Experimental and Supplementary Information for

Diverse Reactivity of an $\mathbf{A l (I)}$-centred Anion Towards Ketones

Han-Ying Liu, Michael S. Hill* and Mary F. Mahon

1.1. General information

Except stated otherwise, all the experiments were conducted using standard Schlenk line and/or glovebox techniques under an inert atmosphere of argon. NMR spectra were recorded with an Agilent ProPulse spectrometer (${ }^{1} \mathrm{H}$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 126 MHz$)$. The spectra are referenced relative to residual protio solvent resonances. Elemental analyses were performed at Elemental Microanalysis Ltd., Okehampton, Devon, UK. Solvents were dried by passage through a commercially available solvent purification system and stored under argon in ampoules over $4 \AA$ molecular sieves. $\mathrm{C}_{6} \mathrm{D}_{6}$ and d_{8}-THF was purchased from Sigma-Aldrich, dried over a potassium mirror before distilling and storage over molecular sieves. $\left[\left\{\mathrm{SiN}^{\mathrm{Dipp}}\right\} \mathrm{AlK}\right]_{2}(\mathbf{8})$ was prepared according to the reported procedure. ${ }^{1}$ All other chemicals were purchased from Merck. Acetophenone, 2,4-dimethyl-3-pentanone and 2,2,4,4-tetramethyl-3-pentanone were degassed by three freeze-pump-thaw cycles and stored over $4 \AA$ molecular sieves, while benzophenone was sublimed and stored in the glovebox under an argon atmosphere, before usage.

1.2. Synthetic Procedures

Synthesis of $K\left[\left\{S i N^{D i p p}\right\} A l-\kappa^{2}-O, O^{\prime}-\left\{O C^{P h} 2 C^{H}(C H=C H C H=C H) C=C^{P h} O\right\}\right]$ (11)
In a J Young's tube, $\left[\left\{\mathrm{SiN}^{\text {Dipp }}\right\} \mathrm{AlK}\right]_{2},(\mathbf{8}, 28 \mathrm{mg}, 0.025 \mathrm{mmol})$, was dissolved in 0.4 mL of toluene before the addition of benzophenone $(18 \mathrm{mg}, 0.10 \mathrm{mmol})$ to the bright yellow solution. The reaction mixture was then kept at $60^{\circ} \mathrm{C}$ overnight to afford a colourless solution with bright yellow oil. THF was then added to the reaction mixture to afford a homogeneous bright yellow solution. Bright yellow single crystals suitable for X-ray crystallography were obtained by slow evaporation at room temperature. Yield $37 \mathrm{mg}, 80 \%$. Anal. Calcd. For $\mathrm{C}_{72} \mathrm{H}_{101} \mathrm{AlKN}_{2} \mathrm{Si}_{2} \mathrm{O}_{6}\left(11\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}, 1211.86\right) \mathrm{C}, 71.30$; H, 8.39; N, 2.31 \%. Found: C, 70.84; H, 8.06, N, 2.70 \%. The recrystallised yellow crystalline solids were then collected and put under vacuum before re-dissolved in d_{8}-THF for NMR characterisation. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$, THF- d_{8}) δ 7.78-7.69 (m, 2H, ArH), 7.50-7.45 (m, 2H, ArH), 7.04-6.99 (m, $2 \mathrm{H}, \mathrm{Ar} H), ~ 6.99-6.91(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 6.91-6.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.78-6.73(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar} H), 6.72-6.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.66-6.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.53-6.44(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 6.43-6.17$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.04\left(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{AlOC}^{\mathrm{Ph}}=\mathrm{CCH}=\mathrm{CH}\right), 5.60\left(\mathrm{dd}, \mathrm{J}=9.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{AlOC}^{\mathrm{Ph} 2}-\right.$ $\mathrm{CHCH}=\mathrm{CH}), 5.21\left(\mathrm{dd}, \mathrm{J}=9.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{AlOC}^{\mathrm{Ph} 2}-\mathrm{CHCH}=\mathrm{CH}\right), 5.10(\mathrm{dd}, \mathrm{J}=9.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{AlOC}^{\mathrm{Ph}}=\mathrm{CCH}=\mathrm{CH}\right), 4.71-4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 4.24-4.03\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 3.69(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{AlOC}_{\mathrm{Ph} 2}-\mathrm{CH}\right), 1.48-1.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SiCH}_{2}\right) 1.30(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}), 1.25-1.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SiCH}_{2}\right)$, 1.19 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}$), 1.15 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe} 2), 1.13(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}$), $1.02(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}), 0.82-0.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SiCH}_{2}\right), 0.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.66-0.58(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{SiCH}_{2}\right), 0.49\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si} M e_{2}\right), 0.41\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} M e_{2}\right)$, $0.04\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} M e_{2}\right),-0.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si} M e_{2}\right),-0.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}_{2} e_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , $\left.298 \mathrm{~K}, \mathrm{THF}-d_{8}\right) \delta 162.2\left(\mathrm{Al}-\mathrm{OC}^{\mathrm{Ph}}=\mathrm{C}\right), 153.7(\mathrm{Ar} C), 152.7(\mathrm{ArC}), 152.4(\mathrm{ArC}), 151.3(\mathrm{ArC}), 150.5$ $(\mathrm{ArC}), 148.7(\mathrm{ArC}), 147.6(\mathrm{ArC}), 147.2(\mathrm{ArC}), 147.1(\mathrm{ArC}), 143.8(\mathrm{ArC}), 135.7(\mathrm{ArC}), 133.2(\mathrm{ArC})$, $132.9(\mathrm{ArC}), 131.8(\mathrm{ArC}), 131.4\left(\mathrm{AlOC}^{\mathrm{Ph} 2}-\mathrm{CHCH}=\mathrm{CH}\right), 131.0(\mathrm{ArC}), 130.7(\mathrm{ArC}), 129.2(\mathrm{ArC})$, $129.0(\mathrm{ArC}), 126.9(\mathrm{ArC}), 126.9(\mathrm{ArC}), 126.7(\mathrm{ArC}), 126.2(\mathrm{ArC}), 124.8(\mathrm{ArC}), 124.7(\mathrm{ArC}), 123.9$ $(\mathrm{ArC}), 123.8(\mathrm{ArC}), 123.6(\mathrm{ArC}), 123.5(\mathrm{ArC}), 122.7\left(\mathrm{AlOC}^{\mathrm{Ph}} 2-\mathrm{CHCH}=\mathrm{CH}\right), 121.7(\mathrm{ArC}), 121.6$ -S2-
$(\mathrm{ArC}), 112.0\left(\mathrm{AlOC}^{\mathrm{Ph}}=\mathrm{CCH}=C \mathrm{H}\right), 109.9\left(\mathrm{AlOC}^{\mathrm{Ph}}=C\right), 87.0\left(\mathrm{AlOCPh}_{2}\right), 54.0\left(\mathrm{AlOC}^{\mathrm{Ph} 2}-\mathrm{CH}\right), 27.9$ (CHMe_{2}), 27.9 (CHMe_{2}), $27.8\left(\mathrm{CHMe}_{2}\right), 27.8\left(\mathrm{CHMe}_{2}\right), 27.7(\mathrm{CHMe})$), $27.6(\mathrm{CHMe})$, $27.4(\mathrm{CHMe})$, 27.0 (CHMe2), 26.6 ($\mathrm{CH} M e_{2}$), 26.3 (CHMe), 25.4 (CHMe), $24.8\left(\mathrm{CHMe}\right.$), $15.1\left(\mathrm{SiCH}_{2}\right), 13.1$ $\left(\mathrm{SiCH}_{2}\right), 5.0\left(\mathrm{Si} M e_{2}\right), 4.4\left(\mathrm{Si} M e_{2}\right), 2.8\left(\mathrm{Si} M e_{2}\right), 1.9\left(\mathrm{Si} M e_{2}\right)$.

Figure S1. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{~d}_{8}-\mathrm{THF}$) spectrum of 11. *toluene

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{~d}_{8}$-THF) spectrum of $\mathbf{1 1}$. *toluene $^{\text {then }}$

$\underbrace{\circ}$

Figure S3. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1 1}$.

Figure S4. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of $\mathbf{1 1}$.

Figure S5. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1 1}$.

Synthesis of $K\left[\left\{S_{i N} N^{D i p p}\right\} A l-\kappa^{2}-O, O^{\prime}-(O C P h M e)_{2}\right]$ (12)
In a J Young's tube, $\left[\left\{\mathrm{SiN}^{\text {Dipp }}\right\} \mathrm{AlK}\right]_{2}(\mathbf{8}, 28 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in 0.4 mL of d ${ }^{6}$-benzene before the addition of acetophenone $(11.5 \mu \mathrm{~L}, 11.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ via a micropipette. The resulting pale yellow reaction mixture was kept at $60^{\circ} \mathrm{C}$ overnight to afford a colourless solution with colourless crystals. A single crystal suitable for X-ray crystallography was picked from the crystalline solid. The reaming colourless solids were then collected, washed with hexane $(0.5 \mathrm{~mL} \times 2)$, and dried under vacuum to give $\mathbf{1 2}$ as a colourless powder. Yield $29 \mathrm{mg}, 72 \%$. Synthesis was also conducted in toluene with the same result. Yield $30 \mathrm{mg}, 74 \%$. Anal. Calcd. For $\mathrm{C}_{53} \mathrm{H}_{74} \mathrm{AlKN}_{2} \mathrm{Si}_{2} \mathrm{O}_{2}\left(\mathbf{1 2 .} \mathrm{C}_{7} \mathrm{H}_{8}\right) \mathrm{C}, 71.25 ; \mathrm{H}$, 8.35; N, 3.14 \%. Found: C, $70.72 ; \mathrm{H}, 8.25, \mathrm{~N}, 2.86 \%$. The powder was dissolved in THF-d 8 for NMR characterisation. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{THF}-\mathrm{d}_{8}$) $\delta 7.85-7.15$ (m, 2H, ArH of AlOCPh), 7.11 $6.93\left(\mathrm{~d}_{\text {app }}, 4 \mathrm{H}, m-\mathrm{C}_{6} H_{3}\right), 6.92-6.77(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}$ of AlOCPh$), 6.77-6.68\left(\mathrm{t}_{\text {app }}, 2 \mathrm{H}, p-\mathrm{C}_{6} H_{3}\right), 4.19(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), $1.32-1.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{AlOCMePh}), 1.16\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.13(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $6 \mathrm{H}, \mathrm{CH} M e_{2}$), $1.08\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.06-0.98(\mathrm{~m}, 3 \mathrm{H}, \mathrm{AlOCMePh}), 0.96\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{SiCH}_{2}\right)$, $0.86(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{HCHMe}), 0.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si} M e_{2}\right),-0.04(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe} 2) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , $\left.298 \mathrm{~K}, \mathrm{THF}-d_{8}\right) \delta 163.0(\mathrm{ArC}$ of AlOCMePh$), 160.6(\mathrm{ArC}$ of AlOCMePh$), 150.5(\mathrm{ArC}$ of AlOCMePh$)$, $148.7\left(i-C_{6} \mathrm{H}_{3}\right), 147.9(\mathrm{ArC}$ of AlOCMePh$), 143.6\left(o-\mathrm{C}_{6} \mathrm{H}_{3}\right), 127.3(\mathrm{ArC}$ of AlOCMePh$), 126.9(\mathrm{ArC}$ of AlOCMe Ph$), 125.9\left(m-C_{6} \mathrm{H}_{3}\right), 123.4$ (ArC of AlOCMe Ph), 123.3 (ArC of AlOCMePh), 121.5 ($p-$ $C_{6} \mathrm{H}_{3}$), 83.8 (AlOC), $28.0\left(\mathrm{CHMe}_{2}\right), 28.0\left(\mathrm{CHMe}_{2}\right), 26.7$ (AlOCMePh), 26.1 (AlOCMePh), 25.8 (CHMe $)$, $25.6(\mathrm{CHMe} 2), 24.2(\mathrm{CHMe} 2), 23.7(\mathrm{CHMe} 2), 15.9\left(\mathrm{SiCH}_{2}\right), 1.9(\mathrm{SiMe} 2), 1.6\left(\mathrm{SiMe}_{2}\right)$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{~d}_{8}$-THF) spectrum of 12. *unidentified impurities, plausibly THF coordinated species

Figure S7. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{~d}_{8}$-THF) spectrum of 12.

Figure S8. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of $\mathbf{1 2}$.

Figure $\mathbf{S 9} .{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1 2}$.

Synthesis of $K\left[\left\{S_{i N}{ }^{\text {Dipp }}\right\} A l(H) O C\left({ }^{i} \mathrm{Pr}\right)=\mathrm{CMe}_{2}\right]$ (13)
In a J Young's tube, $\left[\left\{\operatorname{SiN}^{\text {Dipp }}\right\} \mathrm{AlK}\right]_{2}(\mathbf{8}, 28 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in 0.4 mL of toluene before the addition of 2,4-dimethyl-3-pentanone $(7.1 \mu \mathrm{~L}, 5.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ via a micropipette. The resulting bright yellow reaction mixture was kept at $60^{\circ} \mathrm{C}$ overnight to afford a colourless solution with colourless crystals. A single crystal suitable for X-ray crystallography was picked from the crystalline solid. The remaining colourless solids were then collected, washed with hexane $(0.5 \mathrm{~mL} \times 2)$, and dried under vacuum to give 13 as a colourless powder. Yield $30 \mathrm{mg}, 89 \%$. Anal. Calcd. For $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{AlKN}_{2} \mathrm{Si}_{2} \mathrm{O}$ (13) C, 65.82; H, 9.55; N, 4.15 \%. Found: C, 64.76 ; H, 8.93, N, $3.92 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{THF}-\mathrm{d}_{8}$) $\delta 6.81\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{C}_{6} H_{3}\right), 6.65\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, p-\mathrm{C}_{6} H_{3}\right), 4.26$ (sept, $\mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$ on $\mathrm{N}^{\text {Dipp }}$), 4.20 (sept, $\mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$ on $\mathrm{N}^{\text {Dipp }}$), $1.82(\mathrm{sept}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCCHMe} 2), 1.33\left(\mathrm{~s}^{\mathrm{app}}, 6 \mathrm{H}, \mathrm{OCCMe} 2\right), 1.17-1.14\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CHMe} e_{2}\right.$ on $\left.\mathrm{N}^{\text {Dipp }}\right), 1.13(\mathrm{~d}, \mathrm{~J}=$ $6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH} M e_{2}$ on $\left.\mathrm{N}^{\text {Dipp }}\right), 1.06\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH} M e_{2}\right.$ on $\left.\mathrm{N}^{\text {Dipp }}\right), 0.89\left(\mathrm{~s}, \mathrm{br}, 4 \mathrm{H}, \mathrm{SiCH}_{2}\right), 0.40$ $\left(\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCCH} M e_{2}\right),-0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si} M e_{2}\right),-0.09\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si} M e_{2}\right) .{ }^{1} \mathrm{H}$ resonance correlated to AlH was not observed. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, 298 \mathrm{~K}$, THF- d_{8}) $\delta 155.7$ (OC), $151.5\left(i-\mathrm{C}_{6} \mathrm{H}_{3}\right), 148.8$ $\left(o-C_{6} \mathrm{H}_{3}\right), 147.9\left(o-C_{6} \mathrm{H}_{3}\right), 123.3\left(m-C_{6} \mathrm{H}_{3}\right), 123.2\left(m-\mathrm{C}_{6} \mathrm{H}_{3}\right), 121.2\left(p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 94.7(\mathrm{OCCMe}), 35.4$ (OCCHMe2), $29.0\left(\mathrm{CHMe}\right.$ on $\left.\mathrm{N}^{\text {Dipp }}\right)$, $27.9\left(\mathrm{CHMe}_{2}\right.$ on $\left.\mathrm{N}^{\text {Dipp }}\right)$, $27.8\left(\mathrm{CHMe}_{2}\right.$ on $\left.\mathrm{N}^{\text {Dipp }}\right)$, $26.4\left(\mathrm{CHMe} e_{2}\right.$ on $\left.\mathrm{N}^{\text {Dipp }}\right)$, $26.0\left(\mathrm{CHMe} 2_{2}\right.$ on $\left.\mathrm{N}^{\text {Dipp }}\right)$, $24.2\left(\mathrm{CHMe} e_{2}\right.$ on $\left.\mathrm{N}^{\text {Dipp }}\right)$, $21.2\left(\mathrm{OCCH} e_{2}\right)$, $20.5\left(\mathrm{OCCMe}_{2}\right), 19.4$ (OCCMe_{2}), $16.2\left(\mathrm{SiCH}_{2}\right), 2.4\left(\mathrm{SiMe}_{2}\right),-1.4\left(\mathrm{Si} M e_{2}\right)$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{THF}-\mathrm{d}_{8}$) spectrum of 13. *silicone grease

Figure S11. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, 298 \mathrm{~K}$, THF-d 8) spectrum of 13. *silicone grease

Figure S12. ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum of $\mathbf{1 3}$.

Figure S13. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of $\mathbf{1 3}$.

Figure S14. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1 3}$.

Synthesis of 14; Reaction of $\left[\left\{\mathrm{SiN}^{\text {Dipp }}\right\} \mathrm{AlK}_{2}\right]_{2}$ (8) with 2,2,4,4-tetramethylpentanone
In a J Young's tube, $\left[\left\{\mathrm{SiN}^{\text {Dipp }}\right\} \mathrm{AlK}\right]_{2}(\mathbf{8}, 28 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in 0.4 mL of toluene before the addition of 2,4-dimethyl-3-pentanone ($8.6 \mu \mathrm{~L}, 7.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) via a micropipette. The resulting bright yellow reaction mixture was kept at $60{ }^{\circ} \mathrm{C}$ overnight to afford a colourless solution with colourless crystals. A single crystal suitable for X-ray crystallography was picked from the crystalline solid. The colourless solids were then collected, washed with hexane $(0.5 \mathrm{~mL} \times 2)$, and dried under vacuum to give $\mathbf{1 4}$ as a colourless powder. Yield $28 \mathrm{mg}, 83 \%$. Anal. Calcd. For $\mathrm{C}_{39} \mathrm{H}_{68} \mathrm{AlKN}_{2} \mathrm{Si}_{2} \mathrm{O}$ (14) C, $66.01 ;$ H, $9.73 ;$ N, 3.98 \%. Found: C, $65.97 ;$ H, $9.76, ~ N, 3.74 \%$. NMR characterisation was performed with a mixture of diastereomers of compound $14 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{THF}-d_{8}$) δ $6.83-6.74(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 6.69-6.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.64-6.55(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 6.48-6.46(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{Ar} H), 6.15\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, p-\mathrm{C}_{6} H_{3}\right), 4.30\left(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 4.18(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C} H \mathrm{Me}_{2}$), 4.05 (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), 3.97 (sept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), 3.77 (sept, $J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHMe} 2), 3.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{AlOCH}), 3.19\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Al}\right), 2.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{AlOCH}), 2.16(\mathrm{t}, J=$ $\left.14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Al}\right), 1.33-1.31$ (m, 6H, CHMe $), 1.28\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.25(\mathrm{~d}, J$ $\left.=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} \mathrm{Ce}_{2}\right), 1.21\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Al}\right), 1.20-1.18\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CHMe}\right.$), 1.17 (s br, $9 \mathrm{H}, \mathrm{CMe} e^{2}$), $1.16-1.10\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.10\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.07\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.04$ $\left(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}\right), 1.02-1.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Al}\right), 0.97\left(\mathrm{~s}\right.$ br, $\left.9 \mathrm{H}, \mathrm{CMe} e_{3}\right), 0.91-0.59(\mathrm{~m}$, $8 \mathrm{H}, \mathrm{SiCH}_{2}$), $0.49\left(\mathrm{~s}\right.$ br, $\left.9 \mathrm{H}, \mathrm{CMe} e_{3}\right), 0.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si} M e_{2}\right), 0.39\left(\mathrm{~s}\right.$ br, $9 \mathrm{H}, \mathrm{CMe} 3$), $0.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si} M e_{2}\right)$, $0.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si} M e_{2}\right), 0.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si} M e_{2}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si} M e_{2}\right),-0.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si} M e_{2}\right),-0.56\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si} M e_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{THF}-d_{8}$) $\delta 153.7$ ($4^{\circ} \mathrm{ArC}$), 153.7 ($4^{\circ} \mathrm{ArC}$), 153.3 ($4^{\circ} \mathrm{ArC}$), $152.8\left(4^{\circ} \mathrm{ArC}\right.$), 152.5 ($4^{\circ} \mathrm{ArC}$), 152.2 ($4^{\circ} \mathrm{ArC}$), 151.3 ($4^{\circ} \mathrm{ArC}$), 150.0 ($4^{\circ} \mathrm{ArC}$), 148.3 ($4^{\circ} \mathrm{ArC}$), 148.0(4 ArC), 147.7 ($4^{\circ} \mathrm{ArC}$), 145.4 ($4^{\circ} \mathrm{ArC}$), $123.7(\mathrm{ArCH}), 123.6$ (ArCH), $123.4(\mathrm{ArCH}), 123.1$ (ArCH$), 122.9$ (ArCH), $122.7(\mathrm{ArCH}), 122.0(\mathrm{ArCH}), 121.4(\mathrm{ArCH}), 121.3(\mathrm{ArCH}), 121.1(\mathrm{ArCH}), 120.7(\mathrm{ArCH}), 119.7$ $(\mathrm{ArCH}), 87.2(\mathrm{AlOCH}), 84.0(\mathrm{AlOCH}), 39.5\left(\mathrm{CMe}_{3}\right), 39.2\left(\mathrm{CMe}_{3}\right), 38.9\left(\mathrm{CMe}_{3}\right), 38.5\left(\mathrm{CMe}_{3}\right), 36.8$ $\left(\mathrm{CHCH}_{2} \mathrm{Al}\right), 34.6\left(\mathrm{CHCH}_{2} \mathrm{Al}\right), 32.1\left(\mathrm{AlCHCH}_{2}\right), 31.4\left(\mathrm{CMe}_{3}\right), 31.4\left(\mathrm{CMe}_{3}\right), 31.3\left(\mathrm{CMe}_{3}\right), 30.8\left(\mathrm{CMe}_{3}\right)$, $29.9\left(\mathrm{AlCHCH}_{2}\right), 29.0\left(\mathrm{CHMe}_{2}\right), 29.0\left(C \mathrm{HMe}_{2}\right), 28.4\left(\mathrm{CHMe}_{2}\right), 28.2(\mathrm{CHMe} 2), 27.7(\mathrm{CHMe} 2), 27.6$
(CHMe$)_{2}$), $\left.27.4(\mathrm{CHMe} 2), 27.3(\mathrm{CHMe} 2), 27.3(\mathrm{CHMe} 2), 27.1(\mathrm{CHMe} 2), 27.1(\mathrm{CHMe} 2), 27.0(\mathrm{CHMe})_{2}\right)$, 27.0 (CHMe2), 26.9 ($\mathrm{CHMe} e_{2}$), 26.8 ($\mathrm{CH} M e_{2}$), 26.7 (CHMe), 26.7 (CHMe), 26.3 (CHMe), 26.0 $\left(\mathrm{CH} M e_{2}\right), 15.5\left(\mathrm{SiCH}_{2}\right), 15.4\left(\mathrm{SiCH}_{2}\right), 15.3\left(\mathrm{SiCH}_{2}\right), 15.0\left(\mathrm{SiCH}_{2}\right), 6.1\left(\mathrm{Si} M e_{2}\right), 4.8\left(\mathrm{Si} M e_{2}\right), 4.7$ $\left(\mathrm{Si} M e_{2}\right), 3.7\left(\mathrm{Si} M e_{2}\right), 2.1\left(\mathrm{Si} M e_{2}\right), 1.0\left(\mathrm{Si} M e_{2}\right), 0.6\left(\mathrm{Si} M e_{2}\right),-0.6\left(\mathrm{Si} M e_{2}\right)$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{THF}-\mathrm{d}_{8}$) spectrum of $\mathbf{1 4 .}$

Figure S16. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, 298 \mathrm{~K}$, THF- d_{8}) spectrum of $\mathbf{1 4 .}$.

	1	190	180	170	160	150	140	1	120	110	T	90	80	1	60	50	1	1	1	1		
10	200							130			$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$			70	60	50	40	30	20	10	0	$-$
											-S16-											

Figure S17. ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum of $\mathbf{1 4 .}$

Figure S18. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of $\mathbf{1 4}$.
Huculallllul

Figure S19. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{1 4 .}$

1.3. Single Crystal X-ray Diffraction Analysis

Single Crystal X-ray diffraction data for compounds 11 - $\mathbf{1 4}$ were collected on a SuperNova, EosS2 diffractometer using $\operatorname{CuK} \alpha(\lambda=1.54184 \AA)$ radiation throughout. The crystals were maintained at 150 K during data collection. Using Olex $2,{ }^{2}$ the structures were solved with the olex 2 .solve ${ }^{3}$ structure solution program or ShelXT and refined with the ShelXL ${ }^{4}$ refinement package using Least-Squares minimization.

The asymmetric unit in the structure of $\mathbf{1 2}$ is a monomer, which contributes to the formation of $1-\mathrm{D}$ polymers in the gross structure.

Similarly, in 13, the asymmetric unit also comprises a monomer (which gives rise to 1-D polymers in the gross structure) plus a molecule of benzene with half site-occupancy. The latter straddles a crystallographic inversion centre, which necessarily means that it is disordered with itself. As such, this moiety was refined as a rigid hexagon and with the inclusion of ADP restraints. The hydride in the main feature was located and refined without restraints. A residual electron density maximum, proximate to K1, may indicate a modicum of disorder at this centre. However, efforts to model same did not improve convergence and indicated that, at best, that any alkali metal disorder was $<5 \%$. Given the paucity of evidence for such disorder credibility, partitioning K1 between two sites was abandoned. The asymmetric unit in the structure of $\mathbf{1 4}$ corresponds to one quarter of a tetramer. Disorder prevailed in two regions. In particular, the methyl groups which form part of the tert-butyl functionalities based on C32 and C36 were each treated for an 80:20 site-occupancy split while the Dipp moiety attached to N1 was modelled to take account of a 2-component disorder in a 55:45 ratio. All hydrogens were included at calculated positions, but those attached at C8, C18, C30, C48, C57 and C69 were refined with free $U_{\text {iso }}$ values as a measure of credibility with which to assess any interactions with the potassium centres present. Distance and ADP restraints were employed, on merit, in disordered regions to assist convergence.

Table S1: Crystal data and structure refinement for compounds $\mathbf{1 1} \mathbf{- 1 4}$.

Compound	11	12	13	13
Empirical formula	$\mathrm{C}_{64} \mathrm{H}_{86} \mathrm{AlKN}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}$	$\mathrm{C}_{46} \mathrm{H}_{66} \mathrm{AlKN}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{67} \mathrm{AlKN}_{2} \mathrm{OSi}_{2}$	$\mathrm{C}_{39} \mathrm{H}_{68} \mathrm{AlKN}_{2} \mathrm{OSi}_{2}$
Formula weight	1069.60	801.26	714.21	703.21
Crystal system	monoclinic	orthorhombic	orthorhombic	monoclinic
Space group	Cc	Pbca	Pbcn	C2/c
a / \AA	21.7511(4)	22.4043(4)	20.3555(1)	44.6873(10)
b / \AA	13.3392(2)	17.8222(3)	23.0087(1)	12.4327(1)
c / \AA	20.8348(3)	22.5974(5)	18.3408(1)	37.5655(8)
$\alpha /{ }^{\circ}$	90	90	90	90
$\beta /{ }^{\circ}$	101.877(2)	90	90	127.202(3)
$\gamma /{ }^{\circ}$	90	90	90	90
Volume/ \AA^{3}	5915.64(17)	9023.0(3)	8589.98(7)	16623.8(7)
Z	4	8	8	16
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.201	1.180	1.105	1.124
μ / mm^{-1}	1.686	2.012	2.035	2.094
$F(000)$	2304.0	3456.0	3112.0	6144.0
Crystal size $/ \mathrm{mm}^{3}$	$0.102 \times 0.071 \times 0.037$	$0.137 \times 0.028 \times 0.024$	$0.209 \times 0.163 \times 0.104$	$0.112 \times 0.068 \times 0.057$
2θ range $/{ }^{\circ}$	7.822 to 144.238	7.448 to 146.122	7.54 to 145.934	7.522 to 146.568
Index ranges	$\begin{aligned} & -26 \leq \mathrm{h} \leq 26, \\ & -16 \leq \mathrm{k} \leq 12, \\ & -21 \leq 1 \leq 25 \end{aligned}$	$\begin{aligned} -27 & \leq \mathrm{h} \leq 24, \\ -18 & \leq \mathrm{k} \leq 21, \\ -27 & \leq 1 \leq 27 \end{aligned}$	$\begin{aligned} & -24 \leq \mathrm{h} \leq 25, \\ & -28 \leq \mathrm{k} \leq 23, \\ & -22 \leq 1 \leq 22 \end{aligned}$	$\begin{aligned} & -53 \leq \mathrm{h} \leq 55, \\ & -15 \leq \mathrm{k} \leq 15, \\ & -46 \leq 1 \leq 46 \end{aligned}$
Reflections collected	15239	30723	112622	156548
Independent reflections	7932, 0.0209	8870, 0.0464	8574, 0.0487	16566, 0.0535
Data/restraints/parameters	7932/2/683	8870/0/512	8574/42/470	16566/499/1030
Goodness-of-fit on F^{2}	1.035	1.015	1.022	1.019
Final R indexes [$I>=2 \sigma(I)$]	0.0281, 0.0720	0.0386, 0.0875	0.0443, 0.1260	0.0414, 0.1008
Final R indexes [all data]	0.0295, 0.0731	0.0571, 0.0959	0.0471, 0.1289	0.0512, 0.1066
Largest diff. peak/hole (e \AA^{-3-})	0.24/-0.21	0.31/-0.25	0.97/-0.56	0.60/-0.46
Flack parameter	0.027(7)	-	-	-

References

1. R. J. Schwamm, M. P. Coles, M. S. Hill, M. F. Mahon, C. L. McMullin, N. A. Rajabi, A. S. S. Wilson, Angew. Chem. Int. Ed. 2020, 59, 3928.
2. Dolomanov, O. V.; Bourhis, L.J.; Gildea, R.J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
3. Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
4. Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8
