Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Synthesis of Cyclic α-1,4-Oligo-*N*-acetylglucosamine "Cyclokasaodorin" via Onepot Electrochemical Polyglycosylation-Isomerization-Cyclization Process

Hirofumi Endo,^a Masaharu Ochi,^a Md Azadur Rahman,^a Tomoaki Hamada,^b Takahiro Kawano,^b

Toshiki Nokami,*^{a,c}

^aDepartment of Chemistry and Biotechnology, Tottori University 4-101 Koyamacho-minami, Tottori city, 680-8552 Tottori, Japan ^bKoganei Corporation, 3-11-28 Midorimachi, Koganei city, 184-8533 Tokyo, Japan ^cCenter for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University 4-101 Koyamacho-minami, Tottori city, 680-8552 Tottori, Japan

E-mail: tnokami@tottori-u.ac.jp

Contents

1.	General	S2
2.	Preparation of building blocks	S2
3.	Synthesis of linear oligosaccharides	S5
4.	Synthesis of cyclic oligosaccharides	S 8
5.	Deprotection of cyclic hexasaccharide	S11
6.	References	S12
7.	¹ H and ¹³ C NMR spectra of synthetic intermediate S3 and building blocks	S13
8.	¹ H, ¹³ C NMR, H-H COSY and HMQC spectra of linear oligosaccharides	S17
9.	¹ H, ¹³ C NMR, H-H COSY and HMQC spectra of cyclic oligosaccharides	S27
10.	¹ H, ¹³ C NMR, H-H COSY and HMQC spectra of deprotected cyclic hexasaccharide	S33

1. General

All reactions were carried out under argon atmosphere except notice. ¹H NMR and ¹³C NMR spectra were recorded on Bruker AVANCE II 600 (600 MHz for ¹H and 150 MHz for ¹³C). ESI-MS spectra were recorded on Thermo Scientific Exactive spectrometer. MALDI-TOF MS spectra were recorded on Bruker Ultraflextreme spectrometer. Optical rotation data was recorded on JASCO DIP-370 digital polarimeter. Merck TLC (silica gel 60 F₂₅₄) was employed for TLC analysis. Gel permeation chromatography (GPC) was used with JAI Labo Ace LC-5060 recycling preparative HPLC (eluent: CHCl₃). Kanto silica gel (spherical, neutral, 63-210 µm) and Sephadex LH-20 were used for Silica gel chromatography and gel filtration chromatography, respectively. Rotating-disk electrode voltammetry was carried out using BAS 700c analyzer and RRDE-3 rotating ring disk electrode. Measurements of oxidation potential of substrates (conc. 4.0 mM) were carried out in 0.1 M Bu₄NOTf/CH₂Cl₂ using a glassy carbon disk working electrode, a platinum wire counter electrode, and a saturated calomel electrode (SCE) as a reference electrode with sweep rate of 10 mV/s at 2000 r.p.m.. Compounds **S1** was synthesized according to the reported procedure.¹ Unless otherwise mentioned, all reagents were obtained from commercial suppliers and used without extra purification.

2. Preparation of building blocks

Preparation of 4-Fluorophenyl 2-amino-4,6-O-benzylidene-2-deoxy-1-thio- β -D-glucopyranoside (**S2**)²

Compound **S1**¹ (17.6 mmol, 8.94 g) was dissolved in EtOH (92.2 mL), and then ethylene diamine anhydrous (19.0 mL) was added to the solution. The temperature was raised slowly from room temperature (around 20 °C) to 100 °C. Then, the reflux was started and kept overnight. After completion of the reaction, the solvent was removed under reduced pressure. The crude product was purified with silica gel chromatography (CH₂Cl₂/MeOH 8:1) to afford **S2** (16.0 mmol, 6.03 g) as white solid in 91% yield. **4-Fluorophenyl 2-amino-4,6-***O***-benzylidene-2-deoxy-1-thio-\beta-D-glucopyranoside (S2)**; TLC (CH₂Cl₂/MeOH 8:1): R_f 0.54. [α]_D = -50.2 (*c* = 1.1, CHCl₃, 22 °C); ¹H NMR (CDCl₃, 600 MHz) δ 7.55–7.52 (m, 2 H, SPhF), 7.48–7.47 (m, 2 H, benzylidene-Ph), 7.39–7.35 (m, 3 H, benzylidene-Ph), 7.06–7.02 (m, 2 H, SPhF), 5.45 (s, 1 H, acetal-PhC*H*), 4.48 (d, *J* = 9.8 Hz, 1 H, H-1), 4.36 (dd, *J* = 10.6, 4.6 Hz, 1 H, H-6), 3.79 (*pseudo*-t, *J* = 9.6 Hz, 1 H, H-6), 3.65 (*pseudo*-t, *J* = 8.8 Hz, 1 H, H-3), 3.54-3.48 (m, 2 H, H-4 and H-5), 2.85 (s, 1 H, 4-OH), 2.76 (dd, *J* = 9.7, 9.2 Hz, 1 H, H-2) , 1.66 (s, 2 H, 2-N*H*₂); ¹³C NMR (CDCl₃, 150 MHz) δ 163.1 (d, *J* = 247.8 Hz), 137.1, 135.6 (d, *J* = 8.0 Hz), 129.4, 128.4, 126.6 (d, *J* = 3.2 Hz), 126.3, 116.2 (d, *J* =

21.6 Hz), 101.9, 89.9, 80.1, 74.4, 70.5, 68.6, 56.3; HRMS (ESI) *m/z* calculated for C₁₉H₂₀FKNO₄S [M+K]⁺ 416.0729; found, 416.0730.

Preparation of 4-Fluorophenyl 4,6-*O*-benzylidene-2,3-*N*,*O*-carbonyl-2-deoxy-1-thio- β -D-glucopyranoside (**S3**)

Compound S2 (16.0 mmol, 6.03 g) and triphosgene (5.33 mmol, 1.59 g) were dissolved in CH_2Cl_2 (262 mL), and then the mixture of saturated aqueous solution of NaHCO₃ (188 mL) was added to the solution. The reaction was kept stirring at room temperature for overnight. Then, the mixture was diluted by CH₂Cl₂ (200 mL), and the organic layer was washed with water (3 times) and brine, respectively. The organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by recrystallization to afford S3 (14.1 mmol, 5.67 g) as a white solid in 88% yield. 4-Fluorophenyl 4,6-O-benzylidene-2,3-N,O-carbonyl-2-deoxy-1-thio-β-**D-glucopyranoside** (S3); TLC (Hexane/EtOAc 1:1): $R_f 0.60. [\alpha]_D = -92.2$ (c = 1.2, CHCl₃, 22 °C); ¹H NMR (CDCl₃, 600 MHz) δ 7.53–7.51 (m, 2 H, SPhF), 7.47–7.46 (m, 2 H, benzylidene-Ph), 7.38– 7.36 (m, 3 H, benzylidene-Ph), 7.10–7.01 (m, 2 H, SPhF), 5.60 (s, 1 H, acetal-PhCH), 5.05 (s, 1 H, 1-NH), 4.79 (d, J = 9.8 Hz, 1 H, H-1), 4.39 (dd, J = 13.8, 10.5 Hz, 1 H, H-6), 4.38 (pseudo-t, J = 11.0 Hz, 1 H, H-3), 4.01 (dd, J = 10.0, 8.6 Hz, 1 H, H-4), 3.92 (pseudo-t, J = 10.4 Hz, 1 H, H-6), 3.63 (ddd, J = 10.1, 8.5, 4.7 Hz, 1 H, H-5), 3.46–3.43 (m, 1 H, H-2); ¹³C NMR (CDCl₃, 150 MHz) δ 163.5 (d, J = 249.2 Hz), 158.9, 136.6 (d, J = 8.5 Hz), 136.4, 129.4, 128.4, 126.2, 124.6 (d, J = 3.2 Hz), 116.5 (d, J = 21.8 Hz), 101.4, 85.2, 80.6, 78.6, 73.2, 68.3, 59.5; HRMS (ESI) m/z calculated for C₂₀H₁₈FKNO₅S [M+K]⁺ 442.0522; found, 442.0523.

Preparation of 4-Fluorophenyl 2-acetamido-4,6-*O*-benzylidene-2,3-*N*,*O*-carbonyl-2-deoxy-1-thio- β -D-glucopyranoside (**S4**)

Compound **S3** (9.92 mmol, 4.00 g) and *N*,*N*-dimethylaminopyridine (1.90 mmol, 0.240 g) were dissolved in CH₂Cl₂ (29.5 mL). Then, pyridine (9.55 mL) and acetic anhydrous (95.3 mmol, 8.85 mL) were added to the mixture, and the reaction was kept stirring at room temperature for 3 h. The reaction was quenched by MeOH at 0 °C, and the solvent was removed under reduced pressure. The crude product was purified by recrystallization to afford the compounds **S4** (8.56 mmol, 3.81 g) as a white

solid in 86% yield. **4-Fluorophenyl 2-acetamido-4,6-***O***-benzylidene-2,3-***N***,***O***-carbonyl-2-deoxy-1thio-β-D-glucopyranoside (S4); TLC (Hexane/EtOAc 1:1): R_f 0.76. [α]_D = -39.4 (c = 1.0, DMSO, 23 °C); ¹H NMR (CDCl₃, 600 MHz) δ 7.51–7.49 (m, 2 H, SPhF), 7.46–7.45 (m, 2 H, benzylidene-Ph), 7.37–7.36 (m, 3 H, benzylidene-Ph), 7.04–7.01 (m, 2 H, SPhF), 5.62 (s, 1 H, acetal-PhC***H***), 4.89 (d, J = 8.8 Hz, 1 H, H-1), 4.37 (***pseudo-***t, J = 10.8 Hz, 1 H, H-3), 4.27 (dd, J = 10.5, 4.7 Hz, 1 H, H-6), 4.13 (dd, J = 11.0, 8.8 Hz, 1 H, H-2), 4.09 (dd, J = 10.0, 8.6 Hz, 1 H, H-4), 3.94 (***pseudo-***t, J = 10.4 Hz, 1 H, H-6), 3.53 (ddd, J = 10.1, 8.7, 4.7 Hz, 1 H, H-5), 2.60 (s, 3 H, Ac); ¹³C NMR (CDCl₃, 150 MHz) δ 173.3, 163.1 (d, J = 247.3 Hz), 153.5, 136.2, 135.6 (d, J = 7.9 Hz), 129.4, 128.4, 128.2, 126.1, 116.1 (d, J = 21.5 Hz), 101.6, 88.6, 78.7, 78.3, 73.1, 68.2, 60.9, 24.7; HRMS (ESI)** *m***/z calculated for C₂₂H₂₀FKNO₆S [M+K]⁺ 484.0627; found, 484.0619.**

Preparation of 4-Fluorophenyl 2-acetamido-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy-1-thio- α -D-glucopyranoside (5)³

Compound S4 (8.56 mmol, 3.81 g) was dissolved in CH₂Cl₂ (130 mL) at 0 °C. Then, triethylsilane (98.4 mmol, 15.7 mL) and BF₃·Et₂O (12.3 mmol, 1.54 mL) were added to the mixture, and the reaction was kept stirring at 0 °C for 4 h. The reaction was quenched with saturated aqueous solution of NaHCO₃. The organic layer was washed with water (3 times). Then, the organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified with silica gel chromatography (Hexane/EtOAc 2:1) to afford the compound 5 (6.86 mmol, 3.07 g) as a white solid in 80% yield. 4-Fluorophenyl 2-acetamido-6-O-benzyl-2,3-N,O-carbonyl-2-deoxy-1thio- α -D-glucopyranoside (5); TLC (Hexane/EtOAc 2:1): R_f 0.25. [α]_D = 10.7 (c = 1.0, CHCl₃, 26 °C). $E_{\text{ox}} = 1.74 \text{ V vs. SCE}$; ¹H NMR (CDCl₃, 600 MHz) δ 7.46–7.43 (m, 2 H, SPhF), 7.39–7.36 (m, 2 H, benzyl-Ph), 7.34–7.32 (m, 3 H, benzyl-Ph), 7.00–6.97 (m, 2 H, SPhF), 6.05 (d, J = 4.5 Hz, 1 H, H-1), 4.63 (d, *J* = 11.9 Hz, 1 H, PhC*H*₂), 4.55 (d, *J* = 11.9 Hz, 1 H, PhC*H*₂), 4.36 (dd, *J* = 12.1, 9.6 Hz, 1 H, H-3), 4.20–4.17 (m, 1 H, H-5), 4.11 (td, J = 8.9, 2.9 Hz, 1 H, H-4), 4.05 (dd, J = 12.1, 4.5 Hz, 1 H, H-2), 3.86 (dd, J = 10.3, 4.4 Hz, 1 H, H-6), 3.75 (dd, J = 10.3, 4.8 Hz, 1 H, H-6), 2.95 (d, J = 2.9 Hz, 1 H, 4-OH), 2.54 (s, 3 H, Ac); ¹³C NMR (CDCl₃, 150 MHz) δ 171.3, 163.0 (d, J = 247.2 Hz), 153.0, 137.3, 135.3 (d, J = 8.1 Hz), 128.6, 128.1, 127.8, 127.4 (d, J = 3.3 Hz), 116.4 (d, J = 21.9 Hz), 86.9, 78.2, 73.8, 72.6, 70.2, 69.3, 59.6, 23.8; HRMS (ESI) m/z calculated for C₂₂H₂₂FKNO₆S [M+K]⁺ 486.07834; found, 486.0781.

3. Synthesis of linear oligosaccharides^{4,5}

The electrochemical polymerization synthesis of linear oligosaccharides (6~10) was carried out an H-type divided cell (4G glass filter). The cell had a carbon felt anode (Nippon Carbon JF-20-P7) and platinum square plate (20 mm×20 mm). Building block 5 (0.600 mmol, 268 mg), Bu₄NOTf (1.00 mmol, 393 mg), and CH₂Cl₂ (10 mL) were added to the anodic chamber. Trifluoromethanesulfonic acid (0.600 mmol, 53 μ L), Bu₄NOTf (1.00 mmol, 393 mg), and CH₂Cl₂ (10 mL) were added to the cathodic chamber. The constant current (8 mA (current density: 2.0 mA/cm²), 35 V (electrode distance: 4.5 cm)) was employed at -40 °C with magnetic stirring until 0.6 F/mol of the electricity was consumed. After the electrolysis, the reaction was kept stirring at the same temperature for 1 h. After that, the temperature was raised to room temperature for 1 h as isomerization, and triethylamine (0.5 mL) was added to both chambers. The solution in both chambers was collected in eggplant flask, and the solvent was removed under reduced pressure. The mixture was dissolved in EtOAc and washed with water (3 times) and brine, respectively. The solution was dried over Na_2SO_4 , and the solvent was removed under reduced pressure. The crude product was purified with preparative-GPC to afford linear oligosaccharides 6 (n = 0, 0.0626 mmol, 48.0 mg, 21%), 7 (n = 1, 0.0383 mmol, 41.6 mg, 19%), **8** (n = 2, 0.0184 mmol, 25.9 mg, 12%), **9** (n = 3, 0.0109 mmol, 18.8 mg, 9.1%), and **10** (n = 4, 0.00690 mmol)mmol, 14.1 mg, 6.9%) as white solids.

4-Fluorophenyl (2-acetamido-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy-α-D-glucopyranosyl)-(1→4)-2-acetamido-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy-1-thio-α-D-gluco-pyranoside (6); TLC (Hexane:EtOAc 1:1): $R_f 0.66. [α]_D = 164.4 (c = 1.1, CHCl_3, 27 °C). E_{ox} = 1.68 V vs. SCE; ¹H$ $NMR (CDCl_3, 600 MHz) δ 7.46–7.42 (m, 2 H), 7.36–7.31 (m, 5 H), 7.29–7.27 (m, 5 H), 7.01–6.97$ (m, 2 H), 6.08 (d,*J*= 4.4 Hz, 1 H), 6.03 (d,*J*= 2.7 Hz, 1 H), 4.55 (d,*J*= 11.9 Hz, 1 H), 4.53 (d,*J*=11.9 Hz, 1 H), 4.52 (d,*J*= 11.9 Hz, 1 H), 4.48 (dd,*J*= 12.1, 10.0 Hz, 1 H), 4.46 (d,*J*= 11.9 Hz, 1 H),4.37–4.31 (m, 2 H), 4.20 (d,*J*= 8.6 Hz, 1 H), 4.10 (td,*J*= 10.0, 8.9, 2.8 Hz, 1 H), 4.05 (dd,*J*= 11.5,4.5 Hz, 1 H), 3.88 (dd,*J*= 11.2, 3.7 Hz, 1 H), 3.76–3.73 (m, 2 H), 3.71 (dd,*J*= 11.5, 1.4 Hz, 1 H),3.64 (dd,*J*= 10.1, 4.3 Hz, 1 H), 3.56 (dd,*J*= 10.1, 5.2 Hz, 1 H), 2.89 (d,*J*= 2.7 Hz, 1 H), 2.532 (s, 3 $H), 2.529 (s, 3 H); ¹³C NMR (CDCl_3, 150 MHz) δ 171.7, 171.2, 163.1 (d,$ *J*= 247.6 Hz), 153.2, 152.6,137.8, 137.4, 135.3 (d,*J*= 8.0 Hz), 128.6, 128.4, 128.0, 127.8, 127.7, 127.6, 127.3 (d,*J*= 3.3 Hz),116.4 (d,*J*= 21.9 Hz), 95.8, 86.7, 77.5, 76.4, 73.8, 73.54, 73.48, 72.6, 69.7, 69.2, 68.0, 59.8, 59.6,23.8, 23.7; HRMS (ESI)*m*/z calculated for C₃₈H₃₉FKN₂O₁₂S [M+K]⁺ 805.1840; found, 805.1835.

(2-acetamido-6-O-benzyl-2,3-N,O-carbonyl-2-deoxy- α -D-gluco-pyranosyl)-4-Fluorophenyl $(1 \rightarrow 4)$ -(2-acetamido-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy- α -D-glucopyranosyl)-(1 \rightarrow 4)-2-acetamido-6-O-benzyl-2,3-N,O-carbonyl-2-deoxy-1-thio-a-D-glucopyranoside (7);TLC (Hexane:EtOAc 1:1): $R_f 0.57$. $[\alpha]_D = 141.4$ (c = 1.3, CHCl₃, 27 °C); ¹H NMR (CDCl₃, 600 MHz) δ 7.45–7.42 (m, 2 H), 7.36–7.33 (m, 2 H), 7.32–7.27 (m, 11 H), 7.26–7.24 (m, 2 H), 7.00–6.97 (m, 2 H), 6.07 (d, *J* = 4.4 Hz, 1 H), 6.023 (d, *J* = 3.1 Hz, 1 H), 6.018 (d, *J* = 3.1 Hz, 1 H), 4.525 (d, *J* = 11.8 Hz, 1 H), 4.521 (d, J = 11.9 Hz, 1 H), 4.50 (dd, J = 11.9, 10.1 Hz, 1 H), 4.49–4.48 (m, 2 H), 4.47 (d, J = 11.8 Hz, 1 H), 4.46 (d, J = 11.9 Hz, 1 H), 4.42 (dd, J = 12.1, 10.0 Hz, 1 H), 4.37 (dd, J = 8.5, 6.5 Hz, 1 H), 4.34 (*pseudo-t*, *J* = 6.0 Hz, 1 H), 4.30 (*pseudo-t*, *J* = 9.1 Hz, 1 H), 4.19 (d, *J* = 9.0 Hz, 1 H), 4.10 (pseudo-t, J = 9.2 Hz, 1 H), 4.04 (dd, J = 11.9, 4.5 Hz, 1 H), 3.85 (dd, J = 11.2, 3.6 Hz, 1 H), 3.78 (d, *J* = 7.3 Hz, 1 H), 3.76 (dd, *J* = 10.3, 2.3 Hz, 1 H), 3.74 (dd, *J* = 10.3, 2.8 Hz, 1 H), 3.71 (dd. *J* = 11.0, 1.3 Hz, 1 H), 3.68–3.65 (m, 3 H), 3.54–3.51 (m, 2 H), 3.00–2.95 (m, 1 H), 2.53 (s, 3 H), 2.52 (s, 3 H), 2.51 (s, 3 H).; ¹³C NMR (CDCl₃, 150 MHz) δ 171.7, 171.4, 171.1, 163.1 (d, J = 247.3 Hz), 153.0, 152.54, 152.46, 137.7, 137.6, 137.2, 135.2 (d, *J* = 8.0 Hz), 128.6, 128.45, 128.43, 128.1, 127.5, 127.82, 127.79, 127.4, 127.2 (d, J = 3.2 Hz), 116.4 (d, J = 21.9 Hz), 95.7, 95.5, 86.8, 77.2, 76.2, 75.5, 74.4, 73.8, 73.5, 73.2, 73.1, 73.0, 72.6, 70.2, 69.4, 68.0, 67.6, 59.9, 59.8, 59.6, 23.8, 23.70, 23.67; HRMS (ESI) *m/z* calculated for C₅₄H₅₆FN₃NaO₁₈S [M+Na]⁺, 1108.3156; found, 1108.3204.

(2-acetamido-6-O-benzyl-2,3-N,O-carbonyl-2-deoxy-α-D-glucopyranosyl)-4-Fluorophenyl $(1 \rightarrow 4)$ -(2-acetamido-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy- α -D-glucopyranosyl)- $(1 \rightarrow 4)$ -(2-acetamido-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2,3 tamido-6-O-benzyl-2,3-N,O-carbonyl-2-deoxy-α-D-glucopyranosyl)-(1→4)-2-acetamido-6-Obenzyl-2,3-N,O-carbonyl-2-deoxy-1-thio-α-D-glucopyranoside (8); TLC (Hexane:EtOAc 1:1): R_f 0.53. $[\alpha]_D = 138.2$ (c = 1.0, CHCl₃, 27 °C); ¹H NMR (CDCl₃, 600 MHz) δ 7.45–7.41 (m, 2 H), 7.35– 7.27 (m, 15 H), 7.25–7.23 (m, 5 H), 7.00–6.96 (m, 2 H), 6.07 (d, *J* = 4.4 Hz, 1 H), 6.02 (d, *J* = 3.4 Hz, 1 H), 6.01 (d, J = 3.1 Hz, 1 H), 6.00 (d, J = 2.7 Hz, 1 H), 4.55–4.43 (m, 10 H), 4.42 (dd, J = 12.1, 10.0 Hz, 1 H), 4.37 (dd, J = 10.7, 8.8 Hz, 1 H), 4.34 (pseudo-t, J = 9.1 Hz, 1 H), 4.31 (pseudo-t, J = 9.5 Hz, 1 H), 4.29 (*pseudo-t*, *J* = 9.1 Hz, 1 H), 4.19 (d, *J* = 8.9 Hz, 1 H), 4.09 (*pseudo-t*, *J* = 8.8 Hz, 1 H), 4.03 (dd, *J* = 12.0, 4.5 Hz, 1 H), 3.84 (d, *J* = 11.2, 3.6 Hz, 1 H), 3.78 (d, *J* = 9.1 Hz, 1 H), 3.75 (dd, *J* = 12.0, 2.7 Hz, 2 H), 3.74 (dd, J = 12.0, 2.8 Hz, 1 H), 3.72–3.67 (m, 2 H), 3.67–3.58 (m, 2 H), 3.62 (pseudot, J = 10.1 Hz, 1 H), 3.59 (dd, J = 11.9, 3.1 Hz, 1 H), 3.54 (d, J = 11.6 Hz, 1 H), 3.53 (dd, J = 9.8, 4.8 Hz, 1 H), 3.48 (d, *J* = 10.9 Hz, 1 H), 3.07 (d, *J* = 1.4 Hz, 1 H), 2.52 (s, 3 H), 2.51 (s, 6 H), 2.50 (s, 3 H), 2.50 (s, 3 H), 2.51 (s, 6 H), 2.50 (s, 7 H H); ¹³C NMR (CDCl₃, 150 MHz) δ 171.7, 171.5, 171.4, 171.1, 163.1 (d, *J* = 247.9 Hz), 153.1, 152.6, 152.50, 152.46, 137.66, 137.65, 137.60, 135.2 (d, *J* = 8.3 Hz), 128.6, 128.5, 128.44, 128.43, 128.1, 127.9, 127.82, 127.77, 127.5, 127.4, 127.3, 127.2 (d, *J* = 3.2 Hz), 116.4 (d, *J* = 21.9 Hz), 95.9, 95.57, 95.55, 86.7, 77.1, 76.2, 75.5, 75.2, 74.6, 73.9, 73.8, 73.6, 73.52, 73.49, 73.3, 73.1, 73.0, 72.6, 70.1, 69.3, 67.9, 67.7, 67.5, 59.9, 59.8, 59.6, 23.8, 23.69, 23.67, 23.6; HRMS (ESI) m/z calculated for C₇₀H₇₃FKN₄NaO₂₄S [M+Na]⁺, 1427.4212; found, 1427.4205.

(2-acetamido-6-O-benzyl-2,3-N,O-carbonyl-2-deoxy-α-D-glucopyranosyl)-4-Fluorophenyl (1→4)-(2-acetamido-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy-α-D-glucopyranosyl)-(1→4)-(2-acetamido-6-O-benzyl-2,3-N,O-carbonyl-2-deoxy-α-D-glucopyranosyl)-(1→4)-(2-acetamido-6-Obenzyl-2,3-*N*,*O*-carbonyl-2-deoxy-α-D-glucopyranosyl)-(1→4)-2-acetamido-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy-1-thio- α -D-glucopyranoside (9); TLC (Hexane:EtOAc 1:1): R_f 0.43. $[\alpha]_D =$ 149.2 (c = 1.0, CHCl₃, 28 °C); ¹H NMR (CDCl₃, 600 MHz) δ 7.45–7.41 (m, 2 H), 7.36–7.31 (m, 5 H), 7.30-7.26 (m, 12 H), 7.25-7.22 (m, 8 H), 6.99-6.96 (m, 2 H), 6.07 (d, J = 4.4 Hz, 1 H), 6.03 (d, J = 4.4 Hz, 2.8 Hz, 1 H), 6.02 (d, J = 2.7 Hz, 2 H), 6.00 (d, J = 2.6 Hz, 1 H), 4.54 (d, J = 11.6 Hz, 1 H), 4.52-4.42 (m, 12 H), 4.41 (dd, J = 12.1, 10.1 Hz, 1 H), 4.37 (dd, J = 11.9, 10.0 Hz, 1 H), 4.34 (pseudo-t, J = 9.9)Hz, 1 H), 4.32 (pseudo-t, J = 9.6 Hz, 1 H), 4.31 (pseudo-t, J = 4.31 Hz, 1 H), 4.28 (pseudo-t, J = 9.2 Hz, 1 H), 4.18 (d, *J* = 8.9 Hz, 1 H), 4.09 (*pseudo*-t, *J* = 9.3 Hz, 1 H), 4.03 (dd, *J* = 12.0, 4.4 Hz, 1 H), 3.84 (dd, J = 11.1, 3.5 Hz, 1 H), 3.79 (d, J = 9.0 Hz, 1 H), 3.75 (dd, J = 12.0, 3.1 Hz, 2 H), 3.74 (dd, J = 12.0, 3.2 Hz, 2 H), 3.70 (d, J = 11.0 Hz, 2 H), 3.68 (d, J = 11.2 Hz, 1 H), 3.66–3.60 (m, 3 H), 3.58 (dd, J = 11.2, 3.1 Hz, 1 H), 3.57 (dd, J = 11.0, 2.9 Hz, 1 H), 3.55–3.45 (m, 4 H), 3.03 (d, J = 1.9 Hz, 1 H), 2.52 (s, 3 H), 2.505 (s, 3 H), 2.496 (s, 3 H), 2.49 (s, 3 H), 2.48 (s, 3 H); ¹³C NMR (CDCl₃, 150 MHz) δ 171.7, 171.54, 171.45, 171.4, 171.1, 163.1 (d, *J* = 248.0 Hz), 153.0, 152.6, 152.49, 152.46, 137.67, 137.65, 137.60, 137.58, 137.2, 135.2 (d, *J* = 8.4 Hz), 128.6, 128.5, 128.4, 128.1, 127.92, 127.90, 127.82, 127.78, 127.5, 127.4, 127.35, 127.29, 127.2 (d, *J* = 3.2 Hz), 116.4 (d, *J* = 21.9 Hz), 96.0, 95.5, 95.4, 86.7, 76.2, 75.6, 75.3, 75.1, 74.8, 74.0, 73.8, 73.61, 73.55, 73.52, 73.49, 73.2, 73.01, 72.97, 72.6, 70.2, 69.3, 67.9, 67.7, 67.6, 67.5, 60.0, 59.9, 59.8, 59.6, 23.8, 23.68, 23.66, 23.6; HRMS (ESI) *m/z* calculated for C₈₆H₉₀FKN₅O₃₀S [M+K]⁺, 1762.5007; found, 1762.5010.

4-Fluorophenyl (2-acetamido-6-O-benzyl-2,3-N,O-carbonyl-2-deoxy-α-D-glucopyranosyl)- $(1 \rightarrow 4)$ -(2-acetamido-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy- α -D-glucopyranosyl)- $(1 \rightarrow 4)$ -(2-acetamido-6-O-benzyl-2,3-N,O-carbonyl-2-deoxy- α -D-glucopyranosyl)-(1 \rightarrow 4)-(2-acetamido-6-Obenzyl-2,3-N,O-carbonyl-2-deoxy-α-D-glucopyranosyl)-(1→4)-(2-acetamido-6-O-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy-α-D-glucopyranosyl)-(1→4)-2-acetamido-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-**2-deoxy-1-thio-\alpha-D-glucopyranoside (10)**; TLC (Hexane:EtOAc 1:1): R_f 0.40. [α]_D = 100.6 (c = 0.64, CHCl₃, 24 °C); ¹H NMR (CDCl₃, 600 MHz) δ 7.44–7.42 (m, 2 H), 7.35–7.32 (m, 5 H), 7.31–7.28 (m, 16 H), 7.25–7.22 (m, 9 H), 6.99–6.96 (m, 2 H), 6.07 (d, J = 4.4 Hz, 1 H), 6.032 (d, J = 3.1 Hz, 1 H), 6.027 (d, J = 3.2 Hz, 1 H), 6.02–6.01 (m, 2 H), 6.00 (d, J = 2.6 Hz, 1 H), 4.52–4.27 (m, 23 H), 4.18 (d, J = 8.7 Hz, 1 H), 4.09 (pseudo-t, J = 9.0 Hz, 1 H), 4.04 (dd, J = 12.1, 4.5 Hz, 1 H), 3.83 (dd, J = 12.1, 4.5 Hz)11.1, 3.5 Hz, 1 H), 3.80-3.78 (m, 1 H), 3.75-3.45 (m, 20 H), 2.98-2.93 (m, 1 H), 2.52 (s, 3 H), 2.50 (s, 3 H), 2.495-2.490 (m, 6 H), 2.48 (s, 3 H), 2.47 (s, 3 H); ¹³C NMR (CDCl₃, 150 MHz) & 171.7, 171.54, 171.47, 171.4, 171.1, 163.0 (d, *J* = 247 Hz), 153.0, 152.54, 152.48, 137.7, 137.62, 137.58, 137.55, 137.0, 135.2 (d, *J* = 8.5 Hz), 128.6, 128.5, 128.4, 128.1, 127.9, 127.8, 127.5, 127.42, 127.37, 127.32, 127.27, 116.4 (d, *J* = 21.9 Hz), 95.9, 95.6, 95.34, 95.30, 86.7, 76.2, 75.6, 75.3, 75.14, 75.06, 74.7, 74.1,

73.8, 73.6, 73.51, 73.48, 73.4, 73.2, 73.00, 72.96, 72.91, 72.86, 72.6, 70.2, 69.3, 67.9, 67.7, 67.6, 67.5, 60.0, 59.9, 59.84, 59.81, 59.6, 23.8, 23.7; HRMS (ESI) *m/z* calculated for C₁₀₂H₁₀₇FKN₆O₃₆S [M+K]⁺, 2082.6097; found, 2082.6018.

4. Synthesis of cyclic oligosaccharides⁶

The electrochemical synthesis of Cyclohexakis- $(1 \rightarrow 4)$ -(2-acetamido-3-O-acetyl-6-O-benzyl-2,3-N,O-carbonyl-2-deoxy- α -D-glucopyranosyl) **2** was carried out an H-type divided cell (4G glass filter). The cell had a carbon felt anode (Nippon Carbon JF-20-P7) and platinum square plate (20 mm×20 mm). Linear hexasaccharide **10** (0.0116 mmol, 23.8 mg) in CH₂Cl₂ (1.0 mL), Bu₄NOTf (1.00 mmol, 393 mg), and CH₂Cl₂ (9.0 mL) were added to the anodic chamber. Trifluoromethanesulfonic acid (1.00 mmol, 88 µL), Bu₄NOTf (1.00 mmol, 393 mg), and CH₂Cl₂ (10 mL) were added to the cathodic chamber. The constant current (8.0 mA (current density: 2.0 mA/cm²), 35 V (electrode distance: 4.5 cm)) was employed at -40 °C with magnetic stirring until the starting material consumed (3.0 F/mol of electricity). After the electrolysis, the reaction was kept stirring at the same temperature for 30 minutes. After that, triethylamine (0.50 mL) was added to both chambers. The solution in both chambers was collected in eggplant flask, and the solvent was removed under reduced pressure. The mixture was dissolved in EtOAc and washed with water (3 times) and brine, respectively. The solution was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified with preparative-GPC to afford 2 (0.00517 mmol, 9.90 mg) as a white solid in 44% yield. Clclohexakis- $(1 \rightarrow 4)$ -(2-acetamido-3-*O*-acetyl-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy- α -D-gluco**pyranosyl) (2)**; TLC (Hexane/EtOAc 1:1): $R_f 0.31$. $[\alpha]_D = 60.4$ (c = 1.0, CHCl₃, 25 °C); ¹H NMR $(CDCl_3, 600 \text{ MHz}) \delta 7.33-7.29 \text{ (m, 4 H)}, 7.27 \text{ (d, } J = 1.6 \text{ Hz}, 1 \text{ H)}, 5.80 \text{ (d, } J = 2.3 \text{ Hz}, 1 \text{ H)}, 4.54 \text{ (d, } J = 2.3 \text{ Hz}, 1 \text{ H$ J = 11.9 Hz, 1 H), 4.51 (dd, J = 12.1, 10.3 Hz, 1 H), 4.43 (d, J = 11.9 Hz, 1 H), 4.17 (pseudo-t, J = 9.1 Hz, 1 H), 3.80 (dd, J = 10.6, 4.4 Hz, 1 H), 3.76 (dd, J = 8.8, 4.4 Hz, 1 H), 3.70 (dd, J = 12.2, 2.3 Hz), 1 H), 3.63 (d, J = 10.0 Hz, 1 H), 2.53 (s, 3 H); ¹³C NMR (CDCl₃, 150 MHz) δ 172.1, 152.3, 137.4, 128.5, 128.0, 127.8, 98.0, 77.7, 74.8, 74.4, 73.7, 68.0, 59.8, 23.5; HRMS (ESI) m/z calculated for C₉₆H₁₀₂N₆NaO₃₆ [M+Na]⁺, 1938.6261; found, 1938.6130.

The electrochemical one-pot synthesis of cyclic oligosaccharides (2, 3, 4), was carried out an Htype divided cell (4G glass filter). The cell had a carbon felt anode (Nippon Carbon JF-20-P7) and platinum square plate (20 mm×20 mm). Building block 5 (0.600 mmol, 268 mg), Bu₄NOTf (1.00 mmol, 393 mg), and CH₂Cl₂ (10 mL) were added to the anodic chamber. Trifluoromethanesulfonic acid (1.60 mmol, 141 μ L), Bu₄NOTf (1.00 mmol, 393 mg), and CH₂Cl₂ (10 mL) were added to the cathodic chamber. As the first electrochemical polygycosylation, the constant current (8.0 mA (current density: 2.0 mA/cm²), 36 V (electrode distance: 4.5 cm)) was employed at -40 °C with magnetic stirring until 0.6 F/mol of electricity was consumed. After the electrolysis, the reaction was kept stirring at the same temperature for 1 h. After that, the temperature was raised to room temperature for 1 h as isomerization. Then, as the final electrochemical cyclization, electrolysis with the constant current ((8.0 mA (current density: 2.0 mA/cm²), 36 V (electrode distance: 4.5 cm)) was repeated at -40 °C with magnetic stirring until 1.2 F/mol of electricity was consumed. After that, triethylamine (1.0 mL) was added to both chambers. The solution in both chambers was collected in eggplant flask, and the solvent was removed under reduced pressure. The mixture was dissolved in EtOAc and washed with water (3 times) and brine, respectively. The solution was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified with silica gel chromatography (Hexane/EtOAc 1:1) and preparative-GPC to afford cyclic oligosaccharides 2 (n = 1, 0.00621 mmol, 11.9 mg, 6.2%), 3 (n = 2, 0.00474 mmol, 10.6 mg, 5.5%), and 4 (n = 3, trace) as white solids.

Clcloheptakis-(1→4)-(2-acetamido-3-*O*-acetyl-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy- α -D-gluc-opyranosyl) (3); TLC (Hexane/EtOAc 1:1): R_f 0.21. [α]_D = 40.0 (c = 0.36, CHCl₃, 22 °C); ¹H NMR (CDCl₃, 600 Mhz) δ 7.30–7.26 (m, 2 H), 7.25–7.21 (m, 3 H), 5.79 (d, J = 2.5 Hz, 1 H), 4.56 (d, J = 12.1 Hz, 1 H), 4.37 (d, J = 12.2 Hz, 1 H), 4.34 (dd, J = 11.9, 10.5 Hz, 1 H), 4.14 (*pseudo*-t, J = 9.5 Hz, 1 H), 3.73 (dd, J = 10.9, 4.1 Hz, 1 H), 3.69 (dd, J = 12.1 Hz, 2.5 Hz, 1 H), 3.58 (dd, J = 8.7, 3.4 Hz, 1 H), 3.54 (d, J = 10.3 Hz, 1 H), 2.54 (s, 3 H); ¹³C NMR (CDCl₃, 150 MHz) δ 172.3, 152.4, 137.6, 128.4, 127.8, 127.5, 98.9, 78.5, 74.5, 74.3, 73.3, 67.6, 60.0, 23.6; HRMS (ESI) *m*/*z* calculated for C₁₁₂H₁₁₉N₇NaO₄₂ [M+Na]⁺, 2257.7317; found, 2257.7339.

Clclooctakis-(1 \rightarrow 4)-(2-acetamido-3-*O*-acetyl-6-*O*-benzyl-2,3-*N*,*O*-carbonyl-2-deoxy- α -D-gluco-pyranosyl) (4); TLC (Hexane/EtOAc 1:1): R_f 0.14. [α]_D = 40.6 (c = 0.33, CHCl₃, 25 °C); ¹H NMR (CDCl₃, 600 MHz) δ 7.26-7.22 (m, 5 H), 5.83-5.82 (m, 1 H), 4.55 (d, J = 12.0 Hz, 1 H), 4.42 (*pseudo*-t, J = 11.4 Hz, 1 H), 4.38 (d, J = 12.0 Hz, 1 H), 4.15 (*pseudo*-t, J = 9.6 Hz, 1 H), 3.72-3.62 (m, 3 H),

3.55 (d, J = 9.6 Hz, 1 H), 2.52 (s, 3 H); ¹³C NMR (CDCl₃, 150 MHz) δ 171.3, 151.4, 136.6, 127.4, 126.8, 126.5, 97.6, 77.2, 73.4, 73.1, 72.3, 66.7, 59.2, 22.6; HRMS (ESI) *m/z* calculated for C₁₂₈H₁₃₆FKN₈NaO₄₈ [M+K]⁺, 2576.8373; found, 2576.8440.

The electrochemical one-pot synthesis of cyclic oligosaccharides (2, 3, 4) without the second anodic oxidation and glycosylation, was carried out an H-type divided cell (4G glass filter). The cell had a carbon felt anode (Nippon Carbon JF-20-P7) and platinum square plate (20 mm×20 mm). Building block 5 (0.600 mmol, 268 mg), Bu_4NOTf (1.00 mmol, 393 mg), and CH_2Cl_2 (10 mL) were added to the anodic chamber. Trifluoromethanesulfonic acid (1.20 mmol, 106 μL), Bu₄NOTf (1.00 mmol, 393 mg), and CH₂Cl₂ (10 mL) were added to the cathodic chamber. The constant current (8.0 mA (current density: 2.0 mA/cm²), 26 V (electrode distance: 4.5 cm)) was employed at -40 °C with magnetic stirring until 1.1 F/mol of electricity was consumed. After the electrolysis, the reaction was kept stirring at the same temperature for 1 h. After that, the temperature was raised to room temperature for 1 h as isomerization. After that, triethylamine (0.5 mL) was added to both chambers. The solution in both chambers was collected in eggplant flask, and the solvent was removed under reduced pressure. The mixture was dissolved in EtOAc and washed with water (3 times) and brine, respectively. The solution was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified with preparative-GPC. The yields of cyclic oligosaccharide 2 (n = 1, 0.00605mmol, 1.0%) and 3 (n = 2, 0.00260 mmol, 0.4%) were decided by ¹H NMR with 1,1,2,2tetrachloroethane as an internal standard.

5. Deprotection of cyclic hexasaccharide^{7,8}

Cyclic hexasaccharide 2 (0.0157 mmol, 30.0 mg) and K₂CO₃ (0.141 mmol, 19.5 mg) were dissolved in CH₃CN (3.5 mL). Then, ethanethiol (1.77 mmol, $129 \,\mu$ L) was added dropwise to the solution. The reaction was kept stirring until 2 was completely consumed. The solution was diluted with EtOAc and washed with saturated aqueous solution of NH₄Cl, water, and brine by sequence. The organic solvent was removed under reduce pressure. Then, tetrahydrofuran (5.2 mL) and H₂O (2.6 mL) were added to the mixture. After dissolving, dimethyldioxirane in acetone (15 mL (87 mM: detected by transstilbene)) was put in the solution. After the reaction, the solvent was removed by freeze-drying. The dried mixture was dissolved in tetrahydrofuran (1.6 mL) and H₂O (1.6 mL). To the solution, Pd(OH) 2/C (111 mg) and 35% aqueous HCl (1 drop as catalyst) were put in. The reaction was carried out under hydrogen atmosphere for 2 days. The residue was purified by size exclusion column chromatography on Sephadex LH-20 eluted with water to afford 1 (0.00821 mmol, 10.0 mg) in 52% yield as a white solid. Cyclohexakis- $(1\rightarrow 4)$ - $(2-acetamido-2-deoxy-\alpha-D-glucopyranosyl)$ (1); $[\alpha]_D = 30.3 \ (c = 1.1, H_2O, 20 \ ^{\circ}C); ^{1}H \ NMR \ (D_2O, 600 \ MHz) \ \delta \ 4.93 \ (d, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ H), 3.91 \ (dd, J = 3.0 \ Hz, 1 \ Hz,$ = 10.8, 3.0 Hz, 1 H), 3.87–3.82 (m, 3 H), 3.79–3.77 (m, 1 H), 3.72 (d, J = 9.0 Hz, 1 H), 3.62 (pseudot, J = 9.6 Hz, 1 H), 1.95–1.92 (m, 3 H); ¹³C NMR (D₂O, 150 MHz, with acetone as internal standard) δ 174.3, 100.8, 81.1, 72.4, 71.7, 60.2, 54.6, 22.1; HRMS (MALDI-TOF MS, 2,5-dihyroxy benzoic acid as matrix) m/z calculated for C48H78N6NaO30 [M+Na]+, 1241.465; found, 1241.470.

6. Reference

- 1 T. Nokami, R. Hayashi, Y. Saigusa, A. Shimizu, C.-Y. Liu, K. K. Mong and J. Yoshida, *Org. Lett.*, 2013, **15**, 4520.
- 2 J. Feng, R. Hevey and C.-C. Ling, Carbohydr. Res., 2011, 346, 2650.
- 3 S. Manabe, K. Ishii and Y. Ito, J. Am. Chem. Soc., 2006, 128, 10666.
- 4 T. Nokami, A. Shibuya, H. Tsuyama, S. Suga, A. A. Bowers, D. Crich and J. Yoshida, J. Am. Chem. Soc., 2007, 129, 10922.
- 5 K. Yano, T. Itoh and T. Nokami, *Carbohydr. Res.*, 2020, **492**, 108018.
- S. Manmode, S. Tanabe, T, Yamamoto, N. Sasaki, T. Nokami and T. Itoh, *ChemistryOpen*, 2019, 8, 869.
- 7 R. Koinuma, K. Tohda, T. Aoyagi and H. Tanaka, Chem. Commun., 2020, 56, 12981.
- 8 W. P. Dematteo, A. R. Hassan and F. D. Taber, Org. Synth., 2013, 90, 350.

Current Data Parameters NAME end-113 EXPNO 10 PROCNO 1
 PROCNO
 1

 F2 - Acquisition Parameters Date____20210318

 Time
 9.13

 INSTRUM
 spect

 PROBHD
 5mm PABBO BB-PULPROG

 SOLVENT
 CDC13

 NS
 16

 DS
 235.526 Hz

 SWH
 12335.526 Hz

 PIDRES
 0.186225 Hz

 AQ
 2.6563326 sec

 DW
 40.533 usec

 DW
 40.533 usec

 DI
 1.0000000 sec

 TD
 1
2 12335.526 Hz 0.188225 Hz 2.6563926 sec 203 40.533 usec 6.50 usec 294.5 K 1.00000000 sec 1 O Ph 0 Ю-Но ΝH₂ S2 NUC1 P1 PL1 PL1W SF01 F2 - Processing parameters SI 32768 SF 600.1300157 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00 32768 600.1300157 MHz EM 8 6 5 2 ò ppm 7 4 3 1 1.00 1.01 1.02 2.07 0.73 2.13 2.13 2.79 2.02 1.74 1.00

7. ¹H and ¹³C NMR spectra of building blocks

¹H NMR

¹³C NMR

¹³C NMR

¹³C NMR

9. ¹H, ¹³C NMR, H-H COSY, and HMQC spectra of linear oligosaccharides

¹³C NMR

H-H cosy

S25

ppm

9. ¹H, ¹³C NMR, H-H COSY, and HMQC spectra of cyclic oligosaccharides

S29

ppm

10. ¹H, ¹³C NMR, H-H COSY and HMQC spectra of deprotected cyclic hexasaccharide ¹H NMR

