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Experimental Section

1. Materials

Sublimated sulfur, Zinc trifluoromethanesulfonate, Zinc acetate, Zinc sulfate, Monomeric 

iodine are purchased from Aladdin. Ordered mesoporous carbon (CMK-3) is purchased 

from XFNANO. All chemicals are analytically pure and used as received without any 

further purification.

2. Structural characterizations

Phase composition transition was confirmed by X-ray diffraction equipment (XRD, 

Bruker D2 Phaser) with Cu Ka radiation at 30 kV and the data were collected from 10  to 

80° at a scanning speed of 7° min-1 with a step interval of 0.02°, respectively. TEM 

observations were carried out on a JEOL2100 microscope at 200 kV. The nitrogen 

adsorption and desorption isotherms were recorded at 77 K by using ASAP 2020 

(Micromeritics) analyzer and the surface area was calculated using the BET method. 

Scanning electron microscope (SEM, Tescan MIRA3 FEGESEM) equipped with an 
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energy-dispersive (EDX) was 

employed to analyze the elements components of CMK-3@S composites and electrode 

surface elements changes at different states. Thermogravimetric analysis (TG) 

characterization measurements were performed on a Netzsch STA449F3 

thermogravimetric analyzer.

3. Electrochemical measurements

CR2032 coin batteries were assembled to test the electrochemical properties. The cathode 

was prepared by mixing 80 wt% CMK-3@S with 10 wt% PVDF and 10 wt% acetylene bl

ack. The obtained mixture was painted Ti foils. The mass loading of active material was≈

1-2 mg cm−2. A Zn foil was applied as the anode, fiber glass as separator, and electrolytes 

with 0.1 wt% I2 additive. The galvanostatic charge/ discharge cycling was tested on a CT-

3002A battery test instrument (Netware, China) in the potential range of 0.05–1.75 V (ver

sus Zn2+/Zn). The electrochemical impedance spectroscopy (EIS) was recorded on a CHI6

60E electrochemical workstation (Chen Hua Instruments Co, China). EIS was conducted i

n a frequency range of 0.01 Hz to 100 kHz with a voltage amplitude of 5 mV-1. Linear pol

arization (corrosion test) was performed on an Autolab RRDE/RDE-2. The linear polariza

tion technique was applied to the system by scanning between −0.7 and 0.4 V vs. Ag/AgC

l/KCl (3 M) from its open-circuit voltage (OCV) at a rate of 2 mV s−1 in 3 M Zn(OTF)2 so

lution. The hydrogen evolution performance was collected through LSV with a potential r

ange of -0.9~-1.6 V (vs. Ag/AgCl) at a scan rate of 1 mV s-1. The Zn anodes were achieve

d after 50 cycles in 200 mA g-1 with the potential range of 0.05–1.75 V (versus Zn2+/Zn). 
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Fig. S1 SEM image of bulk S.

Fig. S2 TEM image of CMK-3@S.
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Fig. S3 Pore size distributions of CMK-3 and CMK-3@S.

Fig. S4 Optical photograph of 1 M Zn(AC)2, 1 M ZnSO4, 1 M Zn(OTF)2, with 0.1 wt% I2.
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Fig. S5 (a-b) Galvanostatic charge/discharge (GCD) curves of 1 M Zn(AC)2 and 1 M ZnSO4; (c-d) The cycling 

performance of 1 M Zn(AC)2 and 1 M ZnSO4.

Table. S1 The Ionic conductivity of electrolytes.

Electrolyte Ionic conductivity (mS cm-1)

1 M Zn(AC)2 17.3

1 M ZnSO4 45.7

1 M Zn(OTF)2 60.9
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Fig. S6 The linear polarization curves of Zn in different electrolytes.

Fig. S7 EIS spectra of Zn-S batteries with different electrolytes.
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Fig. S8 Long-term cycle performance of CMK-3@NS in different electrolytes.

Fig. S9 (a) XRD patterns of cathode; (b) TEM of cathode at the fully charged state.
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Fig. S10 XPS spectra of S2p of cathode at discharge/charge states.


