Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information (ESI)

Novel cinnamic Acid Analogues: Synthesis of *Aminotroponyl Acrylates* by Pd(II)-Catalysed C(sp²)-H Olefination

Chinmay K. Jena,^{a,b} and Nagendra K. Sharma*^{a,b}

^aSchool of Chemical Sciences, National Institute of Science Education and Research

(NISER), Jatani-752050, Odisha, India.

^b Homi Bhabha National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094,

India

*Corresponding author. Tel.: 0674-249-4141; fax: +91 (674) 2494004; E-mail: nagendra@niser.ac.in

Contents

1.	General Information	S2
2.	Experimental Section	S2
3. trop	NMR and Mass spectra of aminotropones/ troponylated amino acid/ peptide (2a- 2g) / 2-ethonone (5b)	0xy S24
4. trop	NMR and Mass spectra of Olefinated aminotropones/ troponyl amino acid/ peptides (4a - 4w none (6a)/ 2-ethoxytropone (6b))/ S41
5.	NMR and Mass spectra of Olefins (Coupling Partners) (3e/ 3f/ 3g)	. S91
6.	NMR and Mass spectra of Acetoxylated aminotropones (7a/7b/7c)	. S97
7.	X-Ray Studies of Single Crystal of Olefinated Troponyl <i>di</i> - Peptide (4t)	S103
8.	Cell Proliferation Assay	S105
9.	References	. 109

1. General Information

Material and Instrumentation. All required materials were purchased from commercial suppliers and used without further purification. Anhydrous DMF was freshly prepared by distilling over calcium hydride. Reactions were monitored by thin layer chromatography, visualized by UV and Ninhydrin. Column chromatography was performed in 230-400 and 100-200 mesh silica.¹H NMR spectra were recorded on Bruker AV-400 instrument (400 MHz) or Bruker AV-700 instrument (700 MHz). ¹³C NMR spectra were recorded on Bruker AV-400 instrument (100 MHz) or Bruker AV-700 instrument (176 MHz). ¹H and ¹³C NMR chemical shifts were recorded in ppm downfield from tetramethyl silane or relative to the residual solvent (CDCl₃) signal. Splitting patterns are abbreviated as: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; q, quartet; dq, doublet of quartet; m, multiplet. Mass spectra were obtained from Bruker MicroTOF-Q II Spectometer and Waters XEVO- G2XSQTOF Spectrometer.

2. Experimental Section

General procedure for synthesis of 2-aminotropone. The synthesis of 2-aminotropone was started from commercially available material tropolone (1). It was first converted into tropolone tosylate by reacting it with tosyl chloride (1.5 equiv.) and triethyl amine (3.0 euiv.) in anhydrous DCM at room temperature for 24 h. Then, tropolone tosylate and amine (pyrrolidine/ piperidine/ morpholine/ 2,6- dimethylmorpholine/ N, N- diethylamine/ proline- methyl ester) (1.2 equiv.) were refluxed in ethanol in the presence of triethylamine (3.0 euiv.). The completion of the reaction was monitored by TLC. The general reaction time observed for all the reactions was 24–36 h. After completion of the reaction, all the volatiles were removed under reduced pressure. To the crude product, 1.0 N HCl was added and extracted with EtOAc (three times), and then the combined organic layers were dried over Na₂SO₄ and evaporated under reduced pressure. The obtained crude product was purified by silica gel column chromatography by using EtOAc and hexane mixture as the mobile phase.

General procedure for synthesis of troponylated di-peptide. Troponyl proline carboxylic acid derivative was obtained by refluxing tropolone tosylate and proline (1.2 equiv.) in presence of triethyl amine (3.0 equiv.) in ethanol. After the completion of the reaction which was monitored by TLC, all the volatiles were removed under reduced pressure. The crude reaction mixture was dissolved in anhydrous DMF and resultant solution was cooled to 0 °C. To this EDC. HCl was added and stirred at 0 °C for 5 minutes. To the resultant mixture, amino acid glycine methyl ester neutralized with triethylamine was added. Then the reaction mixture stirred at 0 °C for 30-60 minutes and reaction temperature raised to 55 °C. After the completion of the reaction, DMF was evaporated and the resultant reaction mixture was extracted with EtOAc (three times). and then the combined organic layers were dried over Na₂SO₄ and evaporated under reduced pressure. The obtained crude product was purified by silica gel column chromatography by using EtOAc and hexane mixture as the mobile phase to obtain the desired troponylated *di*-peptide.

Procedure for synthesis of 2- ethoxytropone (**5b**). To a heterogeneous mixture of tropolone (**1**) (8.2 mmol) and K_2CO_3 (32.8 mmol) in Acetonitrile (20 ml.) under nitrogen atmosphere, Iodoethane (24.6 mmol) was added gradually and the resulting suspension was allowed to reflux for 24- 48 h until no starting materials are detected by TLC. After the completion of the reaction, the reaction mixture was filtered and the filtrate was evaporated under reduced pressure. The obtained crude product was purified by silica gel column chromatography by using EtOAc and hexane mixture as the mobile phase to obtain the desired 2- ethoxytropone (**5b**).

General procedure for Pd-catalyzed olefination of 2-aminotropone/ troponylated di-peptide/ tropone/ ethoxytropone. To a 15 mL sealed reaction tube, the 2-aminotropone/ troponylated *di*peptide/ tropone/ ethoxytropone substrates were added under the indicated reaction conditions. The reaction was conducted at 130° C for 24 h and cooled to room temperature upon completion. The resulting sample was diluted with ethyl acetate (5.0 mL), filtered through a pad of Celite, concentrated under reduced pressure and purified by column chromatography with EtOAc/ hexane solvent system and the product was obtained typically as an orange red glutinous liquid in case of olefinated 2-aminotropone/ troponylated *di*-peptide and rosewood glutinous liquid in case of olefinated tropone and ethoxytropone.

General procedure for syntheses of Olefins- modified L- Tyrosine (**3e**) and L- Threonine (**3f**). Boc- protected L- Tyrosine- OMe or L- Threonine- OMe was taken in THF and was allowed to stir at 0 °C under an Ar atmosphere. Triethylamine (3.0 equiv.) was added slowly followed by addition of acryloyl chloride (1.5 equiv.) at 0 °C. Then the reaction was allowed to carry out at room temperature for 2 hours. After the completion of the reaction which was monitored by TLC, all the volatiles were evaporated under reduced pressure and the resultant reaction mixture was extracted with EtOAc (three times). and then the combined organic layers were dried over Na₂SO₄ and evaporated under reduced pressure. The obtained crude product was purified by silica gel column chromatography by using EtOAc and hexane mixture as the mobile phase to obtain the desired olefins.

Procedure for synthesis of Olefin (Coupling partner) (**3g**). Acrylic acid was taken in acetonitrile and allowed to stir at 0 °C.for 5 minutes. To this potassium carbonate (2.0 equiv.) and benzyl chloride (2.0 equiv.) were added. After 30 minutes, the reaction temperature raised to 70 °C and the resulting reaction mixture was allowed to stir for 24 h. After the completion of the reaction, which was monitored by TLC, the reaction mixture was filtered and the filtrate was evaporated under reduced pressure. The obtained crude product was purified by silica gel column chromatography by using EtOAc and hexane mixture as the mobile phase to obtain the desired olefin.

General procedure for Pd-catalyzed acetoxylation of 2-aminotropone. A 15 mL sealed reaction tube, equipped with a magnetic stirbar was charged with 2-aminotropone substrates (**2a**/ **2b**/

2e) (1.0 equiv.), Pd (OAc)₂ (10 mol%) and (diacetoxyiodo)benzene (2.0 equiv.). Anhydrous toluene was added and the mixture was stirred at 80 °C for 24 h on a heating block. After cooling to room temperature, the resulting sample was diluted with ethyl acetate (5.0 mL), filtered through a pad of Celite, concentrated under reduced pressure and purified by column chromatography with EtOAc/ hexane solvent system to obtain the desired acetoxylated products.

	Table S1.	Optimization	of reaction	conditions ^a
--	-----------	--------------	-------------	-------------------------

Entry	Oxidant	Ligand (0.5 equiv.)	Solvent	Yield (%) ^b
1	AgOAc (2.0 equiv.)	-	^t BuOH	13
2	AgOAc (2.0 equiv.)	-	TFE	Trace
3	AgOAc (2.0 equiv.)	-	THF	19
4	AgOAc (2.0 equiv.)	-	DMA	15
5	AgOAc (2.0 equiv.)	-	1,4- Dioxane	27
6	AgOAc (2.0 equiv.)	-	Benzene	31
7	AgOAc (2.0 equiv.)	-	DMF	23
8	AgOAc (2.0 equiv.)	-	Toluene	22
9	AgOAc (2.0 equiv.)	-	NMP	11
10	AgOAc (2.0 equiv.)	-	Isopropanol	05
11	AgOAc (2.0 equiv.)	-	1,2- DCE	29
12	AgOAc (2.0 equiv.)	-	MeCN	17
13	AgOAc (2.0 equiv.)	-	HFIP	n.d.
14	AgOAc (3.0 equiv.)	-	Benzene	43
15	AgOAc (2.0 equiv.) /	-	Benzene	32
	NaOAc (2.0 equiv.)			
16	AgOAc (2.0 equiv.) /	-	Benzene	34
	Cu (OAc) ₂ (2.0			
	equiv.)			
17	Ag_2CO_3 (2.0 equiv.)	-	Benzene	47
18	Ag_2CO_3 (3.0 equiv.)	-	1,2- DCE	52
19	Ag_2CO_3 (3.0 equiv.)	-	Benzene	59
20 ^c	Ag_2CO_3 (3.0 equiv.)	-	Benzene	78
21	Ag_2CO_3 (3.0 equiv.)	2- Picolinic acid	Benzene	n.d.
22	Ag_2CO_3 (3.0 equiv.)	Boc- Glycine	Benzene	40
23	Ag_2CO_3 (3.0 equiv.)	L- Proline	Benzene	n.d.
24	$Ag_2CO_3(3.0 \text{ equiv.})$	N- Boc- L- Valine	Benzene	38
25	Ag ₂ CO ₃ (3.0 equiv.)	Salicylic acid	Benzene	31
26	Ag_2CO_3 (3.0 equiv.)	DMAP	Benzene	n.d.

^aReaction conditions: **2a** (0.29 mmol), **3a** (0.58 mmol), Pd (OAc)₂ catalyst (0.029 mmol), Oxidant (0.58 mmol), PivOH (0.58 mmol), Solvent (2 ml), 100 °C, 24 h. ^b Isolated Yield. ^c PivOH (0.87 mmol, 3.0 equiv.), **3a** (1.16 mmol, 4.0 equiv.), 130 °C, 24 h

	$ \bigcup_{N \to 1}^{O} + \bigcup_{N \to 1}^{O} $	Benzene, 130° C, 24 h		_
	Za Su		4a	
Entry	Oxidant/Additive	$Pd(OAc)_2$	PivOH (3	Yield (%)
1	NaOAc (4.0 equiv.)	-	-	n.d.
2	Ag ₂ CO ₃ (3.0 equiv.)	-	PivOH (3.0	n.d.
			equiv.)	
3	-	Pd(OAc) ₂ (1.0 equiv.)	-	Acetoxylation
4	-	$Pd(OAc)_2 (10 \text{ mol}\%)$	-	n.d.
5	-	$Pd(OAc)_2 (10 \text{ mol}\%)^b$	PivOH (3.0	Trace
			equiv.)	

Table S2. The role of catalyst and oxidant additive.^b

^bReaction conditions: 2a (0.29 mmol), 3a (1.16 mmol, 4.0 equiv.),

2-(Piperidin-1-yl) cyclohepta-2,4,6-trien-1- one (2b). Aminotropone (2b) was synthesized by

the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as rosewood glutinous liquid.(1.0 g, 77% yield); $R_f = 0.72$ (50% EtOAc in hexane) starting from tropolone tosylate (2.0 g, 7.2 mmol) and piperidine (0.8 g, 9.4 mmol).¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.10- 6.98 (m, 3H), 6.71 (d, J = 8.0 Hz, 1H), 6.64 (t, J = 12.0

Hz, 1H), 3.33 (d, J = 4.0 Hz, 4H), 1.71 (dd, J = 4.0, 4.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 182.8, 160.6, 135.3, 134.8, 133.8, 125.3, 118.3, 77.4, 77.1, 76.8, 50.3, 25.9, 24.6. ESI-HRMS m/z: [M+H]⁺ Calcd. for C₁₂H₁₅NONa 212.1046; found 212.1040.

2-Morpholinocyclohepta-2,4,6-trien-1-one (2c). Aminotropone (2c) was synthesized by the

general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (30:70) as rosewood glutinous liquid.(1.1 g, 83 % yield); $R_f = 0.43$ (50% EtOAc in hexane) starting from tropolone tosylate (2.0 g, 7.2 mmol) and morpholine(0.8 g, 9.4 mmol).¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.15 –

7.02 (m, 3H), 6.76 - 6.67 (m, 2H), 3.88 (t, J = 4.0 Hz, 4H), 3.32 (t, J = 4.0 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 182.6, 159.7, 136.0, 135.6, 133.6, 126.9, 118.9, 77.4, 77.1, 76.8, 66.8, 49.1. ESI-HRMS m/z: [M+H]⁺ Calcd. for C₁₁H₁₄NO₂ 192.1019 found 192.1034.

2-(2,6-Dimethylmorpholino) cyclohepta-2,4,6-trien-1- one (2d). Aminotropone (2d) was synthesized by the general procedure (the above mentioned procedure) and purified by column

chromatography with solvent system Ethylacetate: Hexane (25: 75) as rosewood glutinous liquid (1.2 g, 80 % yield); $R_f = 0.54$ (50% EtOAc in hexane) starting from tropolone tosylate (2.0 g, 7.2 mmol) and 2,6dimethylmorpholine (1.0 g, 9.4 mmol). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.11 (dd, J = 8.0, 8.0 Hz, 1H), 7.04 (t, J = 10.0 Hz, 2H), 6.70 (dd,

J = 12.0, 8.0 Hz, 2H), 3.92 - 3.85 (m, 2H), 3.74 (d, J = 16.0 Hz, 2H), 2.46 (t, J = 10.0 Hz, 2H), 1.23 (d, J = 8.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 182.7, 159.4, 135.8, 135.5,

133.7, 126.5, 118.9, 77.4, 77.1, 76.8, 71.5, 54.3,18.9. ESI-HRMS m/z: [M+H]⁺ Calcd. for C₁₃H₁₈NO₂ 220.1332; found 220.1339.

2-(Diethylamino) cyclohepta-2,4,6-trien-1-one (**2e**). Aminotropone (**2e**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate: Hexane (15: 85) as rosewood glutinous liquid (0.5 g, 78 % yield); $R_f = 0.45$ (30% EtOAc in hexane) starting from tropolone tosylate (1.0 g, 3.6 mmol) and N, N-diethylamine (0.3 g, 5.4 mmol). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.06 - 6.97 (m, 2H), 6.87 (d, J = 12.0 Hz, 1H), 6.49 (t, J = 10.0 Hz, 2H), 3.54 (q, J = 8.0 Hz, 4H), 1.22 (t, J = 6.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 180.9, 156.9, 134.9, 133.8, 130.9, 121.8, 112.6, 77.4, 77.1, 76.8, 46.1, 12.5. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₁H₁₅NONa 200.1046; found 200.1051.

Methyl (7-oxocyclohepta-1,3,5-trien-1-yl)-L-prolinate (**2f**). Troponylated Proline-OMe (**2f**) was synthesized by the general procedure (the above mentioned procedure) and purified by

column chromatography with solvent system Ethylacetate: Hexane (25:75) as straw yellow glutinous liquid. (0.8 g, 51 % yield); $R_f = 0.52$ (50% EtOAc in hexane) . ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.05 (q, J = 10.0 Hz, 2H), 6.87 (d, J = 12.0 Hz, 1H), 6.53 (t, J = 10.0 Hz, 1H), 6.44 (d, J = 12.0 Hz, 1H), 5.23 (dd, J = 8.0, 4.0 Hz, 1H), 3.74 (s, 3H), 3.63 –

3.58 (m, 1H), 3.50 - 3.44 (m, 1H), 2.26 - 2.17 (m, 1H), 2.12 - 1.95 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 180.6, 173.4, 155.3, 136.1, 134.8, 132.5, 122.7, 113.1, 77.4, 77.1, 76.8, 62.7, 52.02, 51.5, 31.2, 22.6. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₃H₁₅NO₃Na 256.0944; found 256.0951.

Methyl (7-oxocyclohepta-1,3,5-trien-1-yl)-L-prolylglycinate (2g). Aminotroponyl di-peptide

(2g) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (90:10) as rosewood glutinous liquid.(0.6 g, 57 % yield); $R_f = 0.30$ (EtOAc). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.13 -7.02 (m, 2H), 6.92 (d, J = 12.0 Hz, 1H), 6.70 (s, 1H), 6.60(t, J = 10.0 Hz, 1H), 6.47 (d, J = 8.0 Hz, 1H), 4.95 (t, J = 6.0

Hz, 1H), 4.01 (qd, J = 20.0 Hz, 6.0 Hz, 2H), 3.88- 3.82 (m, 1H), 3.71 (s, 3H), 3.42- 3.36 (m, 1H), 2.26 - 2.09 (m, 2H), 1.99 - 1.91 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 180.8, 173.1, 170.3, 155.8, 135.9, 134.4, 132.7, 123.6, 113.9, 77.4, 77.1, 76.7, 64.1, 52.2, 51.9, 41.1, 31.5, 23.4. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₅H₁₈N₂O₄Na 313.1159; found 313.1166.

2-ethoxycyclohepta-2,4,6-trien-1-one (**5b**). 2-ethoxytropone (**5b**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (90:10) as rosewood glutinous liquid.(0.6g, 49 % yield); $R_f = 0.52$ (EtOAc). ¹H NMR (400 MHz, CDCl₃) δ (ppm)7.21 (d, J = 8.0 Hz, 2H), 7.05 (t, J = 10.0 Hz, 1H), 6.87 - 6.82 (m, 1H), 6.74 (d, J = 12.0 Hz, 1H), 4.13 (q, J = 8.0 Hz, 2H), 1.52 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 180.7, 164.9, 136.9, 136.5, 132.9, 127.8, 113.2, 77.4, 77.1, 76.8, 64.9, 14.3. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₉H₁₀O₂Na 173.0573; found

173.0565.

Butyl (E)-3-(7-oxo-6-(pyrrolidin-1-yl) cyclohepta-1,3,5-trien-1-yl) acrylate (4a). Olefinated

aminotropone (**4a**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (10:90) as orange red glutinous liquid. (134 mg, 78 % yield); $R_f = 0.45$ (30% EtOAc in hexane) ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.87 (d, J = 16.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.05

(t, J = 10.0 Hz, 1H), 6.64 (d, J = 16.0 Hz, 1H), 6.42 (t, J = 10.0 Hz, 1H), 6.26 (d, J = 12.0 Hz, 1H), 4.20 (t, J = 6.0 Hz, 2H), 3.57 (s, 4H), 2.00 (s, 4H), 1.72 - 1.65 (m, 2H), 1.49 - 1.40 (m, 2H), 0.97 (t, J = 6.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 178.5, 167.9, 155.3, 144.9, 135.9, 135.8, 132.0, 118.0, 117.9, 109.9, 77.4, 77.1, 76.7, 64.2, 50.8, 30.8, 25.4, 19.2, 13.8. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₈H₂₃NO₃Na 324.1570; found 324.1594.

tert-Butyl (E)-3-(7-oxo-6-(pyrrolidin-1-yl) cyclohepta-1,3,5-trien-1-yl) acrylate (4b)

Olefinated aminotropone (**4b**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate: Hexane (10:90) as orange red glutinous liquid. (62 mg, 72 % yield); $R_f = 0.67$ (50% EtOAc in hexane) ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.76 (d, *J* = 16.0 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.03 (t, *J* = 10.0 Hz, 1H),

6.56 (d, J = 16.0 Hz, 1H), 6.40 (t, J = 10.0 Hz, 1H), 6.24 (d, J = 8.0 Hz, 1H), 3.56 (s, 4H), 2.01 - 1.97 (m, 4H), 1.53 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 178.7, 167.1, 155.1, 143.9, 135.7, 135.6, 132.4, 120.0, 118.1, 109.8, 80.0, 77.4, 77.1, 76.7, 50.8, 28.3, 25.4. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₈H₂₃NO₃Na 324.1570; found 324.1543.

Ethyl (E)-3-(7-oxo-6-(pyrrolidin-1-yl) cyclohepta-1,3,5-trien-1-yl) acrylate (4c). Olefinated

aminotropone (**4c**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (10:90) as orange red glutinous liquid. (116 mg, 75% yield); $R_f = 0.64$ (50% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.87 (d, J = 16.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.04 (t, J = 10.0 Hz, 1H), 6.62 (d, J =

12.0 Hz, 1H), 6.41 (t, J = 10.0 Hz, 1H), 6.25 (d, J = 12.0 Hz, 1H), 4.24 (q, J = 8.0 Hz, 2H), 3.56 (s, 4H), 1.99 (s, 4H), 1.32 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 178.5, 167.8, 155.3, 144.9, 135.9, 135.8, 132.0, 118.1, 117.9, 109.9, 77.4, 77.1, 76.8, 60.3, 50.9, 25.4, 14.4. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₆H₁₉NO₃Na 296.1257; found 296.1242. 3-(Benzyloxy)-3-oxopropyl (E)-3-(7-oxo-6-(pyrrolidin-1-yl) cyclohepta-1,3,5-trien-1-yl) acrylate (**4d**). Olefinated aminotropone (**4d**) was synthesized by the general procedure (the

above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as orange red glutinous liquid. (148 mg, 64 % yield); $R_f = 0.63$ (50% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.84 (d, J = 16.0 Hz, 1H), 7.40 - 7.27 (m, 6H), 7.04 (t, J = 10.0 Hz, Hz, 1H), 6.61 (d, J = 16.0 Hz, 1H), 6.40 (t, J = 10.0 Hz,

1H), 6.24 (d, J = 12.0 Hz, 1H), 5.17 (s, 2H), 4.48 (t, J = 6.0 Hz, 2H), 3.55 (s, 4H), 2.77 (t, J = 6.0 Hz, 2H), 1.98 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 178.4, 170.8, 167.5, 155.4, 145.7, 136.17, 136.16, 135.7, 131.7, 128.6, 128.28, 128.25, 117.9, 117.1, 109.9, 77.4, 77.1, 76.7, 66.6, 59.7, 50.9, 34.1, 25.4. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₂₄H₂₅NO₅Na 430.1625; found 430.1602.

(S)-4-(2-((tert-butoxycarbonyl) amino)-3-methoxy-3- oxopropyl) phenyl (E)-3-(7-oxo-6-(pyrrolidin-1-yl) cyclohepta-1,3,5-trien-1-yl) acrylate (**4e**). Olefinated aminotropone (**4e**) was

synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as orange red glutinous liquid. (128 mg, 43% yield); $R_f = 0.18$ (30% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.02 (d, J = 16.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.16 - 7.05

(m, 5H), 6.82 (d, J = 16.0 Hz, 1H), 6.42 (t, J = 10.0 Hz, 1H), 6.27 (d, J = 12.0 Hz, 1H), 5.03 (d, J = 8.0 Hz, 1H), 4.58 (d, J = 8.0 Hz, 1H), 3.71 (s, 3H), 3.59 (s, 4H), 3.14 - 3.03 (m, 2H), 2.00 (s, 4H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 178.3, 172.3, 166.2, 155.6, 155.1, 150.1, 147.1, 136.6, 136.5, 133.2, 131.4, 130.2, 121.8, 117.9, 116.5, 110.1, 80.0, 77.4, 77.1, 76.8, 54.4, 52.3, 50.9, 37.7, 28.3, 25.3. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₂₉H₃₄N₂O₇Na 545.2258 found 545.2202.

Methyl N-(tert-butoxycarbonyl)-O-((E)-3-(7-oxo-6-(pyrrolidin-1-yl) cyclohepta-1,3,5-trien-1-

yl) acryloyl)-L-threoninate (**4f**). Olefinated aminotropone (**4f**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (25:75) as orange red glutinous liquid. (107 mg, 41 % yield); $R_f = 0.48$ (50% EtOAc in hexane).¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.80 (d, J = 16.0 Hz, 1H), 7.38 (d, J = 12.0 Hz, 1H), 7.05 (t, J = 10.0 Hz, 1H), 6.61 (d, J =

12.0 Hz, 1H), 6.40 (t, J = 10.0 Hz, 1H), 6.25 (d, J = 8.0 Hz, 1H), 5.52 (d, J = 8.0 Hz, 1H), 5.36 (d, J = 8.0 Hz, 1H), 4.46 (d, J = 12.0 Hz, 1H), 3.73 (s, 3H), 3.57 (s, 4H), 2.00 (s, 4H), 1.48 (s, 9H), 1.36 (d, J = 4.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 178.3, 170.8, 166.6, 155.9, 155.4, 146.2, 136.7, 136.4, 131.5, 117.9, 116.8, 110.0, 80.2, 77.4, 77.1, 76.8, 70.3, 57.3, 52.7, 50.9, 28.3, 25.4, 17.2.ESI-HRMS m/z: [M+Na] ⁺ Calcd. for C₂₄H₃₂N₂O₇Na 483.2107; found 483.2099.

Butyl (E)-3-(7-oxo-6-(piperidin-1-yl) cyclohepta-1,3,5-trien-1-yl) acrylate (4g). Olefinated

aminotropone (**4g**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (10:90) as orange red glutinous liquid. (116 mg, 70 % yield); $R_f = 0.59$ (50% EtOAc in

hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.80 (d, J = 16.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 6.92 (t, J = 10.0 Hz, 1H), 6.53 -6.49 (m, 2H), 6.41 (t, J = 10.0 Hz, 1H), 4.11 (t, J = 8.0 Hz, 2H), 3.34 (s, 4H), 1.63 - 1.58 (m, 8H), 1.35 (dd, J = 16.0, 8.0 Hz, 2H), 0.88 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 181.4, 167.6, 158.4, 144.9, 135.6, 135.4, 134.2, 121.3, 119.2, 113.6, 77.4, 77.1, 76.8, 64.3, 50.1, 30.8, 25.8, 24.5, 19.2, 13.8. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₉H₂₅NO₃Na 338.1727; found 338.1751.

tert-Butyl (E)-3-(7-oxo-6-(piperidin-1-yl) cyclohepta-1,3,5-trien-1-yl) acrylate (4h).

Olefinated aminotropone (**4h**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (10:90) as orange red glutinous liquid. (108 mg, 65 % yield); $R_f = 0.67$ (50% EtOAc in hexane). ¹H

NMR (400 MHz, CDCl₃) δ (ppm) 7.78 (d, *J* = 16.0 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 6.99 (t, *J* = 10.0 Hz, 1H), 6.57 (d, *J* = 8.0 Hz, 1H), 6.52- 6.47 (m, 2H), 3.40 (t, *J* = 4.0 Hz, 4H), 1.73 - 1.70 (m, 6H), 1.52 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 181.6, 166.7, 158.4, 143.9, 135.4, 135.1, 134.7, 121.5, 121.3, 113.8, 80.3, 77.4, 77.1, 76.8, 50.1, 28.2, 25.8, 24.5. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₉H₂₅NO₃Na 338.1727; found 338.1716.

Butyl (E)-3-(6-morpholino-7-oxocyclohepta-1,3,5-trien-1-yl) acrylate (4i). Olefinated

aminotropone (**4i**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as orange red glutinous liquid. (165 mg, 67 % yield); $R_f = 0.68$ (50% EtOAc in

hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.88 (d, *J* = 16.0 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 12.0 Hz, 1H), 6.66 - 6.58 (m, 3H), 4.19 (t, *J* = 8.0 Hz, 2H), 3.87 (t, *J* = 6.0 Hz, 4H), 3.35 (t, *J* = 4.0 Hz, 4H), 1.71 - 1.64 (m, 2H), 1.47 - 1.40 (m, 2H), 0.95 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 181.6, 167.2, 158.3, 144.4, 136.6, 135.8, 134.9, 123.8, 120.6, 115.5, 77.4, 77.1, 76.7, 66.6, 64.4, 48.9, 30.8, 19.2, 13.8. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₈H₂₃NO₄Na 340.1519; found 340.1487.

tert-Butyl (E)-3-(6-morpholino-7-oxocyclohepta-1,3,5-trien-1-yl) acrylate (4j). Olefinated

aminotropone (**4j**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as orange red glutinous liquid. (107 mg, 65 % yield); R_f = 0.59 (50% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ

(ppm) 7.79 (d, *J* = 16.0 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 10.0 Hz, 1H), 6.67 - 6.59 (m, 2H), 6.52 (d, *J* = 16.0 Hz, 1H), 3.89 (t, *J* = 4.0 Hz, 4H), 3.34 (t, *J* = 4.0 Hz, 4H), 1.53 (s,

9H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 181.7, 166.4, 158.2, 143.5, 137.0, 135.6, 134.7, 123.9, 122.6, 115.6, 80.5, 77.4, 77.1, 76.7, 66.6, 48.9, 28.2. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₈H₂₃NO₄Na 340.1519; found 340.1505.

Ethyl (*E*)-3-(6-morpholino-7-oxocyclohepta-1,3,5-trien-1-yl) acrylate (**4k**). Olefinated aminotropone (**4k**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as orange red glutinous liquid. (107 mg, 71 % yield); $R_f = 0.37$ (50% EtOAc in hexane) ¹H NMR (400 MHz, CDCl₃)

δ (ppm) 7.89 (d, J = 16.0 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.04 (t, J = 10.0 Hz, 1H), 6.66 - 6.57 (m, 3H), 4.25 (q, J = 6.0 Hz, 2H), 3.88 (t, J = 4.0 Hz, 4H), 3.35 (t, J = 4.0 Hz, 4H), 1.32 (t, J = 6.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 181.6, 167.1, 158.3, 144.4, 136.5, 135.7, 134.9, 123.8, 120.5, 115.4, 77.4, 77.1, 76.8, 66.6, 60.5, 48.9, 14.3. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₆H₁₉NO₄Na 312.1206; found 312.1180.

Butyl (E)-3-(6-(2,6-dimethylmorpholino)-7-oxocyclohepta-1,3,5-trien-1-yl) acrylate (41).

Olefinated aminotropone (**4l**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as orange red glutinous liquid. (98 mg, 62 % yield); $R_f = 0.71$ (50%

EtOAc in hexane) ¹H NMR (700 MHz, CDCl₃) δ (ppm) 7.92 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 4.0 Hz, 1H), 7.03 (t, *J* = 6.0 Hz, 1H), 6.63 - 6.57 (m, 3H), 4.19 (t, *J* = 4.0 Hz, 2H), 3.87 - 3.83 (m, 2H), 3.71 (d, *J* = 8.0 Hz, 2H), 2.54 (t, *J* = 6.0 Hz, 2H), 1.70 - 1.66 (m, 2H), 1.43 (dd, *J* = 8.0, 4.0 Hz, 2H), 1.24 (d, *J* = 4.0 Hz, 6H), 0.96 (t, *J* = 4.0 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃) δ (ppm) 181.5, 167.3, 158.1, 144.6, 136.5, 135.5, 135.0, 123.4, 120.4, 115.6, 77.2, 77.0, 76.9, 71.4, 64.4, 54.1, 30.8, 19.2, 18.9, 13.8. ESI-HRMS m/z: [M+H]⁺ Calcd. for C₂₀H₂₈NO₄ 346.2013; found 346.2023.

tert-Butyl (E)-3-(6-(2,6-dimethylmorpholino)-7-oxocyclohepta-1,3,5-trien-1-yl) acrylate

(4m). Olefinated aminotropone (4m) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as orange red glutinous liquid. (100 mg, 64 % yield); $R_f = 0.76$ (50% EtOAc in hexane) ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.83 (d, J = 16.0 Hz, 1H),

7.44 (d, J = 8.0 Hz, 1H), 7.03 (t, J = 12.0 Hz, 1H), 6.65 - 6.59 (m, 2H), 6.49 (d, J = 16.0 Hz, 1H), 3.89 - 3.83 (m, 2H), 3.71 (d, J = 12.0 Hz, 2H), 2.56 - 2.50 (m, 2H), 1.53 (s, 9 H), 1.25 (d, J = 8.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 181.6, 166.4, 158.1, 143.6, 136.9, 135.3, 134.8, 123.7, 122.4, 115.8, 80.5, 77.4, 77.0, 76.7, 71.4, 54.1, 28.2, 18.9. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₂₀H₂₇NO₄Na 368.1832; found 368.1816.

Ethyl (*E*)-3-(6-(2,6-dimethylmorpholino)-7-oxocyclohepta-1,3,5-trien-1-yl) acrylate (**4n**).

Olefinated aminotropone (**4n**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as orange red glutinous liquid. (99 mg, 69 % yield); $R_f = 0.63$ (50% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.86 (d, J = 16.0 Hz, 1H),

7.38 (d, J = 12.0 Hz, 1H), 6.97 (t, J = 10.0 Hz, 1H), 6.58 - 6.47 (m, 3H), 4.18 (q, J = 8.0 Hz, 2H), 3.78 (tt, J = 12.0, 6.0 Hz, 2H), 3.64 (d, J = 12.0 Hz, 2H), 2.46 (t, J = 10.0 Hz, 2H), 1.26 (t, J = 4.0 Hz, 3H), 1.17 (d, J = 8.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 181.4, 167.1, 158.2, 144.6, 136.5, 135.5, 135.1, 123.5, 120.4, 115.7, 77.4, 77.1, 76.7, 71.4, 60.5, 54.1, 27.0, 18.9, 14.4. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₈H₂₃NO₄Na 340.1519; found 340.1515.

3-(benzyloxy)-3-oxopropyl (E)-3-(6-(2,6-dimethylmorpholino)-7-oxocyclohepta-1,3,5-trien-

1-yl) acrylate (**4o**). Olefinated aminotropone (**4o**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80)

as orange red glutinous liquid. (107 mg, 52 % yield); $R_f = 0.69$ (50% EtOAc in hexane). ¹H

NMR (400 MHz, CDCl₃) δ (ppm) 7.90 (d, J = 16.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.37– 7.31 (m, 5H), 7.04 (t, J = 10.0 Hz, 1H), 6.64 – 6.54 (m, 3H), 5.17 (s, 2H), 4.49 (t, J = 6.0 Hz, 2H), 3.88 - 3.83 (m, 2H), 3.71 (d, J = 12.0 Hz, 2H), 2.78 (t, J = 6.0Hz, 2H), 2.54 (t, J = 12.0 Hz, 2H), 1.24 (d, J = 8.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 181.4, 170.7, 166.8, 158.2, 145.3, 136.1, 135.8, 135.7, 135.3, 128.6, 128.3, 128.2, 123.3, 119.6, 115.5, 77.4, 77.1, 76.7, 71.4, 66.6, 59.9, 54.1, 34.1, 18.9. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₂₆H₂₉NO₆Na 474.1893; found 474.1913.

aminotropone (**4p**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (10:90) as orange red glutinous liquid. (124 mg, 73 % yield); $R_f = 0.54$ (30% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.75 (d, J = 16.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.00 (t, J = 10.0 Hz, 1H), 6.58 (d, J =

= 8.0 Hz, 4H), 1.67 (dd, J = 16.0, 8.0 Hz, 2H), 1.47 - 1.38 (m, 2H), 1.20 (t, J = 6.0 Hz, 6H), 0.95 (t, J = 6.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 179.2, 167.9, 154.3, 144.8, 135.7, 135.3, 130.6, 117.9, 117.7, 108.4, 77.4, 77.0, 76.7, 64.2, 46.7, 30.8, 19.2, 13.8, 12.3. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₈H₂₅NO₃Na 326.1727; found 326.1706.

tert-Butyl (E)-3-(6-(diethylamino)-7-oxocyclohepta-1,3,5-trien-1-yl) acrylate (4q) Olefinated

aminotropone (**4q**) was synthesized by the general procedure (the procedure) above mentioned and purified by column chromatography with solvent system Ethylacetate:Hexane (10:90) as orange red glutinous liquid. (116 mg, 68 % yield); $R_f = 0.64$ (30% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.66 (d, J = 16.0 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 6.99 (t, J = 10.0Hz, 1H), 6.49 (d, J = 16.0Hz, 1H), 6.36 (t, J = 12.0 Hz, 2H), 3.56 (q, J = 8.0 Hz,

4H), 1.52 (s, 9H), 1.19 (t, J = 6.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 179.4, 167.1, 154.3, 143.8, 135.4, 135.1, 131.0, 119.7, 118.0, 108.5, 80.1, 77.4, 77.1, 76.8, 46.7, 28.2, 12.3. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₈H₂₅NO₃Na 326.1727; found 326.1708.

Butyl (E)-3-(6-(diethylamino)-7-oxocyclohepta-1,3,5-trien-1-yl) but-2-enoate (**4r**). Olefinated aminotropone (**4r**) was synthesized by the general procedure (the above mentioned

synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate: Hexane (10:90) as orange red glutinous liquid. (123 mg, 69 % yield); $R_f = 0.61$ (30% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.84 (s, 1H), 7.16 (d, J = 8.0 Hz, 1H), 6.99 (t, J = 10.0 Hz, 1H), 6.44 (t, J = 10.0 Hz, 2H), 4.19 (t, J = 8.0 Hz, 2H), 3.53 (q, J = 8.0 Hz, 4H), 2.02 (d, J = 1.4 Hz, 3H), 1.73 - 1.66 (m,

2H), 1.43 (dd, J = 12.0, 8.0 Hz, 2H), 1.22 (t, J = 8.0 Hz, 6H), 0.96 (t, J = 6.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 179.7, 168.7, 155.4, 140.1, 135.7, 135.2, 134.1, 128.2, 119.1, 110.7, 77.4, 77.0, 76.7, 64.7, 46.5, 30.8, 19.3, 14.4, 13.8, 12.5. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₉H₂₇NO₃Na 340.1883; found 340.1854.

Methyl

(*E*)-(6-(3-butoxy-3-oxoprop-1-en-1-yl)-7-oxocyclohepta-1,3,5-trien-1-yl)-Lprolinate (**4s**). Olefinated aminotropone (**4s**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate: Hexane (20: 80) as orange red glutinous liquid. (95 mg, 62 % yield); $R_f = 0.64$ (50% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.73 (d, J = 16.0 Hz, 1H), 7.44 (d,

J = 8.0 Hz, 1H), 7.06 (t, J = 10.0 Hz, 1H), 6.57 - 6.48 (m, 2H), 6.37 (d, J = 12.0 Hz, 1H), 5.15 (dd, J = 8.0, 4.0 Hz, 1H), 4.17 (t, J = 8.0 Hz, 2H), 3.71 (s, 3H), 3.65 - 3.53 (m, 2H), 2.38 - 2.29 (m, 1H), 2.14 - 2.02 (m, 3H), 1.70 - 1.63 (m, 3H), 1.42 (dd, J = 12.0, 4.0 Hz, 2H), 0.95 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 179.7, 172.4, 167.7, 153.7, 145.0, 136.2, 135.9, 133.9, 120.0, 118.8, 111.4, 77.4, 77.0, 76.7, 64.2, 62.5, 52.5, 51.2, 31.1, 30.8, 23.1, 19.2, 13.8. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₂₀H₂₅NO₅Na 382.1625; found 382.1601.

Methyl (S, E)-3-(6-(2-((2-methoxy-2-oxoethyl) carbamoyl) pyrrolidin-1-yl)-7-oxocyclohepta-

1,3,5-trien-1-yl) acrylate (**4t**) Olefinated aminotroponyl *di*- peptide (**4t**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate: Hexane (50:50) as orange red glutinous liquid. (36 mg, 56 % yield); $R_f = 0.61$ (EtOAc). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.76 (d, J = 16.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.06 (t, J

= 10.0 Hz, 1H), 6.66 (t, J = 6.0 Hz, 1H), 6.54 (m, 2H), 6.38 (d, J = 8.0 Hz, 1H), 4.84 (dd, J = 8.0, 4.0 Hz, 1H), 3.99 (dd, J = 8.0, 4.0 Hz, 2H), 3.86 - 3.81 (m, 1H), 3.76 (s, 3H), 3.72 (s, 3H), 3.46 - 3.40 (m, 1H), 2.32 - 2.11 (m, 3H), 2.06 - 1.96 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 179.7, 172.0, 170.1, 167.8, 154.4, 144.9, 135.9, 135.8, 133.9, 120.6, 118.5, 111.9, 77.4, 77.1, 76.7, 64.1, 52.3, 51.7, 51.6, 41.2, 31.6, 23.5. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₉H₂₂N₂O₆Na 397.1370; found 397.1391.

Ethyl (S, E)-3-(6-(2-((2-methoxy-2-oxoethyl) carbamoyl) pyrrolidin-1-yl)-7-oxocyclohepta-

1,3,5-trien-1-yl) acrylate (**4u**). Olefinated aminotroponyl *di*- peptide (**4u**) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (50:50) as orange red glutinous liquid. (35 mg, 53 % yield); $R_f = 0.67$ (EtOAc). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.74 (d, J = 12.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.06 (t, J

= 10.0 Hz, 1H), 6.61 (t, J = 4.0 Hz, 1H), 6.54 (dd, J = 16.0, 8.0 Hz, 2H), 6.37 (d, J = 12.0 Hz, 1H), 4.82 (dd, J = 8.0, 8.0 Hz, 1H), 4.23 (q, J = 6.0 Hz, 2H), 4.01 - 3.99 (m, 2H), 3.87 - 3.81 (m, 1H), 3.72 (s, 3H), 3.45 - 3.39 (m, 1H), 2.32 - 2.16 (m, 2H), 2.15 - 2.11 (m, 1H), 2.03 - 1.95 (m, 2H), 1.31 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 179.8, 172.0, 170.1, 167.4, 154.3, 144.5, 135.9, 135.7, 134.1, 120.7, 119.1, 111.9, 77.4, 77.0, 76.7, 64.1, 60.3, 52.3, 51.7, 41.2, 31.5, 23.5, 14.3. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₂₀H₂₄N₂O₆Na 411.1527; found 411.1497.

tert-Butyl *(S*, E)-3-(6-(2-((2-methoxy-2-oxoethyl)) carbamoyl) pyrrolidin-1-yl)-7oxocyclohepta-1,3,5-trien-1-yl) acrylate (**4v**). Olefinated aminotroponyl di- peptide (4v) was synthesized by the general Ĥ procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (50:50) as orange red glutinous liquid. (35 mg, 49 % yield); $R_f = 0.64$ (EtOAc). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.64 (d, J = 16.0 Hz, 1H), 7.40 4v (d, J = 8.0 Hz, 1H), 7.04 (t, J = 10.0 Hz, 1H), 6.69 (t, J = 6.0 Hz, 1H),

6.54 - 6.46 (m, 2H), 6.36 (d, J = 8.0 Hz, 1H), 4.82 (dd, J = 8.0, 4.0 Hz, 1H), 4.01 - 3.98 (m, 2H), 3.86 - 3.80 (m, 1H), 3.71 (s, 3H), 3.44 - 3.38 (m, 1H), 2.27 - 2.10 (m, 3H), 2.04 - 1.91 (m, 1H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 179.8, 172.1, 170.1, 166.7, 154.1, 143.6, 135.8, 135.4, 134.3, 121.1, 120.7, 111.8, 80.2, 77.4, 77.1, 76.8, 64.0, 52.3, 51.7, 41.2, 31.5, 28.2, 23.5. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₂₂H₂₈N₂O₆Na 439.1840; found 439.1860.

Butyl (*S*, *E*)-3-(6-(2-((2-methoxy-2-oxoethyl) carbamoyl) pyrrolidin-1-yl)-7-oxocyclohepta-1,3,5-trien-1-yl) acrylate (**4w**). Olefinated aminotroponyl di- peptide (**4w**) was synthesized by

the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (50:50) as orange red glutinous liquid. (37 mg, 51 % yield); $R_f = 0.69$ (EtOAc). ¹H NMR (700 MHz, CDCl₃) δ (ppm) 7.74 (d, J = 14.0 Hz, 1H), 7.43 (d, J = 14.0 Hz, 1H), 7.06 (t, J = 10.5 Hz, 1H), 6.68 (s, 1H), 6.57 - 6.51 (m, 2H), 6.38 (d, J =

7.0 Hz, 1H), 4.83 (dd, J = 7.0, 7.0 Hz, 1H), 4.17 (t, J = 7.0 Hz, 2H), 3.99 (qd, J = 35.0, 7.0 Hz, 2H), 3.85 -3.82 (m, 1H), 3.72 (s, 3H), 3.44 - 3.41 (m, 1H), 2.31 - 2.27 (m, 1H), 2.23 - 2.19 (m, 1H), 2.16 - 2.12 (m, 1H), 2.01 - 1.98 (m, 1H), 1.69 - 1.64 (m, 2H), 1.43 - 1.40 (m, 2H), 0.95 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 179.7, 172.1, 170.2, 167.6, 154.4, 144.6, 136.0, 135.8, 134.0, 120.7, 119.1, 111.9, 77.4, 77.1, 76.8, 64.3, 52.3, 41.1, 31.6, 30.8, 29.7, 27.2, 23.6, 19.2, 13.8. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₂₂H₂₉N₂O₆ 417.2020; found 417.2029.

Butyl (E)-3-(7-oxocyclohepta-1,3,5-trien-1-yl) acrylate (6a). Olefinated tropone (6a) was

synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as rosewood glutinous liquid. (16 mg, 7 % yield); $R_f = 0.41$ (30% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.83 (d, J = 16.0 Hz, 1H), 7.52 (dd, J = 8.0, 4.0 Hz, 1H), 7.17 - 7.09 (m, 2H), 7.05 - 7.02 (m, 2H), 6.79 (d, J = 16.0 Hz, 1H), 4.20 (t, J = 6.0Hz, 2H), 1.68 - 1.64 (m, 2H), 1.41 (ddd, J = 16.0, 8.0, 4.0 Hz, 2H), 0.95 (t, J = 6.0 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃) δ (ppm) 186.0, 166.8, 145.5, 142.7, 141.8, 136.5, 135.4, 135.2, 133.2, 123.9, 77.2, 77.0, 76.9, 64.7, 30.7, 19.2, 13.7. ESI-HRMS m/z:

 $[M+Na]^+$ Calcd. for $C_{14}H_{16}O_3Na$ 255.0992; found 255.0990.

Butyl (*E*)-3-(6-ethoxy-7-oxocyclohepta-1,3,5-trien-1-yl) acrylate (**6b**). Olefinated 2ethoxytropone (**6b**) was synthesized by the general procedure (the above mentioned procedure)

and purified by column chromatography with solvent system Ethylacetate:Hexane (35:65) as rosewood glutinous liquid. (33mg, 18 % yield); $R_f = 0.48$ (70% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.54 (d, J =

16.0 Hz, 1H), 7.46 (dd, J = 12.0, 4.0 Hz, 1H), 7.23 - 7.17 (m, 2H), 6.73 (d, J = 12.0 Hz, 1H), 6.34 (d, J = 16.0 Hz, 1H), 4.23 - 4.16 (m, 4H), 1.69 (dt, J = 16.0, 8.0 Hz, 2H), 1.55 (t, J = 8.0 Hz, 3H), 1.43 (dd, J = 16.0, 8.0 Hz, 2H), 0.96 (t, J = 6.0 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃) δ (ppm) 180.2, 166.7, 164.7, 145.6, 136.6, 135.4, 133.9, 133.4, 118.9, 112.4, 77.2, 77.0, 76.8, 65.4, 64.7, 30.7, 19.2, 14.2, 13.7. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₆H₂₀O₄Na 299.1254; found 299.1261.

(S)-4-(2-((tert-butoxycarbonyl) amino)-3-methoxy-3-oxopropyl) phenyl acrylate (3e). Olefin-

modified Tyrosine (**3e**) was synthesized by the above mentioned procedure and purified by column chromatography with solvent system Ethylacetate:Hexane (15:85) as colourless glutinous liquid. $R_f = 0.75$ (40% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.16 (d, J = 8.0 Hz, 2H), 7.06 (d, J

= 8.0 Hz, 2H), 6.58 (d, J = 16.0 Hz, 1H), 6.30 (dd, J = 18.0, 10.0 Hz, 1H), 5.99 (d, J = 8.0 Hz, 1H), 5.17 (d, J = 8.0 Hz, 1H), 4.57 (d, J = 8.0 Hz, 1H), 3.70 (s, 3H), 3.08 (ddd, J = 32.0, 12.0, 4.0 Hz, 2H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 172.2, 164.4, 155.1, 149.6, 133.8, 132.6, 130.2, 127.9, 121.5, 79.9, 77.5, 77.2, 76.9, 54.4, 52.2, 37.6, 28.3. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₈H₂₃NO₆Na 372.1418; found 372.1407.

Methyl O-acryloyl-N-(tert-butoxycarbonyl)-L-threoninate (3f). Olefin- modified Threonine

(3f) was synthesized by the above mentioned procedure and purified by column chromatography with solvent system Ethylacetate:Hexane (10:90) as colourless glutinous liquid. $R_f = 0.50$ (20% EtOAc in hexane). ¹H NMR (700 MHz, CDCl₃) δ (ppm) 6.39 (dd, J = 17.5, 3.5

Hz, 1H), 6.07 (dd, J = 17.5, 10.5 Hz, 1H), 5.84 (d, J = 7.0 Hz, 1H), 5.46 (dd, J = 7.0, 2.3 Hz, 1H), 5.24 (d, J = 7.0 Hz, 1H), 4.47 (dd, J = 7.0, 2.2 Hz, 1H), 3.72 (s, 3H), 1.47 (s, 9H), 1.34 (d, J = 7.0 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃) δ (ppm) 170.7, 164.9, 155.8, 131.5, 127.9, 80.3, 77.2, 77.0, 76.9, 70.83, 57.1, 52.6, 28.3, 16.9. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₃H₂₁NO₆Na 310.1261; found 310.1259.

3-(benzyloxy)-3-oxopropyl acrylate (3g). Olefin (Coupling partner) (3g) was synthesized by

the above mentioned procedure and purified by column chromatography with solvent system Ethylacetate:Hexane (25:75) as colourless glutinous liquid. (1.4 g, 46 % yield). $R_f =$ 0.68 (30% EtOAc in hexane). ¹H NMR (700 MHz, CDCl₃) δ

(ppm) 7.37 - 7.26 (m, 5H), 6.37 (d, J = 14.0 Hz, 1H), 6.08 (dd, J = 14.0, 7.0 Hz, 1H), 5.81 (d, J = 7.0 Hz, 1H), 5.16 (s, 2H), 4.45 (t, J = 7.0 Hz, 2H), 2.74 (t, J = 7.0 Hz, 2H). ¹³C NMR (176 MHz, CDCl₃) δ (ppm) 170.5, 165.9, 135.7, 131.2, 128.6,128.4, 128.3, 128.1, 77.2, 77.0, 76.9, 66.6, 59.9, 33.9. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₃H₁₄O₄Na 257.0784; found 257.0760.

7-oxo-6-(pyrrolidin-1-yl) cyclohepta-1,3,5-trien-1-yl acetate (7a). Acetoxylated aminotropone

(7a) was synthesized by the general procedure (the above mentioned procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as rosewood glutinous liquid. (30 mg, 45 % yield); $R_f = 0.43$ (50% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.85 - 6.84 (m, 2H), 6.75 (dd, J = 12.0, 4.0 Hz,

1H), 6.20 (d, J = 8.0 Hz, 1H), 3.60 (t, J = 6.0 Hz, 4H), 2.25 (s, 3H), 1.96 - 1.93 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 178.8, 170.3, 155.5, 143.7, 130.9, 129.4, 126.4, 109.0, 77.4, 77.0, 76.7, 50.9, 25.5, 21.0. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₃H₁₅NO₃Na 256.0944; found 256.0925.

7-oxo-6-(piperidin-1-yl) cyclohepta-1,3,5-trien-1-yl acetate (7b). Acetoxylated aminotropone

(7b) was synthesized by the general procedure (the above mentioned

procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (20:80) as rosewood glutinous liquid. (29 mg, 44 % yield). $R_f = 0.36$ (30% EtOAc in hexane). ¹H NMR (400 MHz,

7b $CDCl_3$) δ (ppm) 6.97 (d, J = 12.0 Hz, 1H), 6.87 (d, J = 16.0 Hz, 1H), 6.75 (d, J = 12.0 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 3.32 - 3.29 (m, 4H), 2.27 (s, 3H), 1.73 - 1.68 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 181.7, 169.9, 159.5, 147.1, 133.9, 131.4, 124.9, 116.3, 77.4, 77.0, 76.7, 50.4, 25.9, 24.6, 21.0. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₄H₁₇NO₃Na 270.1101; found 270.1133.

6-(diethylamino)-7-oxocyclohepta-1,3,5-trien-1-yl acetate (7c). Acetoxylated aminotropone

7c

synthesized by the general procedure (the above mentioned (**7c**) was procedure) and purified by column chromatography with solvent system Ethylacetate:Hexane (25:75) as rosewood glutinous liquid. (28 mg, 42 % yield); $R_f = 0.45$ (50% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.84 (d, J = 1.0 Hz, 2H), 6.74 (dt, J = 12.0, 1.0 Hz, 1H), 6.40 (d, J

= 8.0 Hz, 1H), 3.52 (q, J = 8.0 Hz, 4H), 2.26 (s, 3H), 1.22 (t, J = 8.0 Hz, 6H). ¹³C NMR (101) MHz, CDCl₃) δ 179.9, 170.1, 155.9, 144.6, 130.5, 130.0, 125.4, 110.7, 77.3, 77.0, 76.7, 46.1, 21.0, 12.5. ESI-HRMS m/z: [M+Na]⁺ Calcd. for C₁₃H₁₇NO₃Na 258.1101; found 258.1103.

 NMR and Mass spectra of aminotropones/ troponylated amino acid/ peptide (2a- 2g) / 2-ethoxy tropone (5b)

Fig S1. ¹H, ¹³C {¹H} NMR spectra of aminotropone 2a

Display Report

Fig S2. ESI-HRMS spectra of aminotropone 2a

Fig S3. ¹H, ¹³C {¹H} NMR spectra of aminotropone 2b

Fig S4. ESI-HRMS spectra of aminotropone 2b

Fig S5. ¹H, ¹³C{¹H} NMR spectra of aminotropone 2c

Fig S6. ESI-HRMS spectra of aminotropone 2c

Fig S7. ¹H, ¹³C {¹H} NMR spectra of aminotropone 2d

Fig S8. ESI-HRMS spectra of aminotropone 2d

¹H NMR (400 MHz, CDCl₃) 2e 1.97<u>+</u> 0.94<u>+</u> 1.96-I 6.00∃ 4.00<u>H</u> 5.5 5.0 4.5 f1 (ppm) 7.0 6.5 6.0 3.5 10.0 9.5 9.0 8.5 8.0 7.5 4.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 134.97 133.81 130.84 - 121.84 77.41 77.09 76.77 - 12.47 ¹³C{¹H} NMR (101 MHz, CDCl₃) 2e 160 150 140 130 120 110 100 f1 (ppm) 210 200 190 180 170 90 80 70 60 50 40 30 20 10 0

Fig S9. ¹H, ¹³C {¹H} NMR spectra of aminotropone 2e

Display Report

Fig S10. ESI-HRMS spectra of aminotropone 2e

Fig S11. ¹H, ¹³C {¹H} NMR spectra of troponylated aminoacid ester 2f

Fig S12. ESI-HRMS spectra of troponylated aminoacid ester 2f

Fig S13. ¹H, ¹³C {¹H} NMR spectra of troponylated di- peptide 2g

Fig S14. ESI-HRMS spectra of troponylated *di*- peptide 2g

Fig S15. ¹H, ¹³C {¹H} NMR spectra of 2- ethoxytropone 5b

Fig S16. ESI-HRMS spectra of 2-ethoxytropone 5b

4. NMR and Mass spectra of Olefinated aminotropones/ troponyl amino acid/ peptides (4a- 4w)/ tropone (6a)/ 2-ethoxytropone (6b)

Fig S17. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4a

Fig S18. ESI-HRMS spectra of olefinated aminotropone 4a

Fig S19. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4b

Fig S20. ESI-HRMS spectra of olefinated aminotropone 4b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Fig S21. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4c

Fig S22. ESI-HRMS spectra of olefinated aminotropone 4c

aminotropone 4d

Fig S24. ESI-HRMS spectra of olefinated aminotropone 4d

Fig S25. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4e

Fig S26. ESI-HRMS spectra of olefinated aminotropone 4e

Fig S27. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4f

Fig S28. ESI-HRMS spectra of olefinated aminotropone 4f

Fig S29. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4g

Fig S30. ESI-HRMS spectra of olefinated aminotropone 4g

Fig S31. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4h

Fig S32. ESI-HRMS spectra of olefinated aminotropone 4h

7,7,38 7,185 7,145 7,145 7,145 7,145 7,145 7,145 7,145 7,145 7,145 7,145 7,145 7,145 7,145 7,145 7,145 7,145 7,146 1,146<

Fig S33. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4i

Fig S34. ESI-HRMS spectra of olefinated aminotropone 4i.

Fig S36. ESI-HRMS spectra of olefinated aminotropone 4j

Fig S37. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4k

Fig S38. ESI-HRMS spectra of olefinated aminotropone 4k

7.7.33 7.445<

Fig S39. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4l

Analysis Info

D:\Data\DEC-2021\NKS\22122021_NKS-CKJ-671.d Analysis Name Method Pos_tune_low.m Sample Name Tmix-131118

Acquisition Date 12/22/2021 5:10:34 PM

Operator Instrument PRAKASH BEHERA micrOTOF-Q II 10337

Comment

Fig S40. ESI-HRMS spectra of olefinated aminotropone 4l

Fig S41. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4m

Analysis Info		Acquisition Date	12/20/2021 9:19:10 PM
Analysis Name	D:\Data\DEC-2021\NKS\20122021_CKJ-714 RE 5.d		
Method	Pos_tune_low.m	Operator	PRAKASH BEHERA
Sample Name	Tmix-131118	Instrument	micrOTOF-Q II 10337
Comment			

Acquisition Parameter

Fig S42. ESI-HRMS spectra of olefinated aminotropone 4m

Fig S43. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4n

Fig S44. ESI-HRMS spectra of olefinated aminotropone 4n

Fig S45. 1 H, 13 C { 1 H} NMR spectra of olefinated aminotropone 40

Fig S46. ESI-HRMS spectra of olefinated aminotropone 40

Fig S47. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4p

Fig S48. ESI-HRMS spectra of olefinated aminotropone 4p

Fig S49. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4q

Fig S50. ESI-HRMS spectra of olefinated aminotropone 4q

Fig S51. ¹H, ¹³C {¹H} NMR spectra of olefinated aminotropone 4r

Fig S52. ESI-HRMS spectra of olefinated aminotropone 4r

Fig S53. 1 H, 13 C { 1 H} NMR spectra of olefinated troponylproline ester 4s

Fig S54. ESI-HRMS spectra of olefinated troponylproline ester 4s

1

Fig S55. ¹H, ¹³C {¹H} NMR spectra of olefinated troponyl *di*- peptide 4t

Fig S56. ESI-HRMS spectra of olefinated troponyl di- peptide 4t

77,7

¹H NMR (400 MHz, CDCl₃)

Fig S57. ¹H, ¹³C {¹H} NMR spectra of olefinated troponyl *di*- peptide 4u

Fig S58. ESI-HRMS spectra of olefinated troponyl di- peptide 4u

1.221 <td

Fig S59. ¹H, ¹³C {¹H} NMR spectra of olefinated troponyl di- peptide **4v**

Fig S60. ESI-HRMS spectra of olefinated troponyl di- peptide 4v

77,77 77,77 77,77 77,77 77,77 77,77 77,70 66,55 66,55 66,55 66,55 66,55 66,55 66,55 66,55 66,55 66,55 66,55 77,70 66,55 77,70 66,55 77,70 66,55 77,70 66,55 77,70 74,40 74,40 74,40 74,40 74,40 74,40 74,40 74,40 74,40 74,40 74,40 72,20 73,53 73,53 73,53 73,53 73,53 73,53 73,53 73,53 73,53 73,53 73,53 74,40 74,40 74,40 74,40 74,40 74,40 74,40 74,40 72,21 74,21 74,21 74,21 74,21 74,21 74,21 74,21 74,21 74,21 74,21 74,21 74,21 74,21 74,21 74,21 74,210

¹H NMR (700 MHz, CDCl₃)

Fig S61. ¹H, ¹³C {¹H} NMR spectra of olefinated troponyl *di*- peptide 4w

Fig S62. ESI-HRMS spectra of olefinated troponyl di- peptide 4w

7.33 7.33 7.35 <t

¹H NMR (400 MHz, CDCl₃)

Fig S63. ¹H, ¹³C {¹H} NMR spectra of olefinated tropone 6a

Fig S64. ESI-HRMS spectra of olefinated tropone 6a

¹H NMR (400 MHz, CDCl₃)

Fig S65. ¹H, ¹³C {¹H} NMR spectra of olefinated ethoxy tropone 6b

Fig S66. ESI-HRMS spectra of olefinated ethoxy tropone 6b

5. NMR and Mass spectra of Olefins (Coupling Partners) (3e/3f/3g)

Fig S67. ¹H, ¹³C {¹H} NMR spectra of olefin- modified Tyrosine 3e

Fig S68. ESI-HRMS spectra of olefin- modified Tyrosine 3e

Fig S69. ¹H, ¹³C {¹H} NMR spectra of olefin- modified Threonine 3f

Fig S70. ESI-HRMS spectra of olefin- modified Threonine 3f

Fig S71. ¹H, ¹³C {¹H} NMR spectra of olefin (Coupling partner) 3g

Fig S72. ESI-HRMS spectra of olefin (Coupling partner) 3g

6. NMR and Mass spectra of Acetoxylated aminotropones (7a/7b/7c)

 $\begin{array}{c} -7.26 \\ 6.85 \\ 6.84 \\ 6.84 \\ 6.131 \\ 6.$

Fig S73. ¹H, ¹³C {¹H} NMR spectra of acetoxylated aminotropone 7a

Fig S74. ESI-HRMS spectra of acetoxylated aminotropone 7a

¹H NMR (400 MHz, CDCl₃)

Fig S75. ¹H, ¹³C {¹H} NMR spectra of acetoxylated aminotropone 7b

Fig S76. ESI-HRMS spectra of acetoxylated aminotropone 7b

¹H NMR (400 MHz, CDCl₃)

Fig S77. ¹H, ¹³C {¹H} NMR spectra of acetoxylated aminotropone 7c

Fig S78. ESI-HRMS spectra of acetoxylated aminotropone 7c

7. X-Ray Studies of Single Crystal of Olefinated Troponyl di- Peptide (4t)

Single crystal of olefinated troponyl *di*- peptide was obtained in solvent mixture ethylacetate and hexane by slow evaporation method. The crystal data of peptide derivative (**4t**) was collected on a Rigaku Oxford diffractometer at 293 K. Selected - collection parameters and other crystallographic results are summarized below. The program package SHELXTL1 and Olex2 was used for structure solution and ORTEP diagram carried out by DIAMOND 3.2.

Identification code	4t
Empirical formula	$C_{19}H_{22}N_2O_6$
Formula weight	374.38
Temperature/K	300.47(15)
Crystal system	triclinic
Space group	P-1
a/Å	10.1306(9)
b/Å	10.1315(8)
c/Å	11.0192(9)
α/°	67.839(7)
β/°	63.570(8)
$\gamma/^{\circ}$	88.924(7)
Volume/Å ³	922.68(15)
Z	2
$\rho_{calc}g/cm^3$	1.348
μ/mm^{-1}	0.101
F (000)	396.0
Crystal size/mm ³	$0.01 \times 0.01 \times 0.001$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/	^o 6.898 to 60.452
Index ranges	$\text{-13} \le h \le 13, \text{-13} \le k \le 13, \text{-13} \le l \le 15$
Reflections collected	16378
Independent reflections	4416 [$R_{int} = 0.0397$, $R_{sigma} = 0.0351$]
Data/restraints/parameters	4416/0/246
Goodness-of-fit on F ²	1.183
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0557, wR_2 = 0.1670$
Final R indexes [all data]	$R_1 = 0.0818, wR_2 = 0.1799$
Largest diff. peak/hole / e Å-	3 0.26/-0.15

Fig S79. (a) ORTEP diagram of olefinated troponyl *di*- peptide (**4t**) [ellipsoid contour probability: 50%] (b) Packing Diagram of(**4t**) (c) hydrogen bonding of (**4t**)

8. Cell Proliferation Assay

We performed cell proliferation assay to examine cell viability by using versatile in vitro by MTT assay.¹⁻³ In order to analyse the effect of Compounds **4a**, **4c**, **4e**, **4i**, **4k**, **4l**, **4n**, **4s** on cell viabilty, cell proliferation assay (MTT assay) was conducted. Human embryonic kidney derived cell line Hek293T and human cervical carcinoma derived cell line Hela cells were used for the assay. $2*10^4$ cells/ mL in 10% DMEM were seeded in 96 well microtitre plate and incubated for 10 h. After incubation cells were observed for its shape and confluency and media as carefully aspirated. Different concentrations of respective compounds were prepared in DMEM medium and each concentration was added in triplicate along with only media and DMSO (exact concentration used for making the compound solution) control. The 96 well plate was incubated under standard conditions (humidified incubator with 5% CO₂ under 37°C) for 24 h. The CellTiter 96® AQueous One Solution as used to analyse the cell proliferation ability in presence of different compounds. 10μ l of CellTiter 96® AQueous One Solution Reagent into each well of the 96-well assay plate containing the samples in 190µl of culture medium followed by incubation for 1h at standard condition. After incubation absorbance was recorded using Various scan at 490 nm.

Fig S80. Cell Proliferation Assay of olefinated aminotropone 4a(Above) and 4c (Below)

Fig S81. Cell Proliferation Assay of olefinated aminotropone 4e (Above) and 4i(Below)

Fig S82. Cell Proliferation Assay of olefinated aminotropone 4k(Above) and 4l (Below)

Fig S83. Cell Proliferation Assay of olefinated aminotropone 4n (Above) and 4s (Below)

9. References

- 1. D. C. Marks, L. Belov, M. W. Davey, R. A. Davey and A. D. Kidman, *Leukemia research*, 1992, **16**, 1165-1173.
- 2. T. L. Riss, R. A. Moravec, A. L. Niles, S. Duellman, H. A. Benink, T. J. Worzella and L. Minor, *Assay Guidance Manual [Internet]*, 2016.
- 3. C. Karthikeyan, H. Amawi, C. R. Ashby Jr, V. M. Khare, V. Jones, N. H. N. Moorthy, P. Trivedi and A. K. Tiwari, *Heliyon*, 2019, **5**, e01603.