Ni Catalyzed Domino Transformation of Enopyranoses and 2-lodo Phenols/Anilines to Pyrano cis fused dihydro-Benzofurans/Indoles

Monika Bhardwaj,^{ab} Bisma Rasool,^{ab} and Debaraj Mukherjee*^{ab}

^a Natural Products and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu-180001, India

^b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 20002, India

Supporting Information

Table of Contents	Page No.
1. General Information	SI-2
3. General Experimental procedures	SI-2
4. Characterization Data of Products	SI-3
5. Spectral Data	SI-13
6. 2D Data of compounds 1a, 1aa and 2a	SI-31

1. General Information: All reagents were purchased from commercial sources and used without treatment. Silica gel coated aluminum plates were used for TLC. The products were purified by column chromatography on silica gel (100-200 mesh) using hexane–ethyl acetate as the eluent. ¹H NMR (400 MHz) spectra were recorded on a Bruker Avance 400 spectrometer in CDCl₃, using CDCl₃ (for 1 H, δ = 7.26) as the internal standard. ¹³C NMR (101 MHz) spectra were recorded on a Bruker Avance 400 spectrometer in CDCl₃ using CDCl₃ (for 1 H, δ = 7.26) as the internal standard. ¹³C NMR (101 MHz) spectra were recorded on a Bruker Avance 400 spectrometer in CDCl₃ using CDCl₃ (for ¹³C, δ = 77.0) as internal standard. Chemical shifts are expressed in parts per million (δ ppm). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, ddd = doublet of doublet of doublet, dt = doublet of triplet, m = multiplet, s br = singlet broad. Exact mass of all products were analysed by using HRMS having QTOF analyser.

2. General Experimental Procedures

3.1 General experimental procedure for the synthesis of pyrano C2-C1 and C3-C2 fused heterocycles (A)

To a solution of glycal (1 equiv) in DMF (3 mL) taken in an oven dried sealed tube charged with magnetic bead, 2-iodophenol/2-iodoanniline (1.2 equiv), Ni(acac)₂ (0.10 equiv) and PPh₃ (0.10 equiv) were added. In the same solution Cs_2CO_3 (1 equiv) was added and the reaction mixture was allowed to stir at 80 °C for 6 hrs. After the completion of the reaction, the reaction mixture was diluted with 20 mL of ethyl acetate and washed with 20 mL brine. The organic layer was dried over magnesium sulphate and

evaporated to dryness. The residue was purified by column chromatography over silica gel (60-120 mesh) with pet ether/ ethyl acetate as eluent to afford the desired compound.

3. Characterization Data of Products:

Prepared by general procedure A using tri-*O*-acetyl-D-glucal (50 mg, 0.18 mmol), Ni(acac)₂ (4.6 mg, 0.018 mmol), PPh₃ (4.7 mg, 0.018 mmol), 2-iodophenol (47 mg, 0.22 mmol) and Cs₂CO₃ (58 mg, 0.18 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. The resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 97:3) to afford **1a** as yellow oil in 75 % yield, 33 mg.

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 (d, J = 7.3 Hz, 1H), 7.19 (t, J = 3.7 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 6.13 (dd, J = 10.4, 3.9 Hz, 1H), 6.05 – 5.99 (m, 1H), 5.47 (d, J = 6.1 Hz, 1H), 4.76 – 4.69 (m, 1H), 4.39 – 4.30 (m, 2H), 4.03 (d, J = 8.6 Hz, 1H), 2.05 (s, 3H). ¹³C **NMR (101 MHz, CDCl₃)** δ 170.8, 160.2, 131.1, 130.6, 125.9, 125.7, 123.8, 121.1, 110.8, 74.5, 72.9, 68.9, 63.9, 20.9. HRMS (ESI+): m/z calcd. For C₁₄H₁₄NaO₄ (M+Na)⁺: 269.0790; found 269.0796

Prepared by general procedure A using tri-*O*-benzoyl-D-glucal (50 mg, 0.11 mmol), Ni(acac)₂ (2.8 mg, 0.011 mmol), PPh₃ (4.7 mg, 0.011 mmol), 2-iodophenol (29 mg, 0.13 mmol) and Cs_2CO_3 (36 mg, 0.11 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. The

resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 98:2) to afford **1b** as yellow oil in 53 % yield, 18 mg.

¹**H NMR (400 MHz, CDCl₃)** δ 8.00 (dd, J = 8.4, 1.3 Hz, 2H), 7.55 – 7.49 (m, 1H), 7.39 (t, J = 7.7 Hz, 2H), 7.36 – 7.30 (m, 1H), 7.17 (d, J = 1.4 Hz, 1H), 6.88 (td, J = 7.4, 0.9 Hz, 1H), 6.79 (d, J = 8.1 Hz, 1H), 6.18 (ddd, J = 10.5, 4.0, 1.9 Hz, 1H), 6.15 – 6.08 (m, 1H), 5.54 (d, J = 6.0 Hz, 1H), 4.77 – 4.71 (m, 1H), 4.61 (dd, J = 11.8, 6.8 Hz, 1H), 4.51 – 4.45 (m, 1H), 4.31 (dd, J = 11.8, 3.6 Hz, 1H). ¹³**C NMR (101 MHz, CDCl₃)** δ 166.3, 160.1, 133.2, 131.2, 130.7, 129.7, 128.5, 126.0, 123.7, 121.1, 110.8, 74.5, 72.9, 69.1, 64.6. HRMS (ESI+): m/z calcd. For C₁₉H₁₆NaO₄ (M+Na)⁺: 331.0946; found 331.0949.

Prepared by general procedure A using di-*O*-acetyl-L-rhamnal (50 mg, 0.23 mmol), Ni(acac)₂ (6 mg, 0.023 mmol), PPh₃ (6 mg, 0.023 mmol), 2-iodophenol (61 mg, 0.27 mmol) and Cs_2CO_3 (75 mg, 0.23 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. The resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 97:3) to afford **1c** as yellow oil in 79 % yield, 34 mg.

¹**H NMR (400 MHz, CDCl₃)** δ 7.41 (d, J = 7.3 Hz, 1H), 7.25 (t, J = 7.8 Hz, 1H), 6.95 (t, J = 7.4 Hz, 1H), 6.86 (d, J = 8.1 Hz, 1H), 6.12 (dd, J = 10.4, 2.4 Hz, 1H), 6.06 – 5.98 (m, 1H), 5.50 (d, J = 6.2 Hz, 1H), 4.86 – 4.76 (m, 1H), 4.31 (d, J = 6.5 Hz, 1H), 1.34 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 137.3, 130.3, 126.1, 125.8, 120.9, 120.9, 110.8, 74.7, 72.6, 66.1, 19.5. HRMS (ESI+): m/z calcd. For C₁₂H₁₃O₂ (M+H)⁺: 189.0916; found 189.0912.

Prepared by general procedure A using tri-*O*-acetyl-D-glucal (50 mg, 0.18 mmol), Ni(acac)₂ (4.6 mg, 0.018 mmol), PPh₃ (4.7 mg, 0.018 mmol), 2-iodo-5-methoxyphenol (52 mg, 0.21 mmol) and Cs_2CO_3 (59 mg, 0.18 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. After the completion of the reaction, the resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 97:3) to afford **1d** as brown oil in 57% yield, 28 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 3.7 Hz, 1H), 6.45 – 6.39 (m, 1H), 6.34 (s, 1H), 6.15 – 6.09 (m, 1H), 6.02 (d, J = 10.3 Hz, 1H), 5.38 (d, J = 5.8 Hz, 1H), 4.76 – 4.69 (m, 1H), 4.32 (d, J = 8.5 Hz, 2H), 4.07 – 4.01 (m, 2H), 3.70 (s, 3H), 2.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 162.3, 161.7, 131.3, 126.2, 123.8, 107.4, 96.8, 75.4, 72.4, 68.8, 63.94, 55.5, 20.8. HRMS (ESI+): m/z calcd. For C₁₅H₁₇O₅ (M+H)⁺: 277.1076; found 277.1080.

Prepared by general procedure A using tri-*O*-acetyl-D-glucal (50 mg, 0.18 mmol), Ni(acac)₂ (4.6 mg, 0.018 mmol), PPh₃ (4.7 mg, 0.018 mmol), 2-iodo-4-methylphenol (50 mg, 0.22 mmol) and Cs₂CO₃ (58 mg, 0.18 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. The resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 97:3) to afford **1e** as yellow oil in 53 % yield, 25 mg.

¹**H NMR (400 MHz, CDCl₃)** δ 7.16 – 7.12 (m, 1H), 6.98 (dd, *J* = 7.9, 1.0 Hz, 1H), 6.68 (d, *J* = 8.2 Hz, 1H), 6.18 – 6.11 (m, 1H), 6.02 (ddd, *J* = 10.4, 3.0, 0.9 Hz, 1H), 5.41 (d, *J* = 6.0 Hz, 1H), 4.74 – 4.66 (m, 1H), 4.35 (d, *J* = 8.1 Hz, 2H), 4.02 (d, *J* = 8.4 Hz, 1H), 2.24 (s, 3H),

2.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 158.0, 131.2, 130.9, 130.6, 126.2, 125.6, 123.9, 110.4, 74.5, 72.7, 69.1, 63.7, 20.9, 20.8. HRMS (ESI+): m/z calcd. For C₁₅H₁₆NaO₄ (M+Na)⁺: 283.0946; found 283.0950.

Prepared by general procedure A using tri-*O*-benzoyl-D-glucal (50 mg, 0.11 mmol), Ni(acac)₂ (2.8 mg, 0.011 mmol), PPh₃ (4.7 mg, 0.011 mmol), 2-iodo-4-methylphenol (31 mg, 0.13 mmol) and Cs_2CO_3 (36 mg, 0.11 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. The resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 98:2) to afford **1f** as yellow oil in 54 % yield, 19 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (dd, J = 8.4, 1.3 Hz, 2H), 7.52 (ddd, J = 6.9, 4.1, 1.3 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.15 – 7.12 (m, 1H), 6.98 (dd, J = 8.0, 1.6 Hz, 1H), 6.69 (d, J = 8.2 Hz, 1H), 6.18 (ddd, J = 10.5, 4.0, 1.9 Hz, 1H), 6.14 – 6.09 (m, 1H), 5.48 (d, J = 5.9 Hz, 1H), 4.73 – 4.68 (m, 1H), 4.61 (dd, J = 11.8, 6.8 Hz, 1H), 4.52 – 4.46 (m, 1H), 4.30 (dd, J = 11.8, 3.6 Hz, 1H), 2.23 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.3, 158.1, 133.2, 131.2, 131.1, 130.6, 129.8, 129.7, 128.5, 126.3, 125.7, 123.8, 110.4, 74.6, 72.9, 69.2, 64.6. HRMS (ESI+): m/z calcd. For C₂₀H₁₈NaO₄ (M+Na)⁺: 345.1103; found 345.1107.

Prepared by general procedure A using di-*O*-acetyl-L-rhamnal (50 mg, 0.23 mmol), Ni(acac)₂ (6 mg, 0.023 mmol), PPh₃ (6 mg, 0.023 mmol), 2-iodo-4-methylphenol (65 mg, 0.27 mmol)

and Cs_2CO_3 (75 mg, 0.23 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. The resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 99:1) to afford **1g** as yellow oil in 47 % yield, 22 mg.

¹**H NMR (400 MHz, CDCl₃)** δ 7.15 – 7.12 (m, 1H), 7.00 – 6.94 (m, 1H), 6.67 (d, J = 8.2 Hz, 1H), 6.04 (ddd, J = 10.4, 3.0, 0.7 Hz, 1H), 5.94 (ddd, J = 10.4, 4.0, 2.0 Hz, 1H), 5.37 (d, J = 6.2 Hz, 1H), 4.74 – 4.67 (m, 1H), 4.25 (d, J = 6.8 Hz, 1H), 2.24 (s, 3H), 1.26 (d, J = 6.8 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 137.1, 130.9, 130.4, 126.1, 120.8, 110.4, 74.8, 72.5, 66.2, 20.8, 19.4. HRMS (ESI+): m/z calcd. For C₁₃H₁₄NaO₂ (M+Na)⁺: 225.0891; found 225.0894.

Prepared by general procedure A using tri-*O*-acetyl-D-glucal (50 mg, 0.18 mmol), Ni(acac)₂ (4.6 mg, 0.018 mmol), PPh₃ (4.7 mg, 0.018 mmol), 4-(tert-butyl)-2-iodophenol (60 mg, 0.22 mmol) and Cs₂CO₃ (58 mg, 0.18 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. The resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 97:3) to afford **1h** as yellow oil in 61 % yield, 33 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (s, 1H), 7.22 (dd, J = 8.5, 1.6 Hz, 1H), 6.72 (d, J = 8.5 Hz, 1H), 6.15 (dd, J = 10.4, 4.1 Hz, 1H), 6.06 – 5.99 (m, 1H), 5.41 (d, J = 5.9 Hz, 1H), 4.69 (t, J = 5.0 Hz, 1H), 4.39 – 4.30 (m, 2H), 4.07 (q, J = 6.8 Hz, 1H), 2.07 (d, J = 0.9 Hz, 3H), 1.24 (d, J = 1.0 Hz, 9H). ¹³C **NMR** (101 MHz, CDCl₃) δ 170.9, 157.9, 144.3, 130.9, 127.8, 125.2, 123.8, 122.6, 110.1, 74.7, 72.9, 69.1, 63.9, 34.4, 31.6, 31.6, 31.6, 20.9. HRMS (ESI+): m/z calcd. For C₁₈H₂₂NaO₄ (M+Na)⁺: 325.1416; found 325.1398.

Prepared by general procedure A using tri-*O*-acetyl-D-glucal (50 mg, 0.18 mmol), Ni(acac)₂ (4.6 mg, 0.018 mmol), PPh₃ (4.7 mg, 0.018 mmol), 2-iodoanniline (47 mg ,0.21 mmol) and Cs_2CO_3 (59 mg, 0.18 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. After the completion of the reaction, the resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 97:3) to afford **1i** as brown oil in 64 % yield, 28 mg.

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 (d, J = 7.3 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 6.84 (t, J = 7.3 Hz, 1H), 6.72 (d, J = 7.7 Hz, 1H), 5.90 (q, J = 10.7 Hz, 2H), 5.58 (d, J = 6.8 Hz, 1H), 4.34 (dd, J = 18.8, 7.5 Hz, 2H), 4.22 – 4.04 (m, 2H), 2.14 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 170.9, 150.4, 129.6, 128.3, 126.8, 125.4, 119.7, 111.5, 74.9, 67.9, 64.9, 53.8, 20.9. HRMS (ESI+): m/z calcd. For C₁₄H₁₆NO₃ (M+H)⁺: 246.1130; found 246.1133.

Prepared by general procedure A using di-*O*-acetyl-L-rhamnal (50 mg, 0.23 mol), Ni(acac)₂ (6 mg, 0.023 mol), PPh₃ (6 mg, 0.023 mmol), 2-iodoanniline (59 mg, 0.27 mmol) and Cs_2CO_3 (75 mg, 0.23 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. After the completion of the reaction, the resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 97:3) to afford **1j** as brown oil in 70 % yield, 30 mg.

¹**H NMR (400 MHz, CDCl₃)** δ 7.30 (d, J = 7.5 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 6.82 (t, J = 7.4 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.86 (d, J = 10.4 Hz, 1H), 5.72 (d, J = 10.3 Hz, 1H),

5.55 (d, J = 7.0 Hz, 1H), 4.27 (d, J = 6.7 Hz, 1H), 4.11 (d, J = 3.9 Hz, 1H), 1.30 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 134.2, 129.3, 125.3, 124.1, 119.5, 111.5, 75.2, 65.0, 53.8, 20.4. HRMS (ESI+): m/z calcd. For C₁₂H₁₄NO (M+H)⁺: 188.1075; found 188.1083.

Prepared by general procedure A using di-*O*-acetyl-D-glucal (50 mg, 0.23 mmol), Ni(acac)₂ (6 mg, 0.023 mmol), PPh₃ (6 mg, 0.023 mmol), 2-iodophenol (59 mg, 0.27 mmol) and Cs_2CO_3 (75 mg, 0.23 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. After the completion of the reaction, the resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 97:3) to afford **2a** as yellow oil in 67 % yield, 38 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.15 (dd, J = 16.4, 7.7 Hz, 2H), 6.85 (t, J = 7.4 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 5.38 (d, J = 4.5 Hz, 1H), 4.98 – 4.92 (m, 1H), 4.53 (s, 2H), 4.22 (dd, J = 10.6, 5.1 Hz, 1H), 3.48 (t, J = 11.1 Hz, 1H), 3.40 – 3.30 (m, 1H), 2.08 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 159.1, 154.7, 129.2, 126.7, 124.8, 120.8, 110.2, 98.4, 75.4, 66.5, 63.2, 39.4, 20.9. HRMS (ESI+): m/z calcd. For C₁₄H₁₅O₄ (M+H)⁺: 247.0970; found 247.0977.

Prepared by general procedure A using di-*O*-pivolyl-D-glucal (50 mg, 0.16 mmol), Ni(acac)₂ (4 mg, 0.016 mmol), PPh₃ (4 mg, 0.016 mmol), 2-iodophenol (42 mg, 0.19 mmol) and Cs_2CO_3 (52 mg, 0.16 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. After the

completion of the reaction, the resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 97:3) to afford **2b** as colorless oil in 73 % yield, 34 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 – 7.14 (m, 2H), 6.88 (td, J = 7.5, 0.9 Hz, 1H), 6.85 – 6.80 (m, 1H), 5.38 (d, J = 4.6 Hz, 1H), 5.03 – 4.95 (m, 1H), 4.63 – 4.48 (m, 2H), 4.23 (ddd, J = 10.7, 5.1, 0.6 Hz, 1H), 3.49 (dd, J = 11.5, 10.7 Hz, 1H), 3.37 (ddd, J = 11.7, 6.5, 5.4 Hz, 1H), 1.23 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.8, 159.1, 155.2, 129.2, 126.8, 124.8, 120.7, 110.2, 96.9, 75.5, 66.5, 62.5, 39.5, 38.8, 27.2. HRMS (ESI+): m/z calcd. For C₁₇H₂₁O₄ (M+H)⁺: 289.1440; found 289.1449.

Prepared by general procedure A using di-*O*-acetyl-D-glucal (50 mg, 0.23 mmol), Ni(acac)₂ (6 mg, 0.023 mmol), PPh₃ (6 mg, 0.023 mmol), 2-iodophenol (67 mg, 0.27 mmol) and Cs_2CO_3 (75 mg, 0.23 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. After the completion of the reaction, the resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 97:3) to afford **2c** as brown oil in 62 % yield, 39 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.09 – 6.97 (m, 1H), 6.34 (d, *J* = 7.0 Hz, 2H), 5.31 (d, *J* = 4.3 Hz, 1H), 4.96 – 4.84 (m, 1H), 4.48 (s, 2H), 4.13 (dd, *J* = 10.7, 5.1 Hz, 1H), 3.69 (d, *J* = 4.3 Hz, 3H), 3.38 (t, *J* = 11.1 Hz, 1H), 3.23 (dt, *J* = 11.7, 6.0 Hz, 1H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 161.1, 160.5, 154.7, 130.1, 124.8, 118.7, 107.9, 106.3, 106.2, 101.5, 98.4, 96.9, 76.3, 66.8, 63.2, 55.5, 50.1, 38.9, 20.8. HRMS (ESI+): m/z calcd. For C₁₅H₁₇O₅ (M+H)⁺: 277.1076; found 277.1084.

Prepared by general procedure A using di-*O*-acetyl-D-glucal (50 mg, 0.23 mmol), Ni(acac)₂ (6 mg, 0.023 mmol), PPh₃ (6 mg, 0.023 mmol), 2-iodo-4-methylphenol (64 mg, 0.27 mmol) and Cs_2CO_3 (75 mg, 0.23 mmol). The reaction mixture was stirred at 80 °C for 6 hrs. After the completion of the reaction, the resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 97:3) to afford **2d** as yellow oil in 70 % yield, 42 mg.

¹**H NMR (400 MHz, CDCl₃)** δ 6.96 – 6.93 (m, 1H), 6.89 (ddd, J = 8.1, 1.3, 0.5 Hz, 1H), 6.64 (d, J = 8.1 Hz, 1H), 5.33 (d, J = 4.6 Hz, 1H), 4.88 (ddd, J = 6.7, 4.6, 0.7 Hz, 1H), 4.49 (d, J = 0.8 Hz, 2H), 4.16 (ddd, J = 10.8, 5.2, 0.7 Hz, 1H), 3.49 – 3.38 (m, 1H), 3.33 – 3.21 (m, 1H), 2.22 (s, 3H), 2.04 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 170.5, 156.9, 154.6, 130.1, 129.5, 126.67, 125.3, 109.7, 98.5, 75.4, 66.6, 63.3, 39.5, 20.9, 20.8. HRMS (ESI+): m/z calcd. For C₁₅H₁₆NaO₄ (M+Na)⁺: 283.0946; found 283.0942.

Prepared by using compound **1a** (50 mg, 0.20 mmol), in *t*-butanol: acetone: H₂O (2:1:1), followed by the addition of OsO4 (10 mg, 0.04 mmol) and NMO (28 mg, 0.24 mmol) at rt. The reaction was stirred at rt untill complete consumption of starting material was observed by TLC. The solvent was evaporated in vacuo and the resulting reaction mixture was diluted with ethyl acetate washed with brine, dried over NaSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 75:25) to afford **1aa** as colourless oil in 60% yield, 33 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 (d, J = 7.4 Hz, 1H), 7.19 – 7.16 (m, 1H), 6.90 (td, J = 7.4, 0.9 Hz, 1H), 6.80 (d, J = 8.1 Hz, 1H), 5.57 (d, J = 7.0 Hz, 1H), 4.61 (dd, J = 7.0, 6.4 Hz, 1H), 4.33 (qd, J = 11.8, 6.3 Hz, 2H), 3.98 (t, J = 3.1 Hz, 1H), 3.86 (dd, J = 6.4, 3.2 Hz, 1H), 3.82 (ddd, J = 7.1, 5.6, 3.1 Hz, 1H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 159.5, 130.7, 125.4, 125.2, 121.6, 111.1, 84.1, 75.5, 72.0, 71.3, 68.0, 62.4, 20.9. HRMS (ESI+): m/z calcd. For C₁₄H₁₆NaO₆ (M+Na)⁺: 303.0845; found 303.0849.

Prepared by general procedure A using tri-*O*-benzoyl-D-glucal (50 mg, 0.11 mmol), Ni(acac)₂ (2.8 mg, 0.011 mmol), PPh₃ (3 mg, 0.011 mmol), 2-iodophenol (29 mg, 0.13 mmol) and Cs_2CO_3 (36 mg, 0.11 mmol). The reaction mixture was stirred at 80 °C then quenched after 30 min. The resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 85:15) to afforded **3a** as yellow oil in 74% yield, 35 mg.

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.21 (d, J = 7.5 Hz, 2H), 7.10 – 7.01 (m, 1H), 6.99 – 6.92 (m, 2H), 6.80 – 6.69 (m, 1H), 5.93 (dd, J = 10.2, 4.5 Hz, 1H), 5.82 (d, J = 10.3 Hz, 1H), 4.54 – 4.46 (m, 1H), 4.42 (t, J = 7.0 Hz, 1H), 4.17 (d, J = 11.8 Hz, 1H), 4.07 (dd, J = 11.8, 4.7 Hz, 1H), 3.42 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 154.7, 153.0, 133.2, 131.4, 130.4, 130.0, 129.7, 129.7, 128.6, 128.4, 126.9, 125.5, 121.5, 120.1, 116.9, 116.8, 73.3, 68.8, 65.9, 38.6. HRMS (ESI+): m/z calcd. For C₂₆H₂₃O₆ (M+H)⁺: 431.1495; found 431.1498.

Prepared by general procedure A using tri-*O*-acetyl-D-galactal (50 mg, 0.18 mmol), Ni(acac)₂ (4.6 mg, 0.018 mmol), PPh₃ (4.7 mg, 0.018 mmol), 2-iodoanniline (46 mg, 0.21 mmol) and Cs_2CO_3 (59 mg, 0.18 mmol). The reaction mixture was stirred at 80 °C then quenched after 30 min. The resulting mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Hexane: EtOAc; 90:10) to afford **4a** as brown oil in 65 % yield, 36 mg

¹**H NMR (400 MHz, CDCl₃)** δ 7.09 (td, J = 7.6, 1.4 Hz, 1H), 6.93 (dd, J = 7.5, 1.5 Hz, 1H), 6.69 – 6.60 (m, 2H), 6.34 (ddd, J = 10.3, 3.8, 0.7 Hz, 1H), 6.18 (ddd, J = 10.2, 5.1, 1.9 Hz, 1H), 5.42 (dd, J = 3.6, 1.9 Hz, 1H), 5.05 (dd, J = 5.1, 2.4 Hz, 1H), 4.08 (qd, J = 11.4, 6.4 Hz, 2H), 3.87 – 3.77 (m, 1H), 2.05 (s, 3H), 1.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 170.5, 146.6, 133.3, 129.8, 129.2, 124.1, 121.9, 117.6, 116.2, 72.1, 68.6, 64.0, 62.6, 20.9, 20.7. HRMS (ESI+): m/z calcd. For C₁₆H₂₀NO₅ (M+H)⁺: 306.1341; found 306.1350.

4. Spectral Data

¹H NMR (400 MHz, CDCl₃) of compound 1a

¹H NMR (400 MHz, CDCl₃) of compound 1b

¹³C NMR (101 MHz, CDCl₃) of compound 1b

¹H NMR (400 MHz, CDCl₃) of compound 1c

¹H NMR (400 MHz, CDCl₃) of compound 1d

¹H NMR (400 MHz, CDCl₃) of compound 1e

90 80 f1 (ppm)

170 160 150 140 130 120 110 100

¹H NMR (400 MHz, CDCl₃) of compound 1f

1E+08

5E+07

¹H NMR (400 MHz, CDCl₃) of compound 1g

¹H NMR (400 MHz, CDCl₃) of compound 1h

¹H NMR (400 MHz, CDCl₃) of compound 1i

¹H NMR (400 MHz, CDCl₃) of compound 1j

¹H NMR (400 MHz, CDCl3) of compound 2a

¹H NMR (400 MHz, CDCl₃) of compound 2c

¹H NMR (400 MHz, CDCl₃) of compound 2d

¹H NMR (400 MHz, CDCl₃) of compound 1aa

¹H NMR (400 MHz, CDCl₃) of compound 3a

5. 2D Data of Compounds 1a, 1aa and 2a

Structure determination of compound 1a:

Atom Position	Type of Atom	¹ H(ppm)	¹³ C (ppm)
1	CH	5.47	72.9
2	CH	4.72	74.5
3	CH	6.13	123.8
4	CH	6.01	131.1
5	CH	4.34	68.9
6	CH2	4.34, 4.02	63.9
7	CH	7.17	130.6
8	CH	6.87	121.1
9	CH	7.32	125.9
10	СН	6.78	110.8
	OAc	2.05	20.9.170.8

The structure of product 1a was confirmed by 2D NMR analysis. Presence of two peaks at δ values 6.01 and 6.13 ppm in 1H NMR suggested the presence of double bond at C3-C4 position. COSY data showed the correlation of H1-H2, H2-H3, H4-H5 confirming their adjacent nature. In NOESY experiment we observed the correlation between H1 and H6, but no correlation was seen between H1 and H5 and finally from 2D NMR of dihydroxylated product **1aa** we confirmed the formation of pyrano *cis*- fused *dihydro*-benzofurans.

COSY of 1a

10

HSQC of 1a

SI-32

Atom Position	Type of Atom	¹ H(ppm)	¹³ C (ppm)
1	СН	5.57	75.5
2	CH	4.61	84.1
3	CH	3.86	71.3
4	CH	3.98	68.0
5	CH	3.82	72.0
6	CH2	4.33	62.3
7	CH	7.18	130.7
8	CH	6.90	121.6
9	CH	7.27	125.4
10	СН	6.80	111.0
	OAc	2.03	20.9, 171.3

COSY of laa

5c. Structure determination of compound 2a:

Atom Position	Type of Atom	¹ H(ppm)	¹³ C (ppm)
1	CH2	3.51, 4.24	66.5
2	CH	3.38	39.4
3	С	-	159.1
4	CH	5.41	98.4
5	СН	4.98	75.4
6	CH2	4.56	63.2
7	СН	7.19	124.7
8	CH	6.88	120.7
9	СН	7.19	129.2
10	CH	6.82	110.2
	OAc	2.11	20.87, 170.5

The structure of product 2a was confirmed by extensive NMR analysis. The furan oxygen is attached at quaternary C-3 at δ value 159.1. In COSY data we observed the correlation between H4-H5 and H1-H2 which confirmed their adjacent nature. In NOESY experiment we observed correlation between H2 and H5 which indicated α stereochemistry of H2. H4 also showed the correlation with H6, this confirmed the structure of 2a.

COSY of 2a

HSQC of 2a

