\text {O }}^{\sim}$	$\bar{\sim}$	岕
¢ ¢ ¢	j	$\stackrel{\sim}{\text { ¢ }}$	$\stackrel{\oplus}{\square} \stackrel{+}{\square}$	へべ介	\％	¢్లై
Vi		ソ13	11	V	｜	11

|
$\begin{array}{lll}1 \\ 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210\end{array}$

$\begin{array}{ll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210\end{array}$
Coses)
$3 a a$

¢ ${ }_{\text {¢ }}^{\substack{+ \pm}}$	
¢ ¢	¢ ${ }_{\text {¢ }}^{\sim}$
V	-

Nion

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\underset{f 1}{100}(\mathrm{ppm})$ |
| :--- |

3ab

N

3ab

3ac

8.3 NMR Spectra for Kinetic Isotope Effect Studies

