Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information

for

A Boron Dipyrromethene Chiral-at-Boron and Carbon with a Bent Geometry: Synthesis, Resolution and Chiroptical Properties

Murat Işık,*a Esra Dündar,^b Ertan Şahin,^c and Cihangir Tanyeli*^b

^aDepartment of Food Engineering, Bingöl University, Bingöl, 12000, Turkey ^bDepartment of Chemistry, Middle East Technical University, 06800 Ankara, Turkey ^cDepartment of Chemistry, Atatürk University, Erzurum, 25240, Turkey.

Table of Contents

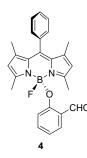
General	S2
Acknowledgement	
Procedure for the synthesis of <i>B</i> * <i>C</i> *-BODIPY	
Proton NMR discussion of <i>B</i> * <i>C</i> *-BODIPY on account of its chirality	S4
LC-MS analysis of <i>B</i> * <i>C</i> *-BODIPY synthesis reaction	S4
LC-MS results of chemical stability experiment: <i>B*C*</i> -BODIPY with TFA	S7
Reports of chiral HPLC resolution	S8
I. Resolution of racemic <i>B</i> * <i>C</i> *-BODIPY	
II. Chromatograms of fast-eluting enantiomer	S10
III. Chromatograms of slow-eluting enantiomer	S11
Configurational stability test: chiral HPLC reports	S12
I. Heating fast-eluting enantiomer for 1h at 50 °C.	S12
II. Heating fast-eluting enantiomer for 1h at 75 °C	S14
III. Heating fast-eluting enantiomer for 1h at 100 °C	S16
IV. Heating fast-eluting enantiomer for 1h at 125 °C	S18
V. Heating fast-eluting enantiomer for 1h at 150 °C (open atm)	S20
Normalized Absorbance and Photochemical stability	

Electrochemical properties	S22
Copies of NMR (1D and 2D), HRMS and IR spectra of <i>B*C*</i> -BODIPY	S24
X-ray diffraction data	S29
References	S30

General

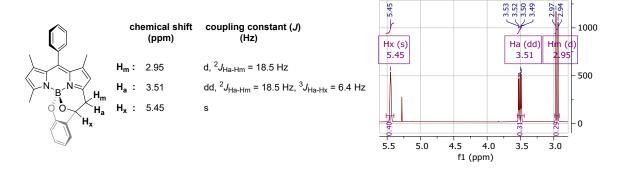
F-BODIPY $(2)^1$ was synthesized following the literature. A 1.0 M *n*-hexane solution of BCl₃ was prepared from the neat reagent. All other chemicals and solvents used in this work were supplied commercially and used with no further purification unless noted otherwise. 1D and 2D NMR spectra were recorded on a Bruker Spectrospin Avance DPX 400 spectrometer using CDCl₃ as the solvent. High resolution NMR spectra were taken on an Agilent-Premium Compact (600 MHz, 14.1 Tesla). Chemical shifts values are reported in ppm from tetramethylsilane as internal standard. Spin multiplicities are reported as the following: s (singlet), d (doublet), dd (doublet of doublet), m (multiplet). HRMS data were acquired on an Agilent Technologies 6530 Accurate-Mass Q-TOF LC/MS. UV-Vis Absorption spectra were taken on a Shimadzu UV-3101PC UV-VIS-NIR spectrophotometer. Fluorescence measurements were recorded on a Perkin-Elmer (Model LS 55) spectrofluorometer. Horiba Jobin-Yvon Time-Resolved Fluorometer, Fluorolog FL-1057, equipped with HORIBA NanoLED-495 light source, was used the fluorescence decay experiments. FT-IR spectra of compounds were obtained on a Perkin Elmer 100 model FTIR spectrometer (ATR). Chiral HPLC analytical resolutions were done on an Agilent Technologies Preparative HPLC-1260 Infinity II using a Chiralcel® OD-H column (0.46 cmØ×25 cm). Chiral HPLC semipreparative separations were done on an Agilent Technologies Preparative HPLC-1200 Series with a diode array detector (DAD) using a Kromasil[®] 10-Cellucoat column (1.0 cmØ×25 cm). LC-MS analyses were carried on a UPLC: Waters Acquity & MS: Waters SYNAPT G1 MS System equipped with ACQUITY UPLC BEH C18 1.7um column (1.0Ø×100 mm). Polarimetry measurements were recorded on an Rudoph Scientific Autopole III polarimeter. Electronic Circular Dichroism spectra were acquired on a JASCO J-1500 CD Spectrometers. Electrochemical studies were carried on a Gamry PCI4/300 Potentiostat/Galvanostat. X-ray data were collected on a four-circle Rigaku R-AXIS RAPID-S Diffractometer. For the detailed configuration of X-ray Diffractometer, see page S29. Flash grade silica gel (SiliaFlash Irregular Silica Gels, F60, 40–63 µm, 60 Å) was used for flash column chromatography (FCC) purifications. Reactions were monitored by thin layer chromatography (TLC) using precoated silica gel plates (Merck Silica Gel PF-254), visualized by a handheld UV-Vis lamp. All organic extracts were dehydrated over either anhydrous Na₂SO₄ or MgSO₄ and concentrated by using rotary evaporator before being subjected to FCC. For all absorption and emission spectra recordings a quartz cell with 1.0 cm pathlength was used. The relative fluorescence quantum yields ($\Phi_{\rm fl}$) of the dye were calculated by taking aqueous alkaline solutions of fluorescein as the standard (λ_{ex} 490 nm in 0.1 N NaOH, $\Phi_{fl} = 0.85$ according to the literature).¹ Following equation was used to calculate Φ_{ff} :

$$\Phi_s = \Phi_r (\frac{m_s}{m_r}) (\frac{n_s}{n_r})^2$$


Where Φ denotes fluorescence quantum yield, *m*: gradient of the plot of integrated fluorescence intensity against absorbance, *n*: refractive index of solution, subscripts *r* and *s* denotes reference and sample, respectively. In fluorescence studies of Fig.1b and Table 1, the instrument parameters was set to followings: λ_{ex} 490 nm; slit widths: $d_{ex} = 5.0$ nm, $d_{em} = 2.5$ nm.

Acknowledgement

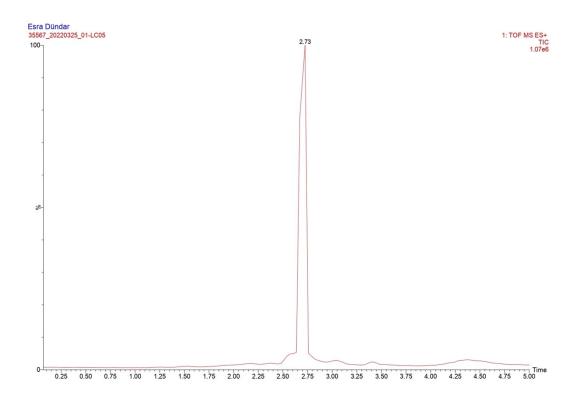
The authors thank Prof. Ahmet Önal and Elif Demir Arabacı of Middle East Technical University for CV analysis and Perihan Öztürk Düzenli of the same university for the help with CD measurements. M. I. thanks the Central Laboratory of Bingöl University.


Procedure for the synthesis of *B***C**-BODIPY

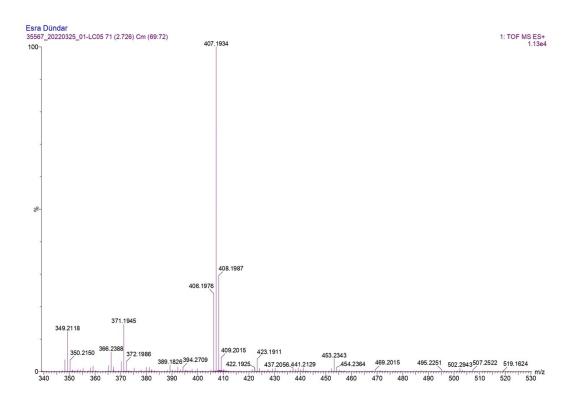
A 50 mg of BODIPY (2) placed in a 10 mL vial was dissolved in HPLC grade dichloromethane (5 mL) and to that 1.0 equiv BCl₃ (154 μ L, 1.0 M in *n*-hexane) was added dropwise while stirring with a magnetic bar at rt. To another vessel (25 mL round-bottomed flask) containing a magnetic bar was added 3.60 equiv caesium carbonate (179 mg, 550 µmol), 3.25 equiv salicylaldehyde (61 mg, 500 μ mol), and anhydrous DMF (3 mL) and left to stir at rt. After stirring both vessels for about an hour, the former solution was poured over the latter, and the resultant mixture was left to stir for an additional hour. To this dark-colored mixture, 50 mL dichloromethane was added and the resulting mixture was washed repeatedly with water (3 \times 50 mL). After a final wash with brine (25 mL), the organic phase was dried over anhydrous Na_2SO_4 , filtered and concentrated using a rotary evaporator. The residue was purified by silica gel flash column chromatography (FCC) using DCM as the eluent. Chromatography gave the product (B*C*-BODIPY) as an orange-red solid (11 mg, 18% yield). mp = 214–217 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.52 – 7.42 (m, 4H), 7.24 – 7.19 (m, 1H), 7.11 – 7.06 (m, 1H), 7.02 (dd, J = 7.5, 1.3 Hz, 1H), 6.82 (d, J = 7.9 Hz, 1H), 6.78 (td, J = 7.4, 0.9 Hz, 1H), 5.98 (s, 1H),5.88 (s, 1H), 5.45 (bs, 1H), 3.51 (dd, J = 18.5, 6.3 Hz, 1H), 2.95 (d, J = 18.5 Hz, 1H), 2.53 (s, 3H), 1.44 (s, 3H), 1.37 (s, 3H). ¹³C NMR (151 MHz, CDCl3) δ 155.9, 154.2, 151.7, 144.1, 142.81, 142.29, 134.9, 131.5, 129.82, 129.01, 128.90, 128.81, 128.34, 128.19, 128.08, 127.97, 125.3, 120.9, 118.25, 118.17, 118.10, 70.3, 35.6, 29.7, 14.9, 13.9. HRMS (APCI negative) $C_{26}H_{22}BN_2O_2$ calcd for [M – H]⁻ 405.1774, found 405.1786. Δ = 2.90 ppm. IR (neat) v 3052, 2955, 2922, 2885, 1607, 1581, 1548, 1538, 1514, 1500, 1488, 1426, 1406, 1380, 1361, 1348, 1329, 1308, 1282, 1243, 1217, 1191, 1153, 1051 cm⁻¹. $[\alpha]_D^{20} - 567.9^\circ (c 4.05 \times 10^{-3}, \text{ CHCl}_3)$ for fast-eluting enantiomer, 99.5% ee, (-)- B^*C^* -BODIPY; $[\alpha]_D^{20} + 617.3^\circ (c \ 4.05 \times 10^{-3}, \text{CHCl}_3)$ for slow-eluting enantiomer, 98.5% ee, (+)-B*C*-BODIPY. HPLC (Chiralcel® OD-H column, 98:2 *n*-hexanes:2-propanol, 1 mL/min, 505 nm): $t_{R1} = 8.38$ and $t_{R2} = 11.42$ min. UV-vis: λ_{abs} 508 nm (CHCl₃). Fluorescence: λ_{em} 521 nm (CHCl₃), $\Phi_{fl} = 0.013$ (λ_{ex} 490 nm, CHCl₃). ECD for (+)-B*C*-BODIPY (CHCl₃) λ_{ext} 508 nm ($\Delta \varepsilon$ + 22.13); ECD for (-)-B*C*-BODIPY (CHCl₃) λ_{ext} 508 nm ($\Delta \epsilon - 18.41$).

The minor product (4) was isolated as an orange solid in 3% chemical yield. mp = 185–189 °C. ¹H NMR (600 MHz, CDCl₃) δ 10.69 (s, 1H), 7.76 (dd, J = 7.7, 1.8 Hz, 1H), 7.56 – 7.47 (m, 3H), 7.34 – 7.20 (m, 3H), 6.83 (dd, J = 13.4, 5.9 Hz, 1H), 6.32 (d, J = 8.4 Hz, 1H), 5.93 (s, 2H), 2.44 (s, 6H), 1.40 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 191.4, 159.89, 159.83, 155.9, 143.7, 141.8, 135.7, 134.7, 131.5, 129.24, 129.23, 129.14, 127.97, 127.85, 127.80, 121.78, 121.76, 119.5, 117.2,14.83, 14.81, 14.5. HRMS (APCI negative) C₂₆H₂₄BFN₂O₂ calcd for [M·]⁻ 426.1914, found 426.19200 Δ = 1.22 ppm.

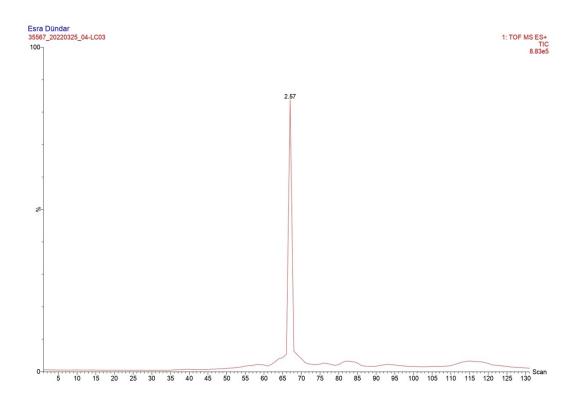
Proton NMR discussion of B^*C^* -BODIPY on account of its chirality

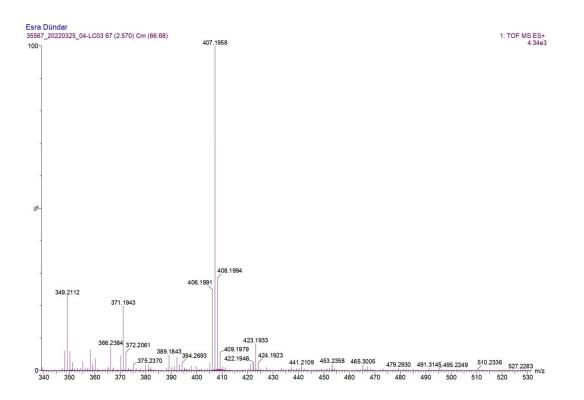


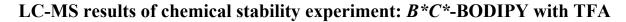
An AMX-type spin patterning is observed for the coupling of diastereotopic methylenic protons (δ_{Ha} : 3.51 ppm; δ_{Hm} : 2.95 ppm) with that of neighboring methynic (δ_{Hx} : 5.45 ppm). In other words, the generated asymmetric centers (B* and C*), or more inclusively, the thus generated chiral space, cause a significant chemical differentiation of the diastereotopic protons. The geminal homonuclear coupling (${}^{2}J_{\text{Ha-Hm}} = 18.5 \text{ Hz}$) of diastereotopic protons and that of vicinal (${}^{3}J_{\text{Ha-Hx}} = 6.4 \text{ Hz}$) is traceable from the cross-peaks in the ¹H-¹H COSY spectrum (see Fig. S6). There was no vicinal coupling between H_m and H_x (${}^{3}J_{\text{Hm-Hx}}$), presumably because the dihedral angle is *ca*. 78°.

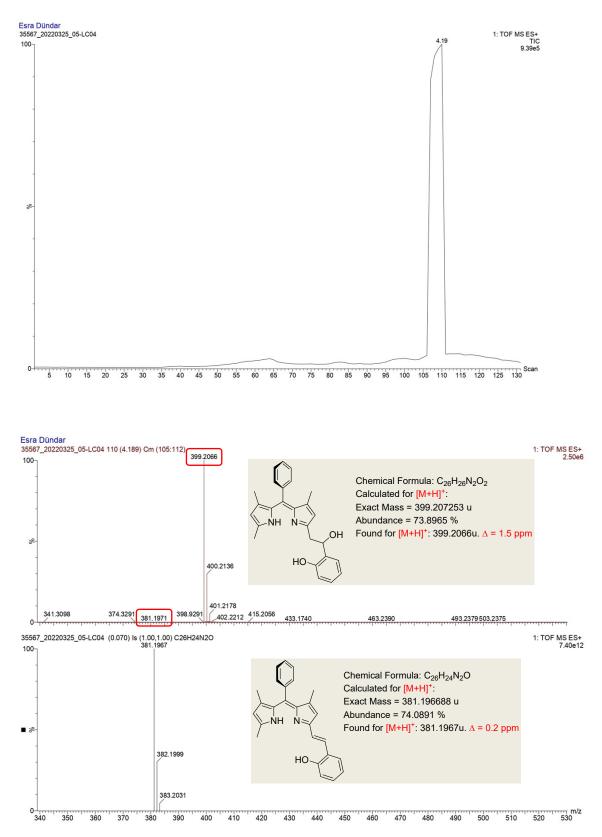

LC-MS analysis of B*C*-BODIPY synthesis reaction

To decide the optimum time to quench the reaction, we took several aliquots of 1 mL from the reaction mixture at times t_1 : 1min, t_2 : 15 min, t_3 : 30 min, and t_4 : 60 min, extracted thrice with water, and ran LC-MS analysis. We observed no other molecules with the same mass of B*C*-BODIPY. The chromatograms shows that the reaction is almost instantaneous. However, we found 60 min. (1 h) as the optimum reaction time as it allows a smoother chromatographic separation.

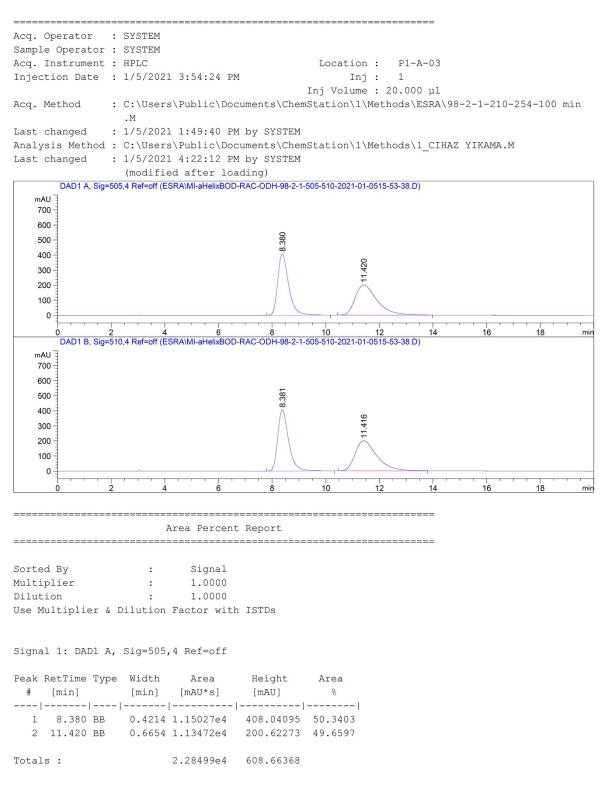

LCMS chromatogram of t₁: 1min


LCMS mass spectrum of t₁: 1min




LCMS chromatogram of t₄: 60min

LCMS mass spectrum of t₄: 60min



Reports of chiral HPLC resolution

I. Resolution of racemic *B*C**-BODIPY

Data File C:\Users\P...\Data\ESRA\MI-aHelixBOD-RAC-ODH-98-2-1-505-510-2021-01-0515-53-38.D Sample Name: MI-aHelixBOD-RAC-ODH-98-2-1-505-510

HPLC 1/5/2021 4:23:43 PM SYSTEM

Data File C:\Users\P...\Data\ESRA\MI-aHelixBOD-RAC-ODH-98-2-1-505-510-2021-01-0515-53-38.D Sample Name: MI-aHelixBOD-RAC-ODH-98-2-1-505-510

Signal 2: DAD1 B, Sig=510,4 Ref=off

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 8.381 BB	0.4249	1.15018e4	407.37750	50.4564
2 11.416 BB	0.6799	1.12937e4	200.26288	49.5436
Totals :		2.27955e4	607.64038	

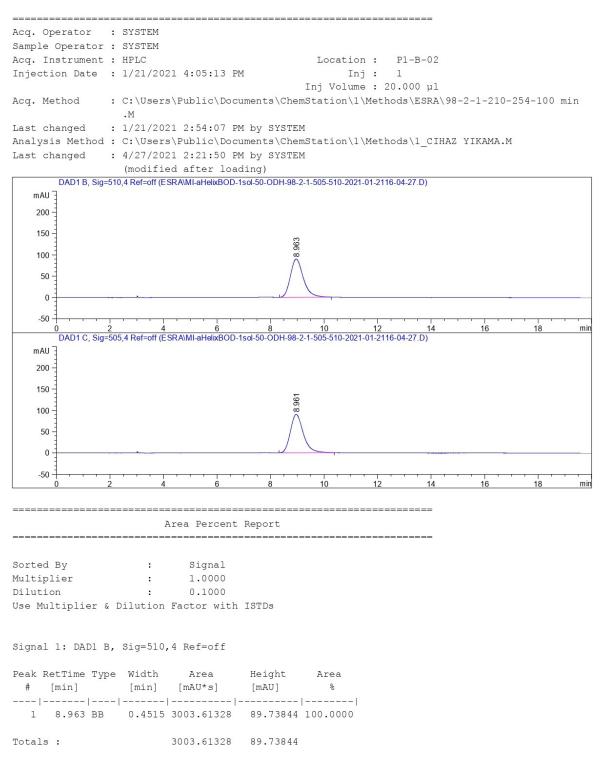
*** End of Report ***

II. Chromatograms of fast-eluting enantiomer Data File C:\Users\P...\1\Data\ESRA\MI-aHelixBOD-1-ODH-98-2-1-505-510-2021-01-0515-07-17.D Sample Name: MI-aHelixBOD-1-ODH-98-2-1-505-510

Acq. Operator :	SYSTEM
Sample Operator :	
Acq. Instrument :	
	1/5/2021 3:08:03 PM Inj: 1
111,0001011 20000 .	Inj Volume : 20.000 µl
Acq. Method :	C:\Users\Public\Documents\ChemStation\1\Methods\ESRA\98-2-1-210-254-100 min
Acy. Method .	.M
Last changed :	. 1/5/2021 1:49:40 PM by SYSTEM
-	C:\Users\Public\Documents\ChemStation\1\Methods\1_CIHAZ YIKAMA.M
	: 1/5/2021 3:59:21 PM by SYSTEM
Last changed :	 prove a concentration of the concentration of the state o
	(modified after loading)
	05,4 Ref=off (ESRA\MI-aHelixBOD-1-ODH-98-2-1-505-510-2021-01-0515-07-17.D)
mAU _	
	8 3 8
800 –	00 00
600 -	
400 -	
-	
200 -	
0	
0 2 DAD1 B Sig=51	<u>4 6 8 10 12 14 16 18 min</u> 10,4 Ref=off (ESRA\MI-aHelixBOD-1-ODH-98-2-1-505-510-2021-01-0515-07-17.D)
mAU]	10,4 Rel-01 (ESRAIMIranelixbob-1-001-30-2-1-00-310-2021-01-0310-07-17.0)
-	8.327
800 -	xó ∧
600	
-	
400	
200 -	
0	
0 2	4 6 8 10 12 14 16 18 min
0 2	4 6 6 10 12 14 16 16 10
	Area Bergant Benert
	Area Percent Report
Court of Dec	Olympi 1
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Use Multiplier &	Dilution Factor with ISTDs
Signal 1: DAD1 A,	Sig=505,4 Ref=off
Peak RetTime Type	e Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
	•
1 8.328 BB	0.4149 2.02058e4 731.17596 100.0000
Totals :	2.02058e4 731.17596

HPLC 1/5/2021 3:59:56 PM SYSTEM

III. Chromatograms of slow-eluting enantiomer Data File C:\Users\P...\1\Data\ESRA\MI-aHelixBOD-2-ODH-98-2-1-505-510-2021-01-0514-29-49.D Sample Name: MI-aHelixBOD-2-ODH-98-2-1-505-510


Acq. Operator	SYSTEM
Sample Operator	SYSTEM
Acq. Instrument	HPLC Location : P1-A-01
Injection Date	1/5/2021 2:30:31 PM Inj: 1
	Inj Volume : 20.000 µl
Acq. Method	C:\Users\Public\Documents\ChemStation\1\Methods\ESRA\98-2-1-210-254-100 mi
Inst shanged	.M 1/5/2021 1.40.40 DM by CVCTEM
Last changed	1/5/2021 1:49:40 PM by SYSTEM C:\Users\Public\Documents\ChemStation\1\Methods\1_CIHAZ YIKAMA.M
Last changed	1/5/2021 4:03:14 PM by SYSTEM
Last changed	(modified after loading)
DAD1 A, Sig	5,4 Ref=off (ESRA\MI-aHelixBOD-2-ODH-98-2-1-505-510-2021-01-0514-29-49.D)
mAU 🗄	· · · · · · · · · · · · · · · · · · ·
600	
500	N
400	11.107
300	
200	
100	
0	
	4 6 8 10 12 14 16 18
	0,4 Ref=off (ESRA\MI-aHelixBOD-2-ODH-98-2-1-505-510-2021-01-0514-29-49.D)
mAU	
600	
500	Q
400	100
300	~
200	
100	
0	
7	4 6 8 10 12 14 16 18
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Use Multiplier	Dilution Factor with ISTDs
Signal 1: DAD1 2	Sig=505,4 Ref=off
Dook Potrimo T.	Width Area Height Area
# [min]	Width Area Height Area [min] [mAU*s] [mAU] %
1 11.107 BB	
Totals :	1.82133e4 346.56940

HPLC 1/5/2021 4:03:37 PM SYSTEM

Configurational stability test: chiral HPLC reports

Heating fast-eluting enantiomer for 1h at 50 °C. I.

Data File C:\Users\P...a\ESRA\MI-aHelixBOD-1sol-50-ODH-98-2-1-505-510-2021-01-2116-04-27.D Sample Name: MI-aHelixBOD-1sol-50-ODH-98-2-1-505-510

HPLC 4/27/2021 2:22:06 PM SYSTEM

Data File C:\Users\P...a\ESRA\MI-aHelixBOD-1sol-50-ODH-98-2-1-505-510-2021-01-2116-04-27.D Sample Name: MI-aHelixBOD-1sol-50-ODH-98-2-1-505-510

Signal 2: DAD1 C, Sig=505,4 Ref=off

Peak R #	etTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
-		-				。
1	8.961	BB	0.4640	3037.00146	90.27879	100.0000
Totals	:			3037.00146	90.27879	

*** End of Report ***

HPLC 4/27/2021 2:22:06 PM SYSTEM

II. Heating fast-eluting enantiomer for 1h at 75 °C. Data File C:\Users\P...a\ESRA\MI-aHelixBOD-1sol-75-ODH-98-2-1-505-510-2021-01-2116-33-35.D Sample Name: MI-aHelixBOD-1sol-75-ODH-98-2-1-505-510

Acq. Operator :	SYSTEM
Sample Operator :	
Acq. Instrument :	
	1/21/2021 4:34:20 PM Inj: 1
injection bate .	Inj Volume : 20.000 µl
Acq. Method :	C: Users Public Documents ChemStation Nethods ESRA 98-2-1-210-254-100 min SRA SR
	.м
	1/21/2021 2:54:07 PM by SYSTEM
	C:\Users\Public\Documents\ChemStation\1\Methods\1_CIHAZ YIKAMA.M
Last changed :	4/27/2021 2:22:49 PM by SYSTEM
	(modified after loading)
DAD1 B, Sig=51	0,4 Ref=off (ESRA\MI-aHelixBOD-1sol-75-ODH-98-2-1-505-510-2021-01-2116-33-35.D)
mAU	
200 -	
200	
150 -	∞
	80 80 80
100	$\tilde{\wedge}$
50 -	
50	
0	
-50 +	4 6 8 10 12 14 16 18 min
DAD1 C, Sig=50	<u>4 6 8 10 12 14 16 18 min</u> 5,4 Ref=off (ESRA\MI-aHelixBOD-1sol-75-ODH-98-2-1-505-510-2021-01-2116-33-35.D)
mAU]	
200	
150	~
	<u>6</u>
100 -	$\stackrel{\infty}{\wedge}$
50	
0	
-50	
0 2	4 6 8 10 12 14 16 18 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 0.1000
Use Multiplier &	Dilution Factor with ISTDs
100000-0024 MOREOLOGISTON - C 100000-000000 - 46 - 15	
Signal 1. DAD1 B	Sig=510,4 Ref=off
Signai I. DADI D,	519-510/4 Net-011
Deels Detmine m	Width Aven Weight Aven
reak keutime Type	Width Area Height Area
	[min] [mAU*s] [mAU] %
1 8.918 BB	0.4621 3227.66431 97.40687 100.0000
Totals :	3227.66431 97.40687

HPLC 4/27/2021 2:22:51 PM SYSTEM

Data File C:\Users\P...a\ESRA\MI-aHelixBOD-1sol-75-ODH-98-2-1-505-510-2021-01-2116-33-35.D Sample Name: MI-aHelixBOD-1sol-75-ODH-98-2-1-505-510

Signal 2: DAD1 C, Sig=505,4 Ref=off

Peak R #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
- 1	8.918	- BB	0.4222	3244.37427	97.88682	 100.0000
Totals	:			3244.37427	97.88682	

*** End of Report ***

HPLC 4/27/2021 2:22:51 PM SYSTEM

III. Heating fast-eluting enantiomer for 1h at 100 °C. Data File C:\Users\P...\ESRA\MI-aHelixBOD-1sol-100-ODH-98-2-1-505-510-2021-01-2116-57-13.D

Sample Name: MI-aHelixBOD-1sol-100-ODH-98-2-1-505-510

Acq. Operator	: SYSTEM
Sample Operator	: SYSTEM
Acq. Instrument	
-	: 1/21/2021 4:57:59 PM Inj: 1
	Inj Volume : 20.000 µl
Acq. Method	: C:\Users\Public\Documents\ChemStation\1\Methods\ESRA\98-2-1-210-254-100 min
Acq. Nechou	. C. (05e15 / ubiic (bocuments (chemblation / Methods (E5KK / 50 2 1 210 254 100 min
Teet sheered	
Last changed	: 1/21/2021 2:54:07 PM by SYSTEM
	: C:\Users\Public\Documents\ChemStation\1\Methods\1_CIHAZ YIKAMA.M
Last changed	: 4/27/2021 2:23:31 PM by SYSTEM
	(modified after loading)
	=510,4 Ref=off (ESRA\MI-aHelixBOD-1sol-100-ODH-98-2-1-505-510-2021-01-2116-57-13.D)
mAU -	
200	
150	88.88
100	8
50 -	
0	
-50	
0	2 4 6 8 10 12 14 16 18 min
	=505,4 Ref=off (ESRA\MI-aHeixBOD-1sol-100-ODH-98-2-1-505-510-2021-01-2116-57-13.D)
mAU -	
200 -	
150	2
150 -	88
100	ñ
50	
0	
-50	
0	2 4 6 8 10 12 14 16 18 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 0.1000
Use Multiplier	& Dilution Factor with ISTDs
Signal 1: DAD1	B, Sig=510,4 Ref=off
Peak RetTime Ty	pe Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
	0.4313 3534.71582 107.46067 100.0000
Totals :	3534.71582 107.46067

HPLC 4/27/2021 2:23:37 PM SYSTEM

Data File C:\Users\P...\ESRA\MI-aHelixBOD-1sol-100-ODH-98-2-1-505-510-2021-01-2116-57-13.D Sample Name: MI-aHelixBOD-1sol-100-ODH-98-2-1-505-510

Signal 2: DAD1 C, Sig=505,4 Ref=off

Peak RetTim # [min]	e Type Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 8.89	2 BB 0.458	- 1 3590.99292	108.21491	100.0000
Totals :		3590.99292	108.21491	

*** End of Report ***

HPLC 4/27/2021 2:23:37 PM SYSTEM

IV. Heating fast-eluting enantiomer for 1h at 125 °C. Data File C:\Users\P...\ESRA\MI-aHelixBOD-1sol-125-ODH-98-2-1-505-510-2021-01-2216-16-30.D Sample Name: MI-aHelixBOD-1sol-125-ODH-98-2-1-505-510

Acq. Operator	: SYSTEM
Sample Operator	: SYSTEM
Acq. Instrument	: HPLC Location : P1-C-01
Injection Date	: 1/22/2021 4:17:10 PM Inj: 1
	Inj Volume : 20.000 µl
Acq. Method	: C:\Users\Public\Documents\ChemStation\1\Methods\ESRA\98-2-1-210-254-100 min
	.M
Last changed	: 1/21/2021 2:54:07 PM by SYSTEM
	: C:\Users\Public\Documents\ChemStation\1\Methods\1_CIHAZ YIKAMA.M
Last changed	: 4/27/2021 2:23:31 PM by SYSTEM
DAD4 D O	(modified after loading)
mAU -	-510,4 Ref=off (ESRA\MI-aHelixBOD-1sol-125-ODH-98-2-1-505-510-2021-01-2216-16-30.D)
]]	
200 -	
150	
and the second	8.667
100 -	\bigwedge^{∞}
50 -	
0	
-50	
	2 4 6 8 10 12 14 16 18 min =505,4 Ref=off (ESRA\MI-aHelixBOD-1sol-125-ODH-98-2-1-505-510-2021-01-2216-16-30.D)
mAU -	500, T 10 - 01 (E0101117011018002-150-120-021-000-010-2021-01-2210-10-00.0)
200	
200	
150	0
100	8.670
	\wedge
50 -	
0	
-50	2 4 6 8 10 12 14 16 18 min
0	
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 0.1000
Use Multiplier a	& Dilution Factor with ISTDs
Signal 1: DAD1 H	3, Sig=510,4 Ref=off
	pe Width Area Height Area
	[min] [mAU*s] [mAU] %
	0.4343 2898.66748 91.06919 100.0000
1 0.007 BB	0.1313 2000.00/H0 - 31.00313 100.0000
Totals :	2898.66748 91.06919
-	

HPLC 4/27/2021 2:29:48 PM SYSTEM

Data File C:\Users\P...\ESRA\MI-aHelixBOD-1sol-125-ODH-98-2-1-505-510-2021-01-2216-16-30.D Sample Name: MI-aHelixBOD-1sol-125-ODH-98-2-1-505-510

Signal 2: DAD1 C, Sig=505,4 Ref=off

Peak R #	etTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area १
-		-			-	
1	8.670	BB	0.4387	2928.68408	91.55736 1	L00.0000
Totals	:			2928.68408	91.55736	

*** End of Report ***

HPLC 4/27/2021 2:29:48 PM SYSTEM

V. Heating fast-eluting enantiomer for 1h at 150 °C (open atm).

Sample Name: MI-aHelixBOD-1sol-150-ODH-98-2-1-505-510

Acq. Operator : SYSTEM
Sample Operator : SYSTEM
Acq. Instrument : HPLC Location : P1-C-02
Injection Date : 1/22/2021 4:43:57 PM Inj : 1
Inj Volume : 20.000 µl
Acq. Method : C:\Users\Public\Documents\ChemStation\1\Methods\ESRA\98-2-1-210-254-100 min
.М
Last changed : 1/21/2021 2:54:07 PM by SYSTEM
Analysis Method : C:\Users\Public\Documents\ChemStation\1\Methods\1_CIHAZ YIKAMA.M
Last changed : 4/27/2021 2:23:31 PM by SYSTEM (modified after loading)
DAD1 B, Sig=510,4 Ref=off (ESRA\MI-aHelixBOD-1sol-150-ODH-98-2-1-505-510-2021-01-2216-43-13.D)
mAU]
200 -
150 -
100 - 2
0
-50
DAD1 C, Sig=505,4 Ref=off (ESRA\MI-aHelixBOD-1sol-150-ODH-98-2-1-505-510-2021-01-2216-43-13.D)
mAU
200 -
150 -
0 2 4 6 8 10 12 14 16 18 min
Area Percent Report
Sorted By : Signal
Multiplier : 1.0000
Dilution : 0.1000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 B, Sig=510,4 Ref=off
Signal 1. DADI B, Sig-Si0, 4 Kel-Oli
Peak RetTime Type Width Area Height Area
[min] [mAU*s] [mAU] %
1 8.613 BB 0.3761 1868.30725 59.45347 100.0000
Totals: 1868.30725 59.45347

HPLC 4/27/2021 2:30:33 PM SYSTEM

Data File C:\Users\P...\ESRA\MI-aHelixBOD-1sol-150-ODH-98-2-1-505-510-2021-01-2216-43-13.D Sample Name: MI-aHelixBOD-1sol-150-ODH-98-2-1-505-510

Signal 2: DAD1 C, Sig=505,4 Ref=off

Peak R #	etTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area ۴
- 1	8.613	- BB	0.3900	1873.17346	 59.62061	 100.0000
Totals	:			1873.17346	59.62061	

*** End of Report ***

HPLC 4/27/2021 2:30:33 PM SYSTEM

Normalized Absorbance and Photochemical stability

We were aware of the recent work by the group of Nagano and Urano, in which 4-aryloxy boron dipyrromethenes were shown to uncage photolytically in polar protic solvents such as methanol.² Consequently, we wanted to test the photostability of the dye in methanol by irradiating it with a light pulse (λ_{ex} 490 nm) for one hour at 10 second intervals and recording its fluorescence. Fig. S1 (Right) shows that the racemic dye is considerably photostable; the fluorescence of the dye remained almost constant (<1% decomposition) over that period.

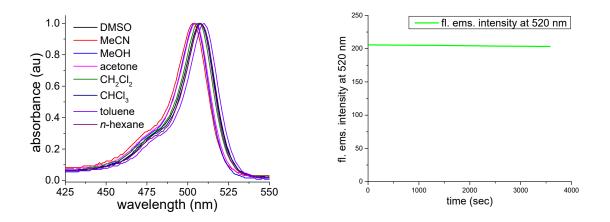
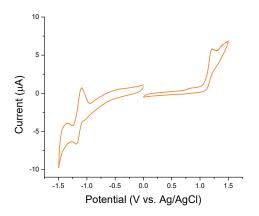



Fig. S1 (Left) Normalized absorption spectra of (\pm) -*B***C**-BODIPY (2 μ M) in solvents of varying polarity. (Right) Time-dependent fluorescence intensity profile of (\pm) -*B***C**-BODIPY (2 μ M) in methanol at 520 nm. A laser pulse of 490 nm is given for 3600 sec with 10-sec intervals.

Electrochemical properties

The electrochemical properties of B*C*-BODIPY were also studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The analysis was performed *vs*. Ag/AgCl in degassed, anhydrous acetonitrile solution containing $[Bu_4N^+][PF_6^-]$ (0.1 M) as a supporting electrolyte. Reversibility of oxidation and reduction processes can be seen from the looping CV (Fig. S2) and symmetric DPV spectra (Fig. S3 and Table S1).

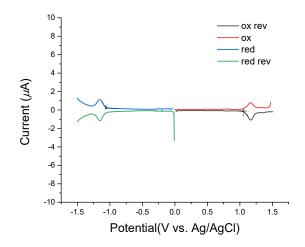
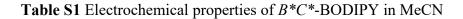
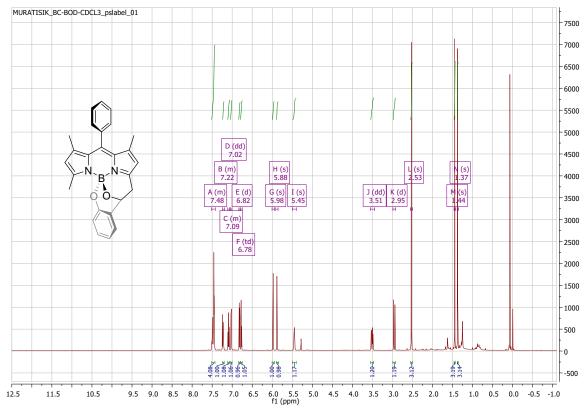



Fig. S3 DPV of B^*C^* -BODIPY in MeCN.


	$E_{ox}^{onset} (eV)^a$	$E_{red}^{onset} (eV)^a$	$E_{HOMO} (eV)^b$	$E_{LUMO} (eV)^c$	$E_{gap} (eV)^d$
<i>B*C*</i> -	1.05	-1.06	-5.76	-3.65	2.1
BODIPY					

^{*a*}Calculated from the DPV, ^{*b*}Calculated with E_{HOMO} : - (4.71 + E_{ox}^{onset}), ^{*c*}Calculated with E_{LUMO} : - (4.71 + E_{red}^{onset})

Table S2 Electrochemical properties of F-BODIPY (2)^{*a*}

	$E_{1/2}^{red}$ (mV)	$E_{1/2}^{ox}$ (mV)	$E_{00} (eV)$
F-BODIPY (2)	-1570	760	2.48

^{*a*}Electrochemical data of this compound in acetonitrile (potentials in mV vs Fe⁺/Fe). The data are taken from the $lit.^3$

Copies of NMR (1D and 2D), HRMS and IR spectra of **B***C*-BODIPY

Fig. S4 ¹H NMR spectrum (600 MHz) of B*C*-BODIPY in CDCl₃.

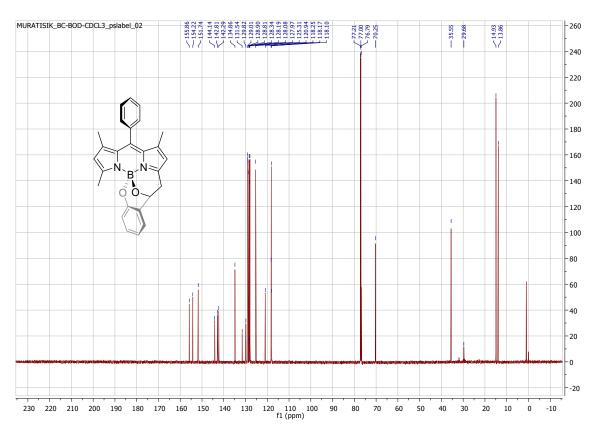


Fig. S5 ¹³C NMR spectrum (151 MHz) of B^*C^* -BODIPY in CDCl₃.

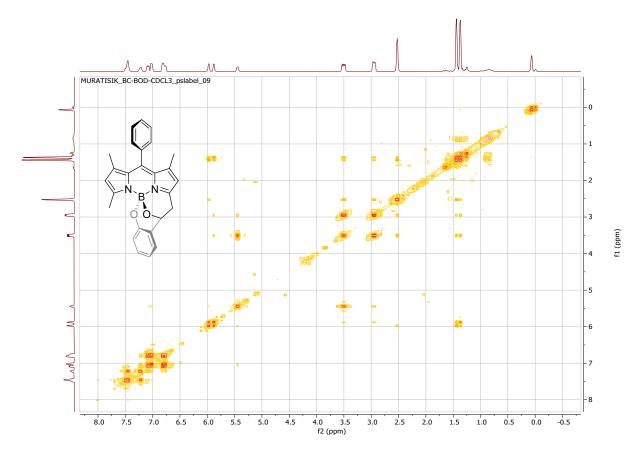


Fig. S6 ¹H-¹H COSY NMR spectrum (600 MHz) of B*C*-BODIPY in CDCl₃.

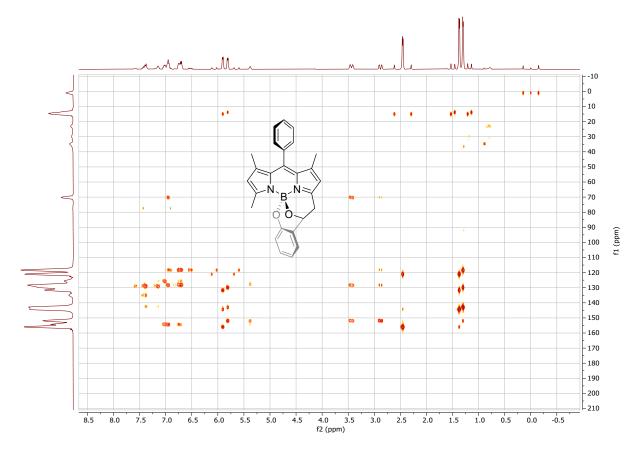


Fig. S7 HMBC NMR spectrum (400 MHz) of *B***C**-BODIPY in CDCl₃.

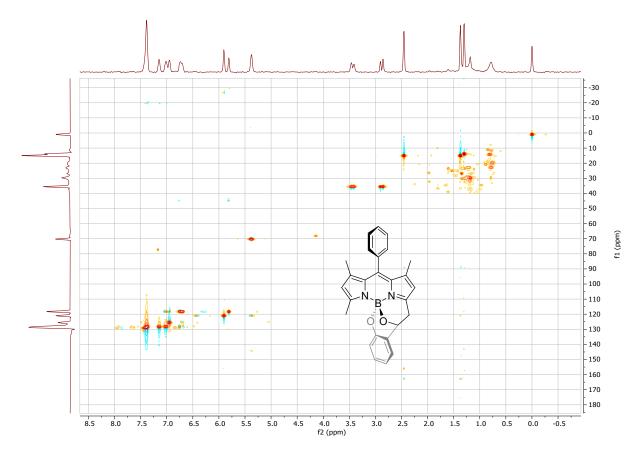


Fig. S8 HSQC NMR spectrum (400 MHz) of *B***C**-BODIPY in CDCl₃.

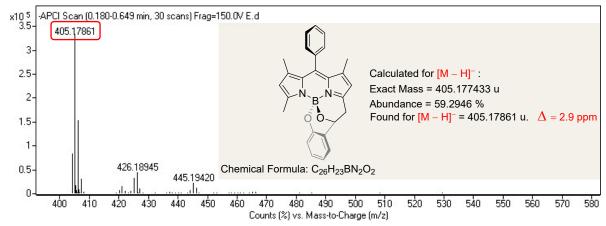


Fig. S9 HRMS (APCI negative) chromatogram of *B***C**-BODIPY.

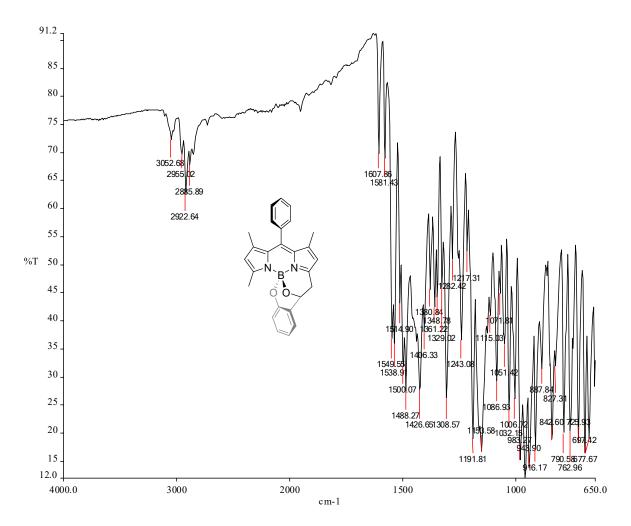


Fig. S10 IR (neat) spectrum of B^*C^* -BODIPY.

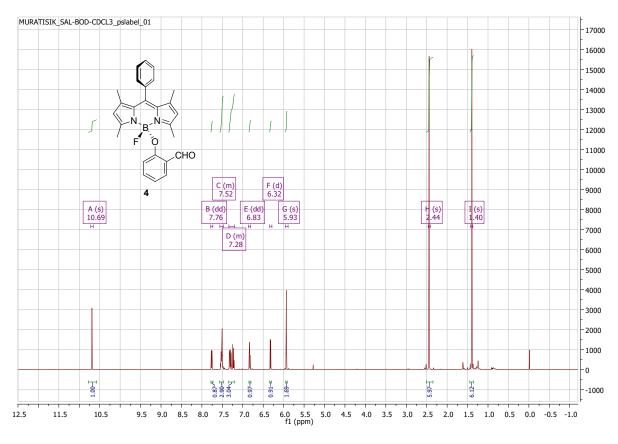


Fig. S11 ¹H NMR spectrum (600 MHz) of compound 4 in CDCl₃.

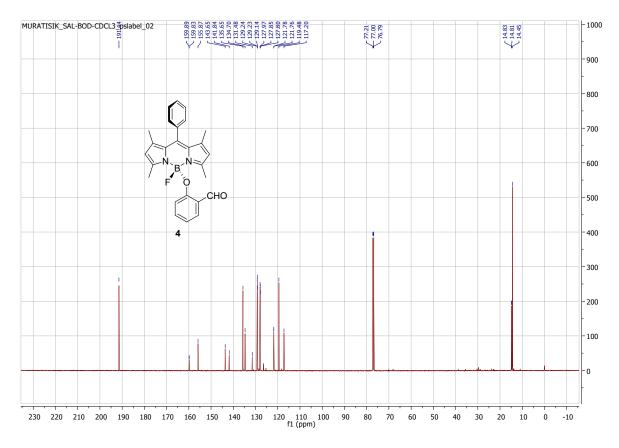
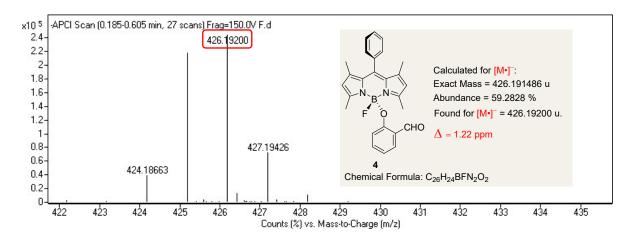
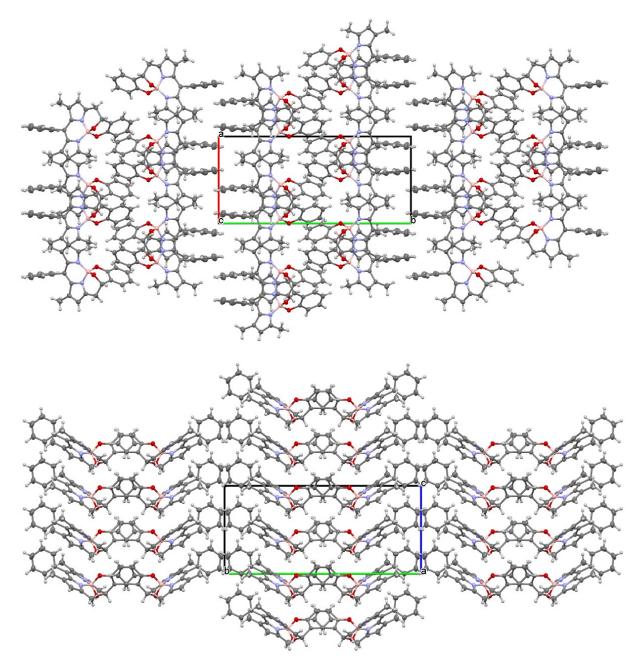


Fig. S12 ¹³C NMR spectrum (151 MHz) of compound 4 in CDCl₃.




Fig. S13 HRMS (APCI negative) chromatogram of compound 4.

X-ray diffraction data

For the crystal structure determination, single-crystal of the compound B^*C^* -BODIPY was used for data collection on a four-circle Rigaku R-AXIS RAPID-S diffractometer (equipped with a two-dimensional area IP detector). Graphite-monochromated Mo-K_a radiation ($\lambda =$ 0.71073 Å) and oscillation scans technique with $\Delta w = 5^\circ$ for one image were used for data collection. The lattice parameters were determined by the least-squares methods on the basis of all reflections with $F^2 > 2\sigma(F^2)$. Integration of the intensities, correction for Lorentz and polarization effects and cell refinement were performed using CrystalClear (Rigaku/MSC Inc.,2005) software.³ The structures were solved by direct methods using SHELXS-97 which allowed for the location of most of the heaviest atoms, with the remaining non-hydrogen atoms being located from different Fourier maps calculated from successive full-matrix least squares refinement cycles on F^2 using SHELXL-97.⁴ All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogens attached to carbons were located at their geometric positions using appropriate HFIX instructions in SHELXL. The final difference Fourier maps showed no peaks of chemical significance.

Crystal data for B^*C^* -BODIPY: C₂₆H₂₃N₂O₂B, crystal system, space group: orthorhombic, Pca2₁; (no:29); unit cell dimensions: a = 9.8114(5), b = 21.6884(8), c = 9.7138(6) Å, a = 90, $\beta = 90$, $\gamma = 90^\circ$; volume; 2067.0(3) Å³, Z=4; calculated density: 1.306 g/cm³; absorption coefficient: 0.082 mm⁻¹; F(000): 856; θ -range for data collection 2.4-26.0°; refinement method: full matrix least-square on F^2 ; data/parameters: 4026/285; goodness-of-fit on F^2 : 1.060; final *R*-indices [$I > 2\sigma(I)$]: $R_1 = 0.043$, w $R_2 = 0.103$; largest diff. peak and hole: 0.177 and -0.164 e Å⁻³.

CCDC-2095290 number contains the supplementary crystallographic data for this structure. These data are provided free of charge via the joint CCDC/FIZ Karlsruhe deposition service www.ccdc.cam.ac.uk/structures

Fig. S12 Stacking of the molecules with the unit cell viewed down along the (top) *c*-axis and the (bottom) *a*-axis. Note: The strongest intermolecular interaction is the X-H···Cg (Pi-Ring) interaction [C26-H···C20/C25(ring centroid) 3.585(4) Å]. The π - π stacking interactions are relatively weak, for which the ring centroids are found to be in the range of 4.90–5.95 Å.

References

- (1) H. Sunahara, Y. Urano, H. Kojima and T. Nagano, J. Am. Chem. Soc., 2007, 129, 5597.
- (2) N. Umeda and H. Takahashi, et al., ACS Chem. Biol., 2014, 9, 2242.
- (3) M.; Kollmannsberger, T. Gareis, S. Heinl, J. Daub and J. Breu, *Angew. Chem., Int. Ed.,* 1997, **36**, 1333.
- (4) Rigaku/MSC, Inc., 9009 New Trails Drive, TheWoodlands, TX 77381.
- (5) G. M. Sheldrick, Acta Cryst., 2008, A64, 112.