Supporting Information

Cobalt-Catalyzed C(sp $\left.{ }^{2}\right)$-H Bond Imination of Phenylalanine Derivatives

Lukass Lukasevics, Aleksandrs Cizikovs, and Liene Grigorjeva*
Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
*E-mail: liene_grigorjeva@osi.lv

Contents

General considerations 3
1.Substrate synthesis 3
1.1.Synthesis of substrate $\mathbf{S 2}$ 3
1.2.Synthesis of substrates 1aa-1ar 4
2. Cobalt-catalyzed imination of amino acid derivatives 15
2.1. Optimization of cobalt-catalyzed imination of amino acid derivatives 15
2.1.1. Oxidant 15
2.1.2. Additive 16
2.1.3. Catalyst 17
2.1.4. Solvent 18
2.2. Cobalt-catalyzed imination of amino acid derivatives and characterization ofproducts.19
2.3. Cleavage of picolinamide directing group 32
3. Mechanistic experiments 34
3.1. Ligand exchange experiments 34
3.2. H/D scrambling experiments 35
3.3. KIE 36
3.4. Substrate competition experiment 37
3.5. Complex $\mathbf{5}$ reaction with t-BuNC 37
4. Synthesis of PDE5 inhibitor 39
References 43
NMR spectra 44

General considerations

Reactions were performed using standard glassware or were run in 4 mL vials with PTFE/liner screw caps and 30 mL vials using w/polyseal screw caps. Reactions were heated using Chemglass aluminum reaction blocks. Column chromatography was performed using Kieselgel silicagel ($35-70$ and $60-200 \mu \mathrm{~m}$). Thin layer chromatography (TLC) was performed on silica gel using Merck TLC Silica gel 60 F254 aluminum sheets and was visualized by UV lamp, staining with $\mathrm{KMnO}_{4} \cdot{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ spectra were recorded on 400 MHz or 600 MHz Bruker spectrometers using residual solvent peak as a reference. Compounds for HRMS were analyzed by positive mode electrospray ionization (ESI) using Waters Synapt G2-Si mass spectrometer. IR spectra were obtained using a Shimadzu IR Prestige-21 FT-IR spectrometer. All procedures were performed under ambient air unless otherwise noted. Reagents and starting materials were obtained from commercial sources and used without further purification unless otherwise noted.

1. Substrate synthesis

1.1. Synthesis of substrate $\mathbf{S} 2$

Methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\mathbf{S} 2$ was synthesized in two steps from commercially available S1 (Scheme S-1). First step involved the removal of Boc protecting group followed by installation of picolinamide directing group.

Scheme S-1. Synthesis of S2

Methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate (S2)

Step 1: To a solution of Boc-protected phosphonate S1 (3.00 g, 10.1 mmol, 1.00 equiv) in dry DCM (25 mL), TFA ($3.9 \mathrm{~mL}, 50.5 \mathrm{mmol}, 5.00$ equiv) was added. The reaction mixture was further stirred for 4 h at room temperature. The solvent was then evaporated under reduced pressure and the crude product was redissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. This cycle was repeated 3 times to obtain the white solid.

Step 2: 2-Picolinic acid ($1.37 \mathrm{~g}, 11.10 \mathrm{mmol}, 1.10$ equiv) and CDI ($1.80 \mathrm{~g}, 11.10 \mathrm{mmol}, 1.10$ equiv) were dissolved in dry $\mathrm{DCM}(25 \mathrm{~mL})$ and were stirred for 1 h at room temperature. The crude solid form the previous step was dissolved in dry DCM (20 mL), DIPEA (5.24 mL , $30.28 \mathrm{mmol}, 3.00$ equiv) was slowly added, and the resulting solution was slowly added to the reaction mixture. The reaction mixture was further stirred for 16 h at room temperature and solvent was evaporated under reduced pressure. Product was purified by column chromatography (eluent: EtOAc) to obtain methyl 2-(dimethoxyphosphoryl)-2(picolinamido) acetate $\mathbf{S 2}$ ($2.41 \mathrm{~g}, 79 \%$) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.15$ (EtOAc).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.76(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.61$ (ddd, $J=4.7,1.7,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.16(\mathrm{dt}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (ddd, $J=7.6,4.7,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.49-5.36(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.79(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 167.0(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 164.0(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 148.7$, $148.5,137.4,126.8,122.5,54.3(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 54.1(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 53.4,50.3(\mathrm{~d}, J=147.4$ Hz).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P} 303.0746$; Found 303.0748. FT-IR (thin film, cm^{-1}) v 3387, 2960, 2856, 1750, 1508, 1465, 1436, 1329, 1265, 1165, 1031.

1.2. Synthesis of substrates $\mathbf{1 a a}-1 \mathrm{ar}$

α, β-Unsaturated amino acid derivatives 1aa-1ar were synthesized in one step from methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate S2, employing Horner-Wadsworth-Emmons olefination with different aldehydes S3 (Scheme S-2).

Scheme S-2. Synthesis of α, β-unsaturated amino acids 1aa-1ar

General procedure for the preparation of α, β-unsaturated amino acid derivatives 1aa-1ar.
DBU was (1.50 equiv) dropwise added to a solution of methyl 2-(dimethoxyphosphoryl)-2(picolinamido)acetate $\mathbf{S 2}$ (1.00 equiv) in dry THF at room temperature. The reaction mixture was stirred for 15 min . Aldehyde $\mathbf{S 3}$ (1.20 equiv) solution in dry THF was added via cannula to the initial mixture and the resulting solution was stirred at room temperature until the consumption of starting material was observed by TLC. The resulting reaction mixture was concentrated under reduced pressure. Product was further purified by column chromotography (eluent petroleum ether/EtOAc system) to obtain enamines 1aa-1ar.

Methyl (Z)-3-phenyl-2-(picolinamido)acrylate (1aa)

Prepared by the general procedure from benzaldehyde ($242 \mu \mathrm{~L}, 2.38 \mathrm{mmol}$), DBU (445 $\mu \mathrm{L}, \quad 2.98 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2(picolinamido)acetate $\mathbf{S 2}(600 \mathrm{mg}, 1.99 \mathrm{mmol})$, THF (8 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 2$) product 1aa ($330 \mathrm{mg}, 59 \%$) was obtained as a colorless oil.
This compound is known. ${ }^{1}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{ddd}, J=4.7,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.20$ (dt, $J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}$, 2H), $7.36-7.29$ (m, 3H), 3.87 (s, 3H).

Methyl (Z)-2-(picolinamido)-3-(p-tolyl)acrylate (1ab)

Prepared by the general procedure from 4-methyl benzaldehyde (291 $\mu \mathrm{L}, \quad 2.38 \mathrm{mmol}), \operatorname{DBU}(445 \mu \mathrm{~L}, 2.98 \mathrm{mmol})$, methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\quad \mathbf{S 2} \quad\left(\begin{array}{lllll}600 & \mathrm{mg}, & 1.99\end{array}\right.$ mmol), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 2$) product $\mathbf{1 a b}(477 \mathrm{mg}, 81 \%)$ was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.45$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.68(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{ddd}, J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.22$ (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{ddd}, J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}$, 3 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.8,162.6,149.3,148.3,139.8,137.5,132.3,131.0$, 129.9, 129.4, 126.6, 123.3, 122.8, 52.7, 21.5.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}$ 297.1239; Found 297.1242.
FT-IR (thin film, cm^{-1}) v 3344, 2951, 1722, 1684, 1641, 1490, 1436, 1320, 1291, 1265, 1185, 1147, 1088.

Methyl (Z)-3-(4-methoxyphenyl)-2-(picolinamido)acrylate (1ac)

Prepared by the general procedure from 4-methoxy benzaldehyde (362 $\mu \mathrm{L}, 2.38 \mathrm{mmol}$), DBU (445 $\mu \mathrm{L}, 2.98 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\mathbf{S 2}$ ($600 \mathrm{mg}, 1.99$ mmol), THF (10 mL). After column chomotography (eluent: petroleum
ether $/ E t O A c=1 / 2$) product $\mathbf{1 a c}(609 \mathrm{mg}, 98 \%)$ was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.53$ ($\mathrm{EtOAc} / \mathrm{PE}=1 / 1$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 8.65-8.60(\mathrm{~m}, 1 \mathrm{H}), 8.22(\mathrm{dt}, J=7.9,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.87(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}$, 3 H), 3.79 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.8,162.7,160.6,149.3,148.4,137.5,132.7,131.8$, 126.6, 126.4, 122.8, 121.9, 114.1, 55.3, 52.6.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$ 313.1188; Found 313.1190.
FT-IR (thin film, cm^{-1}) v 3341, 3012, 2951, 2839, 1720, 1692, 1638, 1605, 1570, 1512, 1489, 1464, 1436, 1320, 1256, 1178, 1088.

Methyl (Z)-3-(3-methoxyphenyl)-2-(picolinamido)acrylate (1ad)

Prepared by the general procedure from 3-methoxy benzaldehyde (362 $\mu \mathrm{L}, 2.38 \mathrm{mmol}), \mathrm{DBU}(445 \mu \mathrm{~L}, 2.98 \mathrm{mmol})$, methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\mathbf{S 2}$ ($600 \mathrm{mg}, 1.99$ mmol), THF (10 mL). After column chomotography (eluent: petroleum ether $/ \mathrm{EtOAc}=1 / 2$) product $\mathbf{1 a d}(613 \mathrm{mg}, 99 \%)$ was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.45$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{ddd}, J=4.7,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.23$ (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{ddd}, J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{ddd}, J=8.3,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.5,162.6,159.6,149.1,148.3,137.6,135.1$, 131.6, 129.6, 126.7, 124.6, 122.8, 122.5, 115.8, 114.3, 55.1, 52.7.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$ 313.1188; Found 313.1195.
FT-IR (thin film, cm^{-1}) v 3341, 2995, 2953, 2836, 1722, 1685, 1638, 1576, 1491, 1465, 1435, 1299, 1272, 1427, 1163, 1088, 1041.

Methyl (Z)-2-(picolinamido)-3-(2,3,4-trimethoxyphenyl)acrylate (1ae)

Prepared by the general procedure from 2,3,4-trimethoxy benzaldehyde ($420 \mathrm{mg}, 2.14 \mathrm{mmol}$), DBU ($399 \mu \mathrm{~L}, 2.68 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\mathbf{S 2}$ (539 mg, 1.78 mmol), THF (10 mL). After column chomotography (eluent: petroleum
ether $/ \mathrm{EtOAc}=1 / 2$) product $\mathbf{1 a e}(543 \mathrm{mg}, 82 \%)$ was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.34$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{ddd}, J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (ddd, J $=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=8.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, $3.88(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.8,162.6,154.7,152.7,149.4,148.3,142.2,137.4$, 126.5, 126.0, 124.6, 124.1, 122.7, 120.9, 107.4, 61.9, 61.0, 56.0, 52.6.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6}$ 373.1400; Found 373.1412.
FT-IR (thin film, cm^{-1}) v 3344, 3004, 2949, 2841, 2593, 1722, 1689, 1638, 1592, 1570, 1497, 1463, 1435, 1414, 1374, 1305, 1281, 1252, 1233, 1148, 1098, 1044.

Methyl (Z)-3-(4-acetoxyphenyl)-2-(picolinamido)acrylate (1af)

Prepared by the general procedure from 4-acetoxybenzaldehyde (251 $\mu \mathrm{L}, \quad 1.79 \mathrm{mmol}), \mathrm{DBU}(333 \mu \mathrm{~L}, 2.23 \mathrm{mmol})$, methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\quad \mathbf{S 2}$ ($450 \mathrm{mg}, 1.49$ mmol), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 4$ to $1 / 2)$ product $\mathbf{1 a f}(435 \mathrm{mg}, 86 \%)$ was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.33(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.69(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{ddd}, J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ (dt, $J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{ddd}, J=$ $7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 169.1,165.5,162.7,151.2,149.1,148.4,137.6,131.5$, 131.1, 126.8, 124.3, 122.8, 121.8, 52.8, 21.2.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}$ 341.1137; Found 341.1141.
FT-IR (thin film, cm^{-1}) v 3345, 3060, 3018, 2953, 2853, 1768, 1722, 1691, 1644, 1601, 1591, 1507, 1489, 1465, 1435, 1369, 1314, 1283, 1266, 1201, 1168, 1096, 1016.

Methyl (Z)-3-([1,1'-biphenyl]-4-yl)-2-(picolinamido)acrylate (1ag)

Prepared by the general procedure from [1,1'-biphenyl]-4-carbaldehyde ($326 \mathrm{mg}, 1.79 \mathrm{mmol}$), DBU (333 $\mu \mathrm{L}, 2.23 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\quad \mathbf{S} 2 \quad(450 \mathrm{mg}, \quad 1.49$ mmol), THF (10 mL). After column chomotography (eluent: petroleum ether $/ \mathrm{EtOAc}=1 / 4$ to $1 / 2$) product $\mathbf{1 a g}(462 \mathrm{mg}, 87 \%)$ was obtained as a white solid. $\mathrm{R}_{\mathrm{f}}=$ $0.55(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 129-131{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 8.64$ (ddd, $\left.J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.23$ (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.54-7.47(\mathrm{~m}$, 2H), $7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 165.7, 162.6, 149.2, 148.4, 142.1, 140.3, 137.6, 132.9, 131.7, 130.4, 128.8, 127.7, 127.3, 127.1, 126.7, 124.0, 122.8, 52.8.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$ 359.1396; Found 359.1394.
FT-IR (thin film, cm^{-1}) v 3341, 3057, 3028, 2951, 1724, 1674, 1638, 1488, 1434, 1372, 1321, 1290, 1264.

Methyl (Z)-3-(3-((tert-butoxycarbonyl)amino)phenyl-2-(picolinamido)acrylate (1ah)

 BocHN formylphenyl)carbamate ($273 \mathrm{mg}, 1.23 \mathrm{mmol}$), DBU ($230 \mu \mathrm{~L}, 1.54$ mmol), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate S2 ($310 \mathrm{mg}, 1.03 \mathrm{mmol}$), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 4$ to $1 / 2$) product $\mathbf{1 a h}(350 \mathrm{mg}, 86 \%)$ was obtained as a yellow-colored amorphous solid. $\mathrm{R}_{\mathrm{f}}=0.51(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{ddd}, J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.20$ (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.86 (td, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (s, 1H), 7.47 (ddd, $J=7.6,4.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 160.8,157.9,147.8,144.5,143.5,134.0,132.7,129.8$, 127.0, 124.4, 121.8, 119.8, 119.5, 118.0, 115.0, 114.7, 75.9, 48.0, 23.5.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}$ 398.1716; Found 398.1703.
FT-IR (thin film, cm^{-1}) v 3334, 2980, 1722, 1685, 1588, 1543, 1495, 1436, 1368, 1237, 1160, 1053.

Methyl (Z)-3-(3-(1,3-dioxoisoindolin-2-yl)phenyl)-2-(picolinamido)acrylate (1ai)

Prepared by the general procedure from 3-(1,3-dioxoisoindolin-2yl)benzaldehyde ($269 \mathrm{mg}, 1.07 \mathrm{mmol}$), DBU ($200 \mu \mathrm{~L}, 1.34 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate S2 (270 $\mathrm{mg}, 0.89 \mathrm{mmol}$), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 4$ to $1 / 1$) product 1ai $(323 \mathrm{mg}$, $85 \%)$ was obtained as a white solid. $\mathrm{R}_{\mathrm{f}}=0.31(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 149-151{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.61$ (ddd, $\left.J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.21$ $(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52$ - 7.38 (m, 4H), 3.88 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 166.9,165.4,162.7$, 149.1, 148.3, 137.5, 135.0, 134.5, $132.1,131.7,130.4,129.3,128.8,127.8,127.1,126.6,125.3,123.8,122.8,52.8$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5}$ 428.1246; Found 428.1253 .
FT-IR (thin film, cm^{-1}) v 3334, 3022, 2954, 1779, 1723, 1699, 1490, 1436, 1374, 1293, 1265, 1234, 1192, 1147, 1111, 1081.

Methyl (Z)-3-(4-fluoropheny)-2-(picolinamido)acrylate (1aj)

Prepared by the general procedure from 4-fluorobenzaldehyde ($259 \mu \mathrm{~L}$, $2.42 \mathrm{mmol})$, DBU ($450 \mu \mathrm{~L}, 3.02 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\mathbf{S 2}$ ($608 \mathrm{mg}, 2.01 \mathrm{mmol}$), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 4$ to $1 / 1$) product 1aj ($397 \mathrm{mg}, 66 \%$) was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}=$ $0.61(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{ddd}, J=4.8,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.07-6.97(\mathrm{~m}$, 2 H), 3.88 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.6,163.0(\mathrm{~d}, J=251.0 \mathrm{~Hz}), 162.5,149.0,148.3$, 137.7, $131.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 131.0,130.2(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 126.8,123.6(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 122.9$, 115.9, 115.7, 52.8.
${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta-110.08--110.20(\mathrm{~m})$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F} 301.0988$; Found 301.0983.
FT-IR (thin film, cm^{-1}) v 3341, 2954, 1722, 1696, 1601, 1507, 1488, 1434, 1311, 1263, 1233, 1160.

Methyl (Z)-3-(4-chlorophenyl)-2-(picolinamido)acrylate (1ak)

Prepared by the general procedure from 4-chlorobenzaldehyde (360 mg , $2.56 \mathrm{mmol})$, DBU (478 $\mu \mathrm{L}, 3.20 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\quad \mathbf{S 2}$ ($645 \mathrm{mg}, 2.13$ mmol), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 2$) product $\mathbf{1 a k}(547 \mathrm{mg}, 81 \%)$ was obtained as a white solid. $\mathrm{R}_{\mathrm{f}}=0.64$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 96-9{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{ddd}, \mathrm{J}=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ $(\mathrm{dt}, \mathrm{J}=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{td}, \mathrm{J}=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{ddd}, \mathrm{J}=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 - 7.42 (m, 3H), $7.34-7.27$ (m, 2H), 3.88 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.5,162.4,149.0,148.4,137.6,135.2,132.6,131.0$, 130.4, 128.9, 126.8, 124.3, 122.8, 52.8.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$ 317.0693; Found 317.0696.
FT-IR (thin film, cm^{-1}) v 3341, 3058, 2954, 1722, 1694, 1590, 1495, 1486, 1434, 1372, 1313, 1287, 1262, 1147, 1089.

Methyl (Z)-3-(2-bromophenyl)-2-(picolinamido)acrylate (1al)

Prepared by the general procedure from 2-bromo benzaldehyde (695 mg , $2.38 \mathrm{mmol})$, DBU ($445 \mu \mathrm{~L}, 2.98 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\mathbf{S 2}(600 \mathrm{mg}, 1.99 \mathrm{mmol})$, THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 4$ to $1 / 1$) product $1 \mathrm{al}(812 \mathrm{mg}, 75 \%)$ was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.66(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{ddd}, J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H})$, $7.52-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.3,162.2,149.0,148.3,137.5,134.8,133.0,130.1$, 129.6, 129.2, 127.2, 126.7, 125.8, 124.7, 122.7, 52.9.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br} 361.0188$; Found 361.0192.
FT-IR (thin film, cm^{-1}) v 3344, 3057, 2951, 1729, 1694, 1490, 1465, 1436, 1369, 1290, 1257, 1152.

Methyl (Z)-3-(4-iodophenyl)-2-(picolinamido)acrylate (1am)

Prepared by the general procedure from 4-iodobenzaldehyde (420 mg , $1.81 \mathrm{mmol})$, DBU (337 $\mu \mathrm{L}, 2.26 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\mathbf{S 2}$ ($456 \mathrm{mg}, 1.51 \mathrm{mmol}$), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 2$) product $\mathbf{1 a m}(546 \mathrm{mg}, 89 \%)$ was obtained as a white solid. $\mathrm{R}_{\mathrm{f}}=0.63$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 143-145^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 8.63$ (ddd, $\left.J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.19$ (dt, $J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{ddd}, J=$ $7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.4,162.3,149.0,148.4,137.8,137.6,133.6,131.2$, 130.4, 126.8, 124.5, 122.8, 95.6, 52.9.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{I} 409.0049$; Found 409.0060 .
FT-IR (thin film, cm^{-1}) v 3344, 3012, 2950, 1724, 1694, 1636, 1582, 1491, 1464, 1431, 1369, 1313, 1285, 1263, 1145, 1088, 1005.

Methyl (Z)-2-(picolinamido)-3-((4-trifluoromethoxy)phenyl)acrylate (1an)

Prepared by the general procedure from 4-trifluoromethoxy
 benzaldehyde ($302 \mathrm{mg}, 1.59 \mathrm{mmol}$), DBU ($296 \mu \mathrm{~L}, 1.99 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate S2 (400 mg , 1.32 mmol), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 4$ to $1 / 1$) product $1 \mathrm{an}(400 \mathrm{mg}, 82 \%)$ was obtained as a white solid. $\mathrm{R}_{\mathrm{f}}=0.45(\mathrm{EtOAc} / \mathrm{PE}=1 / 2), \mathrm{mp} 61-63{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{ddd}, J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89 (td, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50$ (ddd, $J=$ $7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{dq}, J=7.9,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.4,162.5,149.5(\mathrm{q}, J=1.9 \mathrm{~Hz}), 149.0,148.4,137.6$, $132.6,131.3,130.2,126.8,124.5,122.8,120.7,120.4$ (q, $J=257.9 \mathrm{~Hz}$), 52.8.
${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta-57.64$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{3} 367.0906$; Found 367.0914. FT-IR (thin film, cm^{-1}) v 3344, 2954, 1726, 1696, 1490, 1256, 1219, 1166.

Methyl (Z)-2-(picolinamido)-3-(3-(3-(trifluoromethyl)phenoxy)phenyl)acrylate (1ao)

Prepared by the general procedure from 3-(3(trifluoromethyl)phenoxy)benzaldehyde ($374 \mu \mathrm{~L}, 1.80 \mathrm{mmol}$), DBU ($336 \mu \mathrm{~L}, 2.25 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\mathbf{S 2}$ ($454 \mathrm{mg}, 1.50 \mathrm{mmol}$), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 2$) product $\mathbf{1 a o}$ (660 $\mathrm{mg}, 99 \%)$ was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.65(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 8.55$ (ddd, $\left.J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.14$ (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (ddd, $J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.99$ (ddd, $J=$ $7.8,2.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.4,162.3,157.3,156.5,148.9,148.3,137.5,136.0$, 132.2 ($\mathrm{q}, ~ J=32.6 \mathrm{~Hz}$), 130.6, 130.2, 126.7, 125.7, 124.8, 123.6 ($\mathrm{q}, ~ J=272.4 \mathrm{~Hz}$), 122.7, 121.7, 120.2, 119.9 (q, $J=4.2 \mathrm{~Hz}$), 119.8, $115.8(\mathrm{q}, J=3.8 \mathrm{~Hz}), 52.8$.
${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta-62.69$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{3} 443.1219$; Found 443.1220.
FT-IR (thin film, cm^{-1}) v 3344, 3061, 2954, 1724, 1696, 1576, 1491, 1437, 1328, 1282, 1236, 1169, 1126, 1064.

Methyl (Z)-2-(picolinamido)-3-(tiophen-2-yl)acrylate (1ap)

Prepared by the general procedure from tiophen-2-carbaldehyde (112 $\mu \mathrm{L}$, $1.19 \mathrm{mmol})$, DBU ($222 \mu \mathrm{~L}, 1.49 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate S2 ($300 \mathrm{mg}, 0.99 \mathrm{mmol}$), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 2$) product 1ap $(120 \mathrm{mg}, 42 \%)$ was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.57(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{ddd}, J=4.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.26$ (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.51$ (ddd, $J=7.7,4.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dt}, J=5.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=3.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=5.1$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (s, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.2,163.6,149.2,148.4,137.5,136.5,133.0,130.7$, 129.0, 127.3, 126.7, 122.8, 121.5, 52.6, 29.7.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ 289.0647; Found 289.0652.
FT-IR (thin film, cm^{-1}) v 3303, 1679, 1626, 1490, 1434, 1337, 1262, 1208, 1181, 1142, 1076.

Methyl (Z)-3-(furan-2-yl)-2-(picolinamido)acrylate (1aq)

Prepared by the general procedure from furan-2-carbaldehyde ($132 \mu \mathrm{~L}, 1.60$
 mmol), DBU ($297 \mu \mathrm{~L}, 1.99 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2(picolinamido)acetate S2 ($401 \mathrm{mg}, 1.33 \mathrm{mmol}$), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 2$) product 1aq (294 mg , $81 \%)$ was obtained as an orange-colored oil. $\mathrm{R}_{\mathrm{f}}=0.38(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 8.68-8.63(\mathrm{~m}, 1 \mathrm{H}), 8.23(\mathrm{dt}, J=7.8,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.47$ (dd, $J=3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.2,162.5,149.9,149.3,148.4,144.5,137.5,126.6$, 122.8, 122.5, 117.7, 115.2, 112.3, 52.6.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}$ 273.0875; Found 273.0875 .
FT-IR (thin film, cm^{-1}) v 3349, 3131, 3018, 2951, 1724, 1685, 1641, 1559, 1497, 1462, 1434, 1364, 1288, 1267, 1212, 1147, 1089, 1020.

Methyl (Z)-3-(naphtalen-2-yl)-2-(picolinamido)acrylate (1ar)

Prepared by the general procedure from 2-naphthaldehyde (300 mg , 1.92 mmol), DBU (358 $\mu \mathrm{L}, 2.40 \mathrm{mmol}$), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\mathbf{S 2}$ ($483 \mathrm{mg}, \quad 1.60$ mmol), THF (10 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 2$) product $\mathbf{1 a r}(414 \mathrm{mg}, 78 \%)$ was obtained as a white solid. $\mathrm{R}_{\mathrm{f}}=0.37$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 120-122{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{ddd}, J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ (dt, $J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (s, $3 \mathrm{H}), 7.67$ (dd, $J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.7,162.7,149.2,148.4,137.6,133.6,133.2,131.9$, $131.5,130.6,128.6,128.2,127.7,127.1,126.7,126.5,126.2,124.3,122.8,52.8$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} 333.1239$; Found 333.1241. FT-IR (thin film, cm^{-1}) v 3347, 3057, 3015, 2951, 2846, 1718, 1690, 1640, 1591, 1571, 1489, $1464,1433,1347,1255,1143,1081$.

2. Cobalt-catalyzed imination of amino acid derivatives

2.1. Optimization of cobalt-catalyzed imination of amino acid derivatives

2.1.1. Oxidant

General procedure for oxidant optimization reactions

A 4 mL vial with a screw cap (PTFE/Liner) was charged with methyl (Z)-3-phenyl-2(picolinamido)acrylate (1aa) ($28.2 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Co}(\mathrm{dpm})_{2}(8.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 20$ mol\%), oxidant ($0.20 \mathrm{mmol}, 2.00$ equiv), $\mathrm{NaOPiv}(25 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.00$ equiv), and PhCl (1 mL). Then t-BuNC ($23 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 2.00$ equiv) was added and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature and analyzed by TLC (petroleum ether/EtOAc 1/1). To the reaction mixture $\mathrm{Ph}_{3} \mathrm{CH}(24.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added, mixture was diluted with potassium sodium tartrate $(1.5 \mathrm{~mL})$ and extracted with EtOAc (1.5 mL). The organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated. The residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}$-NMR spectroscopy.

Table S-1

entry	oxidant	NMR yield, $\mathbf{\%}^{\mathbf{a}}$
1	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	71
2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.5$ equiv $)$	75
3	AgOAc	36
4	$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	0
5	$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ag}_{2} \mathrm{CO}_{3}$	58
6	$(1.5$ equiv)	0
7	$\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	0

[^0]
2.1.2. Additive

General procedure for additive optimization reactions
A 4 mL vial with a screw cap (PTFE/Liner) was charged with methyl (Z)-3-phenyl-2(picolinamido)acrylate (1aa) ($28.2 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Co}(\mathrm{dpm})_{2}(8.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 20$ $\mathrm{mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv), additive ($0.20 \mathrm{mmol}, 2.00$ equiv), and PhCl (1 mL). Then t-BuNC ($23 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 2.00$ equiv) was added and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature and analyzed by TLC (petroleum ether/EtOAc 1/1). To reaction mixture $\mathrm{Ph}_{3} \mathrm{CH}(24.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added, mixture was diluted with potassium sodium tartrate $(1.5 \mathrm{~mL})$ and extracted with EtOAc (1.5 mL). The organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated. The residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}$-NMR spectroscopy.

Table S-2

entry	additive	NMR yield, $\mathbf{\%}^{\mathbf{a}}$
1	NaOPiv	75
2	NaOPiv (1.5 equiv)	58
3	NaOPiv (1 equiv)	55
4	LiOPiv	57
5	Et $_{3} \mathrm{~N}$	0
6	Pyridine	0
7	AcOH	73
8	PivOH	71
9	w/o additive	0

${ }^{\text {a }}$ NMR yield using triphenylmethane as an internal standard.

2.1.3. Catalyst

General procedure for catalyst screening

A 4 mL vial with a screw cap (PTFE/Liner) was charged with methyl (Z)-3-phenyl-2(picolinamido)acrylate (1aa) ($28.2 \mathrm{mg}, 0.10 \mathrm{mmol}$), catalyst ($0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv), NaOPiv ($25 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.00$ equiv), and $\mathrm{PhCl}(1 \mathrm{~mL})$. Then t-BuNC ($23 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 2.00$ equiv) was added and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature and analyzed by TLC (petroleum ether/EtOAc $1 / 1)$. To reaction mixture $\mathrm{Ph}_{3} \mathrm{CH}(24.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added, mixture was diluted with potassium sodium tartrate (1.5 mL) and extracted with EtOAc (1.5 mL). Combined organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated. The residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}$-NMR spectroscopy.

Table S-3

entry	catalyst	NMR yield, $\mathbf{\%}^{\mathbf{a}}$
1	$\mathrm{Co}(\mathrm{dpm})_{2}$	75
2	$\mathrm{Co}(\mathrm{dpm})_{2}(15 \mathrm{~mol} \%, 2 \mathrm{~h})$	58
3	$\mathrm{Co}(\mathrm{acac})_{2}$	21
4	$\mathrm{Co}(\mathrm{acac})_{3}$	3
5	$\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	16
6	CoCl	2
7	$\mathrm{Co}(\mathrm{hfacac})_{2}$	0

${ }^{\text {a }}$ NMR yield using triphenylmethane as an internal standard.

2.1.4. Solvent

General procedure for solvent optimization reactions
A 4 mL vial with a screw cap (PTFE/Liner) was charged with Methyl (Z)-3-phenyl-2(picolinamido)acrylate (1aa) ($28.2 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Co}(\mathrm{dpm})_{2}(8.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 20$ $\mathrm{mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv), NaOPiv ($25 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.00$ equiv), and solvent (1 mL). Then t-BuNC ($23 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 2.00$ equiv) was added and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature and analyzed by TLC (petroleum ether/EtOAc 1/1). To reaction mixture $\mathrm{Ph}_{3} \mathrm{CH}(24.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added, mixture was diluted with potassium sodium tartrate $(1.5 \mathrm{~mL})$ and extracted with EtOAc (1.5 mL). Combined organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated. The residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.

Table S-4

entry	solvent	temperature, ${ }^{\mathbf{0}} \mathbf{C}$	NMR yield, $\mathbf{\%}^{\mathbf{a}}$
1	PhCl	100	75
2	PhCl	100	72^{b}
3	THF	100	84
4	THF	100	92^{c}
5	DCE	100	73
6	MeOH	100	0
7	MeCN^{2}	100	73
8	PhCF_{3}	100	78
9	Toluene	100	66
10	Dioxane	100	56
11	EtOAc	100	81
12	t-BuOAc	120	79
13	t-BuOAc	80	74

[^1]
2.2. Cobalt-catalyzed imination of amino acid derivatives and characterization of products

General procedure for cobalt-catalyzed $C(s p)^{2}-H$ functionalization

A 30 mL vial equivuipped with a magnetic stir bar was charged with amino acid derivative 1aa-1ar (0.50 mmol), $\mathrm{Co}(\mathrm{dpm})_{2}\left(43 \mathrm{mg}, 0.10 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($205 \mathrm{mg}, 0.75$ mmol, 1.50 equiv), NaOPiv ($125 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00$ equiv), and dry THF (5 mL). Then $4 \AA$ MS (1500 mg) and isocyanide ($1.00 \mathrm{mmol}, 2.00$ equiv) were added and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$. Reaction mixture was monitored by TLC every 1 h to determine the completion time. The reaction mixture was cooled to room temperature and the solvent was evaporated under reduced pressure. Product was purified by column chromatography on silica gel using appropriate eluent. After purification product was dried under reduced pressure.

Methyl (E)-1-(tert-butylimino)-2-picolinoyl-1,2-dihydroisoquinoline-3-carboxylate (2aa)
 $1 \mathbf{a a}(141 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA$ MS $(1500 \mathrm{mg}), t$ - $\mathrm{BuNC}(113 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.0$ equiv), 1 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from $4: 1$ to $1: 1$), $153 \mathrm{mg}(84 \%)$ of a white solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.37$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 140-142^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.28-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{dt}, J=7.8,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{dt}, J=4.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=$ $7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (ddd, $J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.6,166.1,155.0,154.8,147.3,139.8,136.9,135.7$, $130.8,130.2,129.8,127.9,126.5,124.0,123.6,123.3,60.8,52.7,28.7$.

HRMS (ESI-TOF) m/z: [M+Na] calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na} 386.1481$; Found 386.1491. FT-IR (thin film, cm^{-1}) v 2975, 1738, 1718, 1653, 1560, 1345, 1292, 1243, 1214, 1150, 1096.

Procedure for 1.77 mmol scale synthesis

Methyl (E)-1-(tert-butylimino)-2-picolinoyl-1,2-dihydroisoquinoline-3-carboxylate (2aa)

A 110 mL pressure tube equipped with a magnetic stir bar was charged with methyl (Z)-3-phenyl-2-(picolinamido)acrylate (1aa) ($500 \mathrm{mg}, 1.77 \mathrm{mmol}$),
$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($728 \mathrm{mg}, 2.65 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(149 \mathrm{mg}, 0.35 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{NaOPiv}$ $(439 \mathrm{mg}, 3.54 \mathrm{mmol}, 2$ equiv), and dry THF (18 mL). $4 \AA \mathrm{MS}(5 \mathrm{~g})$ were then added, followed by addition of t-BuNC ($391 \mu \mathrm{~L}, 3.54 \mathrm{mmol}, 2$ equiv), and the mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to room temperature, and the solvent was evaporated under reduced pressure. After column chromatography (gradient petroleum ether/EtOAc $4: 1$ to $1: 1$) 462 mg (72%) of a white solid obtained.

Methyl (E)-1-(tert-butylimino)-7-methyl-2-picolinoyl-1,2-dihydroisoquinoline-3carboxylate (2ab)

1ab ($148 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75$ mmol, 1.50 equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC $(113 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.0$ equiv), 1 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from $3: 1$ to $1: 1$), 181 mg (96%) of a white solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.30(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$, $\mathrm{mp} 136-138^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.6,166.2,154.9,154.2,147.3,140.4,139.0,135.5$, 135.2, 133.1, 130.2, 127.7, 125.2, 123.9, 123.4, 123.2, 60.7, 52.7, 28.7, 22.3.

HRMS (ESI-TOF) m/z: [M+H] calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}$ 378.1818; Found 378.1810.
FT-IR (thin film, cm^{-1}) v 2768, 1734, 1717, 1653, 1560, 1347, 1297, 1243, 1216, 1191, 1094, 1001.

Methyl (\boldsymbol{E})-1-(tert-butylimino)-7-methoxy-2-picolinoyl-1,2-dihydroisoquinoline-3carboxylate (2ac)

1ac ($156 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}\left(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75$ mmol, 1.50 equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC ($113 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.0$ equiv), 1 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from 2:1 to pure EtOAc), $175 \mathrm{mg}(89 \%)$ of a yellowcolored solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.23(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 163-165^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.6,166.2,160.5,154.9,153.4,147.5,137.9,135.5$, 132.4, 131.6, 129.5, 124.0, 123.9, 123.3, 123.3, 104.2, 60.8, 55.8, 52.7, 28.8.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} 394.1767$; Found 394.1769.
FT-IR (thin film, cm^{-1}) v 2975, 1739, 1718, 1659, 1623, 1569, 1496, 1409, 1348, 1299, 1257, 1212, 1189, 1115, 1028, 1002.

Methyl (E)-1-(tert-butylimino)-6-methoxy-2-picolinoyl-1,2-dihydroisoquinoline-3carboxylate (2ad)

1ad ($156 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75$ $\mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA$ MS (1500 mg), t-BuNC ($113 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.0$ equiv), 1 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from 3:1 to EtOAc), 165 mg (84%) of a yellow-colored solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.26(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 182-184{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.75(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.6,166.2,161.1,155.0,154.3,147.5,140.4,139.1$, $135.6,128.3,125.6,123.3,123.2,123.2,122.5,105.3,60.7,55.6,52.7,28.7$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} 394.1767$; Found 394.1769.
FT-IR (thin film, cm^{-1}) v 3067, 2975, 1735, 1719, 1653, 1624, 1412, 1352, 1284, 1256, 1236, 1193, 1157, 1098, 1024.

Methyl (E)-1-(tert-butylimino)-5,6,7-trimethoxy-2-picolinoyl-1,2-dihydroisoquinoline-3carboxylate (2ae)

1ae ($186 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75$ $\mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC ($113 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.0$ equiv), 1 h at $100^{\circ} \mathrm{C}$. After column chromatography (pure EtOAc), 170 mg (75%) of a yellow-colored solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.45$ (EtOAc), mp $120-122{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.07(\mathrm{~m}$, $3 \mathrm{H}), 6.81(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.93(\mathrm{~m}, 12 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.6,166.2,155.7,155.0,152.8,147.7,147.3,143.8$, 138.1, 135.4, 128.9, 127.2, 123.3, 123.1, 118.4, 100.9, 61.7, 61.2, 60.8, 56.3, 52.6, 28.8.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6} 454.1978$; Found 454.1984.
FT-IR (thin film, cm^{-1}) v 2976, 2950, 2840, 1735, 1718, 1653, 1487, 1465, 1405, 1349, 1284, 1246, 1197, 1140, 1101, 1005.

Methyl (E)-1-(tert-butylimino)-2-picolinoyl-7-(pivaloyloxy)-1,2-dihydroisoquinoline-3carboxylate (2af)

1af ($170 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75$ $\mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC ($113 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.00$ equiv), 1 h at $100^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from 2:1 to pure EtOAc), 167 mg (72%) of a white-off solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.51(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 169-171{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.41-8.37(\mathrm{~m}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=8.3,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.85-6.77(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 176.7, 168.6, 166.0, 154.9, 154.5, 151.6, 147.2, 139.6, $135.8,134.6,131.2,129.3,126.5,123.7,123.6,123.5,117.8,60.9,52.7,39.3,28.6,27.1$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5} 464.2185$; Found 464.2185. FT-IR (thin film, cm^{-1}) v 3472, 3329, 3066, 2977, 2875, 1754, 1719, 1662, 1586, 1569, 1496, 1481, 1441, 1397, 1343, 1290, 1274, 1212, 1210, 1179, 1149, 1119, 1103, 1029, 1004.

Methyl (E)-1-(tert-butylimino)-7-phenyl-2-picolinoyl-1,2-dihydroisoquinoline-3carboxylate (2ag)

$\mathbf{1 a g}(179 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}\left(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75$ mmol, 1.50 equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC $(113 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.00$ equiv), 2 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from $4: 1$ to $2: 1$) 172 mg (95%) of a yellow-colored amorphous solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.45(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.46-8.34(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.67(\mathrm{~m}$, $2 \mathrm{H}), 7.58-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.73(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H})$, 1.66 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.6,166.1,155.1,154.9,147.4,142.5,139.7,139.6$, $134.0,135.6,130.5,130.3,129.3,128.5,128.4,127.5,124.2,123.8,123.4,123.3,60.9,52.8$, 28.8.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} 440.1974$; Found 440.1985 .
FT-IR (thin film, cm^{-1}) v 3063, 2976, 1740, 1718, 1663, 1487, 1437, 1380, 1346, 1269, 1234, 1213, 1191, 1155, 1096.

Methyl (E)-6-((-tertbutoxycarbonyl)amino)-1-(tert-butylimino)-2-picolinoyl-1,2-dihydroisoquinoline-3-carboxylate (2ah)

1ah ($199 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}$, $0.75 \mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC ($113 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.00$ equiv), 2 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from 2:1 to EtOAc) $195 \mathrm{mg}(82 \%)$ of a white-off solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.18(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 191-193{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.28(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{dt}, J$ $=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.80$ (ddd, $J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.7,166.1,154.9,154.3,152.3,147.5,140.4,140.3$, 138.3, 135.6, 127.7, 126.3, 123.7, 123.4, 123.3, 122.3, 113.1, 81.6, 60.7, 52.7, 28.7, 28.3.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{5}$ 479.2294; Found 479.2302.
FT-IR (thin film, cm^{-1}) v 3311, 2978, 1734, 1653, 1570, 1545, 1436, 1362, 1350, 1285, 1241, 1192, 1155, 7098, 1051.

Methyl (E)-1-(tert-butylimino)-6-(1,3-dioxoisoindolin-2-yl)-2-picolinoyl-1,2-dihydroisoquinoline-3-carboxylate (2ai)

1ai ($214 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}$, 2.00 equiv), $\mathrm{Co}(\mathrm{dpm})_{2}\left(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(205$ $\mathrm{mg}, 0.75 \mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t-$ $\operatorname{BuNC}\left(113 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.00\right.$ equiv), 1 h at $100{ }^{\circ} \mathrm{C}$. After
column chromatography (gradient petroleum ether/EtOAc from 4:1 to $1: 1$) 210 mg (83%) of white amporhous solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.17(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-7.95(\mathrm{~m}$, $3 \mathrm{H}), 7.88-7.75$ (m, 4H), 7.56 (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (ddd, $J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (s, 3H), 1.63 (s, 9H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.5,166.7,165.8,155.1,154.5,147.3,140.5,137.1$, $135.9,134.9,133.9,131.4,128.9,127.7,127.4,124.1,124.1,124.1,123.8,123.6,61.0,52.8$, 28.7.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{5}$ 509.1825; Found 509.1833.
FT-IR (thin film, cm^{-1}) v 2978, 1726, 1653, 1569, 1430, 1378, 1347, 1286, 1245, 1193, 1103, 1084.

Methyl (E)-1-(tert-butylimino)-7-fluoro-2-picolinoyl-1,2-dihydroisoquinoline-3carboxylate (2aj)

1aj ($150 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), PivOH ($102 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}\left(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75$ mmol, 1.50 equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC $(113 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.00$ equiv), 2 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from $4: 1$ to $1: 1$), 120 mg (63%) of a white solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.35(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 144-146^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.38(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.72-$ $7.66(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{ddd}, J=7.6,4.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.4,165.9,162.5(\mathrm{~d}, J=253.3 \mathrm{~Hz}), 154.8(\mathrm{~d}, J=5.7$ Hz), 154.4, 147.0, 139.4 (d, $J=3.1 \mathrm{~Hz}$), 135.9, 133.7, 131.8 (d, $J=8.8 \mathrm{~Hz}$), 130.7 (d, $J=8.8$ $\mathrm{Hz}), 123.9,123.6,123.5,121.5(\mathrm{~d}, J=25.6 \mathrm{~Hz}), 110.5(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 60.9,52.7,28.6$. ${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta-105.86--105.96(\mathrm{~m})$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F} 382.1567$; Found 382.1564 . FT-IR (thin film, cm^{-1}) v 3072, 2977, 1742, 1662, 1498, 1442, 1343, 1288, 1248, 1210, 1187, 1145, 1111, 1002.

Methyl (E)-1-(tert-butylimino)-7-chloro-2-picolinoyl-1,2-dihydroisoquinoline-3carboxylate (2ak)

1ak ($158 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), $\operatorname{PivOH}(102 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75$ $\mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC ($113 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.00$ equiv), 2 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from 3:1 to $1: 1$), 129 mg (65\%) of a white-off solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.43(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 144-146^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.37(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (ddd, $J=4.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{td}, J$ $=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{ddd}, J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.4,165.8,154.5,154.2,147.0,140.1,136.0,135.8$, $135.0,131.9,131.2,129.4,125.6,123.9,123.6,123.5,61.0,52.8,28.6$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{ClNa} 420.1091$; Found 420.1088.
FT-IR (thin film, cm^{-1}) v 2978, 1740, 1653, 1437, 1341, 1288, 1233, 1099.

Methyl (E)-5-bromo-1-(tert-butylimino)-2-picolinoyl-1,2-dihydroisoquinoline-3carboxylate (2al)

1al ($180 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC ($113 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.00$ equiv), 2 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from $4: 1$ to $1: 1$), $137 \mathrm{mg}(62 \%)$ of a white solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.49$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$, mp $163-165^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.73(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dt}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (dd, $J=8.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{ddd}, J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.4,165.7,155.8,154.3,147.2,140.9,136.2,136.0$, 134.6, 131.7, 129.8, 126.4, 123.9, 123.6, 122.8, 61.1, 52.9, 28.6.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Br} 442.0766$; Found 442.0771.
FT-IR (thin film, cm^{-1}) v 3072, 2978, 1743, 1719, 1663, 1474, 1445, 1353, 1288, 1252, 1212, 1190, 1128, 1098, 1005.

Methyl (E)-1-(tert-butylimino)-7-iodo-2-picolinoyl-1,2-dihydroisoquinoline-3carboxylate (2am)

$1 \mathrm{am}(204 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), $\mathrm{PivOH}(102 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}\left(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75$ $\mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC $(113 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.00$ equiv), 2 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from $4: 1$ to $1: 1$), 154 mg (63%) of a yellow-colored amorphous solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.36(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.64-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J$ $=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{ddd}, J=4.8,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{ddd}, J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}$, $3 \mathrm{H}), 1.61$ ($\mathrm{s}, 9 \mathrm{H}$)
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.3,165.8,154.3,154.1,147.0,140.2,139.5,136.0$, $135.6,135.4,131.4,129.0,123.9,123.6,123.6,95.9,61.0,52.8,28.7$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{I} 490.0628$; Found 490.0639. FT-IR (thin film, cm^{-1}) v 3061, 2976, 1735, 1715, 1653, 1472, 1437, 1363, 1343, 1314, 1288, 1238, 1210, 1190, 1152, 1097.

Methyl (E)-1-(tert-butylimino)-2-picolinoyl-7-(trifluoromethoxy)-1,2-dihydroisoquinoline-3-carboxylate (2an)

1an ($183 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75$ $\mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC ($113 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.0$ equiv), 1 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from 3:1 to $1: 1$), $136 \mathrm{mg}(61 \%)$ of a greyish solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.41(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 102-104{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.42(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{tt}, J=2.2,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.61$ (m, 2H), 7.52 (ddq, $J=8.8,2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (ddd, $J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.5,165.8,155.3,154.2,149.2(\mathrm{q}, J=1.8 \mathrm{~Hz}), 146.8$, $140.4,136.0,134.9,131.2,130.2,124.9,124.0,123.7,123.2,120.5(\mathrm{q}, ~ J=259.4 \mathrm{~Hz}), 117.0$, 61.0, 52.8, 28.6.
${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta-57.78$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}_{3} 448.1484$; Found 448.1482 .

FT-IR (thin film, cm^{-1}) v 2979, 1743, 1662, 1442, 1340, 1259, 1213, 1187.

Methyl (E)-1-(tert-butylimino)-2-picolinoyl-6-(3-(trifluoromethyl)phenoxy)-1,2-dihydroisoquinoline-3-carboxylate (2ao)

$1 \mathbf{a o}(221 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}$, 2.00 equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($205 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}$ (1500 $\mathrm{mg}), t$-BuNC ($113 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.0$ equiv), 1 h at $100{ }^{\circ} \mathrm{C}$.

After column chromatography (gradient petroleum ether/EtOAc from $3: 1$ to $1: 1$), 172 mg (66\%) of a yellowish oil was obtained. $\mathrm{R}_{\mathrm{f}}=0.35(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29-8.19(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{ddd}, J=4.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ - 7.43 (m, 3H), $7.43-7.33$ (m, 2H), $7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.12$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (ddd, $J=7.6,4.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.6,165.8,158.7,155.6,154.8,147.3,140.7,138.5$, $135.8,132.8(\mathrm{q}, ~ J=32.8 \mathrm{~Hz}), 130.9,129.4,126.8,123.6,123.5(\mathrm{q}, ~ J=272.4 \mathrm{~Hz}), 123.5$, 123.4, 123.4, 123.3, 122.7, 121.6 (q, $J=3.8 \mathrm{~Hz}$), 117.0 (q, $J=3.8 \mathrm{~Hz}$), 112.2, 60.8, 52.7, 28.7.
${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ-62.7.
HRMS (ESI-TOF) m/z: [M+H] calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}$ 524.1797; Found 524.1812.
FT-IR (thin film, cm^{-1}) v 3065, 2977, 2932, 1740, 1723, 1661, 1624, 1587, 1567, 1491, 1449, 1410, 1349, 1327, 1278, 1244, 1229, 1170, 1129, 1096, 1064, 1005.

Methyl (E)-4-(tert-butylimino)-5-picolinoyl-4,5-dihydrothieno[3,2-c]pyridine-6carboxylate (2ap)

1ap ($144 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC ($113 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.00$ equiv), 2 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from 2:1 to pure EtOAc), 118 mg (64\%) of a yellow-colored oil was obtained. $\mathrm{R}_{\mathrm{f}}=0.22(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.47(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{ddd}, J=4.7,1.8,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54-7.42$ (m, 2H), 7.37 (tdd, $J=7.8,1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ $6.80(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.6,165.9,154.8,150.3,148.3,147.5,140.2,138.4$, 135.7, 130.8, 123.4, 122.9, 119.3, 60.7, 52.8, 28.9.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 370.1225$; Found 370.1213 .
FT-IR (thin film, cm^{-1}) v 3327, 3072, 2958, 1719, 1653, 1349, 1288, 1213, 1194.

Methyl (E)-4-(tert-butylimino)-5-picolinoyl-4,5-dihydrofuro[3,4-c]pyridine-6carboxylate (2aq)

1aq ($136 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC $(113 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.00$ equiv), 2 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from 2:1 to pure EtOAc$), 118 \mathrm{mg}(67 \%)$ of a yellowish oil was obtained. $\mathrm{R}_{\mathrm{f}}=0.13(\mathrm{EtOAc} / \mathrm{PE}=$ $1 / 1$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{ddd}, J$ $=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 168.1, 166.2, 154.6, 150.1, 147.2, 146.9, 141.6, 141.1, 135.7, 133.4, 123.9, 123.6, 123.6, 119.5, 61.2, 52.8, 29.0.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na} 376.1273$; Found 376.1277.
FT-IR (thin film, cm^{-1}) v 3454, 3321, 3121, 2976, 2931, 1740, 1719, 1663, 1576, 1522, 1460, 1434, 1396, 1361, 1347, 1319, 1258, 1228, 1194, 1164, 1103, 1090, 1033.

Methyl (E)-1-(tert-butylimino)-2-picolinoyl-1,2-dihydrobenzo $[g]$ isoquinoline-3carboxylate (2ar)

 1ar ($166 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75$ mmol, 1.50 equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg}), t$-BuNC $(113 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.00$ equiv), 2 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (petroleum ether/EtOAc 1:1) 148 mg (72\%) of a yellow-colored amorphous solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.26(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.86-8.77(\mathrm{~m}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.14-$ $8.07(\mathrm{~m}, 1 \mathrm{H}), 8.06-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{td}, J=7.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (ddd, $J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.5,166.3,156.4,154.5,147.3,137.8,135.7,134.1$, 133.5, 132.7, 129.5, 128.2, 128.1, 127.7, 127.4, 126.7, 124.6, 123.7, 123.4, 61.1, 52.7, 28.8. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} 414.1818$; Found 414.1824. FT-IR (thin film, cm^{-1}) v 3443, 2980, 1725, 1647, 1437, 1348, 1233.

Methyl (E)-1-(cyclohexylimino)-2-picolinoyl-1,2-dihydroisoquinoline-3-carboxylate

 (2ba)

1aa ($141 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg})$, cyclohexyl isocyanide ($122 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.00$ equiv), 2 h at $100^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from $4: 1$ to $1: 1$) $186 \mathrm{mg}(96 \%)$ of a white-off solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.22$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 158-160{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=12.2,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{tt}, J=12.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~d}$, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{qd}, J=12.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.32(\mathrm{~m}$, $4 \mathrm{H}), 1.23-0.96(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 167.3,166.2,154.3,153.1,147.3,140.0,137.1,136.0$, $130.7,129.6,129.2,128.0,125.6,124.4,124.1,123.6,58.3,52.8,31.8,30.2,26.2,26.0,25.5$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} 390.1818$; Found 390.1815. FT-IR (thin film, cm^{-1}) v 3294, 2933, 2855, 1740, 1718, 1653, 1437, 1363, 1289, 1243, 1216, 1098.

Methyl (E)-1-(pentylimino)-2-picolinoyl 1,2-dihydroisoquinoline-3-carboxylate (2ca)

1aa ($141 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg})$, pentyl isocyanide ($125 \mu \mathrm{~L}, 1.00$ mmol, 2.00 equiv), 2 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from $4: 1$ to $1: 1$) $148 \mathrm{mg}(79 \%)$ of a white solid was obtained. $\mathrm{R}_{\mathrm{f}}=$ $0.31(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 113-115^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}, \mathrm{ppm}, \mathrm{t}=60{ }^{\circ} \mathrm{C}\right) 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.72(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 4.20-3.80(\mathrm{~m}, 5 \mathrm{H}), 1.65(\mathrm{~s}, 2 \mathrm{H}), 1.31$ $-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.78(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 167.9,166.0,156.0,152.4,147.3,140.2,137.3,136.2$, $130.8,129.8,128.2,127.7,125.0,124.5,124.4,123.4,52.8,50.6,29.3,27.8,22.4,14.0$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}$ 378.1818; Found 378.1822.
FT-IR (thin film, cm^{-1}) v 3347, 3067, 2954, 2931, 2871, 1739, 1718, 1653, 1569, 1440, 1399, 1294, 1243, 1212, 1145, 1090.

Methyl (E)-1-(phenethylimino)-2-picolinoyl 1,2-dihydroisoquinoline-3-carboxylate (2da)

 1aa ($141 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.50$ equiv), THF (5 mL), $4 \AA \mathrm{MS}(1500 \mathrm{mg})$, (2 -isocyanoethyl)benzene ($125 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 2.00$ equiv), 2 h at $100{ }^{\circ} \mathrm{C}$. After column chromatography (petroleum ether/EtOAc from 2:1) $206 \mathrm{mg}(80 \%)$ of a white-off solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.32$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 160-162{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}, \mathrm{ppm}) \delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-7.46$ (m, 6 H), $7.30-7.07(\mathrm{~m}, 6 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.1,166.0,155.9,152.2,147.3,140.2,138.7,137.4$, $136.3,130.8,129.8,128.9,128.6,128.3,128.2,127.4,126.3,125.0,124.6,123.5,52.8,51.7$, 34.3.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} 412.1661$; Found 412.1667.
FT-IR (thin film, cm^{-1}) v 3298, 3067, 2950, 1735, 1716, 1653, 1565, 1497, 1448, 1395, 1337, 1290, 1243, 1152, 1103.

(2-(3-Methoxy-3-oxo-2-(picolinamido)prop-1-en-1-yl)phenyl)((Z)-2,2,6,6-tetramethyl-5-oxohept-3-en-3-yl)oxy) cobalt (5)

Isolated from the reaction mixture (functionalization of Methyl (Z)-3-phenyl-2-(picolinamido)acrylate (1aa) under standard reaction conditions after 25 min) by analogy to Grigorjeva and co-workers. ${ }^{1}$
After column chromatography (gradient petroleum ether/EtOAc from 5/1 to $1 / 1$, then MeCN$) 18 \mathrm{mg}(7 \%)$ of a red crystalline solid was obtained.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 9.07$ (ddd, $J=5.6,1.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (td, $J=7.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67$ (ddd, $J=7.8,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=7.4,5.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H})$, $7.18(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{td}, J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{td}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 198.74,197.62,170.51,165.50,157.91,148.84,142.99$, $139.68,137.75,134.91,133.73,127.73,126.74,126.52,125.24,123.67,89.83,52.03,40.92$, 40.83, 28.83, 28.22.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Co} 523.1643$; Found 523.1653.
FT-IR (thin film, cm^{-1}) v 2965, 1705, 1621, 1598, 1527, 1497, 1400, 1362, 1290, 1200.

2.3. Cleavage of picolinamide directing group

Products 3a and 3b were synthesized according to Scheme $\mathbf{S - 3}$ in one step procedures, starting from isoquinoline derivative 2aa.

Scheme S-3. Cleavage of picolinamide directing group

(1-(Tert-butylamino)isoquinolin-3-yl)methanol (3a)

Methyl
(E)-1-(tert-butylimino)-2-picolinoyl-1,2-dihydroisoquinoline-3carboxylate (2aa) ($50 \mathrm{mg}, 0.137 \mathrm{mmol}$) solution in dry THF (3 mL) was cooled in a water/ice bath to $0{ }^{\circ} \mathrm{C}$. $\mathrm{LiAlH}_{4}(8 \mathrm{mg}, 0.21 \mathrm{mmol}, 3.0$ equiv) was slowly added under Ar atmosphere, and the resulting solution was stirred for 15 minutes at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature, and stirred for additional 15 min , until the full consumption of starting material was observed by TLC. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, and the solvent was evaporated under reduced pressure. After column chromatography (petroleum ether/EtOAc from $4: 1$ to $1: 1$) 29 mg (93\%) of a yellow oil was obtained. $\mathrm{R}_{\mathrm{f}}=0.74(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.70-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.54$ (ddd, $\left.J=8.1,6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.40(\mathrm{ddd}, J=8.2,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{q}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=1.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 154.1,150.0,137.7,129.7,127.3,125.4,121.4,117.8$, 105.3, 64.3, 51.9, 29.4.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}$ 231.1497; Found 231.1503. FT-IR (thin film, cm^{-1}) v 3404, 2962, 2926, 1627, 1569, 1528, 1438, 1398, 1362, 1318, 1215.

Methyl 1-(tert-butylamino)isoquinoline-3-carboxylate (3b)

Zn dust ($7 \mathrm{mg}, 0.11 \mathrm{mmol}, 2$ equiv) was added to a methyl (E)-1-(tert-butylimino)-2-picolinoyl-1,2-dihydroisoquinoline-3-carboxylate (2aa) (20 $\mathrm{mg}, 0.055 \mathrm{mmol})$ solution in $\mathrm{EtOH}(0.5 \mathrm{~mL})$ at room temperature. AcOH $(0.5 \mathrm{~mL})$ was then added and the reaction mixture was stirred at room temperature for 30 minutes. The solvent was evaporated under reduced pressure. After column chromatography (petroleum ether/EtOAc from $4: 1$ to $1: 1$) 9.5 mg (67\%) of a colorless oil was obtained. $\mathrm{R}_{\mathrm{f}}=$ $0.80(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.80(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.64-$ $7.51(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 166.3,153.1,138.9,135.6,128.7,127.9,126.8,120.4$, 119.0, 112.7, 51.2, 51.1, 28.0.

HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ 259.1447; Found 259.1454.
FT-IR (thin film, cm^{-1}) v 3423, 3061, 2958, 2927, 1729, 1591, 1569, 1527, 1327, 1292, 1212, 1089, 1003.

3. Mechanistic experiments

3.1. Ligand exchange experiments

Scheme S-4. C-H imination using $\mathrm{Co}(\mathrm{dpm})_{3}$ as a catalyst

A 4 mL vial with a screw cap (PTFE/Liner) was charged with methyl (Z)-3-phenyl-2(picolinamido)acrylate (1aa) ($28.2 \mathrm{mg}, 0.10 \mathrm{mmol}$), Co(dpm) $)_{3}(12 \mathrm{mg}, 0.02 \mathrm{mmol}, 20$ $\mathrm{mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv), NaOPiv ($25 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.00$ equiv), and THF (1 mL). Then t-BuNC ($23 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 2.00$ equiv) was added and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature and analyzed by TLC (petroleum ether/EtOAc 1/1). To the reaction mixture $\mathrm{Ph}_{3} \mathrm{CH}(24.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added, mixture was diluted with potassium sodium tartrate $(1.5 \mathrm{~mL})$ and extracted with EtOAc (1.5 mL). Combined organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated. The residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. No formation of product 2aa was observed.

Scheme S-5. Ligand exchange experiments

Step 1: A 4 mL vial with a screw cap (PTFE/Liner) was charged with substrate 1aa (13 mg , $0.04 \mathrm{mmol}), \mathrm{Co}(\mathrm{dpm})_{2}(19.0 \mathrm{mg}, 0.04 \mathrm{mmol})$, THF $(1 \mathrm{~mL})$ and was stirred at $100^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was allowed to cool to room temperature. The precipitate was filtered and washed with THF and dried under reduced pressure.

Step 2: A 4 mL vial with a screw cap (PTFE/Liner) was charged with cobalt complex 4, $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($18 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.50$ equiv), NaOPiv ($11 \mathrm{mg}, 0.09 \mathrm{mmol}, 2.00$ equiv), and THF $(1 \mathrm{~mL})$. Then t-BuNC ($7 \mu \mathrm{~L}, 0.07 \mathrm{mmol}, 1.50$ equiv) was added and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature and analyzed by TLC (petroleum ether/EtOAc 1/1). To the reaction mixture $\mathrm{Ph}_{3} \mathrm{CH}(24.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added, mixture was diluted with potassium sodium tartrate (1.5 mL) and extracted with EtOAc (1.5 mL). Combined organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated. The residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}$-NMR spectroscopy, 55% yield for 2aa was observed.

3.2. H / D scrambling experiments

Scheme S-6. H/D scrambling in substrate 1ab

A 4 mL vial with a screw cap (PTFE/Liner) was charged with methyl (Z)-3-(4-methylphenyl)-2-(picolinamido)acrylate (1aa) ($29.7 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Co}(\mathrm{dpm})_{2}(8.5 \mathrm{mg}, 0.02$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv), and THF (1 mL). Then AcOD $(50 \mu \mathrm{~L})$ was added and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature and analyzed by TLC (petroleum ether/EtOAc 1/1). To the reaction mixture $\mathrm{Ph}_{3} \mathrm{CH}(24.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added, mixture was diluted with potassium sodium tartrate $(1.5 \mathrm{~mL})$ and extracted with EtOAc $(1.5 \mathrm{~mL})$. Combined organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated. The residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}$-NMR spectroscopy.

Scheme S-7. H/D scrambling in deuterated substrate D-1ab

A 4 mL vial with a screw cap (PTFE/Liner) was charged with Methyl (Z)-3-(4-methylphenyl-2-d)-2-(picolinamido)acrylate (D-1ab) ($29.7 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Co}(\mathrm{dpm})_{2}(8.5 \mathrm{mg}, 0.02 \mathrm{mmol}$, $20 \mathrm{~mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv), and THF (1 mL). Then $\mathrm{AcOH}(50 \mu \mathrm{~L})$ was added and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature and analyzed by TLC (petroleum ether/EtOAc 1/1). To the reaction mixture $\mathrm{Ph}_{3} \mathrm{CH}(24.4 \mathrm{mg}$, $0.10 \mathrm{mmol}, 1$ equiv) was added, mixture was diluted with potassium sodium tartrate (1.5 mL) and extracted with EtOAc (1.5 mL). Combined organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated. The residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.

3.3. KIE

Scheme S-8. Kinetic isotope effect from competition experiment

A 4 mL vial with a screw cap (PTFE/Liner) was charged with Methyl (Z)-3-(4-methylphenyl-2-d)-2-(picolinamido)acrylate (D-1ab) ($29.7 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Co}(\mathrm{dpm})_{2}(8.5 \mathrm{mg}, 0.02 \mathrm{mmol}$, $20 \mathrm{~mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv), and THF (1 mL). Then t - $\mathrm{BuNC}(23 \mu \mathrm{~L}$, $0.20 \mathrm{mmol}, 2.00$ equiv) and $\mathrm{AcOH}(50 \mu \mathrm{~L})$ were added and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 25 min , cooled to room temperature and analyzed by TLC (petroleum ether/EtOAc 1/1). To the reaction mixture $\mathrm{Ph}_{3} \mathrm{CH}(24.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added, mixture was diluted with potassium sodium tartrate (1.5 mL) and extracted with EtOAc (1.5 $\mathrm{mL})$. Combined organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated. The residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.

3.4. Substrate competition experiment

Scheme S-9. Substrate competition experiment

A 4 mL vial with a screw cap (PTFE/Liner) was charged with methyl (Z)-3-(4-methoxypheny)-2-(picolinamido)acrylate 2as ($16 \mathrm{mg}, 0.05 \mathrm{mmol}$), methyl (Z)-3-(4-cyanoxypheny)-2-(picolinamido)acrylate 2ac ($16 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathrm{Co}(\mathrm{dpm})_{2}(8.5 \mathrm{mg}, 0.02$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(41 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.50$ equiv), and THF (1 mL). Then $t-\mathrm{BuNC}$ ($23 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 2.0$ equiv) was added and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature and analyzed by TLC (petroleum ether/EtOAc 1/1). To the reaction mixture $\mathrm{Ph}_{3} \mathrm{CH}(24.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added, mixture was diluted with potassium sodium tartrate $(1.5 \mathrm{~mL})$ and extracted with EtOAc (1.5 mL). Combined organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated. The residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.

3.5. Complex 5 reaction with \boldsymbol{t}-BuNC

Scheme S-10. Stochiometric reaction of complex $\mathbf{5}$ with t-BuNC

A 4 mL vial with a screw cap (PTFE/Liner) was charged with $\mathbf{5}(16 \mathrm{mg}, 0.03 \mathrm{mmol})$ and THF $(1 \mathrm{~mL})$. Then t-BuNC ($6 \mu \mathrm{~L}, 0.06 \mathrm{mmol}, 2.00$ equiv) was added was added and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 15 min , cooled to room temperature and analyzed by TLC (petroleum ether/EtOAc 1/1). To the reaction mixture $\mathrm{Ph}_{3} \mathrm{CH}(24.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added, mixture was diluted with potassium sodium tartrate $(1.5 \mathrm{~mL})$ and extracted with

EtOAc (1.5 mL). Combined organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated. The residue was dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. Quantitative yield for 2aa was observer.

4. Synthesis of PDE5 inhibitor

Isocyanide $\mathbf{S 5}$ was obtained in two steps from commercially available hydrochloride S3. Acylation with ethylformate yielded formamide $\mathbf{S 4}$ which was then dehydrated with phosphorous oxychloride to obtain isocyanide in moderate yield (Scheme S-11).

Scheme S-11. Synthesis of isocyanide S5

N -(3-chloro-4-methoxybenzyl)formamide (S4)

Step 1: Hydrochloride S3 (310 mg , 1.50 mmol) was dissolved in 1 M $\mathrm{NaOH}_{(\mathrm{aq})}$ solution (20 mL). The solution was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness under reduced pressure to obtain colorless oil, which was used directly for step 2.
Step 2: The crude amine from Step 1 was dissolved in ethylformate (5 mL) and refluxed overnight. The solvent was evaporated under reduced pressure to obtain formamide S4, which was used in next step without further purification.

2-Chloro-4-(isocyanomethyl)-1-methoxybenzene (S5)

Formamide S4 was dissolved in dry DCM (20 mL) under an Ar
 atmosphere. DIPEA ($702 \mu 1,4.00 \mathrm{mmol}, 2.70$ equiv) was added and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Slowly $\mathrm{POCl}_{3}(154 \mu \mathrm{l}, 1.65 \mathrm{mmol}, 1.10$ equiv) was added and the reaction mixture was stirred for 5 min , and then allowed to warm up to room temperature. After consumption of starting material (2h), solvent was evaporated under reduced pressure. After column chromatography (petroleum ether/EtOAc 4:1) 148 mg (54\%) of a yellow oil was obtained.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H})$.

[^2]The synthesis of PDE5 inhibitor S11 was achieved in 5 steps employing our developed methodology (Scheme S-12). First, benzaldehyde $\mathbf{S 6}$ reaction with phosphonate $\mathbf{S 2}$ gave phenylalanine unsaturated ester $\mathbf{S 7}$ in quantitative yield. Subsequent C-H bond imination step with isocyanide $\mathbf{S 5}$ gave corresponding imine $\mathbf{S 8}$ in 67% yield. The picolinamide directing group was cleaved under reductive conditions using $\mathrm{Zn} / \mathrm{AcOH} / \mathrm{MeOH}$ system to obtain 1-aminoisoquinoline S9 in 76\% yield. Finally, bromination with NBS, followed by Suzuki coupling reaction delivered the desired product $\mathbf{S 1 1}$ in 73% yield over two steps.

Scheme S-12. Synthesis of PDE5 inhibitor S11

Methyl-(Z)-3-(4-(benzyloxy)phenyl)-2-(picolinamido)acrylate (S6)

Prepared by the general procedure from 4-(benzyloxy)benzaldehyde ($829 \mathrm{mg}, 3.90 \mathrm{mmol}, 1.20$ equiv), $\mathrm{DBU}(728 \mu \mathrm{~L}, 4.88 \mathrm{mmol}, 1.50$ equiv), methyl 2-(dimethoxyphosphoryl)-2-(picolinamido)acetate $\mathbf{S 2}$ ($984 \mathrm{mg}, 3.23 \mathrm{mmol}, 1.00$ equiv), THF (25 mL). After column chomotography (eluent: petroleum ether/EtOAc $=1 / 4$ to $1 / 1$) product $\mathbf{S 6}(1.28 \mathrm{~g}, 100 \%)$ was obtained as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.59(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.93-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 2H), 5.06 (s, 2H), 3.86 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 165.8,162.7,159.8,149.3,148.4,137.5,136.5,132.6$, $131.8,128.7,128.1,127.5,126.7,126.6,122.8,122.0,115.0,70.0,52.6$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} 389.1501$; Found 389.1508.

FT-IR (thin film, cm^{-1}) v 3344, 3064, 3031, 2950, 1720, 1694, 1638, 1602, 1570, 11511, 1488, 1463, 1435, 1381, 1254, 1176, 1087.

Methyl-(Z)-7-(benzyloxy)-1-((3-chloro-4-methoxybenzyl)imino)-2-picolinoyl-1,2-dihydroisoquinoline-3-carboxylate (S8)

Prepared by the general procedure for C-H bond imination from ester S6 ($194 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv), NaOPiv ($125 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Co}(\mathrm{dpm})_{2}(43 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(205 \mathrm{mg}, 0.75 \mathrm{mmol}$, 1.50 equiv), THF (5 mL), 4 $\AA \mathrm{MS}(1500 \mathrm{mg})$, isocyanide $\mathbf{S 5}(180 \mathrm{mg}$, $1.00 \mathrm{mmol}, 2.00$ equiv), 1 h at $100^{\circ} \mathrm{C}$. After column chromatography (gradient petroleum ether/EtOAc from $4: 1$ to $1: 1$), $189 \mathrm{mg}(67 \%)$ of a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.66$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, \mathrm{ppm}$) $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.37(\mathrm{~m}$, 3H), $7.33-7.17$ (m, 6H), $7.01-6.89$ (m, 2H), $6.77-6.67$ (m, 2H), 5.57 (d, $J=14.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.76\left(\mathrm{~s}, 3 \mathrm{H}\right.$, overlaps with $\mathrm{H}_{2} \mathrm{O}$ signal), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, \mathrm{ppm}\right) \delta 169.9,167.0,161.3,156.1,155.0,153.5,148.8$, $139.0,137.9,137.5,134.4,132.4,131.4,131.1,130.6,130.3,129.8,129.3,128.6,126.3$, $125.9,125.6,125.0,123.4,113.1,105.3,71.3,56.6,53.3,53.1$.

HRMS (ESI-TOF) m/z: [M+H] calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Cl} 568.1639$; Found 568.1650.
FT-IR (thin film, cm^{-1}) v 2950, 1730, 1655, 1501, 1444, 1383, 1294, 1258, 1206, 1064.

Methyl-7-(benzyloxy)-1-((3-chloro-4-methoxybenzyl)amino)isoquinoline-3-carboxylate (S9)

Zn dust ($106 \mathrm{mg}, 1.68 \mathrm{mmol}, 4$ equiv) was added to the imine $\mathbf{S 1 1}$ (242 $\mathrm{mg}, 0.42 \mathrm{mmol}$) solution in EtOH (2 mL) at room temperature. AcOH (2 mL) was then added and the reaction mixture was stirred at room temperature for 1 h . The solvent was evaporated under reduced pressure. After column chromatography (petroleum ether/EtOAc from 4:1 to 1:1) $194 \mathrm{mg}(76 \%)$ of a colorless oil was obtained. $\mathrm{R}_{\mathrm{f}}=0.29(\mathrm{EtOAc} / \mathrm{PE}=1 / 2)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 5.15(\mathrm{~s}$, 2H), 4.76 (d, $J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.98$ ($\mathrm{s}, 3 \mathrm{H}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 167.2,158.9,154.2,153.7,138.0,136.1,132.7,131.4$, $130.5,128.7,128.3,128.0,127.6,122.3,121.8,120.9,115.4,112.0,103.2,70.5,56.1,52.4$, 45.1.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl} 463.1425$; Found 463.1435 .
FT-IR (thin film, cm^{-1}) v 3397, 2948, 2836, 1715, 1621, 1537, 1502, 1405, 1293, 1256, 1210, 1064, 1025.

Methyl-7-(benzyloxy)-1-((3-chloro-4-methoxybenzyl)amino)-4-(3,4,5-trimethoxyphenyl) isoquinoline-3-carboxylate (S11)

Step 1: To a solution of 1-aminoquinoline $\mathbf{S 9}(70 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$, NBS ($26 \mathrm{mg}, 0.3 \mathrm{mmol}, 2.00$ equiv) was added and stirred at $60^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was filtered through a short silicagel pad and evaporated under reduced pressure to obtain bromide S10 which was used in the next step directly without further purification.
Step 2: Bromide $\mathbf{S 1 0}$ from Step $1, \mathrm{Na}_{2} \mathrm{CO}_{3}(64 \mathrm{mg}, 0.60 \mathrm{mmol}, 4.00$ equiv), ($3,4,5$-trimethoxyphenyl)boronic acid ($38 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.20$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12$ $\mathrm{mg}, 0.01 \mathrm{mmol}, 7 \mathrm{~mol} \%$) were dissolved in a dry, degassed $\mathrm{PhCH}_{3}(6 \mathrm{~mL})$, EtOH (3 mL), $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ solvent system and stirred at $90{ }^{\circ} \mathrm{C}$ for 2 h . The solvent was evaporated under reduced pressure. After column chromatography (petroleum ether/EtOAc from 4:1 to 1:2) 69 mg (73% over two steps) of a light brown crystalline solid was obtained. $\mathrm{Rf}_{\mathrm{f}}=0.68$ $(\mathrm{EtOAc} / \mathrm{PE}=1 / 1), \mathrm{mp} 70-72{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-$ $7.27(\mathrm{~m}, 7 \mathrm{H}), 7.15(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{t}, J=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.69$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.5,158.0,154.4,152.9,152.8,138.4,137.2,136.1$, 132.7, 132.6, 131.5, 130.5, 129.0, 128.8, 128.4, 128.1, 127.6, 124.4, 122.4, 121.4, 119.6, 112.1, 107.5, 102.9, 70.5, 61.0, 56.2, 56.2, 45.2.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Cl}$ 629.2055; Found 629.2071.
FT-IR (thin film, cm^{-1}) v 3414, 3004, 2935, 2837, 1719, 1582, 1534, 1500, 1453, 1410, 1344, 1253, 1209, 1176, 1126, 1064, 1025.

References

(1) Lukasevics, L.; Cizikovs, A.; Grigorjeva, L. Org. Lett. 2021, 23, 2748-2753.

NMR spectra

' $\mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

220	210	200	190	180	170	160	150	140	130	120	110		0	1	70	60	50	40	30	20	10			
												f1 (ppm)											-	-20

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

¢0n m	8
人天゚	i
4	｜

$\begin{array}{llllllllllllllll}144 & 142 & 140 & 138 & 136 & 134 & 132 & 130 & 128 & 126 & 124 & 122 & 120\end{array}$ f1（ppm）

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{\prime} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{\prime} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

	1	1			1	1	1	1	1	1	1	1				1	5					
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{19}$ F-NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^3]${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	
																		40	30				

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{\prime} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19}$ F-NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19}$ F-NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1ar

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		 	
\|		Y	\|

(

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

							$\begin{aligned} & 1 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \\ & \hline \end{aligned}$								$\stackrel{\stackrel{1}{c}}{\underset{\sim}{\dot{1}}}$					$\begin{aligned} & 1 \\ & \stackrel{\circ}{6} \end{aligned}$				
2.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-(

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$$
\stackrel{\rightharpoonup}{\dot{I}}
$$

$$
\iiint J
$$

 f1 (ppm)

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
Cois

							$\begin{aligned} & T T_{1}^{1} \\ & \text { CO } \\ & \hline \end{aligned}$									$\begin{aligned} & \top \\ & \hline \\ & \hline \end{aligned}$								
2.0	11.5	11.0	10.5	10.	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3	2.5	2.0	1.5	1.0	5	0.0
			1						7.5	7.0	6.5			5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0		0.0

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	
												ppm)											

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

2aj

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

2aj

$\begin{array}{llllllll}164 & 163 & 162 & 161 & 160 & 159 & 158 & 157 \\ 156 & 155 & 154 & 153 & 152\end{array}$ f1 (ppm)

${ }^{19}$ F-NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

20	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{f} 1 \end{array}$	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(

$\stackrel{\ominus}{\infty}$

2am

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19}$ F-NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$
 $\stackrel{\infty}{\stackrel{\infty}{2}}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19} \mathrm{~F}-\mathrm{NMR}, 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

			19	180									90									
20	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{f} 1 \end{array}$	$\begin{aligned} & 100 \\ & \mathrm{om}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, dmso- $\mathrm{d}_{6}, 60{ }^{\circ} \mathrm{C}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{\prime} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, dmso- $\mathrm{d}_{6}, 60^{\circ} \mathrm{C}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

	$\stackrel{\infty}{\infty}$		$\stackrel{9}{7}$		+

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80		60		10		10		
																						0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{+}{\infty} \stackrel{+}{\infty}$

	1	1	1	18	170	16	15	1	1		1		1	1	70	1	5	1		10	10	
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$

」 / J/l / / /f J

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{\prime} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

'H-NMR, $400 \mathrm{MHz}, \mathrm{MeOD}$

${ }^{13} \mathrm{C}$-NMR, $100 \mathrm{MHz}, \mathrm{MeOD}$

220	210	200	190	180	170	160	150	140	130	120		100	90	80	70	60	50	40	30	20
											1 (ppm)									2

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

:20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											f1 (pp											

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{18} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

[^0]: ${ }^{\text {a }}$ NMR yield using triphenylmethane as an internal standard.

[^1]: ${ }^{\text {a }}$ NMR yield using triphenylmethane as an internal standard.
 ${ }^{\mathrm{b}} 1.5$ equiv t-BuNC; ${ }^{\mathrm{c}} 300 \mathrm{mg} 4 \AA \mathrm{MS}$.

[^2]: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 157.99(\mathrm{t}, J=7.2 \mathrm{~Hz}), 155.22,128.86,126.36,125.47$, 123.10, 112.36, 56.37, 44.66 (t, $J=7.2 \mathrm{~Hz}$).

[^3]:

