Electronic Supplementary Information

Persistent radical anion derived from a propellershaped perylene bisimide-carbazole pentad

Zhaolong Wang,^a Xinyu Gou,^a Gang Wang,^a Xingmao Chang,^a Ke Liu,^a Taihong Liu,^{*,a} Gang He,^b and Yu Fang^{*,a}

^a Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
^b Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, P. R. China
*E-mails: yfang@snnu.edu.cn (Y. Fang), liuth121@snnu.edu.cn (T. Liu)

Table of Contents

1.	General experimental information	S3
2.	Supplementary figures and tables	S4
Refe	rencesS	518

1. General experimental information

Solvents and reagents: All the solvents and reagents with at least analytical grade were purchased from commercial sources (Adamas-beta) and used as received without further purification. Cobaltocene ($CoCp_2$) was handled and stored in a glovebox.

Instrumental methods: Single-crystal X-ray diffraction was obtained using a Bruker SMART APEX II single-crystal X-ray diffraction spectrometer. UV-Vis-NIR absorption spectra in solution were recorded on a Perkin-Elmer Lambd 1050 spectrophotometer at room temperature. Electron paramagnetic resonance (EPR) measurements were carried out at room temperature using a Bruker ELEXSYS E500 EPR spectrometer. All samples were reduced using CoCp₂ as the chemical reductant and loaded into 1.4 mm I.D. quartz tubes, which were sealed with epoxy resin in an argon-filled glovebox and used immediately after preparation. Scans were performed with magnetic field modulation amplitude of 0.1 G. The optical images depicted in the paper were recorded using a Canon 70D camera. The light irradiation tests were carried out by white light of a xenon lamp from Beijing Perfectlight Technology Co., Ltd.

Quantum chemical calculation: The geometry of radical anion of PBI-4Cz was optimized by using the broken symmetry and the calculation was carried out using the DFT method with UCAM-B3LYP employing the 6-31G(d) basis set for all atoms. The calculated results were processed by Multiwfn.¹⁻³

2. Supplementary figures and tables

Figure S1. Chemical structures of PBI-4Cz and Ref-PBI and their UV-Vis-NIR absorption spectra in DMF.

Figure S2. Changes in the UV-Vis-NIR absorption spectra of PBI-4Cz in DMF upon light irradiation ($C \sim 1.0 \times 10^{-5}$ mol/L).

Figure S3. Time-dependent UV-Vis-NIR spectra of PBI-4Cz in DMF under dark condition $(C \sim 1.0 \times 10^{-5} \text{ mol/L}).$

Figure S4. UV-Vis-NIR absorption spectra of PBI-4Cz in the binary mixture of DMF and chloroform ($C \sim 5.0 \times 10^{-6}$ mol/L, 298 K).

Figure S5. UV-Vis-NIR absorption spectra of PBI-4Cz in the binary mixture of DMF and toluene $(C \sim 5.0 \times 10^{-6} \text{ mol/L}, 298 \text{ K})$. *Inset*: Plot of absorbance at 700 nm versus the content of toluene.

Compound	E _{1st-red} /V	E _{2nd-red} /V	$E_{\rm LUMO}/{\rm eV}$
PBI-4Cz	-0.87	-1.20	-3.93
Ref-PBI	-1.10	-1.30	-3.70

Table S1. Summarized electrochemical properties of PBI-4Cz and Ref-PBI.⁴

Figure S6. Time-dependent UV-Vis-NIR spectra of PBI-4Cz in DMF under ambient air ($C \sim 1.0 \times 10^{-5}$ mol/L, 298 K).

Figure S7. UV-Vis-NIR absorption spectra of PBI-4Cz in CH_2Cl_2 (*C*~1.0 × 10⁻⁵ mol/L, 298 K) upon gradual addition of CoCp₂.

Identification code	[PBI-4Cz]·(CoCp ₂) ₂		
Empirical formula	$C_{105}H_{87}Co_2N_7O_5$		
Formula weight	1644.67		
Temperature	235(2) K		
Wavelength	1.34139 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 18.044(10) Å	$\alpha = 90^{\circ}$	
	b = 32.231(19) Å	$\beta=90~^{\circ}$	
	c = 16.800(9) Å	$\gamma=90~^{\circ}$	
Volume	9770(10) Å ³		
Z	4		
Density (calculated)	1.118 mg/m ³		
Absorption coefficient	2.129 mm ⁻¹		
F(000)	3440		
Crystal size	$0.100 \times 0.100 \times 0.100 \text{ mm}^3$		
Theta range for data collection	2.385 to 51.587 °		
Index ranges	-20≤h≤19, -32≤k≤37, -19≤l≤19		
Reflections collected	71096		
Independent reflections	15928 [R(int) = 0.2030]		
Completeness to theta = 51.587 $^{\circ}$	98.2 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7501 and 0.5565		
Refinement method	Full-matrix least-squares on F ²		
Data/restraints/parameters	15928/828/1042		
Goodness-of-fit on F ²	0.901		
Final R indices [I>2sigma(I)]	$R_1 = 0.0911, wR_2 = 0.2116$		
R indices (all data)	$R_1 = 0.2599, wR_2 = 0.2967$		
Absolute structure parameter	0.446(16)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.220 and -0.254 e.Å ⁻³		

Table S2. Crystal data and structure refinement for $[PBI-4Cz] \cdot (CoCp_2)_2$

Figure S8. Dihedral angles between the plane of PBI and four carbazole moieties.

Figure S9. UV-Vis-NIR absorption spectra of Ref-PBI in DMF ($C\sim 1.0 \times 10^{-5}$ mol/L, 298 K) upon gradual addition of CoCp₂. *Note*: The isobestic points were marked with asterisk.

Figure S10. Time-dependent UV-Vis-NIR spectra of the fresh PBI⁻-4Cz in DMF under ambient air ($C \sim 1.0 \times 10^{-5}$ mol/L, 298 K). Note: The fresh PBI⁻-4Cz was obtained via chemically reduced method by CoCp₂.

Figure S11. Time-dependent UV-Vis-NIR spectra of PBI²⁻-4Cz in DMF under ambient air (C~1.0 × 10⁻⁵ mol/L, 298 K).

Figure S12. Schematic illustration of the PBI-4Cz solution-based electrochromic device.⁵

References

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 09, Version 9.0*, Gaussian, Inc., Wallingford, Connecticut, **2016**.
- [2] Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5, Semichem Inc., Shawnee Mission, Kansas, 2009.
- [3] Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580-592.
- [4] Wang, Z.; Sun, Y.; Lin, S.; Wang, G.; Chang, X.; Gou, X.; Liu, T.; Jin, S.; He, G.;
 Wei, Y.-C.; Chou, P.-T.; Fang, Y. Orthogonal Carbazole-Perylene Bisimide
 Pentad: A Photoconversion-Tunable Photosensitizer with Diversified Excitation
 and Excited-State Relaxation Pathways. *Sci. China Chem.* 2021, *64*, 2193-2202.
- [5] Song, R.; Li, G.; Zhang, Y.; Rao, B.; Xiong, S.; He, G. Novel Electrochromic Materials Based on Chalcogenoviologens for Smart Windows, E-Price Tag and Flexible Display with Improved Reversibility and Stability. *Chem. Eng. J.* 2021, 422, 130057.