Experimental and Supplementary Information for

Diverse Reactivity of an Al(I)-centred Anion Towards Ketones

Han-Ying Liu, Michael S. Hill* and Mary F. Mahon

1.1. General information

Except stated otherwise, all the experiments were conducted using standard Schlenk line and/or glovebox techniques under an inert atmosphere of argon. NMR spectra were recorded with an Agilent ProPulse spectrometer (¹H at 500 MHz, ¹³C at 126 MHz). The spectra are referenced relative to residual protio solvent resonances. Elemental analyses were performed at Elemental Microanalysis Ltd., Okehampton, Devon, UK. Solvents were dried by passage through a commercially available solvent purification system and stored under argon in ampoules over 4 Å molecular sieves. C₆D₆ and d₈-THF was purchased from Sigma-Aldrich, dried over a potassium mirror before distilling and storage over molecular sieves. [{SiN^{Dipp}}AIK]₂ (**8**) was prepared according to the reported procedure.¹ All other chemicals were purchased from Merck. Acetophenone, 2,4-dimethyl-3-pentanone and 2,2,4,4-tetramethyl-3-pentanone were degassed by three freeze-pump-thaw cycles and stored over 4 Å molecular sieves, while benzophenone was sublimed and stored in the glovebox under an argon atmosphere, before usage.

1.2. Synthetic Procedures

Synthesis of $K[{SiN^{Dipp}}Al-\kappa^2-O,O'-{OC^{Ph}2C^H(CH=CHCH=CH)C=C^{Ph}O}]$ (11)

In a J Young's tube, [{SiN^{Dipp}}AlK]₂, (8, 28 mg, 0.025mmol), was dissolved in 0.4 mL of toluene before the addition of benzophenone (18mg, 0.10 mmol) to the bright yellow solution. The reaction mixture was then kept at 60 °C overnight to afford a colourless solution with bright yellow oil. THF was then added to the reaction mixture to afford a homogeneous bright yellow solution. Bright yellow single crystals suitable for X-ray crystallography were obtained by slow evaporation at room temperature. Yield 37 mg, 80%. Anal. Calcd. For C₇₂H₁₀₁AlKN₂Si₂O₆ (**11**(C₄H₈O)₂, 1211.86) C, 71.30; H, 8.39; N, 2.31 %. Found: C, 70.84; H, 8.06, N, 2.70 %. The recrystallised yellow crystalline solids were then collected and put under vacuum before re-dissolved in d₈-THF for NMR characterisation. ¹H NMR (500 MHz, 298K, THF-*d*₈) δ 7.78-7.69 (m, 2H, Ar*H*), 7.50-7.45 (m, 2H, Ar*H*), 7.04-6.99 (m, 2H, ArH), 6.99-6.91 (m, 4H, ArH), 6.91-6.84 (m, 1H, ArH), 6.84-6.80 (m, 1H, ArH), 6.78 - 6.73 (m, 1H, ArH), 6.72 – 6.67 (m, 2H, ArH), 6.66 – 6.58 (m, 2H, ArH), 6.53-6.44 (m, 3H, ArH), 6.43 – 6.17 (m, 1H, Ar*H*), 6.04 (d, J = 9.4 Hz, 1H, AlOC^{Ph}=CC*H*=CH), 5.60 (dd, J = 9.8, 5.3 Hz, 1H, AlOC^{Ph2}-CHCH=CH), 5.21 (dd, J = 9.8, 5.3 Hz, 1H, AlOC^{Ph2}-CHCH=CH), 5.10 (dd, J = 9.4, 5.3 Hz, 1H, AlOC^{Ph}=CCH=CH), 4.71-4.60 (m, 1H, CHMe₂), 4.24 – 4.03 (m, 3H, CHMe₂), 3.69 (d, J = 5.3 Hz, 1H, AlOC_{Ph2}-CH), 1.48-1.39 (m, 1H, SiCH₂) 1.30 (d, J = 6.7 Hz, 3H, CHMe₂), 1.25-1.22 (m, 1H, SiCH₂), 1.19 (d, J = 6.7 Hz, 3H, CHMe₂), 1.15 (d, J = 6.7 Hz, 3H, CHMe₂), 1.13 (d, J = 6.7 Hz, 3H, CHMe₂), $1.02 (d, J = 6.7 Hz, 3H, CHMe_2), 0.82 - 0.75 (m, 1H, SiCH_2), 0.73 (s, 3H, SiMe_2), 0.66-0.58 (m, 1H, 1)$ $SiCH_2$, 0.49 (d, J = 6.7 Hz, 3H, m, 1H, CHMe₂), 0.46 (s, 3H, SiMe₂), 0.41 (d, J = 6.7 Hz, 3H, CHMe₂), 0.04 (d, J = 6.7 Hz, 3H, CHMe₂), -0.45 (s, 3H, SiMe₂), -0.55 (s, 3H, SiMe₂). ${}^{13}C{}^{1}H{}$ NMR (126 MHz, 298K, THF-d₈) δ 162.2 (Al-OC^{Ph}=C), 153.7 (ArC), 152.7 (ArC), 152.4 (ArC), 151.3 (ArC), 150.5 (ArC), 148.7 (ArC), 147.6 (ArC), 147.2 (ArC), 147.1 (ArC), 143.8 (ArC), 135.7 (ArC), 133.2 (ArC), 132.9 (ArC), 131.8 (ArC), 131.4 (AlOC^{Ph2}-CHCH=CH), 131.0 (ArC), 130.7 (ArC), 129.2 (ArC), 129.0 (ArC), 126.9 (ArC), 126.9 (ArC), 126.7 (ArC), 126.2 (ArC), 124.8 (ArC), 124.7 (ArC), 123.9 (ArC), 123.8 (ArC), 123.6 (ArC), 123.5 (ArC), 122.7 (AlOC^{Ph2}-CHCH=CH), 121.7 (ArC), 121.6 -S2(ArC), 112.0 (AlOC^{Ph}=CCH=CH), 109.9 (AlOC^{Ph}=C), 87.0 (AlOCPh₂), 54.0 (AlOC^{Ph2}-CH), 27.9 (CHMe₂), 27.9 (CHMe₂), 27.8 (CHMe₂), 27.8 (CHMe₂), 27.7 (CHMe₂), 27.6 (CHMe₂), 27.4 (CHMe₂), 27.0 (CHMe₂), 26.6 (CHMe₂), 26.3 (CHMe₂), 25.4 (CHMe₂), 24.8(CHMe₂), 15.1 (SiCH₂), 13.1 (SiCH₂), 5.0 (SiMe₂), 4.4 (SiMe₂), 2.8 (SiMe₂), 1.9 (SiMe₂).

Figure S3. ¹H-¹H COSY spectrum of 11.

-S5-

f2 (ppm)

Figure S5. ¹H-¹³C HMBC spectrum of 11.

Synthesis of $K[{SiN^{Dipp}}Al-\kappa^2-O,O'-(OCPhMe)_2]$ (12)

In a J Young's tube, [{SiN^{Dipp}}AlK]₂ (8, 28 mg, 0.025mmol) was dissolved in 0.4 mL of d⁶-benzene before the addition of acetophenone (11.5µL, 11.8mg, 0.10 mmol) via a micropipette. The resulting pale yellow reaction mixture was kept at 60 °C overnight to afford a colourless solution with colourless crystals. A single crystal suitable for X-ray crystallography was picked from the crystalline solid. The reaming colourless solids were then collected, washed with hexane (0.5mL x 2), and dried under vacuum to give 12 as a colourless powder. Yield 29 mg, 72%. Synthesis was also conducted in toluene with the same result. Yield 30 mg, 74%. Anal. Calcd. For C₅₃H₇₄AlKN₂Si₂O₂ (12.C₇H₈) C, 71.25; H, 8.35; N, 3.14 %. Found: C, 70.72; H, 8.25, N, 2.86 %. The powder was dissolved in THF-d₈ for NMR characterisation. ¹H NMR (500 MHz, 298K, THF-*d*₈) δ 7.85 – 7.15 (m, 2H, ArH of AlOCPh), 7.11 – 6.93 (d_{app}, 4H, m-C₆H₃), 6.92-6.77 (m, 8H, ArH of AlOCPh), 6.77-6.68 (t_{app}, 2H, p-C₆H₃), 4.19 (m, 4H, CHMe₂), 1.32 – 1.20 (m, 3H, AlOCMePh), 1.16 (d, J = 6.9 Hz, 6H, CHMe₂), 1.13 (d, J = 6.9 Hz, 6H, CHMe₂), 1.08 (d, J = 6.9 Hz, 6H, CHMe₂), 1.06-0.98 (m, 3H, AlOCMePh), 0.96 (s, 4H, SiCH₂), 0.86 (d, J = 6.9 Hz, 6H CHMe₂), 0.03 (s, 6H, SiMe₂), -0.04 (s, 6H, SiMe₂). ${}^{13}C{}^{1}H{}$ NMR (126 MHz, 298K, THF-*d*₈) δ 163.0 (ArC of AlOCMePh), 160.6 (ArC of AlOCMePh), 150.5 (ArC of AlOCMePh), 148.7 (*i*-C₆H₃), 147.9 (ArC of AlOCMePh), 143.6 (*o*-C₆H₃), 127.3 (ArC of AlOCMePh), 126.9 (ArC of AlOCMePh), 125.9 (m-C₆H₃), 123.4 (ArC of AlOCMePh), 123.3 (ArC of AlOCMePh), 121.5 (p-C₆H₃), 83.8 (AlOC), 28.0 (CHMe₂), 28.0 (CHMe₂), 26.7 (AlOCMePh), 26.1 (AlOCMePh), 25.8 (CHMe₂), 25.6 (CHMe₂), 24.2 (CHMe₂), 23.7 (CHMe₂), 15.9 (SiCH₂), 1.9 (SiMe₂), 1.6 (SiMe₂).

Figure S6. ¹H NMR (500MHz, 298 K, d₈-THF) spectrum of **12**. *unidentified impurities, plausibly THF coordinated species

Figure S8. ¹H-¹³C HSQC spectrum of 12.

Figure S9. ¹H-¹³C HMBC spectrum of 12.

Synthesis of $K[{SiN^{Dipp}}Al(H)OC(Pr)=CMe_2]$ (13)

In a J Young's tube, [{SiN^{Dipp}}AlK]₂ (8, 28 mg, 0.025mmol) was dissolved in 0.4 mL of toluene before the addition of 2,4-dimethyl-3-pentanone (7.1µL, 5.7mg, 0.05 mmol) via a micropipette. The resulting bright yellow reaction mixture was kept at 60 °C overnight to afford a colourless solution with colourless crystals. A single crystal suitable for X-ray crystallography was picked from the crystalline solid. The remaining colourless solids were then collected, washed with hexane (0.5mL x 2), and dried under vacuum to give 13 as a colourless powder. Yield 30 mg, 89%. Anal. Calcd. For C₃₇H₆₄AlKN₂Si₂O (**13**) C, 65.82; H, 9.55; N, 4.15 %. Found: C, 64.76; H, 8.93, N, 3.92 %. ¹H NMR $(500 \text{ MHz}, 298\text{K}, \text{THF-d}_8) \delta 6.81 \text{ (d, } J = 7.5 \text{ Hz}, 4\text{H}, \text{ } m\text{-C}_6H_3\text{)}, 6.65 \text{ (t, } J = 7.5 \text{ Hz}, 2\text{H}, \text{ } p\text{-C}_6H_3\text{)}, 4.26$ (sept, J = 6.5 Hz, 2H, CHMe₂ on N^{Dipp}), 4.20 (sept, J = 6.5 Hz, 2H, CHMe₂ on N^{Dipp}), 1.82 (sept, J = 7.2 Hz, 1H, OCCHMe₂), 1.33 (s^{app}, 6H, OCCMe₂), 1.17-1.14 (m, 12H, CHMe₂ on N^{Dipp}), 1.13 (d, J = 6.5 Hz, 6H, CHMe₂ on N^{Dipp}), 1.06 (d, J = 6.5 Hz, 6H, CHMe₂ on N^{Dipp}), 0.89 (s, br, 4H, SiCH₂), 0.40 (d, J = 7.2 Hz, 6H, OCCHMe₂), -0.05 (s, 6H, SiMe₂), -0.09 (s, 6H, SiMe₂). ¹H resonance correlated to AlH was not observed. ${}^{13}C{}^{1}H{}$ NMR (126 MHz, 298K, THF-d₈) δ 155.7 (OC), 151.5 (*i*-C₆H₃), 148.8 (o-C₆H₃), 147.9 (o-C₆H₃), 123.3 (m-C₆H₃), 123.2 (m-C₆H₃), 121.2 (p-C₆H₃), 94.7 (OCCMe2), 35.4 (OCCHMe2), 29.0 (CHMe2 on N^{Dipp}), 27.9 (CHMe2 on N^{Dipp}), 27.8 (CHMe2 on N^{Dipp}), 26.4 (CHMe2 on N^{Dipp}), 26.0 (CHMe2 on N^{Dipp}), 24.2 (CHMe2 on N^{Dipp}), 21.2 (OCCHMe2), 20.5 (OCCMe2), 19.4 (OCCMe₂), 16.2 (SiCH₂), 2.4 (SiMe₂), -1.4 (SiMe₂).

Figure S12. ¹H-¹H COSY spectrum of 13.

Figure S13. ¹H-¹³C HSQC spectrum of 13.

-S12-

Figure S14. ¹H-¹³C HMBC spectrum of 13.

Synthesis of 14; Reaction of [{SiN^{Dipp}}AlK]₂ (8) with 2,2,4,4-tetramethylpentanone

In a J Young's tube, [{SiN^{Dipp}}AlK]₂ (8, 28 mg, 0.025mmol) was dissolved in 0.4 mL of toluene before the addition of 2,4-dimethyl-3-pentanone (8.6 µL, 7.1mg, 0.05 mmol) via a micropipette. The resulting bright yellow reaction mixture was kept at 60 °C overnight to afford a colourless solution with colourless crystals. A single crystal suitable for X-ray crystallography was picked from the crystalline solid. The colourless solids were then collected, washed with hexane (0.5mL x 2), and dried under vacuum to give 14 as a colourless powder. Yield 28 mg, 83%. Anal. Calcd. For C₃₉H₆₈AlKN₂Si₂O(14) C, 66.01; H, 9.73; N, 3.98 %. Found: C, 65.97; H, 9.76, N, 3.74 %. NMR characterisation was performed with a mixture of diastereomers of compound 14. ¹H NMR (500 MHz, 298K, THF- d_8) δ 6.83 - 6.74 (m, 5H, ArH), 6.69 - 6.67 (m, 1H, ArH), 6.64 - 6.55 (m, 4H, , ArH), 6.48 - 6.46 (m, 1H, ArH), 6.15 (t, J = 7.3 Hz, $p-C_6H_3$), 4.30 (sept, J = 6.8 Hz, 1H, CHMe₂), 4.18 (sept, J = 6.8 Hz, 1H, CHMe₂), 4.05 (sept, J = 6.8 Hz, 1H, CHMe₂), 3.97 (sept, J = 6.8 Hz, 2H, CHMe₂), 3.77 (sept, J = 6.8 Hz, 1H, CHMe₂), 3.63 (s, 1H, AlOCH), 3.19 (br, 1H, CHCH₂Al), 2.75 (s, 1H, AlOCH), 2.16 (t, J = 14.3 Hz, 1H, CHCH₂Al), 1.33 - 1.31 (m, 6H, CHMe₂), 1.28 (d, J = 6.8 Hz, 3H, CHMe₂), 1.25 (d, J= 6.8 Hz, 3H, CHMe₂), 1.21 (br, 2H, CHCH₂Al), 1.20 – 1.18 (m, 9H, CHMe₂), 1.17 (s br, 9H, CMe₃), 1.16 – 1.10 (m, 6H, CHMe₂), 1.10 (d, J = 6.8 Hz, 3H, CHMe₂), 1.07 (d, J = 6.7 Hz, 6H, CHMe₂), 1.04 $(d, J = 6.8 \text{ Hz}, 3H, CHMe_2), 1.02 - 1.00 \text{ (m, 2H, CHC}H_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.97 \text{ (s br, 9H, C}Me_3), 0.91 - 0.59 \text{ (m, 2H, C}HCH_2\text{Al}), 0.91 - 0.59 \text{ (m, 2H,$ 8H, SiCH₂), 0.49 (s br, 9H, CMe₃), 0.45 (s, 3H, SiMe₂), 0.39 (s br, 9H, CMe₃), 0.36 (s, 3H, SiMe₂), 0.33 (s, 3H, SiMe₂), 0.29 (s, 3H, SiMe₂), 0.11 (s, 3H, SiMe₂), -0.45 (s, 3H, SiMe₂), -0.56 (s, 6H, SiMe₂). ¹³C NMR (126 MHz, 298K, THF-*d*₈) δ 153.7 (4° ArC), 153.7 (4° ArC), 153.3 (4° ArC), 152.8 (4° ArC), 152.5 (4° ArC), 152.2 (4° ArC), 151.3 (4° ArC), 150.0 (4° ArC), 148.3 (4° ArC), 148.0(4° ArC), 147.7 (4º ArC), 145.4 (4º ArC), 123.7 (ArCH), 123.6 (ArCH), 123.4 (ArCH), 123.1 (ArCH), 122.9 (ArCH), 122.7 (ArCH), 122.0 (ArCH), 121.4 (ArCH), 121.3 (ArCH), 121.1 (ArCH), 120.7 (ArCH), 119.7 (ArCH), 87.2 (AlOCH), 84.0 (AlOCH), 39.5 (CMe₃), 39.2 (CMe₃), 38.9 (CMe₃), 38.5 (CMe₃), 36.8 (CHCH₂Al), 34.6 (CHCH₂Al), 32.1 (AlCHCH₂), 31.4 (CMe₃), 31.4 (CMe₃), 31.3 (CMe₃), 30.8 (CMe₃), 29.9 (AICHCH₂), 29.0 (CHMe₂), 29.0 (CHMe₂), 28.4 (CHMe₂), 28.2 (CHMe₂), 27.7 (CHMe₂), 27.6

(CHMe₂), 27.4 (CHMe₂), 27.3 (CHMe₂), 27.3 (CHMe₂), 27.1 (CHMe₂), 27.1 (CHMe₂), 27.0 (CHMe₂),
27.0 (CHMe₂), 26.9 (CHMe₂), 26.8 (CHMe₂), 26.7 (CHMe₂), 26.7 (CHMe₂), 26.3 (CHMe₂), 26.0 (CHMe₂), 15.5 (SiCH₂), 15.4 (SiCH₂), 15.3 (SiCH₂), 15.0 (SiCH₂), 6.1 (SiMe₂), 4.8 (SiMe₂), 4.7 (SiMe₂), 3.7 (SiMe₂), 2.1 (SiMe₂), 1.0 (SiMe₂), 0.6 (SiMe₂), -0.6 (SiMe₂).

Figure S15. ¹H NMR (500 MHz, 298 K, THF-d₈) spectrum of 14.

Figure S16. ¹³C{¹H} NMR (126 MHz, 298 K, THF-d₈) spectrum of 14.

Figure S17. ¹H-¹H COSY spectrum of 14.

Figure S18. ¹H-¹³C HSQC spectrum of 14.

Figure S19. ¹H-¹³C HMBC spectrum of 14.

1.3. Single Crystal X-ray Diffraction Analysis

Single Crystal X–ray diffraction data for compounds 11 - 14 were collected on a SuperNova, EosS2 diffractometer using CuKa ($\lambda = 1.54184$ Å) radiation throughout. The crystals were maintained at 150 K during data collection. Using Olex2,² the structures were solved with the olex2.solve³ structure solution program or ShelXT and refined with the ShelXL⁴ refinement package using Least-Squares minimization.

The asymmetric unit in the structure of **12** is a monomer, which contributes to the formation of 1–D polymers in the gross structure.

Similarly, in **13**, the asymmetric unit also comprises a monomer (which gives rise to 1–D polymers in the gross structure) plus a molecule of benzene with half site-occupancy. The latter straddles a crystallographic inversion centre, which necessarily means that it is disordered with itself. As such, this moiety was refined as a rigid hexagon and with the inclusion of ADP restraints. The hydride in the main feature was located and refined without restraints. A residual electron density maximum, proximate to K1, may indicate a modicum of disorder at this centre. However, efforts to model same did not improve convergence and indicated that, at best, that any alkali metal disorder was < 5%. Given the paucity of evidence for such disorder credibility, partitioning K1 between two sites was abandoned.

The asymmetric unit in the structure of **14** corresponds to one quarter of a tetramer. Disorder prevailed in two regions. In particular, the methyl groups which form part of the tert-butyl functionalities based on C32 and C36 were each treated for an 80:20 site-occupancy split while the Dipp moiety attached to N1 was modelled to take account of a 2-component disorder in a 55:45 ratio. All hydrogens were included at calculated positions, but those attached at C8, C18, C30, C48, C57 and C69 were refined with free U_{iso} values as a measure of credibility with which to assess any interactions with the potassium centres present. Distance and ADP restraints were employed, on merit, in disordered regions to assist convergence.

Compound	11	12	13	13
Empirical formula	C ₆₄ H ₈₆ AlKN ₂ O ₄ Si ₂	C46H66AlKN2O2Si2	C40H67AlKN2OSi2	C ₃₉ H ₆₈ AlKN ₂ OSi ₂
Formula weight	1069.60	801.26	714.21	703.21
Crystal system	monoclinic	orthorhombic	orthorhombic	monoclinic
Space group	Сс	Pbca	Pbcn	C2/c
a/Å	21.7511(4)	22.4043(4)	20.3555(1)	44.6873(10)
b/Å	13.3392(2)	17.8222(3)	23.0087(1)	12.4327(1)
c/Å	20.8348(3)	22.5974(5)	18.3408(1)	37.5655(8)
α/°	90	90	90	90
β/°	101.877(2)	90	90	127.202(3)
γ/°	90	90	90	90
Volume/Å ³	5915.64(17)	9023.0(3)	8589.98(7)	16623.8(7)
Ζ	4	8	8	16
$\rho_{\rm calc} {\rm g/cm^3}$	1.201	1.180	1.105	1.124
μ/mm^{-1}	1.686	2.012	2.035	2.094
F(000)	2304.0	3456.0	3112.0	6144.0
Crystal size/mm ³	$0.102 \times 0.071 \times 0.037$	$0.137 \times 0.028 \times 0.024$	0.209 × 0.163 × 0.104	$0.112 \times 0.068 \times 0.057$
2θ range /°	7.822 to 144.238	7.448 to 146.122	7.54 to 145.934	7.522 to 146.568
Index ranges	$-26 \le h \le 26,$	$-27 \le h \le 24,$	$-24 \le h \le 25,$	$-53 \le h \le 55$,
	$-16 \le k \le 12,$	$-18 \le k \le 21,$	$-28 \le k \le 23,$	$-15 \le k \le 15,$
	$-21 \le 1 \le 25$	$-27 \le l \le 27$	$-22 \le l \le 22$	$-46 \le l \le 46$
Reflections collected	15239	30723	112622	156548
Independent reflections	7932, 0.0209	8870, 0.0464	8574, 0.0487	16566, 0.0535
Data/restraints/parameters	7932/2/683	8870/0/512	8574/42/470	16566/499/1030
Goodness-of-fit on F ²	1.035	1.015	1.022	1.019
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	0.0281, 0.0720	0.0386, 0.0875	0.0443, 0.1260	0.0414, 0.1008
Final <i>R</i> indexes [all data]	0.0295, 0.0731	0.0571, 0.0959	0.0471, 0.1289	0.0512, 0.1066
Largest diff. peak/hole (e Å ⁻³⁻)	0.24/-0.21	0.31/-0.25	0.97/-0.56	0.60/-0.46
Flack parameter	0.027(7)	-	-	-

 Table S1: Crystal data and structure refinement for compounds 11 – 14.

References

- R. J. Schwamm, M. P. Coles, M. S. Hill, M. F. Mahon, C. L. McMullin, N. A. Rajabi, A. S. S. Wilson, *Angew. Chem. Int. Ed.* 2020, *59*, 3928.
- Dolomanov, O. V.; Bourhis, L.J.; Gildea, R.J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
- 3. Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
- 4. Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8