Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Computational insights into strain-increase allylborations for alkylidenecyclopropanes

Lingfei Hu^a, Han Gao^a, Yanlei Hu^a, Xiangying Lv^a, Yan-Bo Wu^b and Gang Lu^{*,a}

^a School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China

^b Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China

Corresponding Author: ganglu@sdu.edu.cn

Table of Contents

Computational Details	
Ring Strain Energy	S3
Energy Profiles with Different Allylboronates	S4
Orbital Interactions	S5
Allylboration with Ketone	S7
Energy Terms of EDA along IRC	
Cartesian Coordinates (Å) and Energies of the Optimized Structures	S11
References	S30

Computational Details

The M06-2X functional with dispersion corrections (D3)¹ and the def2-SVP basis set were used for geometry optimizations for all intermediates and transition states. All minima have zero imaginary frequency and all transition states have only one imaginary frequency and were confirmed by intrinsic reaction coordinate (IRC) calculations. Single-point energies were calculated by using M06-2X with dispersion corrections (D3) and the def2-TZVP basis set. Solvation energy corrections were calculated using the SMD model² with THF as solvent. All these calculations were carried out with Gaussian 09.³

Energy decomposition analysis (EDA) calculations at the M06-2X-D3/def2-TZVP level of theory were performed by using the second-generation EDA based on absolutely localized orbitals (ALMO-EDA2) implemented in Q-Chem 5.2.⁴ The complementary occupied-virtual pairs (COVPs) were computed to figure out the direction of charge transfer and the most significant orbitals. Mostly, the targeted C–C bonds in different allylboration transition states have different bond distances. To minimize the effect of early or late transition states in comparing each energy term among these transition states, we performed EDA calculations along the reaction coordinates obtained from IRC calculations. The reported energies in the bar charts are the average of $\Delta\Delta\Delta E$ values at the region of C–C bond distances that correspond to the allylboration transition states. The geometries and molecular orbitals were visualized using CYLview⁵ and IQmol, respectively. The NBO donor-acceptor interactions were analyzed by using NBOPro.⁶

Ring Strain Energy

We computed the ring strain energies of allylboronate **1b** and alkylidenecyclopropane **2b** based on the homodesmotic reactions shown in Fig. S1. The much larger ring strain of **2b** than **1b** indicates the allylboration of **1b** with benzaldehyde to generate **2b** suffers from a great strain increase.

ring strain energy of **1b**: ΔH_{strain} = 19.5 kcal/mol

ring strain energy of **2b**: ΔH_{strain} = 36.9 kcal/mol

Fig. S1. Computed ring strain energies of 1b and 2b.

Energy Profiles with Different Allylboronates

The energy profiles of allylborations with allylboronates **1a**, **1b** and **1d** are shown in Fig. S2. The results show that **TS1~TS3** require barriers of 21.2, 27.3 and 15.9 kcal/mol with respect to the separated allylboronates and benzaldehyde, respectively. The barrier trend is consistent with the relative barriers of **TS1~TS3** with respect to the complexes of allylboronates with benzaldehyde (**IM1~IM2**), which are 12.3, 19.5 and 9.8 kcal/mol, respectively.

In addition, although the allylborations with **1b** and **1d** to form **IM2a** and **IM3a** intermediates are strain-increase processes, the reactions are thermodynamically favorable and exothermic by 13.8 and 16.8 kcal/mol, respectively. This indicates that the increased strain energy can be overcome by forming C–C and B–O bonds. In contrast, the unstrained allyboration with **1a** is much more thermodynamically favorable, which is exothermic by 28.7 kcal/mol.

Fig. S2. Energy profiles for allylborations with substrates 1a, 1b and 1d.

Orbital Interactions

Fig. S3 shows the cyclopropyl "quasi π " orbital and the olefin π^* orbital. These two orbitals are nearly perpendicular to each other, which leads to ineffective orbital overlaps. Thus, it is less possible for the electron donation from cyclopropyl to olefin in **TS2**.

Fig. S3. The cyclopropyl "quasi π " and olefin π * orbitals.

To further understand the effects of cyclopropyl and dimethyl substituents on the reactivity of allylborations, we analyzed donor-acceptor interactions based on natural bond orbitals for **TS1** and **TS2**. As shown in Fig. S4, the donor-acceptor interaction from $\sigma(C-B)$ to $\pi^*(C=C)$ in **TS1** ($\Delta E = 19.0$ kcal/mol) is much stronger than that in **TS2** ($\Delta E = 11.6$ kcal/mol). This is mostly due to the more effective orbital overlap in **TS1** with a smaller $\angle BCC$ (100.2°) than that in **TS2** with a larger $\angle BCC$ (104.8°). In addition, the cyclopropyl $\sigma^*(C-C)$ in **TS2** ($\Delta E = 4.1$ and 1.2 kcal/mol) is a better electron acceptor than the dimethyl $\sigma^*(C-C)$ in **TS1** ($\Delta E = 0.7$ and 1.9 kcal/mol). Therefore, compared with **TS1** with dimethyl substituents, the weaker $\sigma(C-B) \rightarrow \pi^*(C=C)$ and stronger $\pi(C=C) \rightarrow \sigma^*(C-C)$ in **TS2** with cyclopropyl group result in much weaker nucleophilicity of the double bond toward aldehyde.

We further computed the allylboration transition state (**TS4**, Fig. S4) with Me and CF₃. Indeed, due to the electron-withdrawing property of CF₃, the barrier of **TS4** is 2.2 kcal/mol higher than that of **TS1** with dimethyl group. Nevertheless, **TS4** is more favorable than **TS2** with cyclopropyl group. This can be ascribed to the donor-acceptor interactions based on the results of NBO analysis. As shown Fig. S4, the barrier trend of these transition states is consistent with the strength of $\sigma(C-B) \rightarrow \pi^*(C=C)$ orbital interactions.

Fig. S4. NBO donor-acceptor interactions in TS1, TS2 and TS4.

Allylboration with Ketone

The Aggarwal's experiment shows the allylboration cannot be applied for ketone even with more acidic vinylcyclopropyl boronates. The computed barrier for the allylboration with ketone (**TS5**, $\Delta G^{\ddagger} = 24.5 \text{ kcal/mol}$, Fig. S5) is much higher than that with aldehyde (**TS3**, $\Delta G^{\ddagger} = 15.9 \text{ kcal/mol}$), which is in line with the experimental result. The interaction of acetophenone with acidic boron center is weaker than that of benzaldehyde, which is evidenced by the higher energy of **IM5** and the longer B···O distance (1.73 Å) in **IM5** than that in **IM3** (1.68 Å). Thus, compared with **IM3** ($\Delta E_{Pauli} = 124.0 \text{ kcal/mol}$), **IM5** sustains smaller lp)(lp repulsion in advance ($\Delta E_{Pauli} = 109.2 \text{ kcal/mol}$). The ensuing **TS5** suffers from the rest of lp)(lp repulsion as well as π)(π repulsion ($\Delta E_{Pauli} = 269.7 \text{ kcal/mol}$), which is more repulsive than that in **TS3** ($\Delta E_{Pauli} = 254.7 \text{ kcal/mol}$). In addition, the larger deformation of acetophenone than benzaldehyde leads to greater distortion energy in **TS5** ($\Delta E_{dist} = 66.5 \text{ kcal/mol}$) than that in **TS3** ($\Delta E_{dist} = 54.8 \text{ kcal/mol}$). Taken together, the low reactivity with ketone can be ascribed to the relatively weak O(ketone) \rightarrow B interaction and large geometric deformations.

Fig. S5. Comparison of allylborations with aldehyde and ketone.

Energy Terms of EDA along IRC

Energy terms	Steric effect:		Elec			
(in kcal/mol)	$\Delta E_{ m st}$	teric		$\Delta E_{ m elec}$		Dispersion effect:
r(C-C)	A F	A.E.	A F	ΔE	oi	$\Delta E_{\rm disp}$
in TS1 (in Å)	AE dist	∆ £ Pauli	∆ L elstat	$\Delta E_{\rm ct}$	$\Delta E_{ m pol}$	
2.47	28.86	181.37	-97.570	-45.19	-43.45	-23.91
2.43	31.46	190.63	-102.21	-48.68	-46.31	-24.39
2.38	34.45	200.56	-107.22	-52.71	-49.38	-24.89
2.34	38.01	211.33	-112.68	-57.43	-52.78	-25.39
2.28 (TS)	42.23	222.97	-118.59	-62.93	-56.55	-25.92
2.23	46.84	235.57	-124.95	-69.09	-60.67	-26.46
2.19	52.15	249.12	-131.81	-76.08	-65.27	-27.02
2.14	58.24	263.64	-139.20	-83.99	-70.40	-27.60
2.04	72.62	296.06	-155.75	-102.43	-82.75	-28.83

Table S1. EDA energy terms of TS1 along IRC

Table S2. EDA energy terms of IM1

Energy terms	Steric effect:		Elec			
(in kcal/mol)	$\Delta E_{ m st}$	teric		$\Delta E_{ m elec}$		Dispersion effect:
r(C-C)	AF.	AE _D u	AF	ΔΕ	oi	$\Delta E_{ m disp}$
in IM1 (in Å)	/ dist	AL Pauli	AL elstat	$\Delta E_{\rm ct}$	$\Delta E_{ m pol}$	
3.13	1.0	19.8	-10.9	-2.9	-2.1	-13.4

Energy terms	Energy terms Steric effect:		Elec	Electronic effects:		
(in kcal/mol)	$\Delta E_{ m st}$	teric		$\Delta E_{ m elec}$		Dispersion effect:
r(C-C)	A E	A E	AE -	ΔE	oi	$\Delta E_{ m disp}$
in TS2 (in Å)	AL dist	AL Pauli	AL elstat	$\Delta E_{\rm ct}$	$\Delta E_{ m pol}$	
2.49	29.53	171.92	-92.17	-42.48	-40.46	-22.33
2.44	31.70	180.73	-96.51	-45.45	-42.92	-22.85
2.39	34.55	190.72	-101.46	-49.19	-45.82	-23.39
2.33	37.79	201.47	-106.73	-53.53	-48.97	-23.94
2.28	41.70	213.39	-112.62	-58.72	-52.51	-24.51
2.22	46.22	226.39	-119.03	-64.75	-56.46	-25.09
2.17	51.82	240.76	-126.17	-71.95	-61.07	-25.69
2.12 (TS)	58.52	256.55	-134.05	-80.40	-66.37	-26.31
2.06	65.86	273.99	-142.69	-89.88	-72.43	-26.97
2.01	74.25	293.00	-152.13	-100.52	-79.52	-27.66
1.95	83.62	313.58	-162.37	-112.12	-87.86	-28.37
1.9	93.70	336.09	-173.55	-124.21	-97.87	-29.13
1.85	104.31	360.63	-185.70	-136.14	-110.04	-29.92

Table S3. EDA energy terms of TS2 along IRC

Table S4. EDA energy terms of IM2

Energy terms	Steric effect:		Elec			
(in kcal/mol)	$\Delta E_{ m steric}$		$\Delta E_{ m elec}$		Dispersion effect:	
r(C-C)	λ Γ	AFr	AF	ΔE	oi	$\Delta E_{ m disp}$
in IM2 (in Å)	AL dist	AL Pauli	AL elstat	$\Delta E_{\rm ct}$	$\Delta E_{ m pol}$	
3.24	0.4	17.1	-9.3	-2.4	-1.8	-12.0

Energy terms	Steric	effect:	Elec	tronic effects:			
(in kcal/mol)	ΔE_s	teric		$\Delta E_{ m elec}$			
r(C-C)	A TE	A T	A TE	ΔΕ	oi	$\Delta E_{ m disp}$	
in TS3 (in Å)	AE dist	$\Delta \boldsymbol{E}_{\text{dist}} \qquad \Delta \boldsymbol{E}_{\text{Pauli}} \qquad \Delta \boldsymbol{L}_{\text{elstat}} \qquad \Delta \boldsymbol{I}$		$\Delta E_{\rm ct}$	$\Delta E_{ m pol}$		
2.36	32.88	196.5487	-104.46	-52.60	-51.33	-27.13	
2.3	35.58	205.7651	-108.92	-56.70	-53.80	-27.65	
2.26	39.17	216.085	-113.95	-61.62	-56.66	-28.18	
2.2	43.28	227.4197	-119.45	-67.27	-59.85	-28.73	
2.15	48.52	240.1296	-125.70	-74.01	-63.65	-29.28	
2.09 (TS)	54.83	254.6461	-132.68	-82.01	-68.17	-29.86	
2.04	61.74	269.9624	-140.39	-90.92	-73.32	-30.47	
1.98	69.70	287.3841	-148.97	-100.97	-79.49	-31.11	
1.93	78.63	306.5061	-158.43	-111.94	-86.89	-31.78	
1.88	88.26	330.2808	-170.64	-124.48	-97.47	-31.96	

Table S5. EDA energy terms of TS3 along IRC

Table S6. EDA energy terms of IM3

Energy terms	Steric effect:		Elec			
(in kcal/mol)	$\Delta E_{ m st}$	teric		$\Delta E_{ m elec}$		Dispersion effect:
r(C-C)	٨E	A E	AE	ΔE	oi	$\Delta E_{ m disp}$
in IM3 (in Å)	AL dist	AL Pauli	AL elstat	$\Delta E_{\rm ct}$	$\Delta E_{ m pol}$	
3.07	18.2	124.0	-69.7	-30.5	-32.7	-20.2

Table S7. EDA energy terms of IM5

Energy terms	Steric effect:		Elec			
(in kcal/mol)	$\Delta E_{ m st}$	eric		$\Delta E_{ m elec}$		Dispersion effect:
r(C-C)	۸ E	A E	AE -	ΔE	oi	$\Delta E_{ m disp}$
in IM3 (in Å)	AL dist	∆ £ Pauli	AE elstat	$\Delta E_{\rm ct}$	$\Delta E_{ m pol}$	
3.07	16.7	109.2	-60.6	-24.5	-28.0	-21.9

Table S8. EDA energy terms of TS5

Energy terms	Steric effect:		Elec			
(in kcal/mol)	$\Delta E_{ m st}$	teric		$\Delta E_{ m elec}$		Dispersion effect:
r(C-C)	A E	A E	AE -	ΔΕ	oi	$\Delta E_{ m disp}$
in IM3 (in Å)	AL dist	AL Pauli	∆ L elstat	$\Delta E_{\rm ct}$	$\Delta E_{ m pol}$	
3.07	66.5	269.7	-138.0	-87.8	-73.0	-34.1

Cartesian Coordinates (Å) and Energies of the Optimized Structures

PhCHO				
M06-2X-D3 SCF en	nergy: -3-	45.16763038 a.u.		
M06-2X-D3 enthal	lpy: -345	.049340 a.u.		
M06-2X-D3 free	energy: -:	345.087019 a.u.		
M06-2X-D3 SCF er	nergy in solutio	on: -345.5	6590276 a.u.	
M06-2X-D3 enthal	lpv in solution	-345.447	612 a.u.	
M06-2X-D3 free	energy in solut:	ion: -345.	485291 a.u.	
Three lowest fre	equencies (cm-1): 125.6342	224.1846	242.8568
	-1 (,		
Cartesian coord:	inates			
ATOM X	Y	Z		
C 1.9956	70 0.468525	-0.000154		
0 2.82853	19 -0.398088	0.000306		
н 2.28730	09 1.547785	-0.000439		
C -2.2107	17 -0.253999	0.000079		
C -1.31899	93 -1.330952	-0.000031		
C 0.0512	17 -1.096610	-0.000189		
C 0.53044	41 0.218497	-0.000145		
C -0.36160	69 1.293046	-0.000048		
C -1.7351	74 1.057273	0.000097		
н -3.28589	98 -0.440585	0.000268		
н -1.6996	77 -2.353279	0.000002		
н 0.77570	69 -1.912853	-0.000184		
н 0.02508	82 2.315442	-0.000094		
H -2 4353	81 1 893524	0 000343		
1a				
M06-2X-D3 SCF en	nergy: -6	06.48643304 a.u.		
M06-2X-D3 enthal	lpy: -606	.159634 a.u.		
M06-2X-D3 free e	energy: -	606.218909 a.u.		
M06-2X-D3 SCF en	nergy in solutio	on: -607.1	8564577 a.u.	
M06-2X-D3 enthal	lpy in solution	-606.858	847 a.u.	
M06-2X-D3 free e	energy in solut:	ion: -606.	918122 a.u.	
Three lowest fre	equencies (cm-1)): 21.2649	48.2182	101.5633
Cartesian coord:	inates			
ATOM X	Y	Z		
в 0.47940	06 0.217066	0.173495		
C -1.6779	91 0.614368	-0.396998		
C -1.55268	89 -0.761275	0.345389		
C -1.5285	33 -1.946759	-0.616161		
н -1.23070	66 -2.844912	-0.058343		
н -2.51448	87 -2.121851	-1.068464		
н -0.7930	71 -1.783868	-1.417635		
C -2.5735	71 -0.986893	1.446762		
н -2.4889	73 -0.225345	2.231214		

1.037228

1.905576

0.512775

0.745064

1.455454

0.001893

Η

Η

С

Η

Η

Η

-3.594448

-2.404845

-2.184792

-3.251990

-1.619174

-2.041545

-0.966475

-1.970710

1.730480

1.754375

2.692300

1.609821 1.754375

С	-2.482844	0.571070	-1.684616
Н	-3.514966	0.246641	-1.485112
Н	-2.515936	1.575146	-2.129321
Н	-2.029471	-0.110745	-2.414013
0	-0.239058	-0.670827	0.926763
0	-0.305504	0.914005	-0.706770
С	2.535918	-0.275365	-1.016491
С	3.219115	-1.418106	-1.108540
Н	3.511995	-1.818237	-2.080893
Н	3.512680	-1.990301	-0.225975
Н	2.267746	0.252066	-1.940405
С	2.049029	0.390687	0.252256
С	2.603257	-0.271100	1.512767
С	2.413140	1.884353	0.204673
Н	3.704633	-0.239660	1.518798
Н	2.283335	-1.319755	1.590496
Н	2.017591	2.413584	1.085109
Н	1.994440	2.364594	-0.691451
Н	2.240004	0.248547	2.411480
Н	3.506480	2.015273	0.190976

1b

M06-2X-D3 SCF energy:-605.26561778 a.u.M06-2X-D3 enthalpy:-604.961537 a.u.M06-2X-D3 free energy:-605.018523 a.u.M06-2X-D3 SCF energy in solution:-605.96163447 a.u.M06-2X-D3 enthalpy in solution:-605.657554 a.u.M06-2X-D3 free energy in solution:-605.714540 a.u.Three lowest frequencies (cm-1):25.182367.8254103.9551

ATOM	Х	Y	Z
В	0.561748	-0.085600	0.020708
С	-1.520859	0.811196	0.112509
С	-1.607959	-0.736688	-0.116085
С	-1.853971	-1.101227	-1.578257
Н	-1.690627	-2.180352	-1.703385
Н	-2.880720	-0.862443	-1.888274
Н	-1.153320	-0.568334	-2.237267
С	-2.595511	-1.458221	0.784856
Н	-2.331899	-1.337188	1.842329
Н	-3.615023	-1.077145	0.624653
Н	-2.587273	-2.531642	0.550915
С	-1.764690	1.205180	1.566971
Н	-2.822116	1.092863	1.843750
Н	-1.154324	0.592071	2.245389
Н	-1.474854	2.256203	1.700265
С	-2.388274	1.642407	-0.816933
Н	-3.449507	1.381412	-0.690528
Н	-2.264227	2.707747	-0.578875
Н	-2.106387	1.491892	-1.865861
0	-0.273869	-1.161361	0.206670
0	-0.135299	1.078484	-0.170117
С	3.039601	0.891912	-0.099083

С	2.718754	2.177957	-0.250400
Н	3.501611	2.933601	-0.335386
Н	1.679547	2.506100	-0.293900
Н	4.103073	0.618644	-0.063795
С	2.108064	-0.259472	0.030182
С	2.590378	-1.576161	-0.576719
С	2.596705	-1.419418	0.895086
Н	3.543870	-1.540445	-1.107555
Н	1.833921	-2.224642	-1.021708
Н	1.844184	-1.958102	1.473125
Н	3.555243	-1.274019	1.397381

1d

M06-2X-D3 SCF energy: -1960.46808769 a.u. M06-2X-D3 enthalpy: -1960.016247 a.u. M06-2X-D3 free energy: -1960.122426 a.u. M06-2X-D3 SCF energy in solution: -1962.75715005 a.u. M06-2X-D3 enthalpy in solution: -1962.305309 a.u. M06-2X-D3 free energy in solution: -1962.411488 a.u. Three lowest frequencies (cm-1): 13.9014 19.0412 21.2414

Cartesi	an coordinat	tes	
ATOM	Х	Y	Z
В	0.648890	1.666841	-0.550970
С	-2.923447	0.928957	-0.053823
С	-1.494278	0.320369	-0.265622
С	-1.484112	-0.636435	-1.458377
Н	-0.548311	-1.209441	-1.479396
Н	-2.314481	-1.349792	-1.376337
Н	-1.579982	-0.083838	-2.402495
С	-1.026279	-0.397105	1.001224
Н	-0.797265	0.320448	1.801073
Н	-1.817218	-1.075200	1.348529
Н	-0.126395	-0.992575	0.804399
С	-3.419289	1.656317	-1.298785
Н	-2.695462	2.436763	-1.566862
H	-3.525082	0.964407	-2.144647
H	-4.392310	2.121741	-1.102695
С	-2.972320	1.833446	1.173712
Н	-2.165613	2.574748	1.103183
Н	-3.934896	2.354756	1.227707
Н	-2.837191	1.253014	2.095865
0	-0.690538	1.465859	-0.553842
С	2.575421	3.439195	-0.700856
С	3.080648	4.438784	0.022812
Н	4.158082	4.598594	0.089199
Н	2.437263	5.126121	0.577969
Н	3.266713	2.764813	-1.220277
С	1.126291	3.124820	-0.869517
С	0.105161	4.231356	-0.735991
С	0.423572	3.721496	-2.094364
Н	0.475926	5.222450	-0.471756
Н	-0.860762	3.964763	-0.303693
Н	-0.315073	3.100451	-2.605916

Н	1.041513	4.347448	-2.741042
0	-3.738742	-0.252960	0.176856
С	-5.030006	-0.177542	0.427771
С	-5.564836	-1.611177	0.622588
0	-5.720414	0.791848	0.504489
F	-4.937048	-2.199182	1.637122
F	-5.347745	-2.332519	-0.473565
F	-6.858378	-1.593760	0.873280
С	1.712648	0.523028	-0.281892
С	2.454435	0.506987	0.908480
С	1.965454	-0.479483	-1.222551
С	3.366992	-0.512651	1.167655
Н	2.322783	1.300299	1.648881
С	2.888003	-1.494300	-0.962534
Н	1.438358	-0.483804	-2.179938
С	3.589579	-1.527087	0.236778
Н	4.307267	-2.321860	0.439958
С	4.085874	-0.539037	2.491911
С	3.091557	-2.554705	-2.011947
F	4.389337	0.690976	2.906493
F	5.217715	-1.239585	2.424640
F	3.330402	-1.096790	3.441294
F	3.928473	-3.507195	-1.607445
F	1.931141	-3.139443	-2.327498
F	3.580418	-2.035599	-3.139533

IM1

M06-2X-D3	SCF energy:	-951.6	7105239 a.u.		
M06-2X-D3	enthalpy:	-951.223	909 a.u.		
M06-2X-D3	free energy:	-951.3	302370 a.u.		
M06-2X-D3	SCF energy in s	solution:	-952.758	97322 a.u.	
M06-2X-D3	enthalpy in sol	ution:	-952.31183	30 a.u.	
M06-2X-D3	free energy in	solution:	-952.39	0291 a.u.	
Three lowe	est frequencies	(cm-1):	24.9212	27.8305	33.8716

ATOM	Х	Y	Z
В	-1.503676	0.739906	0.039802
С	-2.574219	-1.073674	-0.817454
С	-2.974728	-0.867261	0.691710
С	-2.277220	-1.837651	1.640703
Н	-2.480948	-1.518376	2.672098
H	-2.650269	-2.863358	1.511148
Н	-1.190846	-1.816019	1.489395
С	-4.473907	-0.873905	0.949677
H	-4.983090	-0.078143	0.392970
H	-4.911180	-1.843257	0.667639
H	-4.656397	-0.711978	2.020749
С	-3.652170	-0.600947	-1.789681
H	-4.534667	-1.255141	-1.770156
Н	-3.967674	0.425058	-1.550934
H	-3.233930	-0.601981	-2.805626
С	-2.129188	-2.485133	-1.162649
Н	-2.940734	-3.204776	-0.979504

H	-1.857753	-2.533943	-2.226523
Н	-1.255542	-2.778602	-0.567469
0	-2.462869	0.446342	0.969164
0	-1.458405	-0.181256	-0.977849
С	0.382478	2.097517	-0.986896
С	1.678942	2.333125	-0.771097
Н	2.401650	2.304176	-1.589398
Н	2.069833	2.552813	0.225464
Н	0.055526	1.872882	-2.010120
С	1.385337	-0.682905	0.024956
0	0.723206	-0.569187	1.029711
Н	0.890539	-0.786719	-0.966338
С	5.650326	-0.710055	-0.002039
С	4.964633	-0.594499	1.210713
С	3.574154	-0.589104	1.223376
С	2.869195	-0.699870	0.019930
С	3.555665	-0.816345	-1.191082
С	4.948848	-0.821112	-1.202981
Н	6.741583	-0.712808	-0.009650
Н	5.521359	-0.507974	2.144852
Н	3.007524	-0.499547	2.151951
Н	2.990270	-0.895287	-2.123127
Н	5.489503	-0.909617	-2.146144
С	-0.722346	2.118303	0.035952
С	-0.239359	2.479583	1.441332
С	-1.782177	3.148651	-0.426761
Н	0.212084	3.485179	1.451455
Н	0.504572	1.757570	1.807089
Н	-2.635903	3.161269	0.266613
Н	-2.161020	2.913643	-1.434276
Н	-1.084890	2.472146	2.143533
Н	-1.342249	4.157762	-0.459167

TS1

M06-2X-D3 SCF energy: -951.65970704 a.u. M06-2X-D3 enthalpy: -951.213808 a.u. M06-2X-D3 free energy: -951.284810 a.u. M06-2X-D3 SCF energy in solution: -952.74450227 a.u. M06-2X-D3 enthalpy in solution: -952.298603 a.u. M06-2X-D3 free energy in solution: -952.369605 a.u. Three lowest frequencies (cm-1): -284.8726 41.2375 49.4155 Imaginary frequency: -284.8726 cm-1

041000			
ATOM	Х	Y	Z
В	-0.970965	0.436144	0.172381
С	-2.586739	-0.910382	-0.808269
С	-2.527218	-1.124590	0.750177
С	-1.683106	-2.341423	1.140432
H	-1.510984	-2.308147	2.225225
Н	-2.188716	-3.285247	0.891155
H	-0.703964	-2.323828	0.642832
С	-3.887650	-1.211412	1.426419
Н	-4.454855	-0.282273	1.292679

Н	-4.474948	-2.050716	1.024277
Н	-3.747581	-1.372206	2.504584
С	-3.822746	-0.121274	-1.239170
Н	-4.737222	-0.727597	-1.168367
Н	-3.948452	0.777559	-0.622031
Н	-3.689790	0.193040	-2.284442
С	-2.497488	-2.195389	-1.621647
Н	-3.327234	-2.875576	-1.376608
Н	-2.555921	-1.953773	-2.692603
Н	-1.548447	-2.715012	-1.440224
0	-1.862779	0.050702	1.200165
0	-1.432533	-0.113145	-1.067225
С	0.189506	2.258074	-0.978222
С	1.549333	2.130426	-0.940964
Н	2.132011	2.128439	-1.864491
H	2.105899	2.272096	-0.013345
Н	-0.295575	2.229591	-1.961659
С	1.290759	-0.093835	-0.494981
0	0.458961	-0.076921	0.458299
Н	0.911925	-0.280265	-1.509539
С	5.381450	-0.969747	0.313111
С	4.504781	-0.710367	1.369160
С	3.169014	-0.418624	1.112532
С	2.707695	-0.383194	-0.209227
С	3.585915	-0.649430	-1.265592
С	4.921371	-0.941604	-1.004182
Н	6.428180	-1.198616	0.518678
Н	4.866496	-0.740248	2.397765
Н	2.464426	-0.223890	1.922807
Н	3.216023	-0.625023	-2.293448
Н	5.605469	-1.149934	-1.827658
С	-0.701216	2.149560	0.158086
С	-0.136105	2.551195	1.517911
С	-2.076985	2.768817	-0.084460
H	0.004039	3.643217	1.579089
Н	0.825460	2.066266	1.732053
Н	-2.782452	2.419495	0.682674
Н	-2.468739	2.482631	-1.070961
Н	-0.836097	2.245116	2.308076
Н	-2.026735	3.868271	-0.035022

IM1a M06-2X-D3 SCF energy: -951.73709194 a.u. M06-2X-D3 enthalpy: -951.287118 a.u. M06-2X-D3 free energy: -951.361731 a.u. M06-2X-D3 SCF energy in solution: -952.82443868 a.u. M06-2X-D3 enthalpy in solution: -952.374465 a.u. M06-2X-D3 free energy in solution: -952.449078 a.u. Three lowest frequencies (cm-1): 28.2831 32.1827 37.4641

Cartesian coordinates ATOM X Y Z B -0.671436 -0.449488 0.302861 C -2.492259 -1.141815 -0.847562

С	-2.770457	-1.175209	0.700159
С	-2.644497	-2.578949	1.287388
Н	-2.640093	-2.500987	2.382958
Н	-3,479864	-3.223790	0.981403
Н	-1.701698	-3.049839	0.973699
C	-1 085113	-0 540349	1 118020
с u	-/ 121010	0.510949	0 830373
11 11	-1 022002	-1 060020	0.050575
	-4.955962	-1.000930	0.00000
н	-4.194983	-0.611107	2.209817
C	-3.091318	0.085915	-1.525598
H	-4.18/341	0.028885	-1.579303
Н	-2.805174	0.997568	-0.984794
H	-2.689793	0.153913	-2.546253
С	-2.889781	-2.406868	-1.589012
H	-3.968738	-2.593727	-1.483432
Н	-2.662629	-2.290261	-2.657601
Н	-2.338347	-3.278041	-1.215836
0	-1.684683	-0.397064	1.226366
0	-1.065549	-0.995518	-0.895517
С	0.094566	2.369515	-0.889657
С	1.468352	1.797595	-0.675632
Н	2.118350	2.036018	-1.530792
Н	1.943957	2.231524	0.216395
н	-0 253500	2 431280	-1 927138
C	1 463474	0 266411	-0 492251
0	0 591595	-0 045909	0 575571
U	1 09/010	-0 205934	-1 17728
11 C	5 476654	_1 000751	0 210027
C	J.4700J4 4 571702	-1.000/J1	1 265750
	4.571792	-0.924901	1 11000E
C	3.266451	-0.505287	1.110085
C	2.854531	-0.24/853	-0.1994/3
С	3.764571	-0.418334	-1.24/1/4
С	5.069215	-0.834728	-0.991784
H	6.496712	-1.418904	0.520134
Н	4.883240	-1.127879	2.391822
Н	2.549106	-0.384693	1.922581
Н	3.444305	-0.229642	-2.275343
Н	5.768773	-0.968367	-1.818491
С	-0.739937	2.795540	0.073365
С	-0.441427	2.738185	1.546452
С	-2.080522	3.391496	-0.264319
Н	-0.637576	3.714604	2.016730
Н	0.587053	2.432749	1.766286
Н	-2.885946	2.874665	0.282928
н	-2.295796	3.342343	-1.340109
н	-1.108702	1.999716	2.019894
н	-2 117840	4 447163	0 049695
**	- • I O I O	T • T T (T ()	0.010000

IM2 M06-2X-D3 SCF energy: -950.44918026 a.u. M06-2X-D3 enthalpy: -950.024638 a.u. M06-2X-D3 free energy: -950.102077 a.u. M06-2X-D3 SCF energy in solution: -951.53440682 a.u. M06-2X-D3 enthalpy in solution: -951.109865 a.u.

ATOM	Х	Y	Z
В	1.508587	0.777626	0.126083
С	2.675105	-1.063260	0.767768
С	3.115143	-0.610991	-0.674630
С	2.498940	-1.460097	-1.783097
Н	2.717210	-0.981221	-2.747700
Н	2.919766	-2.475346	-1.793302
Н	1.408334	-1.512050	-1.668768
C	4.619349	-0.503698	-0.868497
н	5 064465	0 222728	-0 178102
н	5 099453	-1 481811	-0 716266
и	4 828959	-0 172992	-1 894900
C C	3 680052	-0 670/15	1 8/7/2/
с u	4 603195	-0.070413 -1.262242	1 777868
	4.005195	-1.202242	1 771207
п	3.930940	0.393721	1.771397
Н	3.223512	-0.842841	2.831690
C	2.319050	-2.536198	0.882793
H 	3.183423	-3.166844	0.62/366
H	2.020609	-2.761405	1.916245
H	1.484585	-2.790713	0.217651
0	2.537485	0.701630	-0.774435
0	1.491205	-0.280792	0.998415
С	-0.454152	1.989759	1.314882
С	-1.771395	2.180823	1.209319
H	-2.416787	2.174015	2.090103
Н	-2.254444	2.338206	0.241267
Н	-0.028905	1.804443	2.308287
С	-1.336466	-0.748114	-0.111531
0	-0.673384	-0.578018	-1.106352
Н	-0.845776	-0.910752	0.874237
С	-5.603058	-0.752592	-0.098844
С	-4.912206	-0.560526	-1.298815
С	-3.521501	-0.562398	-1.306176
С	-2.821699	-0.756944	-0.110605
С	-3.513239	-0.948321	1.087807
С	-4.906481	-0.946620	1.094460
Н	-6.694349	-0.749838	-0.095083
Н	-5.464995	-0.409143	-2.227061
Н	-2.949426	-0.413557	-2.223702
Н	-2.951242	-1.088936	2.014578
Н	-5.451191	-1.093864	2.027923
C	0 529068	1 986201	0 196204
C	0 176630	2 619178	-1 128203
C	1 137458	3 318475	-0 231521
ч	-0 821683	3 047262	-1 231941
ч	0 563987	2 120270	-2 022221
ц П	2 10/76/	2.129019	_0 502015
н	2.194704 0 780617	4 202476	0.3002913
**	0.0001/		0.000100

M06-2X-D	3 SCF energ	y: -95	0.42765182 a.u.	
M06-2X-D	3 enthalpy:	-950.	004680 a.u.	
M06-2X-D	3 free ener	av: -9	50.074164 a.u.	
M06-2X-D	3 SCF energ	v in solutio	n: -951.50963623 a.u.	
M06-2X-D	3 enthalpy	in solution:	-951.086664 a.u.	
M06-2X-D	3 free ener	av in soluti	on: -951,156148,a,11	
Three lo	west freque	ncies (cm-1)	-374 9500 36 1097	46 4773
Imaginar	v frequency	-374	9500 cm-1	10.1770
imaginar	j iloquonoj	• 071		
Cartesia	n coordinat	es		
АТОМ	X	Y	7.	
B	0.916986	0.346082	-0.129414	
C	2.621596	-0.905363	0.799388	
C	2 609171	-1 046762	-0 764958	
C	1 881438	-2 312700	-1 222116	
ч	1 716517	-2 245365	-2 306343	
и П	2 161790	-3 221/38	-1 007502	
П П	0 800000	-2 303724	_0 733302	
п С	0.099909	-2.393724	1 416760	
	3.900010	-0.965049	1 222405	
н	4.450039	0.00//41 1.7C1E40	-1.223485	
н	4.641905	-1.761542	-1.043376	
H	3.8/6291	-1.083089	-2.504501	
C	3.709149	0.051248	1.289167	
H	4.715553	-0.3///18	1.180043	
H	3.664800	1.000827	0.738602	
Н	3.531216	0.264640	2.352708	
С	2.722831	-2.227314	1.547511	
H	3.648547	-2.759719	1.281210	
Н	2.735725	-2.035358	2.629894	
Н	1.864471	-2.873300	1.325777	
0	1.834952	0.078039	-1.170426	
0	1.355849	-0.311831	1.065740	
С	-0.181528	2.137040	1.168728	
С	-1.542176	1.952477	1.048423	
Н	-2.180809	1.918898	1.933630	
Н	-2.027378	2.198665	0.101257	
Н	0.277323	2.053537	2.161325	
С	-1.349608	-0.082392	0.502717	
0	-0.502209	-0.063406	-0.457575	
Н	-0.990152	-0.415259	1.486369	
С	-5.433603	-0.900097	-0.436834	
С	-4.540476	-0.556186	-1.453757	
С	-3.209061	-0.284383	-1.153550	
С	-2.767232	-0.355602	0.172369	
С	-3.661519	-0.705634	1.189169	
С	-4.992905	-0.976633	0.884799	
Н	-6.476413	-1.113369	-0.676230	
Н	-4.885206	-0.504072	-2.487412	
Н	-2.492527	-0.023796	-1.933968	
Н	-3.307999	-0.767721	2.221356	
Н	-5.688206	-1.251990	1.678801	
С	0.683527	2.057367	0.041645	
С	0.624829	2.839150	-1.223159	
С	1.846037	2.912073	-0.329671	
Н	-0.030473	3.713290	-1.264541	
Н	0.739029	2.289112	-2.159747	

Н	2.741876	2.407184	-0.696091
Н	2.014565	3.833302	0.232113

IM2a					
M06-2X-	D3 SCF energ	yy: -95	0.49054656 a.u.		
M06-2X-	D3 enthalpy:	-950.	064417 a.u.		
M06-2X-	D3 free ener	rgy: -9	950.137210 a.u.		
M06-2X-	D3 SCF energ	gy in solutio	on: -951.5750)5161 a.u.	
M06-2X-	D3 enthalpy	in solution:	-951.148922	a.u.	
M06-2X-	D3 free ener	gy in soluti	on: -951.221	.715 a.u.	
Three l	owest freque	encies (cm-1)	: 28.1764	36.0659	43.6308
Cartesi	an coordinat	ces			
ATOM	Х	Y	Z		
В	-0.681470	-0.378548	0.291450		
С	-2.515385	-1.133124	-0.801491		
С	-2.805840	-0.987745	0.737024		
С	-2.710600	-2.319440	1.478336		
H	-2.712413	-2.119718	2.558372		
H	-3.555435	-2.979664	1.238646		
H	-1.774547	-2.839151	1.227669		
С	-4.113290	-0.290912	1.070081		
H	-4.145007	0.723355	0.653889		
H	-4.965973	-0.861375	0.673088		
H	-4.222628	-0.218686	2.160866		
С	-3.077707	0.023729	-1.622589		
H	-4.174452	-0.015088	-1.680033		
H	-2.772940	0.988920	-1.194918		
H	-2.669973	-0.040634	-2.641054		
С	-2.941731	-2.463072	-1.400395		
H	-4.026012	-2.609117	-1.285311		
H	-2.704160	-2.473289	-2.473009		
H	-2.416299	-3.300727	-0.926557		
0	-1.706299	-0.177255	1.183128		
0	-1.084554	-1.033829	-0.848147		
С	0.051371	2.154512	-1.197587		
С	1.449272	1.671115	-0.925030		
H	2.106617	1.825726	-1.793562		
H	1.873808	2.227881	-0.075871		
H	-0.364350	2.026734	-2.202641		
С	1.479576	0.174788	-0.545109		
0	0.599408	-0.018029	0.543537		
H	1.137241	-0.424530	-1.405116		
С	5.511301	-0.954713	0.485089		
С	4.585402	-0.682757	1.491132		
С	3.274409	-0.334189	1.166797		
С	2.878214	-0.257808	-0.170258		
С	3.809183	-0.536118	-1.175530		
С	5.119519	-0.881070	-0.851767		
H	6.535861	-1.228615	0.741302		
H	4.884945	-0.744151	2.538751		
H	2.541011	-0.128077	1.946929		
H	3.501487	-0.489077	-2.223617		
Н	5.835760	-1.100098	-1.645301		

С	-0.704701	2.663067	-0.232692
С	-0.783399	3.031943	1.181321
С	-1.973225	3.218900	0.240755
Н	-0.255290	3.927042	1.521605
Н	-0.849178	2.216292	1.907097
Н	-2.821299	2.542255	0.379007
Н	-2.242066	4.236799	-0.054136

IM3

M06-2X-D3	SCF energy:	-2305.65	848300 a.u.		
M06-2X-D3	enthalpy:	-2305.0863	22 a.u.		
M06-2X-D3	free energy:	-2305.2	08542 a.u.		
M06-2X-D3	SCF energy in	solution:	-2308.336	93884 a.u.	
M06-2X-D3	enthalpy in so	olution:	-2307.764778	8 a.u.	
M06-2X-D3	free energy in	n solution:	-2307.88	6998 a.u.	
Three lowe	est frequencies	s (cm-1):	13.2450	15.0795	16.7056

ATOM	Х	Y	Z
В	0.570674	0.446633	-1.097648
С	-3.145800	0.478931	-0.834800
С	-1.789874	-0.050620	-0.251704
С	-1.797735	-1.581705	-0.178037
Н	-0.928441	-1.940435	0.388745
Н	-2.707313	-1.939451	0.322885
H	-1.745720	-2.015715	-1.185993
С	-1.559009	0.538257	1.144001
Н	-1.335347	1.611440	1.085256
Н	-2.448838	0.389060	1.770625
Н	-0.717382	0.032758	1.633900
С	-3.419960	-0.083813	-2.223978
Н	-2.576465	0.175104	-2.876867
Н	-3.521473	-1.176576	-2.193612
Н	-4.341860	0.345201	-2.634539
С	-3.191290	2.004240	-0.837236
Н	-2.267703	2.376428	-1.300152
Н	-4.057371	2.366323	-1.403232
H	-3.255191	2.395217	0.187279
0	-0.834065	0.404633	-1.182950
С	2.668585	0.983837	-2.597635
С	3.278202	2.163324	-2.773594
H	4.366837	2.253119	-2.759390
Н	2.698754	3.071687	-2.964961
H	3.287684	0.096740	-2.406638
С	2.056370	2.219012	0.041102
0	0.920148	1.870400	-0.284434
H	2.869825	1.474991	0.070336
С	2.981936	6.181366	1.206267
С	1.683456	5.874548	0.785928
С	1.369105	4.578504	0.399721
С	2.362977	3.588475	0.436829
С	3.663566	3.897779	0.855814
С	3.971867	5.198031	1.242229
Н	3.223891	7.201522	1.508568

Н	0.920239	6.652842	0.761012
Н	0.366060	4.309675	0.064759
Н	4.426413	3.116169	0.874644
Н	4.980979	5.447735	1.570565
С	1.199304	0.779010	-2.559129
С	0.329841	1.551698	-3.510744
С	0.537763	0.081858	-3.726233
Н	0.815127	2.230427	-4.215096
Н	-0.647283	1.872764	-3.145694
Н	-0.295087	-0.588893	-3.501463
Н	1.169323	-0.218582	-4.565539
0	-4.135324	-0.037686	0.102935
С	-5.417187	0.226637	-0.012574
С	-6.155707	-0.457913	1.156156
0	-5.979393	0.876391	-0.841301
F	-5.710741	0.016557	2.317572
F	-5.939929	-1.769842	1.135439
F	-7.454292	-0.239100	1.078483
С	1.342398	-0.740919	-0.303054
С	1.688435	-0.724673	1.052257
С	1.651850	-1.908494	-1.017527
С	2.289333	-1.822303	1.671749
Н	1.475659	0.154702	1.667699
С	2.252405	-3.005077	-0.402552
Н	1.406353	-1.965239	-2.082010
С	2.574558	-2.977599	0.953037
Н	3.039163	-3.836756	1.435753
С	2.607699	-1.721307	3.138388
С	2.574251	-4.213442	-1.241457
F	3.420924	-0.686935	3.384805
F	3.200364	-2.818311	3.604549
F	1.503398	-1.518164	3.862003
F	2.979292	-5.244677	-0.499902
F	1.514514	-4.612610	-1.947069
F	3.545448	-3.947050	-2.119429

TS3

M06-2X-D3	SCF energy:	-2305.648	385659 a.u.		
M06-2X-D3	enthalpy:	-2305.07757	70 a.u.		
M06-2X-D3	free energy:	-2305.19	95614 a.u.		
M06-2X-D3	SCF energy in s	solution:	-2308.3246	8391 a.u.	
M06-2X-D3	enthalpy in sol	lution:	-2307.753397	a.u.	
M06-2X-D3	free energy in	solution:	-2307.871	441 a.u.	
Three lowe	est frequencies	(cm-1):	-345.2893	13.0751	14.7029
Imaginary	frequency:	-345.2893	3 cm-1		

ATOM	Х	Y	Z
В	0.578063	0.505768	-1.036363
С	-3.134933	0.407303	-0.805594
С	-1.762095	-0.077822	-0.225104
С	-1.736786	-1.606439	-0.111094
Н	-0.854860	-1.931706	0.456387
Н	-2.633836	-1.969746	0.408179

Н	-1.685065	-2.066834	-1.107458
С	-1.522880	0.553674	1.149535
н	-1 324097	1 629262	1 058745
п п	-2 206670	0 207422	1 706505
п 11	-2.390079	0.397422	1.790505
Н	-0.65/594	0.084095	1.634/43
С	-3.415803	-0.205142	-2.172674
H	-2.580216	0.036267	-2.842232
Н	-3.507519	-1.296995	-2.102962
Н	-4.344723	0.200941	-2.590597
C	-3 211976	1 930507	-0 852124
с ц	-2 302300	2 308078	_1 337040
п 11	-2.302390	2.300970	-1.337040
H	-4.093702	2.238288	-1.414922
Н	-3.268235	2.349374	0.161655
0	-0.822609	0.372427	-1.178844
С	2.529552	1.142058	-2.516035
С	2.896564	2.423522	-2.168038
н	3.943206	2.673923	-1.982983
и П	2 220151	3 251046	-2 /190/8
11	2.229191	0.2201040	2.419040
Н	3.268231	0.336152	-2.411314
С	2.126453	2.232701	-0.232365
0	0.917286	1.828660	-0.392248
Н	2.883419	1.503859	0.089560
С	2.714391	6.222220	1.162691
C	1 483693	5 850872	0 616607
C	1 286084	1 553300	0 154626
C	1.200004		0.134020
C	2.32/031	3.621323	0.240658
C	3.558434	3.992936	0.791394
С	3.751033	5.292820	1.251641
Н	2.864314	7.240373	1.524531
Н	0.673025	6.577919	0.554563
н	0.330458	4.241780	-0.268090
 U	1 363901	3 257899	0 86/818
11	4.700206	5.257055	1 605546
п	4.709296	5.560476	1.665546
C	1.15/188	0./83124	-2.658968
С	0.188218	1.410714	-3.601281
С	0.524411	-0.060152	-3.717775
Н	0.583165	2.078778	-4.370472
н	-0.801733	1.660334	-3.216278
 н	-0 248659	-0.763851	-3 400188
п п	1 122026	-0 201140	-4 565471
п	1.133030	-0.301140	-4.303471
0	-4.102154	-0.1006/9	0.159521
С	-5.390711	0.131884	0.049235
С	-6.103325	-0.533868	1.244590
0	-5.974704	0.742524	-0.794093
F	-5.651191	-0.025297	2.388171
- ਸ	-5 867563	-1 842684	1 251850
- 	-7 406020	-0 226042	1 170200
Г С	-7.400020	-0.330642	1.1/0299
C	1.385265	-0./14599	-0.328358
C	1.775723	-0.674047	1.015304
С	1.668315	-1.892836	-1.032972
С	2.395841	-1.761174	1.633305
Н	1.582580	0.222038	1.613650
С	2,292317	-2.977946	-0.419794
с ц	1 202706	_1 07/250	_2 005050
п	1.302/00	-1.9/4030	-2.083039
C	2.658662	-2.92/954	0.923612
Н	3.138960	-3.779248	1.404941

С	2.760189	-1.639245	3.088027
С	2.588435	-4.199361	-1.248574
F	3.568833	-0.593997	3.296226
F	3.380548	-2.725062	3.545905
F	1.677473	-1.441979	3.844288
F	2.993126	-5.226590	-0.502147
F	1.514432	-4.594384	-1.935401
F	3.549834	-3.954065	-2.144462

IM3a M06-2X-D3 SCF energy: -2305.69859892 a.u. M06-2X-D3 enthalpy: -2305.124550 a.u. M06-2X-D3 free energy: -2305.246118 a.u. M06-2X-D3 SCF energy in solution: -2308.37601436 a.u. M06-2X-D3 enthalpy in solution: -2307.801965 a.u. M06-2X-D3 free energy in solution: -2307.923533 a.u. Three lowest frequencies (cm-1): 12.6399 14.5825 18.4260

ATOM	Х	Y	Z
В	0.479623	0.757215	-0.269711
С	-3.205941	1.077921	-0.241061
С	-1.946575	0.226738	0.137401
С	-2.073781	-1.188115	-0.431179
Н	-1.325668	-1.857275	0.011019
Н	-3.069331	-1.589655	-0.198840
Н	-1.938461	-1.190638	-1.521297
С	-1.761665	0.169065	1.654265
Н	-1.534672	1.164076	2.059301
H	-2.668399	-0.216166	2.137716
Н	-0.928657	-0.504282	1.900359
С	-3.466147	1.053616	-1.743625
H	-2.545919	1.337788	-2.269834
Н	-3.765135	0.050104	-2.074714
H	-4.262279	1.759294	-2.007498
С	-3.108908	2.505923	0.283472
H	-2.181155	2.958172	-0.089212
H	-3.965728	3.095104	-0.063627
H	-3.094178	2.522876	1.381133
0	-0.860674	0.945409	-0.445642
С	2.191584	0.897930	-2.826671
С	2.881317	2.002986	-2.079089
H	3.967658	1.997687	-2.250808
H	2.488665	2.978804	-2.402135
H	2.678970	-0.081196	-2.892288
С	2.633313	1.885604	-0.558872
0	1.240475	1.882282	-0.327742
H	3.078697	0.939919	-0.206035
С	4.526095	5.172407	1.489078
С	3.166758	5.232060	1.185068
С	2.542816	4.166034	0.537907
С	3.276511	3.028816	0.191988
С	4.638059	2.971280	0.503292
С	5.261868	4.037911	1.146903

Н	5.011492	6.006918	1.997130
Н	2.585808	6.115234	1.455649
Н	1.478271	4.201383	0.304041
Н	5.214314	2.078391	0.246230
Н	6.324048	3.979965	1.389180
С	0.967284	1.059686	-3.311906
С	-0.144964	1.993299	-3.488447
С	-0.249940	0.531132	-3.927713
Н	-0.069344	2.747567	-4.276491
Н	-0.690299	2.304674	-2.592272
Н	-0.886993	-0.128423	-3.327920
Н	-0.258670	0.318494	-4.999831
0	-4.277647	0.375292	0.449728
С	-5.534839	0.757681	0.366010
С	-6.390599	-0.225558	1.190832
0	-5.997292	1.682981	-0.227833
F	-5.976117	-0.249361	2.454308
F	-6.276016	-1.454457	0.693828
F	-7.659980	0.128300	1.164756
С	1.140113	-0.660090	0.021169
С	1.780020	-0.928891	1.236700
С	1.133305	-1.667178	-0.950417
С	2.372913	-2.169277	1.477269
Н	1.822062	-0.162178	2.016514
С	1.740468	-2.898248	-0.713347
Н	0.653009	-1.487540	-1.916330
С	2.360476	-3.164917	0.504791
Н	2.828251	-4.131169	0.691650
С	3.046384	-2.397678	2.805426
С	1.715268	-3.924500	-1.814543
F	4.085775	-1.575866	2.965888
F	3.495560	-3.645274	2.929256
F	2.207888	-2.164503	3.817058
F	2.281796	-5.071260	-1.445520
F	0.464112	-4.191883	-2.195427
F	2.362478	-3.481865	-2.896205

TS4

M06-2X-D3 SCF energy: -1249.09151959 a.u. M06-2X-D3 enthalpy: -1248.665499 a.u. M06-2X-D3 free energy: -1248.741115 a.u. M06-2X-D3 SCF energy in solution: -3424.28010821 a.u. M06-2X-D3 enthalpy in solution: -3423.854088 a.u. M06-2X-D3 free energy in solution: -3423.929704 a.u. Three lowest frequencies (cm-1): -346.7103 39.7655 47.4999 Imaginary frequency: -346.7103 cm-1

Cartes	ian coordinat	ces	
ATOM	Х	Y	Z
В	-0.636526	-0.126004	0.209677
С	-2.008708	-1.669424	-0.826753
С	-1.895694	-1.942692	0.720561
С	-0.856163	-3.017117	1.049698
Н	-0.686622	-3.013064	2.135335

Н	-1.194524	-4.018581	0.748292
Н	0.103170	-2.805491	0.556997
С	-3.215975	-2.274413	1.398587
Н	-3.918828	-1.437116	1.313788
Н	-3.670266	-3.174018	0.956796
Н	-3.038532	-2.464338	2.466400
С	-3.364923	-1.087579	-1.220057
Н	-4.152524	-1.853690	-1.179555
Н	-3.646163	-0.255581	-0.563883
н	-3 297094	-0 703235	-2 247259
C	-1 703078	-2 879991	-1 698948
н	-2 399678	-3 703961	-1 482828
н	-1 815839	-2 603570	-2 756905
п п	-0 676324	-3 234522	-1 545000
0	_1 /20020	-0 696519	1 226520
0	-1.420920	-0.090519	_1 040442
C	-I.002JJ2	2 000155	-1.040443
C	U.IOUISI 1 E46100	2.000100	-0.012/10
	1.546198	2.055039	-0./138/1
H	2.150881	2.24/201	-1.601828
H	2.028936	2.223442	0.249653
Н	-0.267109	1.997864	-1.812396
С	1.660878	-0.092480	-0.490132
0	0.850200	-0.318672	0.468966
Н	1.314162	-0.308319	-1.510425
С	5.848010	-0.398839	0.257008
С	4.951877	-0.367494	1.327699
С	3.584617	-0.262382	1.091896
С	3.111375	-0.186288	-0.223338
С	4.009594	-0.225155	-1.295171
С	5.376541	-0.330241	-1.054634
Н	6.919210	-0.481914	0.446160
Н	5.322977	-0.430236	2.351435
Н	2.867275	-0.249971	1.914159
Н	3.631558	-0.174144	-2.319172
Н	6.076271	-0.362186	-1.890558
С	-0.702427	1.662911	0.275412
С	-0.309638	2.070251	1.692985
С	-2.119873	2.107068	-0.025458
H	0.693825	1.704767	1.939918
Н	-0.333994	3.163708	1.811336
Н	-1.007515	1.613988	2.406924
 न	-2.232134	3.443210	0.091264
- न	-3.017952	1.584234	0.808987
- F	-2.504458	1.807294	-1.270116
-			

IM5 M06-2X-D3 SCF energy: -2344.92973309 a.u. M06-2X-D3 enthalpy: -2344.328218 a.u. M06-2X-D3 free energy: -2344.453606 a.u. M06-2X-D3 SCF energy in solution: -2347.65100472 a.u. M06-2X-D3 enthalpy in solution: -2347.049490 a.u. M06-2X-D3 free energy in solution: -2347.174878 a.u. Three lowest frequencies (cm-1): 9.4567 14.7617 16.5972

Cartesian	coordinat	es	
ATOM	Х	Y	Z
В	0.596529	0.384991	-1.181826
с –	3.034353	-0.409983	-0.916731
C –	1.604890	-0.588319	-0.295771
с –	1 267404	-2 075407	-0 1//906
	0 241022	2 100401	-0.144900
н –	0.341932	-2.190401	0.432900
н –	2.0/53/8	-2.602533	0.380349
н –	1.114672	-2.538036	-1.1295/8
С –	1.544387	0.102673	1.071557
Н –	1.536273	1.195167	0.960190
Н –	2.408395	-0.190962	1.682856
Н –	0.638250	-0.199565	1.610747
С –	3.153027	-1.101129	-2.269626
н –	2.362395	-0.717561	-2.927507
Н –	3.032570	-2.187627	-2.167909
Н –	4.131708	-0.895951	-2.719686
С –	3.414672	1.064370	-1.016256
н –	2.604014	1.590899	-1.537524
н –	4.349159	1.187214	-1.575940
н –	3.542578	1.505572	-0.018241
0 –	0.762238	0.026780	-1.243536
С	2.501610	1.320587	-2.783232
C	2 828404	2 534334	-3 236794
е н	3 869830	2 858070	-3 296114
ч	2 062237	2.000070	-3 575899
п ц	3 308/70	0 651344	-2 /52718
C	1 310455	2 701560	0 018627
0	0 5/20//	1 022620	-0 402652
0 C	0.196561	L.923020 6 507101	1 052655
	1 020110	0.JZ/IOL	1.052655
-	1.238110	5.532479	0.422902
C –	0.643854	4.321895	0.088300
C	0./1145/	4.101114	0.377688
С	1.461511	5.104327	1.006575
С	0.860327	6.312914	1.345802
н –	0.954561	7.476764	1.316630
Н –	2.290177	5.704134	0.193403
Н –	1.211810	3.531431	-0.404055
Н	2.514101	4.945104	1.242043
Н	1.444013	7.090078	1.839864
С	1.122088	0.779057	-2.657581
С	0.083403	1.234382	-3.644815
С	0.646670	-0.149503	-3.758347
Н	0.379251	1.953361	-4.410772
н –	0.940849	1.333069	-3.281781
Н	0.008639	-0.988062	-3.468780
Н	1.333107	-0.344602	-4.585551
0 -	3.902313	-1.074730	0.047279
с –	5.208209	-1.113889	-0.093411
с –	5.799892	-1.867886	1.115404
0 -	5.883963	-0.663326	-0.968275
~ F –	5.488054	-1.236020	2.244807
- - 7	5 304675	-3 100021	1 180605
F -	7 112511	_1 Q/1650	1 010000
	1 600106		-0 300705
C	1 866351	-0 330101	1 058034
\smile	T.OOOOOT	0.004447	

С	2.241235	-1.610850	-0.918666
С	2.722061	-1.170566	1.770084
Н	1.400796	0.500887	1.591677
С	3.093450	-2.456558	-0.207748
Н	2.068720	-1.800656	-1.982193
С	3.343973	-2.247887	1.146467
Н	4.012554	-2.906179	1.700332
С	2.948987	-0.870180	3.225377
С	3.764950	-3.584924	-0.944818
F	3.381957	0.388639	3.392816
F	3.848721	-1.679795	3.777932
F	1.819101	-0.977637	3.928850
F	4.435734	-4.391301	-0.121750
F	2.877943	-4.329375	-1.607675
F	4.633974	-3.123124	-1.848362
С	2.777991	2.568827	0.229193
Н	2.975167	2.529276	1.313410
Н	3.105253	1.633349	-0.227889
Н	3.348074	3.405127	-0.195028

TS5

M06-2X-D3 SCF energy: -2344.91209215 a.u. M06-2X-D3 enthalpy: -2344.311686 a.u. M06-2X-D3 free energy: -2344.431983 a.u. M06-2X-D3 SCF energy in solution: -3424.32899098 a.u. M06-2X-D3 enthalpy in solution: -3423.728585 a.u. M06-2X-D3 free energy in solution: -3423.848882 a.u. Three lowest frequencies (cm-1): -408.0889 13.0195 14.9393 Imaginary frequency: -408.0889 cm-1

ATOM	Х	Y	Z
В	0.636955	0.579159	-0.880593
С	-3.056547	0.036496	-0.833529
С	-1.662115	-0.330739	-0.216812
С	-1.458746	-1.850358	-0.236564
H	-0.577581	-2.129073	0.355531
H	-2.334176	-2.358994	0.189762
H	-1.300488	-2.205634	-1.264312
С	-1.570944	0.196992	1.218806
H	-1.458064	1.289223	1.226365
Н	-2.468409	-0.081785	1.787141
Н	-0.704609	-0.241859	1.729121
С	-3.204772	-0.504866	-2.251203
H	-2.351201	-0.161172	-2.849649
H	-3.214110	-1.602841	-2.251674
Н	-4.135828	-0.145689	-2.705387
С	-3.310880	1.539552	-0.781595
H	-2.454149	2.051068	-1.239456
H	-4.226452	1.796374	-1.327201
H	-3.411493	1.883897	0.256538
0	-0.744669	0.322252	-1.068697
С	2.432760	1.688370	-2.312696
С	2.501424	3.004009	-1.892909

Н	3.466187	3.483530	-1.716731
Н	1.669070	3.663412	-2.145909
Н	3.326119	1.053422	-2.243223
С	1.861497	2.619676	0.028969
0	0.819744	1.857524	-0.119233
С	0.721587	6.627412	1.117280
C	-0.214188	5.737897	0.586339
C	0 167197	4 446787	0 237789
C	1 492769	4 026098	0 415801
C	2 125992	1.020090	0 9/9212
C	2 040122	6 215705	1 200511
U U	2.040122 0 /21723	7 639752	1 301/01
п u	-1 240262	6 05222	0 446142
п 11	-1.249203	0.032230	0.440143
H	-0.556538	3.741680	-0.1/2594
H	3.462376	4.622546	1.103/00
H	2.//6156	6.903144	1./1/35/
C	1.169445	1.069989	-2.496623
С	0.100/55	1.56/091	-3.40/95/
С	0.692692	0.186723	-3.601666
H	0.375629	2.336014	-4.134095
H	-0.918082	1.617941	-3.022842
Н	0.054776	-0.656911	-3.326926
H	1.345230	0.020911	-4.461789
0	-3.999900	-0.644568	0.044672
С	-5.300056	-0.571752	-0.131397
С	-5.983427	-1.389010	0.984391
0	-5.912676	0.008124	-0.976159
F	-5.672512	-0.884272	2.175725
F	-5.572370	-2.653226	0.950349
F	-7.294651	-1.364171	0.842321
С	1.524534	-0.641041	-0.287248
С	1.769005	-0.738605	1.088617
С	2.028331	-1.670748	-1.090020
С	2.463203	-1.812574	1.639723
Н	1.413394	0.052412	1.754103
С	2.725025	-2.749412	-0.541040
H	1.876312	-1.640357	-2.171838
С	2.947070	-2.837198	0.830158
Н	3.491361	-3.678945	1.257055
C	2.679706	-1.822321	3,127805
C	3 228299	-3 820566	-1 471091
ੇ ਜ	3 351077	-0 732969	3 522670
г Г	3 368749	-2 887181	3 533047
r r	1 518869	_1 81//3/	3 787689
r r	7 070009 7 070015	_/ 750075	-0 830010
r r	J 200010	-4.1JZ910 -1 105167	-0.030049
r r	Z.ZZI/IO A 012205	-4.40040/ _3 20/202	-2 422005
r C	4.UL32YJ 2 121777	-J.JU4202	-2.422003
	J. LJL///	2.USIYY/ 1 007270	U.0310/2
п 11	2.3/3399	1.90/3/9	1.112044
H	3.38/252	1.084683	0.190808
Н	3.9/8201	Z./33256	0.495773

References

- 1 (a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**, 154104. (b) S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456-1465.
- 2 A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- 3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision D.01*, Gaussian, Inc., Wallingford, CT, 2009.
- 4 Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, J. Kussmann, A. W. Lange, D. Ghosh, M. Goldey, P. R. Horn, I. Kaliman, R. Z. Khaliullin, T. Kuś, E. I. Proynov, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, E. Berquist, K. Brandhorst, D. Casanova, Y. Chen, S. H. Chien, D. L. Crittenden, M. Diedenhofen, R. A. Distasio, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. FustiMolnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, E. G. Hohenstein, Z. C. Holden, T. Jagau, H. Ji, B. Kaduk, K. Khistyaev, P. Klunzinger, T. Kowalczyk, C. M. Krauter, K. V. Lawler, S. V. Levchenko, F. Liu, R. C. Lochan, S. Mao, A. V. Marenich, S. A. Maurer, C. M. Oana, R. OlivaresAmaya, D. P. O'Neill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, N. J. Russ, S. M. Sharada, S. Sharma, A. Sodt, T. Stein, D. Stück, Y. Su, T. Tsuchimochi, L. Vogt, O. Vydrov, M. A. Watson, J. Wenzel, J. Yang, S. Yeganeh, S. R. Yost, I. Y. Zhang, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer, M. W. Schmidt, D. G. Truhlar, X. Xu, A. T. Bell, N. A. Besley, B. D. Dunietz, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov and P. M. W. Gill, Advances in molecular quantum chemistry contained in the Q-Chem 4 program package, *Mol. Phys.*, 2015, **113**, 184–215.
- 5 C. Y. Legault, CYLview, 1.0b, Université de Sherbrooke, 2009, <u>http://www.cylview.org</u>.
- 6 E. D. Glendening, C. R. Landis and F. Weinhold, J. Comput. Chem., 2019, 40, 2234-2241.