Electronic Supplementary Information

Element Immiscibility Assisted Ru@Ni₃B as An Efficient Electrocatalyst toward Alkaline and Acidic Hydrogen Evolution Reaction

Yin'an Zhu, Jia Yao, Xu Zhong, Tao Lu, Ye Pan*

School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China.

* Correspondent Author: Ye Pan, e-mail: panye@seu.edu.cn

Experimental Details

Materials

Metal/Non-metal particles including Ni, Al, Ru, and B (\geq 99.5%) were purchased from Beijing China New Metal Co., Ltd. H₂SO₄ (98%) and KOH were brought from Aladdin Chemistry Co. Ltd.

Preparation of dealloying precursors

Dealloying precursors $Ni_{73-x}Al_4B_{23}Ru_x$ (x=0, 0.2, 0.5, 1.0) were synthesized by a melting-spinning method. Typically, metal and non-metal particles with a certain ratio were mixed and put into a copper crucible under an Ar atmosphere. Alloy ingots were then obtained by a high-temperature arc. To reach a uniform composition, each ingot should be melted at least four times. After breaking the ingot into small particles, it was melted again and injected onto a rotating copper roller. Alloy ribbons with 30 µm in thickness and 2 mm in width.

Preparation of Ru@Ni₃B

Alloy ribbon was cut and dealloyed in $5M H_2SO_4$ at 70°C for 10 hours. After dealloying, the dealloyed products were washed with water and ethanol to remove the attached

corrosive agent. It then died at room temperature. The corresponding dealloyed products were denoted as $xRu@Ni_3B$ (x=0, 0.2, 0.5, 1.0).

Electrochemical measurements

Electrocatalytic performance of xRu@Ni₃B (x=0, 0.2, 0.5, 1.0) was conducted by a conventional three-electrode system. Graphite rod and Ag/AgCl electrode were employed as counter electrode and reference electrode, respectively. The dealloyed ribbons directly work as the working electrode. 0.5M H₂SO₄ and 1M KOH were chosen as catalytic electrolytes. All the obtained potentials were transformed to reversible hydrogen electrode (RHE) via the formula of $E_{RHE} = E_{Ag/AgCl} + 0.059*pH + 0.197$. The so-called overpotential (η) was calculated to be the absolute value of E_{RHE} . Electrocatalytic performance of the dealloyed products was estimated by the polarization curve, which was measured at a scan rate of 1 mV/s with 90% IR compensation. To compare the actual electrochemical active surface area (ECSA) of the tested electrocatalysts, a cyclic voltammogram (non-Faradaic interval) was carried out with scan rates from 20 to 120 mV/s. Double-layer capacitance (C_{dl}) of tested catalysts was fitted from the slope of $\Delta J = 0.5^*(J_a - J_c)$ against the scan rates. Then ECSA could be estimated by the formula of ECSA = C_{dl} / C_s (C_s is the specific capacitance of the smooth planar surface of electrode per unit area in different electrolytes, 0.035 and 0.04 mF/cm^2 for 0.5M H_2SO_4 and 1M KOH, respectively). Stability test of the dealloyed products was performed under the constant current density of -10 mA/cm² for 24 hours. Lastly, Nyquist plots of dealloyed products were measured at -0.1 and -0.02 V (vs RHE) for alkaline and acidic electrolyte, respectively.

Characterizations

The phase structure of ribbons was measured by the D8 Bruker X-ray diffraction equipped with Cu K α radiation. The surface chemical valence of the dealloyed ribbons was characterized by an ESCALab 250XI X-ray photoelectron spectrometer and all the binding energies were calibrated at C 1s 284.8 eV. Morphologies details of the dealloyed ribbons were filmed by Navo Nano SEM450 and Talos F200X.

Fig.S1 XRD patterns of the dealloying precursors.

Fig. S2 Section SEM image of 1.0Ru@Ni₃B.

Fig.S3 HAADF-STEM image and the corresponding EDX mapping of 1.0Ru@Ni₃B.

Fig.S4 The tested and fitted Nyquist plots of xRu@Ni₃B (x=0, 0.2, 0.5, 1.0) in (a) 1M KOH and (b) 0.5M H₂SO₄, respectively. The insert maps are the corresponding equivalent circuits.

Table S1 The fitted R_{ct} of xRu@Ni₃B (x=0, 0.2, 0.5, 1.0) in different electrolytes, respectively.

samples	R_{ct} in 1M KOH / Ω	R_{ct} in 0.5M H_2SO_4 / Ω	
Ni ₃ B	5570±115	520.6±4.8	
0.2Ru@Ni ₃ B	158.3 ± 5.5	25.5 ± 2.0	
0.5Ru@Ni ₃ B	35.7 ± 1.5	12.1 ± 1.9	
1.0Ru@Ni ₃ B	13.4 ± 0.4	7.1 ± 0.7	

Fig.S6 CVs of xRu@Ni₃B (x = 0, 0.2, 0.5, 1.0) in 0.5M H_2SO_4 .

Samples	Ni / at%	Ru / at%	B / at%	Al / at%	O / at%		
Ni ₃ B	94.40	0	_*	5.60	0		
0.2@Ni ₃ B	86.26	2.54	-	5.27	5.92		
0.5@Ni ₃ B	73.82	7.51	-	3.15	15.52		
1.0@Ni3B	66.48	15.35	-	1.16	17.01		

Table S2 Element content of the xRu@Ni₃B (x=0, 0.2, 0.5, 1.0) via EDX.

* Due to the inherent instrumental limitation, the signal of B is difficult to be detected.

Fig.S7 Linear sweep voltammetry curves of xRu@Ni₃B (x=0.2, 0.5, 1.0) normalized by Ru Mass.

Fig. S8 XPS spectra of 1.0Ru@Ni₃B before and after stability test.

Fig. S9 HRTEM images of 1.0Ru@Ni₃B after stability test in (a) 1M KOH and (b) 0.5M H_2SO_4 .