Supporting Information

An *in situ* derived MOF@ In_2S_3 heterojunction stabilizes Co(II)salicylaldimine for efficient photocatalytic formic acid dehydrogenation

Meijin Zhang^a, Wenting Lin^a, Liang Ma^a, and Yunhong Pi^{a*}, Tiejun Wang^{a*}

^a School of Chemical Engineering and Light Industry, and Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.

*Corresponding author. E-mail: piyunhong@gdut.edu.cn; tjwang@gdut.edu.cn

Table of contents

1. Experimental Section	3
2. Supplementary Figures of Material Characterizations	9
3. Supplementary Tables	15
References	18

1. Experimental Section

1.1. Chemicals and Reagents.

Indium nitrate hydrate (In(NO₃)₃·xH₂O, 99.9%), 2-Aminoterephthalic Acid (H₂BDC-NH₂, 98%), N,N-dimethylformamide (DMF, 99.5%), Salicylaldehyde (C₇H₆O₂, 99%), Cobalt(II) perchlorate hexahydrate (Co(ClO₄)₂·6H₂O, 98%), Iron(II) tetrafluoroborate hexahydrate (Fe(BF₄)₂·6H₂O, 97%), ethanol (EtOH, 95%), Deuterium oxide (D₂O, 99.9%) were purchased from Aladdin Chemistry Co., Ltd. Thiourea (CH₄N₂S, 99.0%) was obtained from Damao Chemical Reagent Factory. N-N-Dimethylacetamide (DMA, 99.8%), Tetrahydrofuran (THF, 99.9%), Copper (II) chloride (CuCl₂, 99.8%), Nickel(II) chloride hexahydrate (NiCl₂·6H₂O, 99.8%) were supplied from Shanghai Macklin Biochemical Co., Ltd. Methanol (MeOH) were purchased from Guanghua Chemicals. All the chemicals were used without further purification.

1.2. Solvothermal Synthesis of NH₂-MIL-68.

 NH_2 -MIL-68(In) was synthesized by a solvothermal process. Typically, H_2BDC - NH_2 (0.234 g) and $In(NO_3)_3 \cdot xH_2O$ (1.156 g) were dissolved in 12.4 ml of DMF and stirred for 10 min. The resulting clear solution was subsequently transferred into a 35 ml Pyrex glassware and retained at 125 °C for 5 h, yielding a faint yellow precipitate by centrifugation and washed thoroughly with DMF after cooling down temperature. Then the obtained product was immersed in anhydrous methanol for purification at 60 °C for 48 h to remove the guest molecules present in the pores, and finally centrifuged and dried overnight under vacuum at room temperature.

1.3. Post-Solvothermal Treatment for NH₂-MIL-68@In₂S₃.

The in-situ derived NH₂-MIL-68@In₂S₃ heterostructure was prepared with NH₂-MIL-68(In) obtained in previous step as precursor. Briefly, NH₂-MIL-68 (100 mg) was suspended in 15 ml ethanol in a 50 ml beaker followed by dropwise addition of a thiourea /ethanol solution (200 mg thiourea in 15 ml ethanol). The resulting mixture was stirred for 30 min and then transferred to a Teflon-lined autoclave, maintaining at 180 °C for 2 h. The solution was then cooled to room temperature, followed by filtration and washing with ethanol. Subsequently, the resulting product was purified in anhydrous ethanol at 60 °C for 48 h, and then collected before being dried overnight under vacuum at room temperature to afford NH₂-MIL-68@In₂S₃ as a dark yellow solid. Through the identical sulfidation process with extended reaction time (12 h), pure In₂S₃ with rod-like structure as NH₂-MIL-68 was also synthesized as comparison.¹

1.4. Synthesis of Co-sal-NH₂-MIL-68@In₂S₃.

Co-sal-NH₂-MIL-68@In₂S₃ was constructed via a two-step post-synthetic process with formation of salicylaldimine moiety (sal-MOF) by salicylaldehyde modification and following metalation with cobalt salts to provide robust and highly active singlesite solid catalytic centers. Firstly, 30 mg of as-obtained NH₂-MIL-68@In₂S₃ was dispersed into 40 ml of methanol in a flask under ultrasound, and 12 μ l of salicylaldehyde was then added into the mixture, followed by reflux at 100 °C for 24 h. Afterwards, the precipitate was washed with abundant ethanol three times and dried under vacuum at room temperature overnight to give a light orange solid as sal-NH₂-MIL-68@In₂S₃. Subsequently, the obtained sal-NH₂-MIL-68@In₂S₃ (10.0 mg) was suspended in 2 ml THF in a vial, following with the addition of Co(ClO₄)₂·6H₂O/THF solution (2.73 µmol Co(ClO₄)₂·6H₂O in 2.0 ml THF). The mixture was stirred slowly overnight for 24 h and the resulting deep orange solid was centrifuged out of suspension and washed with THF 4-5 times to afford the final powdery Co-sal-NH₂-MIL-68@In₂S₃. ICP-OES analysis of the digested Co-sal-NH₂-MIL-68@In₂S₃ revealed a Co-loading of 4.3×10^{-3} wt%.

For comparison, M-sal-NH₂-MIL-68@In₂S₃ (M = Fe, Cu, Ni) were synthesized similarly as Co-sal-NH₂-MIL-68@In₂S₃ with the exception that $Co(ClO_4)_2$ was replaced by Fe(BF₄)₂, CuCl₂, or NiCl₂, respectively.

1.5. Characterization.

Powder X-ray diffraction (PXRD) data was collected on a MiniFlex 600 diffractometer using monochromatized Cu K α radiation (λ = 0.15418 nm) source with a step size of 0.02° at 10° per minute. The Fourier-transform infrared (FTIR, Thermo-Filsher) spectroscopy measurements were conducted with Nicolet 6700 FTIR Spectrometric Analyzer using KBr pellets. The morphological study of the assynthesized hybrid nanostructures was obtained through Scanning electron microscope (SEM, Hitach */SU8220), transmission electron microscopy (TEM, FEI, Thermo */Talos F200S). The interaction and chemical compositions of the composites were analyzed by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi). UV–Vis diffused reflectance spectra (DRS) were carried out on a UV-Vis spectrophotometer (UV-2600i, Shimadzu, Japan), with BaSO₄ as a reflectance standard. An ASAP 2460 V2.01 apparatus (Micromeritics Instrument Corp., USA)

was applied to record the Brunauer-Emmett-Teller (BET) surface area and porous structure, with nitrogen adsorption and desorption isotherms of samples measured at 77 K after being degassed under vacuum at 150 °C for 6 h. Inductively coupled plasma-mass spectrometry (ICP-OES) data was recorded with an Agilent 730 ICP-OES. The photoluminescence spectra (PL) were observed on a fluorescence spectrometer (FLS 980, Edinburgh, England) with an excitation wavelength of 450 nm. The Mott-Schottky curves, photocurrent response and Cyclic voltammetry were performed on an electrochemical workstation (CHI660D) with a three-electrode cell with graphite rod as a counter electrode, Ag/AgCl as a reference electrode, and an electrolyte (0.5 M Na₂SO₄ aqueous solution at pH=7). Electron spin-resonance (ESR) spectra were carried out with Bruker EMXnano at room temperature. Amounts of H₂ and CO etc. generated in the photocatalytic experiments were determined by gas chromatography (GC) using a GC9790PLUS with the Ar carrier gas and a TCD or FID detector.

1.6. Photocatalytic Hydrogen Evolution from Formic Acid.

The photocatalytic H_2 evolution from FA was carried out in an externally illuminated reaction vessel with a magnetic stirrer, with samples prepared in a 5.0 ml septum-sealed glass vial. In the standard reaction, each sample was made up to a volume of 2.00 ml, including 1.80 ml DMA, 10 µl FA, 0.20 ml H₂O, and 45 mg 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH, 0.2 mmol) in addition to a certain amount of MOF catalyst. The sample vials were capped and sealed, and deoxygenated by bubbling nitrogen for 5 minutes to ensure complete removal of air. Keeping at room temperature, the solution was irradiated by a 300 W Xe lamp (PLS-

SXE300+>420 nm) equipped with a cooling fan for 24 hours. After the hydrogen evolution reaction, the gas in the headspace of the vial is analyzed by GC to determine the amount of H_2 produced. TON of H_2 evolution reaction was calculated based on the amount of catalytic Co sites.

1.7. Recycle tests of Co-sal-NH₂-MIL-68@In₂S₃ catalyzed photocatalytic Hydrogen Evolution from Formic Acid.

Recycle tests on Co-sal-NH₂-MIL-68@In₂S₃ for photocatalytic hydrogen evolution from formic acid was carried out to demonstrate the stability and reusability of the present catalytic MOF system. Specifically, hydrogen evolution recycle reactions were conducted with Co-sal-NH₂-MIL-68@In₂S₃ catalyst (7.32 nmol Co site), and 45 mg BIH, in 10 μ L FA + 1.8 mL DMA+0.2 mL H₂O, under >420 nm Xe lamp for 24 h. The solution was degassed with N₂ for 5 min before each run and 5 mg of BIH was added to the solution after each run.

1.8. Photoelectrochemical measurements.

The working photoelectrodes were prepared as follows: 4 mg of photocatalyst powders were dispersed in mixed solution containing 1 ml of THF and 40 μ l of Nafion with ultrasound treatment for 30 min. Then the mixed solution was dropped and dried several times on Glassy carbon electrode (0.25×0.25 π cm²). The photocurrent response curves, linear sweep voltammetry (LSV), Cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS) and Mott-Schottky plots were accomplished in an electrochemical workstation using three electrode system, in which a graphite rod, a saturated Ag/AgCl and the prepared photoelectrode were used as counter electrode, reference electrode and working electrode, respectively. A 300 W Xe lamp was used as light sources and Na_2SO_4 aqueous solution (0.5 M) was chose as electrolyte (CV features was conducted in 10 ml 0.1 M TBAH (Tetrabutyl-ammonium hexafluorophosphate) /DMA solution with 1 ml H₂O with a scan rate of 50 mV/s.). The Mott-Schottky measurement was conducted in the potential range from -1.2 to 0 V with the frequency of 0.5 and 1.0 kHz, respectively.

1.9. Calculation of turnover number (TON).

The calculation of turnover number (TON) over Co-sal-NH₂-MIL-68@ In_2S_3 was using the following equation:

 $TON = \frac{moles of evolved products gas}{moles of active sites on photocatalysts}$

1.10. Calculation of apparent quantum efficiency (AQE).

The apparent quantum efficiency (AQE) for H_2 evolution was evaluated by a 300 W Xe lamp (PLS-SXE300+). The monochromatic wavelength of light (λ) was set at 420 nm. The amount of generated H_2 was analyzed by GC after 24 hours of light irradiation. AQE under the different wavelengths were calculated by the following equation:

 $AQE(\%) = \frac{Ne}{Np} = \frac{(2 \times number of evolved H_2 molecules)}{(number of incident photons)}$

2. Supplementary Figures of Material Characterizations

Figure S1. PXRD patterns of NH₂-MIL-68, NH₂-MIL-68@In₂S₃ and Co-sal-NH₂-MIL-68@In₂S₃ before and after photocatalytic H₂ evolution from FA reaction.

Figure S2. a) N_2 adsorption isotherms and b) pore size distribution of NH_2 -MIL-68, NH_2 -MIL-68@In₂S₃ and Co-sal-NH₂-MIL-68@In₂S₃.

Figure S3. SEM and TEM images of Co-sal-NH₂-MIL-68@In₂S₃ after photocatalytic H_2 evolution from FA reaction.

Figure S4. Photocatalytic H_2 generation with various pH values.

Figure S5. Recycle Test of Co-sal-NH₂-MIL-68@In₂S₃ catalyzed photocatalytic H₂ evolution in three consecutive runs.

Figure S6. XRD of Co-sal-NH₂-MIL-68@In₂S₃ synthesized from three parallel experiments.

Figure S7. XRD patterns before and after the recycle test of Co-sal-NH₂-MIL- $68@In_2S_3$ catalyzed photocatalytic H₂ evolution.

Figure S8. Current–voltage curve of NH₂-MIL-68 (a), NH₂-MIL-68@In₂S₃ (b) and Co-sal-NH₂-MIL-68@In₂S₃ (c) in a three-compartment cell under visible-light illumination ($\lambda > 420$ nm).

Figure S9. EIS Nyquist plots of the as-prepared NH₂-MIL-68, NH₂-MIL-68@In₂S₃ and Co-sal-NH₂-MIL-68@In₂S₃.

Figure S10. CV scans of the as-prepared NH₂-MIL-68, NH₂-MIL-68@In₂S₃ and Co-sal-NH₂-MIL-68@In₂S₃.

Figure S11. a) UV-vis DRS spectra and plots of $(\alpha hv) 1/2 vs$. photon energy of MOFderived In₂S₃, and Co-sal-NH₂-MIL-68; b-c) Mott–Schottky plots of MOF-derived In₂S₃ and Co-sal-NH₂-MIL-68.

3. Supplementary Tables

Sample	BET (m ² ·g ⁻¹)	BJH pore volume (cm ³ ·g ⁻¹)	BJH Desorption average pore diameter (nm)
NH ₂ -MIL-68	368	0.08	6.89
NH ₂ -MIL-68@In ₂ S ₃	274	0.18	10.47
Co-sal-NH ₂ -MIL-68@In ₂ S ₃	133	0.09	12.02

Table S1. BET surface area, pore volume and pore diameter of NH2-MIL-68, NH2-MIL-68@In2S3 and Co-sal-NH2-MIL-68@In2S3

Table S2. Condition screening of solvent amounts of photocatalytic H2 evolutioncatalyzed by Co-sal-NH2-MIL-68@In2S3.ª

Entry	Sacrificial Agent	DMA / ml	H ₂ O / ml	FA / µl	Efficiency / μmolg ⁻¹ h ⁻¹
1	BIH	2.0	-	-	0
2	BIH	2.0	-	10	1029
3	BIH	1.95	0.05	10	2900
4	BIH	1.90	0.10	10	15087
5	BIH	1.75	0.25	10	18370
<u>6</u>	BIH	<u>1.80</u>	<u>0.20</u>	<u>10</u>	<u>18746</u>
7	BIH	1.80	0.20	-	3
8	BIH	1.80	0.20	20	1684
9	BIH	1.80	0.20	30	371
10	BIH	1.80	0.20	50	143
11 ^b	BIH	1.80	0.20	10	0
12°	BIH	1.80	0.20	10	11176
13 ^d	BIH	1.80	0.20	10	1309
14 ^e	BIH	1.80	0.20	10	1159
15 ^f	BIH	1.80	0.20	10	607

^a Unless noted, photocatalytic H₂ evolution from FA reactions were conducted with Co-sal-NH₂-MIL-68@In₂S₃ catalyst (7.32 nmol Co site), and 45 mg BIH under visible-light illumination ($\lambda > 420$ nm) for 24 h. ^b Catalyst: Co-sal-NH₂-MIL-68@In₂S₃ (0 nmol Co site). ^c Catalyst: Co-sal-NH₂-MIL-68@In₂S₃ (3.66 nmol Co site). ^d Catalyst: Co-sal-NH₂-MIL-68@In₂S₃ (10.98 nmol Co site). ^e Catalyst: Co-sal-NH₂-MIL-68@In₂S₃ (14.64 nmol Co site). ^f Catalyst: Co-sal-NH₂-MIL-68@In₂S₃ (14.64 nmol Co site). ^f Catalyst: Co-sal-NH₂-MIL-68@In₂S₃ (21.96 nmol Co site).

Entry	Catalyst	Efficiency (µmolg ⁻¹ h ⁻¹)	TON	H ₂ Selectivity (%)
1	$Co(ClO_4)_2 + sal-NH_2-MIL-68$	437	143	97.8
2	$\begin{array}{c} \text{Co}(\text{ClO}_4)_2 + \text{sal-NH}_2\text{-}\text{MIL-}\\ 68@\text{In}_2\text{S}_3 \end{array}$	10277	3369	99.9
3	Co-sal-NH ₂ -MIL-68+In ₂ S ₃	1709	560	99.4
4	$Co(ClO_4)_2$ + NH ₂ -MIL-68@In ₂ S ₃	5731	1879	99.8
5	$\begin{array}{c} \text{Co}(\text{ClO}_4)_2 + \text{sal-NH}_2 \text{-}\text{MIL-} \\ 68 + \text{In}_2\text{S}_3 \end{array}$	1017	667	99.2
<u>6</u>	<u>Co-sal-NH₂-MIL-68@In₂S₃</u>	<u>18746</u>	<u>6146</u>	<u>99.9</u>

Table S3. Control experiments of photocatalytic H₂ evolution from FA.^a

^a Unless noted, photocatalytic H₂ evolution from FA reactions were conducted with MOF or control catalysts (containing 7.32 nmol Co site), and 45 mg BIH, in 10 μ l FA + 1.80 ml DMA+0.2 mL H₂O, under visible-light illumination (λ > 420 nm) for 24 h.

Entry	Efficiency (µmolg ⁻¹ h ⁻¹)	TON	H ₂ Selectivity (%)
1	18746	6146	99.9
2	18023	5908	99.9
3	18713	6134	99.9

Table S4. Parallel experiment of photocatalytic H₂ evolution from FA.^a

^a Unless noted, photocatalytic H₂ evolution from FA reactions were conducted with MOF or control catalysts (containing 7.32 nmol Co site), and 45 mg BIH, in 10 μ l FA + 1.80 ml DMA+0.2 mL H₂O, under visible-light illumination (λ > 420 nm) for 24 h.

Table S5. Photocatalytic activities of salicylaldimine moiety stabilized Cu, Fe, Ni catalytic sites. ^a

Sample	TON	H ₂ Selectivity (%)
Cu-sal-NH ₂ -MIL-68@In ₂ S ₃	367	99.4
Fe-sal-NH ₂ -MIL-68@In ₂ S ₃	1169	99.8
Ni-sal-NH ₂ -MIL-68@In ₂ S ₃	5724	99.7

^a Reactions were conducted with MOF catalysts (containing 8 nmol Cu/ Fe /Ni site), and 45 mg BIH, in 10 μ I FA + 1.80 ml DMA + 0.2 ml H₂O, under visible-light illumination (λ > 420 nm) for 24 h.

System	Catalyst	Light source	Sacrificial Agent	Reaction Conditions	Efficiency (µmolg ⁻¹ h ⁻¹)	TON	Year
~ 1	PdAg@g- C ₃ N ₄	Xe lamp > 400 nm	/	HCOOH (1 M)	552000	315	2018 ²
	Au _x Pd _y /CNS	Xe lamp > 420 nm	/	1M HCOOH/HCOONa (4:1)	72000	170	2019 ³
material	Ag _{0.1} Pd _{0.9} /2 D CNNs	Xe lamp > 400 nm	/	HCOOH/HCOONa (3:1)	2316000	61	2020 ⁴
	AuPdNi/DC N-10-APTS	Xe lamp > 420 nm	EDTA-2Na	HCOOH/HCOONa (1:1)	1493000	5148	20215
	PF- Mo _{1.98} C _{1.02}	Sunlight	/	HCOOH/HCOONa (1:3)	25800	-	20216
Semiconduc tor	QD- MPA/CoCl ₂	Xe lamp > 420 nm	/	HCOOH/HCOONa	120000	10223	20157
	CdS/Fe- salen	Xe lamp > 420 nm	/	H ₂ O/CH ₃ CN (3:1) PH 3.5	150000	1125	20208
	FeP@CdS	Xe lamp > 420 nm	/	HCOOH (4 M) PH 3.5	278000	311	20219
	NiCoP@Cd S	Xe lamp > 420 nm	/	HCOOH (4 M) PH 3.5	354000	1684	202110
Oxide	Au@SiO ₂ -Pt	Xe lamp > 420 nm	/	HCOOH/H ₂ O (1:100)	50 µmolg ⁻¹ Pt	9	202111
	BFO	250 nm < Xe lamp < 500 nm	/	HCOOH (0.1 M) PH 3	30	-	201812
Polymer	PCN-520-F	LED lamp	/	5%HCOOH 0.5%Pt	1600	63	202013
MOF	Au@Pd/UiO -66(Zr ₈₅ Ti ₁₅)	Xe lamp > 420 nm	/	H ₂ O/HCOOH (100:3)	357100	400	201614
	CdS@ZIF-8	Xe lamp > 420 nm	/	HCOOH/HCOONa (3:1) H ₂ PtCl	900	-	201615
	Co-sal-NH ₂ - MIL- 68@In ₂ S ₃	Xe lamp > 420 nm	BIH	DMA/H ₂ O/FA (180:20:1)	18746	6146	This work

Table S6. Comparison of activities over different systems for photocatalytic H_2 evolution from FA

References

 Q. Hou, X. Li, et al, Construction of In₂S₃@NH₂-MIL-68(In)@In₂S₃ Sandwich Homologous Heterojunction for Efficient CO₂ Photoreduction. *Ind. Eng. Chem. Res.* 2020, 59, 47, 20711.

2. X. Du, J. Sun, et al. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@g-C₃N₄ Mott–Schottky heterojunction. *Nanoscale Adv.*, **2021**, 3, 4447.

3. D. Yu, L. Li, et al. Plasmonic AuPd-based Mott-Schottky photocatalyst for synergistically enhanced hydrogen evolution from formic acid and aldehyde. *Appl. Catal. Environ.* B, **2019**, 251, 66.

4. C. Wan, L. Zhou, et al. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2Dg-C₃N₄ nanosheets Mott-Schottky photocatalyst. *Chem. Eng. J.*, **2020**, 396, 125229.

5. G. Huang, X. Gu, et al. Alkylamine-Grafted Organic Semiconductors with Plasma-Induced Defects as Electron Promoters of CO-Resistant Pd-Based Nanoparticles for Efficient Light-Driven On-Demand H₂ Generation. *ACS Appl. Energy Mater.*, **2021**, 4, 704.

6. C. Lv, P. Lou, et al. Efficient hydrogen production via sunlight-driven thermal formic acid decomposition over a porous film of molybdenum carbide. *J. Mater. Chem. A*, **2021**,9, 22481.

 Kuehnel, M.F., Wakerley, D.W., et al. Photocatalytic Formic Acid Conversion on CdS Nanocrystals with Controllable Selectivity for H₂ or CO. *Angew. Chem. Int. Ed.*, 2015, 54, 9627.

8. R. M. Irfan, T. Wang, et al. Homogeneous Molecular Iron Catalysts for Direct Photocatalytic Conversion of Formic Acid to Syngas (CO+H₂). *Angew. Chem. Int. Ed.*, **2020**, 59, 14818.

9. T. Wang, L. Yang, et al. CdS Nanorods Anchored with Crystalline FeP Nanoparticles for Efficient Photocatalytic Formic Acid Dehydrogenation. *ACS Appl. Mater. Interfaces*, **2021**, 13, 20, 23751.

10. H. Cao, T. Wang, et al. NiCoP nanoparticles anchored on CdS nanorods for enhanced hydrogen production by visible light-driven formic acid dehydrogenation. *Int. J. Hydrog. Energy*, **2021**, 46, 64, 32435.

11. X. Yuan, W. Zhen, et al. Plasmon Coupling Induced Hot Electrons for Photocatalytic Hydrogen Generation. *Chem. Asian J.* **2021**, 16, 3683.

12. W. Ramadan, R. Dillert, et al. Changes in the solid-state properties of bismuth iron oxide during the photocatalytic reformation of formic acid. *Catal. Today*, **2019**, 326, 22.

Y. Li, R. He, P. Han, et al. A new concept: Volume photocatalysis for efficient H₂ generation Using low polymeric carbon nitride as an example. *Appl. Catal. Environ. B*, 2020, 279, 119379.

14. M. Wen, Kohsuke Mori, et al. Plasmonic Au@Pd Nanoparticles Supported on a Basic Metal–Organic Framework: Synergic Boosting of H₂ Production from Formic Acid. *ACS Energy Lett.*, **2017**, 2, 1, 1.

15. Zeng, M., Chai, Z., Deng, X. et al. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H₂ generation from formic acid. *Nano Res.*, **2016**, 9, 2729.