Isothiourea-Catalysed Enantioselective Radical Conjugate Addition under Batch and Flow Conditions

Roberto del Río-Rodríguez, $\dagger^{\text {a }}$ Matthew T. Westwood, \dagger^{b} Marina Sicignano, ${ }^{\text {a }}$ Martin Juhl, ${ }^{\text {b }}$ Jose A. Fernández-Salas, ${ }^{\text {a,c }}$ José Alemán*a,c,d and Andrew D. Smith*b
${ }^{a}$ Departamento de Química Orgánica (Módulo 1), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049-Madrid, Spain. E-mail: jose.aleman@uam.es; webpage: www.uam.es/jose.aleman ${ }^{b}$ EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK. Email: ads10@st-andrews.ac.uk 'Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
${ }^{d}$ Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid. \dagger These authors contribute equally.

1. General methods and commercial starting materials 2
1.1. Batch Setup 3
1.2. Flow Setup 4
2. General procedure A: Synthesis of starting materials 5
2.1. General procedure A1: Synthesis of α, β-unsaturated anhydrides 5
2.2. General procedure A2: Synthesis of α-amino acids 9
2.3. General procedure A3: Synthesis of α-silyl anilines 11
3. Optimization tables 13
4. General procedure B: Enantioselective Radical Conjugate Addition to Anhydrides 17
4.1. General procedure B1: Addition of α-Amino acids in batch conditions 17
4.2. General procedure B2: Addition of α-Amino acids in flow conditions 17
4.3. General procedure B3: Addition of α-Silyl anilines in batch conditions 18
4.4. Experimental Data and Characterization of Products 4 18
5. Stern-Volmer Luminescence quenching studies 29
6. References 31
7. Nuclear Magnetic Resonance Spectra 32
8. Single Crystal X-Ray Structure of γ-lactam $4 i$ 94

1. General methods and commercial starting materials

Starting materials and solvents for the reactions were acquired from commercial sources (Acros Organics, Aldrich Chemical Co., Alfa Aesar, TCI Chemicals, Fluorochem and/or BLDpharm) unless otherwise specified. For thin layer chromatography (TLC), silica gel plates with fluorescence indicator 254 nm were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of potassium permanganate in water followed by heating. Flash column chromatography was performed using Geduran ${ }^{\circledR}$ Silica Gel 60 (0.040-0.063 nm). Cyclohexane and ethyl acetate for flash column chromatography were acquired from commercial sources and were used without previous purification. NMR spectra were acquired on a Bruker Avance 300 MHz spectrometer, running at 300 and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals $\left(\mathrm{CDCl}_{3}\right.$, 7.26 ppm ; and $\mathrm{CD}_{3} \mathrm{OD}, 3.31 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}-\mathrm{NMR} ; 77.2 \mathrm{ppm}$ and 49.0 ppm for ${ }^{13} \mathrm{C}-\mathrm{NMR}$, respectively). ${ }^{13} \mathrm{C}$-NMR was acquired on a broad band decoupled mode. ${ }^{19} \mathrm{~F}$-NMR spectra were acquired on a Bruker Avance 500 MHz spectrometer running at 470 MHz . The following abbreviations are used to describe peak patterns when appropriate: s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet), p (pentet), sext (sextet), hept (heptet), m (multiplet), dd (doublet of doublets), dt (double of triplets), qd (quartet of doublets). Electrospray ionization has been used for measuring the exact mass (indicated for each case): HRMS (ESI) (Electrospray ionization mass spectroscopy) was acquired with an Agilent Technologies 6120 Quadrupole LC/MS. In this technique, MassWorks software ver. 4.0.0.0 (Cerno Bioscience) was used for the formula identification. MassWorks is a MS calibration software which calibrates for isotope profile as well as for mass accuracy, allowing highly accurate comparisons between calibrated and theoretical spectra. ${ }^{1}$

1.1. Batch Setup

For the photocatalytic reactions in batch, a 23W CFL was used as light source.

Figure S1. Emission spectrum of 23W CFL (400-700 nm) and imagine of the lamp used.

1.2. Flow Setup

-Homemade Setup

All continuous-flow experiments were carried out using a homemade flow-setup (Figure S2) including a 15 mL perfluoroalcoxy (PFA) reactor coil (inner diameter: 1.6 mm , external diameter 3.0 mm) and a lamp white LED (60W). Each reaction mixture was injected under inert atmosphere using Vapourtec E-series injection system.

Figure S2

-Vapourtec setup

Some preliminary experiments were carried out using a commercially available Vapourtec Eseries device equipped with a UV-150 photoreactor (Figure S3) including a 15 mL perfluoroalcoxy (PFA) reactor coil (inner diameter: 1.6 mm , external diameter 3.0 mm) and a lamp LED ($60 \mathrm{~W}, 420 \mathrm{~nm}, 450 \mathrm{~nm}$, or 470 nm).

Figure S3

2. General procedure A: Synthesis of starting materials

2.1. General procedure A1: Synthesis of α, β-unsaturated anhydrides

They were prepared following a modified procedure described in the literature: ${ }^{2}$ A solution of pivaloyl chloride (1.0 equiv.) in THF (5 mL) was added dropwise over an ice-cooled solution of the corresponding α, β-unsaturated acid (10.0 mmol) and triethylamine (1.0 equiv.) in THF (20 mL). The mixture was stirred 30 minutes at $0^{\circ} \mathrm{C}$, then it was warmed to room temperature and stirred for further 30 min . The crude was filtered and rinsed with THF ($2 \times 5 \mathrm{~mL}$). The filtrated was concentrated under reduced pressure to give pure product $\mathbf{1}$ as a colourless oil.

(E)-But-2-enoic pivalic anhydride (1a)

Following the general procedure A1, (E)-but-2-enoic acid ($860.9 \mathrm{mg}, 10$ mmol) and pivaloyl chloride ($1.2 \mathrm{~mL}, 10 \mathrm{mmol}$) gave product 1 a as a colourless oil (96% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.21-6.73(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{dd}, \mathrm{J}=15.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, \mathrm{~J}=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.3,162.1,149.4,122.3,40.1,26.7(3 \mathrm{C}), 18.5 \mathrm{ppm}$.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+}$: 171.1016; found: 171.1027 .
(E)-Pent-2-enoic pivalic anhydride (1b)

Following the general procedure $A 1,(E)$-pent-2-enoic acid ($1.00 \mathrm{~g}, 10$ mmol) and pivaloyl chloride ($1.2 \mathrm{~mL}, 10 \mathrm{mmol}$) gave product 1 b as a colourless oil (88% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13(\mathrm{dt}, J=15.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dt}, J=15.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-$ 2.18 (m, 2H), 1.26 (s, 9H), 1.08 (t, J = 7.4 Hz, 3H) ppm.
${ }^{13}$ C-NMR (75 MHz, CDCl_{3}): $\delta 174.3,162.4,155.4,119.9,40.1,26.7(3 \mathrm{C}), 25.8,12.0 \mathrm{ppm}$.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+}$: 185.1172; found: 185.1170

(E)-Oct-2-enoic pivalic anhydride (1c)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.08(\mathrm{dt}, J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (qd, J = 7.3, 1.6 Hz, 2H), 1.62-1.40(m, 2H), 1.32-1.24(m, 13H), 0.88(t, J=6.7 Hz, 3H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.3,162.3,154.4,120.7,40.1,32.6,31.4,27.6,26.7,26.6$ (3C), 22.5, 14.0 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+}$: 227.1642; found: 227.1647.
(E)-4-Methylpent-2-enoic pivalic anhydride (1d)

Following the general procedure A1, (E)-4-methylpent-2-enoic acid $(1.14 \mathrm{~g}, 10 \mathrm{mmol})$ and pivaloyl chloride ($1.2 \mathrm{~mL}, 10 \mathrm{mmol}$) gave product 1d as a colourless oil (91% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.05(\mathrm{dd}, J=15.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-$ $2.40(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR (75 MHz, CDCl_{3}): $\delta 174.3,162.7,160.1,118.1,40.1,31.4,26.7$ (3C), 21.1 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+}$: 199.1329; found: 199.1311.

(E)-Cinnamic pivalic anhydride (1e)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 3 \mathrm{H})$, $6.44(\mathrm{dd}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.2,162.8,148.6,133.8,131.4,129.2$ (2C), 128.7 (2C), 117.0, 40.2, 26.7 (3C) ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+}$: 233.1172; found: 233.1166 .

(E)-3-(4-Methoxyphenyl)acrylic pivalic anhydride (1f)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.71(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.86(\mathrm{~m}, 2 \mathrm{H})$, $6.30(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.4,163.2,162.4,148.4,130.6$ (2C), 126.6, 114.7 (2C), 114.3, 55.6, 40.1, 26.8 (3C) ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]^{+}:$263.1278; found: 263.1781.
(E)-3-(4-(Trifluoromethyl)phenyl)acrylic pivalic anhydride (1g)
Following the general procedure A1, (E)-3-(4-
(trifluoromethyl)phenyl)acrylic acid ($2.19 \mathrm{~g}, 10 \mathrm{mmol}$) and
solid $(80 \%$ yield $)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.78(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 4 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}$, 1H), 1.33 (s, 9H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.0,162.3,146.4,137.2,132.7(\mathrm{q}, \mathrm{J}=32.8 \mathrm{~Hz}), 128.8(2 \mathrm{C}), 126.2$ (q, $J=3.8 \mathrm{~Hz}, 2 \mathrm{C}), 123.9$ (q, $J=272.3 \mathrm{~Hz}), 119.7,40.3,26.7$ (3C) ppm.
${ }^{19}$ F-NMR (470 MHz, CDCl_{3}): $\delta-63.0 \mathrm{ppm}$.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+}: 301.1046$; found: 301.1045 .

(E)-3-(3-Bromophenyl)acrylic pivalic anhydride (1h)

Following the general procedure A1, (E)-3-(3-bromophenyl)acrylic acid ($2.27 \mathrm{~g}, 10 \mathrm{mmol}$) and pivaloyl chloride ($1.2 \mathrm{~mL}, 10 \mathrm{mmol}$) gave product 1h as a colourless oil (86% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 1 \mathrm{H})$, $7.49-7.42(m, 1 H), 7.35-7.22(m, 1 H), 6.42(d, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.0,162.3,146.6,135.8,134.0,131.2,130.7,127.2,123.3,118.5$, 40.2, 26.7 (3C) ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrO}_{3}[\mathrm{M}-\mathrm{H}]^{+}: 311.0277$; found: 311.0289 .

Pivalic (E)-3-(thiophen-2-yl)acrylic anhydride (1i)

Following the general procedure A1, (E)-3-(thiophen-2-yl)acrylic acid $(1.54 \mathrm{~g}, 10 \mathrm{mmol})$ and pivaloyl chloride ($1.2 \mathrm{~mL}, 10 \mathrm{mmol}$) gave product $\mathbf{1 i}$ as a pale yellowish solid (79% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.85(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{dd}, J=5.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.2,162.7,140.7,139.0,132.6,130.2,128.6,115.4,40.1,26.7$ (3C) ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{+}:$239.0736; found: 239.0721 .
(E)-4-phenoxybut-2-enoic pivalic anhydride (1j)
Following the general procedure A1, (E)-4-phenoxybut-2-
enoic acid ($475 \mathrm{mg}, 2.67 \mathrm{mmol}$) gave product $\mathbf{1 j}$ as a yellowish oil (87% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dt}, \mathrm{J}=15.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}$, $1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{dt}, J=15.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, \mathrm{J}=3.8,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$ ppm.
${ }^{13}$ C-NMR (101 MHz, CDCl_{3}): $\delta 173.9,161.7,157.9,146.8,129.7,121.7,120.8,114.7,66.3,40.1$, 26.6 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires 285.1103 , found 285.1090 (-2.4 ppm).

(E)-4,4-dimethylpent-2-enoic pivalic anhydride (1k)

Following general procedure A1, (E)-4,4-dimethylpent-2-enoic acid ($369 \mathrm{mg}, 2.88 \mathrm{mmol}$) and pivaloyl chloride ($0.35 \mathrm{~mL}, 2.88 \mathrm{mmol}$) gave product $\mathbf{1 k}$ as a clear, colourless liquid (90% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.08(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}$, 9H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 174.3,163.7,163.0,116.2,40.1,34.4,28.6,26.7$.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires 235.1310, found 235.1300 (-2.1 ppm)

2.2. General procedure A2: Synthesis of α-amino acids

They were prepared following a modified procedure described in the literature: ${ }^{3}$ The corresponding aniline (10 mmol) and ethyl 2-bromoacetate (10 mmol) were dissolved in dry DMF (50 mL). $\mathrm{NaH}(10 \mathrm{mmol})$ was slowly added and left stirring at room temperature overnight. Solvent was removed under reduced pressure and brine (50 mL) was added to the residue. Then, it was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$) and combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude ester was reflux for 1 hour in 5 M aqueous solution of NaOH (2.5 equiv.) and ethanol (5 mL). After cooling to room temperature, it was extracted with ethyl acetate (20 mL) and aqueous layer was acidified with concentrated HCl to $\mathrm{pH}=5$, observing a precipitate. The precipitate was filtered, washed with water (5 mL) and dried using a schelnk line to give pure α-amino acid 2.

(4-Fluorophenyl)glycine (2b)

Following the general procedure $A 2$, 4-fluoroaniline ($1.11 \mathrm{~g}, 10 \mathrm{mmol}$) and ethyl 2-bromoacetate ($1.1 \mathrm{~mL}, 10 \mathrm{mmol}$) gave, after hydrolysis, product $\mathbf{2 b}$ as a pale brown solid (56\% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 6.87(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{dd}, J=8.8,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 175.0,157.4$ (d, J = 233.6 Hz), 145.9, 116.3 (d, J=22.6 Hz, 2C), 114.9 (d, J=7.5 Hz, 2C), 46.8 ppm .
${ }^{19}$ F-NMR (470 MHz, CD ${ }_{3} \mathrm{OD}$): δ - 130.3 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{FNO}_{2}[\mathrm{M}-\mathrm{H}]^{+}: 170.0612$; found: 170.0615 .

(4-Chlorophenyl)glycine (2c)

Following the general procedure A2, 4-chloroaniline (1.27 g, 10 mmol) and ethyl 2-bromoacetate ($1.1 \mathrm{~mL}, 10 \mathrm{mmol}$) gave, after hydrolysis, product 2c as a pale orange solid (20% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 174.8,148.2,129.8(2 \mathrm{C}), 122.9,115.0$ (2C), 46.2 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClNO}_{2}[\mathrm{M}-\mathrm{H}]^{+}: 186.0316$; found: 186.0326 .

p-Tolylglycine (2d)

Following the general procedure A2, p-toluidine ($1.07 \mathrm{~g}, 10 \mathrm{mmol}$) and ethyl 2-bromoacetate ($1.1 \mathrm{~mL}, 10 \mathrm{mmol}$) gave, after hydrolysis, product 2d as a pale orange solid (69% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 6.95(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 2.20$ (s, 3H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 175.2,146.8,130.5$ (2C), 128.3, 114.5 (2C), 47.0, 20.5 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{+}: 166.0863$; found: 166.08760 .

(5-Isopropyl-2-methylphenyl)glycine (2e)

Following the general procedure A2, 5-isopropyl-2-methylaniline (1.49 g, 10 mmol) and ethyl 2-bromoacetate ($1.1 \mathrm{~mL}, 10 \mathrm{mmol}$) gave, after hydrolysis, product $\mathbf{2 e}$ as a pale brown solid (81% yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 6.92$ (d, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.50$ (dd, $J=7.6,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.78(\mathrm{hept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR (75 MHz, CD 3 OD) : $\delta 175.2,148.9,146.7,131.0,121.3,116.5,109.5,46.5,35.4,24.6$ (2C), 17.1 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{+}$: 208.1332; found: 208.1341 .

2.3. General procedure A3: Synthesis of α-silyl anilines

They were prepared following a procedure described in the literature: ${ }^{5} n$-Butyllithium (1.1 equiv, 2.5 M in hexanes) was added dropwise to a solution of the corresponding aniline (1.0 equiv.) in anhydrous THF (0.33 M) under N_{2}. The resulting mixture was allowed to warm to room temperature and stir for 3 hours. After cooling to $0^{\circ} \mathrm{C}$, (lodomethyl)trimethylsilane (1.1 equiv.) was added dropwise to the mixture. The resulting mixture was then allowed to warm to room temperature and stir overnight. Sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) was then added slowly, followed by an equal volume of $\mathrm{H}_{2} \mathrm{O}$. The mixture was then extracted with $\mathrm{EtOAc}(\times 3)$, the organic phases were then combined, washed (brine), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the crude product. The crude product was then purified, as specified, either via column chromatography or distillation under reduced pressure.

N -((trimethylsilyl)methyl)aniline (5a)

Following the general procedure A3, aniline ($0.91 \mathrm{~mL}, 10.0 \mathrm{mmol}$) and (iodomethyl)trimethylsilane ($1.63 \mathrm{~mL}, 11.0 \mathrm{mmol}$) gave product 5 a as a yellow oil (90% yield) after vacuum distillation.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.21-7.15(\mathrm{~m}, 2 \mathrm{H})$ 6.72-6.64(m,3H$), 3.46(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 2 \mathrm{H}), 0.14$ (s, 9H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.7,129.3,117.1,112.5,33.7,-2.5 \mathrm{ppm}$.

2-methyl-N-((trimethylsilyl)methyl)aniline (5b)

Following the general procedure A 3 , o-toluidine $(1.06 \mathrm{~mL}, 10.0 \mathrm{mmol}$ and (iodomethyl)trimethylsilane ($1.63 \mathrm{~mL}, 11.0 \mathrm{mmol}$) gave product $\mathbf{5 b}$ as a clear, colourless oil (68% yield) after vacuum distillation.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.62$ (m, 1H), $3.34(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.4,129.9,127.3,121.7,116.6,109.5,33.4,17.4,-2.5 \mathrm{ppm}$

3-(trifluoromethyl)-N-((trimethylsilyl)methyl)aniline (5c)

Following the general procedure A3, 3-(trifluoromethyl)aniline (1.61 g, 10.0 mmol) and (iodomethyl)trimethylsilane ($1.63 \mathrm{~mL}, 11.0 \mathrm{mmol}$) gave product 5 c as a clear oil (52\%) after vacuum distillation.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.76$ (m, 1H), $3.67(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{19}$ F-NMR (471 MHz, CDCl 3): δ-62.8 ppm

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}$requires 248.1082, found 248.1077

N-((trimethylsilyl)methyl)-[1,1'-biphenyl]-2-amine (5d)

Following the general procedure A3, [1,1'-biphenyl]-2-amine (1.69 g, 10.0 mmol) and (iodomethyl)trimethylsilane gave product 5d ($1.63 \mathrm{~mL}, 11.0$ mmol) as a pale yellow oil (57\% yield) after column chromatography (1% to 5% EtOAc in petrol).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.45-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.09$ $(\mathrm{m}, 1 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 1 \mathrm{H}), 3.384(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR (101 MHz, CDCl_{3}): 147.3, 139.5, 129.9, 129.5, 128.9 (2C), 127.5, 127.3, 116.6, 110.1, 33.3, -2.6.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}$requires 256.1522, found 256.1522

3. Optimization tables

Table S1. Optimization of addition of α-amino acids in batch conditions.

. HCl
(3a)
(2R,3S)-HyperBTM (2R,3S)-HyperBTM•HCI
(3b)

(S)-BTM
(3c)

Entry ${ }^{\text {a }}$	Deviation from optimized conditions	Yield (\%) ${ }^{\text {b }}$	er (\%) ${ }^{\text {c }}$
1	No deviation	65 (59)	81:19
2	(2R,3S)-HyperBTM $\cdot \mathrm{HCl}(3 \mathrm{~b})$ instead of 3a	n.r.	-
3	(S)-BTM (3c) instead of 3a	24	55:45
4	fac-Ir(ppy $)_{3}$ instead of $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	45	70:30
5	4-CzIPN instead of Ru(bpy $)_{3}\left(\mathrm{PF}_{6}\right)_{2}$	30	80:20
6	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}$ instead of $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	n.r.	-
7	$\mathrm{CH}_{3} \mathrm{CN}$ instead of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{3} \mathrm{Ph}$	70	70:30
8	$\mathrm{CH}_{3} \mathrm{Ph}$ instead of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{3} \mathrm{Ph}$	n.r.	-
9	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CF}_{3} \mathrm{Ph}$ instead of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{3} \mathrm{Ph}$	59	81:19
10		34	81:19
11	DCM: $\mathrm{CH}_{3} \mathrm{Ph}$ instead of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{3} \mathrm{Ph}$	25	83:17
12	TBAB: 0.5 equiv. of instead of 1.0 equiv.	76	75:25
13	TBAB: 1.5 equiv. of instead of 1.0 equiv.	53	81:19
14	$\mathrm{K}_{2} \mathrm{HPO}_{4}$ (1 equiv.)	40	81:19
15	$\mathrm{K}_{2} \mathrm{HPO}_{4}$ instead of TBAB	42	75:25
16	TBAC instead of TBAB	46	80:20
17	TBAI instead of TBAB	30	82:18
18	Blue LED	43	79:21
19	No light	n.r.	-
20	No photocatalyst	n.r.	-

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a}$ (0.15 mmol), $\mathbf{2 a}$ (0.18 mmol), TBAB (1 equiv.), Ru(bpy) ${ }_{3}\left(\mathrm{PF}_{6}\right)_{2}$ ($2 \mathrm{~mol} \%$), ($2 R, 3 \mathrm{~S}$)-HyperBTM (3a) ($20 \mathrm{~mol} \%$), MeCN:MePh (1:1, 0.05 M) at r.t, under N_{2} was irradiated using a 23 W CFL during 4 h . ${ }^{\text {b }}{ }^{1} \mathrm{H}$-NMR yields using 1,3,5trimethoxybenzene as internal standard. Isolated yield in brackets. ${ }^{\text {c }}$ Enantiomeric ratio was measured by Supercritical Fluid Chromatography (SFC) using chiral columns.

Table S2. Optimization of addition of α-amino acids in flow conditions.

Entry $^{\boldsymbol{a}}$	Deviation from optimized conditions	Yield (\%) ${ }^{\boldsymbol{b}}$	er (\%) ${ }^{\boldsymbol{c}}$
1	No deviation	$\mathbf{8 1} \mathbf{(7 3)}$	$\mathbf{7 3 : 2 7}$
2	$0.13 \mathrm{~mL} / \mathrm{min}\left(120^{\prime}\right)$ instead of $0.25 \mathrm{~mL} / \mathrm{min}\left(60^{\prime}\right)$	81	$73: 27$
3	Absence of $\mathrm{K}_{2} \mathrm{HPO}_{4}$	<5	$73: 27$
4	$0.5 \mathrm{~mL} / \mathrm{min}\left(30^{\prime}\right)$ instead of $0.25 \mathrm{~mL} / \mathrm{min}\left(60^{\prime}\right)$	62	$73: 27$
5	Purple LED instead of White LED	70	$73: 27$
6	Blue LED $(450 \mathrm{~nm})$ instead of White LED	57	$73: 27$
7	Blue LED $(470 \mathrm{~nm})$ instead of White LED	20	$73: 27$

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a}$ (0.15 mmol), 2a (0.18 mmol), TBAB (1 equiv.), $\mathrm{K}_{2} \mathrm{HPO}_{4}$ (0.5 equiv.), Ru(bpy) $)_{3}\left(\mathrm{PF}_{6}\right)_{2}(2 \mathrm{~mol} \%),(2 R, 3 S)$-HyperBTM (3a) (20 mol\%), MeCN:MePh (1:1, 0.05 M) at r.t, under N_{2} was pump by Vapourtec system at $0.25 \mathrm{~mL} / \mathrm{min}(60 \mathrm{~min}$ residence time) and irradiated with White LED. ${ }^{\text {b }}{ }^{1} \mathrm{H}-\mathrm{NMR}$ yields using $1,3,5-$ trimethoxybenzene as internal standard. Isolated yield in brackets. ${ }^{\text {c }}$ Enantiomeric ratio was measured by Supercritical Fluid Chromatography (SFC) using chiral columns.

Table S3. Optimization of Brønsted acid using α-silyl amines.

(3a) ($20 \mathrm{~mol} \%$), MeCN (0.05 M) at r.t, under N_{2} and irradiated with 23 W CFL. ${ }^{\mathrm{b}}{ }^{1} \mathrm{H}-\mathrm{NMR}$ yields using 1,3,5trimethoxybenzene as internal standard. Isolated yield in brackets. ${ }^{c}$ Enantiomeric ratio was measured by GC analysis on a chiral stationary phase.

Table S4. Optimization of solvent using α-silyl amines.

${ }^{\text {a }}$ Reaction conditions: 5a (0.15 mmol), 1a (0.18 mmol), Ru(bpy) $)_{3}\left(\mathrm{PF}_{6}\right)_{2}(2 \mathrm{~mol} \%),(2 S, 3 R)-\mathrm{HyperBTM} \cdot \mathrm{HCl}$
(3a) ($20 \mathrm{~mol} \%$), solvent $\left(0.05 \mathrm{M}\right.$) at r.t, under N_{2} and irradiated with 23 W CFL. ${ }^{\mathrm{b}}{ }^{1} \mathrm{H}-\mathrm{NMR}$ yields using 1,3,5trimethoxybenzene as internal standard. Isolated yield in brackets. ${ }^{c}$ Enantiomeric ratio was measured by GC analysis on a chiral stationary phase.

4. General procedure B: Enantioselective Radical Conjugate

Addition to Anhydrides

4.1. General procedure B1: Addition of α-Amino acids in batch conditions

Anhydride 1 ($0.18 \mathrm{mmol}, 1.2$ equiv.) was added to a sealed vial followed by Ru(bpy $)_{3}\left(\mathrm{PF}_{6}\right)_{2}(2.6$ $\mathrm{mg}, 0.003 \mathrm{mmol}$), ($2 R, 3 S$)-HyperBTM $3 \mathrm{a}(9.3 \mathrm{mg}, 0.03 \mathrm{mmol})$, tetrabutylammonium bromide $(48.4 \mathrm{mg}, 0.15 \mathrm{mmol})$ and α-amino acid $2(0.15 \mathrm{mmol})$. Toluene (1.5 mL) and acetonitrile (1.5 mL) were added to the vial followed by a magnetic stirrer. The vial was closed with a PTFE/rubber septum and three freeze-pump-thaw cycles were performed. The reaction was irradiated using a white 23 W CFL lamp at room temperature for 4 hours. After that, solvents were evaporated under reduced pressure and the crude was checked by ${ }^{1} \mathrm{H}$-NMR using 1,3,5-trimethoxybencene as internal standard. The crude was purified by flash column chromatography using the eluents indicated in each case to give final product 4.

4.2. General procedure B2: Addition of α-Amino acids in flow conditions

Anhydride 1 ($0.18 \mathrm{mmol}, 1.2$ equiv.) was added to a sealed vial followed by $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(2.6$ $\mathrm{mg}, 0.003 \mathrm{mmol})$, $(2 R, 3 S)$-HyperBTM $3 \mathrm{a}(9.3 \mathrm{mg}, 0.03 \mathrm{mmol})$, tetrabutylammonium bromide $(48.4 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{HPO}_{4}(13.1 \mathrm{mg}, 0.075 \mathrm{mmol})$ and α-amino acid $2(0.15 \mathrm{mmol})$. Toluene $(1.5 \mathrm{~mL})$ and acetonitrile (1.5 mL) were added. The vial was closed with a PTFE/rubber septum and three freeze-pump-thaw cycles were performed. The reaction was pumped by Vapourtec pump B with a $0.25 \mathrm{~mL} / \mathrm{min}$ flow rate (60 min residence time) and collected at the end of the reactor. After that, solvents were evaporated under reduced pressure and the crude was purified by flash column chromatography using the eluents indicated in each case to give the final product 4.

4.3. General procedure B3: Addition of α-Silyl anilines in batch conditions

A flame dried vial was charged with anhydride (1.2 equiv.), ($2 \mathrm{~S}, 3 \mathrm{R}$)-HyperBTM $\cdot \mathrm{HCl}(0.20$ equiv.) and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}(2 \mathrm{~mol} \%)$. Separately, both MeCN and PhMe were degassed via N_{2} or Ar sparging for >20 minutes. The α-silyl amine (1.0 equiv.) was then dissolved in $\mathrm{MeCN}: \mathrm{PhMe}$ (1:2, 0.05 M) and added to the other vial via syringe. The resulting mixture was then stirred under 23 W CFL irradiation overnight at room temperature. The mixture was then diluted with EtOAc and washed with sat. NaHCO_{3}. The aqueous phase was then extracted with $\mathrm{EtOAc}(\times 2)$, the organic phases were then combined, washed (brine), dried $\left(\mathrm{NaSO}_{4}\right)$ and concentrated under reduced pressure to give the crude residue. The crude product was then purified via column chromatography using the conditions specified.

4.4. Experimental Data and Characterization of Products 4

(R)-4-Methyl-1-phenylpyrrolidin-2-one (4a)

$0 \quad$ Following the general procedure $B,(E)$-but-2-enoic pivalic anhydride 1a (30.6 mg , 0.18 mmol) and phenylglycine $\mathbf{2 a}(22.7 \mathrm{mg}, 0.15 \mathrm{mmol})$ gave product $\mathbf{4 a}$ ($\mathrm{B} 1: 59 \%$ yield, 81:19 er; B2: 73\% yield, 73:27 er; B3: 62\% yield) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 85:15. $\mathrm{B} 1:[\alpha]^{20}{ }_{\mathrm{D}}=+1.56\left(c 0.64, \mathrm{CHCl}_{3}\right)\left\{\right.$ Lit. $\left.^{4}(e n t)[\alpha]^{22} \mathrm{D}=-3.1\left(c 1.152, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.67-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.07(\mathrm{~m}, 1 \mathrm{H}), 3.95$ (dd, J=9.4, 7.2 Hz, 1H), 3.45 (dd, J=9.4, 6.4 Hz, 1H), 2.76 (dd, $J=16.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.68-2.48$ (m, 1H), 2.26 (dd, J = 16.6, 7.2 Hz, 1H), 1.21 (d, J = 6.8 Hz, 3H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.0,139.6,129.0(2 \mathrm{C}), 124.6,120.1$ (2C), 56.1, 41.2, 26.5, 19.7 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}$: 176.1070; found: 176.1089.

B1: The enantiomeric excess was determined by SFC using a Chiralpak IG-3 column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ 90:10 during 20 min , flow rate $2.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=10.10 \mathrm{~min}, \tau_{\text {major }}=11.06 \mathrm{~min}(19: 81 \mathrm{er})$.

B2: The enantiomeric excess was determined by SFC using a Chiralpak IG-3 column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ $90: 10$ during 20 min , flow rate $2.0 \mathrm{~mL} / \mathrm{min}], \tau_{\text {minor }}=9.89 \mathrm{~min}, \tau_{\text {major }}=11.06 \mathrm{~min}(27: 73 \mathrm{er})$.

B3: The enantiomeric excess was determined by GC analysis using a Restek Rt- β DEXcst (length: 30 m , thickness: 0.25 mm , film thickness: $0.25 \mu \mathrm{~m}$, carrier gas: He, linear velocity: $28 \mathrm{cmsec}^{-1}$, temperature: $140^{\circ} \mathrm{C}, 20$ minute hold, ramp to $150^{\circ} \mathrm{C}\left(1^{\circ} \mathrm{C} \mathrm{min}^{-1}\right), 30$ minute hold, ramp to 180 ${ }^{\circ} \mathrm{C}\left(1^{\circ} \mathrm{C} \mathrm{min}-1\right): \tau_{\text {minor }}=61.37 \mathrm{~min}, \tau_{\text {major }}=61.72,89: 1 \mathrm{er}$.

(R)-4-Ethyl-1-phenylpyrrolidin-2-one (4b)

Following the general procedure $B,(E)$-pent-2-enoic pivalic anhydride 1b ($33.2 \mathrm{mg}, 0.18 \mathrm{mmol}$) and phenylglycine 2 a ($22.7 \mathrm{mg}, 0.15 \mathrm{mmol}$) gave product 4b (B1: 53\% yield, 84:16 er; B2: 94\% yield, 76:24 er, B3: 88\%, 89:11 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 85:15. $\mathrm{B} 1:[\alpha]^{20}{ }_{\mathrm{D}}=+9.46\left(c 0.56, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.66-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.09(\mathrm{~m}, 1 \mathrm{H}), 3.93$ (dd, J = 9.6, 7.6 Hz, 1H), $3.50(\mathrm{dd}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.21(\mathrm{~m}, 2 \mathrm{H})$, $1.90-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR (75 MHz, CDCl_{3}): $\delta 173.9,139.6,129.0(2 \mathrm{C}), 124.6,120.1$ (2C), 54.4, 39.2, 33.3, 27.5, 11.9 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}$: 190.1226; found: 190.1230 .

B1: The enantiomeric excess was determined by SFC using a Chiralpak IG-3 column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ 90:10 during 20 min , flow rate $2.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=12.26 \mathrm{~min}, \tau_{\text {major }}=13.48 \mathrm{~min}(16: 87 \mathrm{er})$.

B2: The enantiomeric excess was determined by SFC using a Chiralpak IG-3 column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ 90:10 during 20 min , flow rate $2.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=12.52 \mathrm{~min}, \tau_{\text {major }}=13.90 \mathrm{~min}(24: 76 \mathrm{er})$.

B3: The enantiomeric excess was determined by HPLC using a Chiralcel AS-H column [99.5:0.5 Hexane:IPA, $\left.1 \mathrm{mLmin}^{-1}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right] \tau_{\text {minor }}=40.98 \mathrm{~min}, \tau_{\text {major }}=43.63 \mathrm{~min}(89: 11 \mathrm{er})$

(R)-4-Pentyl-1-phenylpyrrolidin-2-one (4c)

Following the general procedure $B,(E)$-oct-2-enoic pivalic anhydride 1c ($40.7 \mathrm{mg}, 0.18 \mathrm{mmol}$) and phenylglycine 2a ($22.7 \mathrm{mg}, 0.15 \mathrm{mmol}$) gave product 4c (B1: 77\% yield, 84:16 er; B2: 95\% yield, 76:24 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 85:15. $\mathrm{B} 1:[\alpha]^{20}{ }_{\mathrm{D}}=+3.50\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91(\mathrm{dd}, J=9.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=16.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$
(hept, J = 7.5 Hz, 1H), 2.29 (dd, J=16.4, 8.1 Hz, 1H), 1.59-1.42 (m, 2H), $1.42-1.13(\mathrm{~m}, 6 \mathrm{H}), 0.96$ $-0.86(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR (75 MHz, CDCl_{3}): $\delta 173.9,139.6,129.0(2 \mathrm{C}), 124.6,120.1$ (2C), 54.6, 39.6, 34.6, 31.9, 31.8, 27.3, 22.7, 14.2 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}$: 232.1696; found: 232.1695 .

B1: The enantiomeric excess was determined by SFC using a Chiralpak IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to 60:40 in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=3.62 \mathrm{~min}, \tau_{\text {major }}=3.81 \mathrm{~min}(16: 84 \mathrm{er})$.

B2: The enantiomeric excess was determined by SFC using a Chiralpak IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to $60: 40$ in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$, $\tau_{\text {minor }}=3.47 \mathrm{~min}, \tau_{\text {major }}=3.64 \mathrm{~min}(24: 76 \mathrm{er})$.

(S)-4-Isopropyl-1-phenylpyrrolidin-2-one (4d)

Following the general procedure $B,(E)$-4-methylpent-2-enoic pivalic anhydride 1d ($35.7 \mathrm{mg}, 0.18 \mathrm{mmol}$) and phenylglycine 2a ($22.7 \mathrm{mg}, 0.15$ mmol) gave product 4d (B1: 58\% yield, 87:13 er, B2: 87\% yield, 80.5:19.5 er, B3: 74\%, 93:7 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 85:15. $\mathrm{B} 1:[\alpha]^{20}{ }_{\mathrm{D}}=+13.63\left(c 0.80, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.04(\mathrm{~m}, 1 \mathrm{H}), 3.87$ (dd, $J=9.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.56(\mathrm{dd}, J=9.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=16.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=$ $16.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.52(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.0,139.6,129.0(2 \mathrm{C}), 124.6,120.1$ (2C), 53.2, 38.9, 37.9, 32.7, 20.6, 20.2 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}$: 204.1383; found: 204.1391.

B1: The enantiomeric excess was determined by SFC using a Chiralpak IB-3 column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ 95:5 during 20 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}], \tau_{\text {minor }}=9.18 \mathrm{~min}, \tau_{\text {major }}=10.20 \mathrm{~min}(13: 87 \mathrm{er})$.

B2: The enantiomeric excess was determined by SFC using a Chiralpak IB-3 column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ 95:5 during 20 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}], \tau_{\text {minor }}=9.50 \mathrm{~min}, \tau_{\text {major }}=10.46 \mathrm{~min}(19.5: 80.5 \mathrm{er})$.

B3: The enantiomeric excess was determined by HPLC using a Chiralpak IB column [99.5:0.5 Hexane:IPA, $\left.1 \mathrm{mLmin}^{-1}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right] \tau_{\text {major }}=35.21 \mathrm{~min}, \tau_{\text {minor }}=41.97 \mathrm{~min}(93: 7 \mathrm{er})$

(S)-1,4-Diphenylpyrrolidin-2-one (4e)

Following the general procedure $B,(E)$-cinnamic pivalic anhydride $\mathbf{1 e}$ (41.8 $\mathrm{mg}, 0.18 \mathrm{mmol})$ and phenylglycine $\mathbf{2 a}(22.7 \mathrm{mg}, 0.15 \mathrm{mmol})$ gave product 4e (B1: 50\% yield, 81:19 er, B2: 75\% yield, 70:30 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 85:15. $\mathrm{B} 1:[\alpha]^{20}{ }_{\mathrm{D}}=-4.33\left(c 0.60, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.21$ (dd, J = 9.7, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (dd, J = 9.7, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.79-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, \mathrm{J}=17.0,8.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.81 (dd, $J=17.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 173.1,141.8,139.3,129.2$ (2C), 129.1(2C), 127.5, 127.0 (2C), 124.9, 120.2 (2C), 55.9, 40.5, 37.4 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}$: 238.1226; found: 238.1232.

B1: The enantiomeric excess was determined by SFC using a Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to 60:40 in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=5.31 \mathrm{~min}, \tau_{\text {major }}=5.68 \mathrm{~min}(81: 19 \mathrm{er})$.

B2: The enantiomeric excess was determined by SFC using a Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to 60:40 in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=5.31 \mathrm{~min}, \tau_{\text {major }}=5.68 \mathrm{~min}(70: 30 \mathrm{er})$.
(S)-4-(4-Methoxyphenyl)-1-phenylpyrrolidin-2-one (4f)

Following the general procedure $B,(E)$-3-(4-methoxyphenyl)acrylic pivalic anhydride $\mathbf{1 f}$ ($47.2 \mathrm{mg}, 0.18 \mathrm{mmol}$) and phenylglycine 2a (22.7 $\mathrm{mg}, 0.15 \mathrm{mmol}$) gave product 4 f (B1: 79\% yield, 79:21 er; B2: 74\% yield, 72:28 er, B3: 35\% yield, 77:23 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 85:15. $\mathrm{B} 1:[\alpha]^{20}{ }_{\mathrm{D}}=-8.71\left(\mathrm{c} 0.85, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.19-$ $7.08(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{dd}, \mathrm{J}=9.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{p}, \mathrm{J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=16.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=16.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.2,158.9,139.3,133.7,129.0$ (2C), 128.0 (2C), 124.8, 120.1 (2C), 114.5 (2C), 56.1, 55.5, 40.7, 36.7 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{+}$: 268.1332; found: 268.1322 .

B1: The enantiomeric excess was determined by SFC using a Chiralpak IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to $60: 40$ in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=6.23 \mathrm{~min}, \tau_{\text {major }}=6.56 \mathrm{~min}(21: 79 \mathrm{er})$.

B2: The enantiomeric excess was determined by SFC using a Chiralpak IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to 60:40 in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=6.24 \mathrm{~min}, \tau_{\text {major }}=6.60 \mathrm{~min}(28: 72 \mathrm{er})$.

B3: The enantiomeric excess was determined by HPLC using a Chiralcel AD-H column (90:10 hexane:IPA, flow rate $\left.1 \mathrm{mLmin}^{-1}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right), \tau_{\text {minor }}=20.96 \mathrm{~min}, \tau_{\text {major }}=28.64 \mathrm{~min}(23: 77 \mathrm{er})$

(S)-1-Phenyl-4-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one (4g)

O Following the general procedure B, (E)-3-(4(trifluoromethyl)phenyl)acrylic pivalic anhydride $1 \mathrm{~g}(54.0 \mathrm{mg}, 0.18$ mmol) and phenylglycine $\mathbf{2 a}(22.7 \mathrm{mg}, 0.15 \mathrm{mmol})$ gave product $\mathbf{4 g}$ (B1: 42\% yield, 62:38 er, B2: 56\% yield, 81:19 er, B3 22\%, 76:24 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 80:20. $\mathrm{B} 1:[\alpha]^{20}{ }_{\mathrm{D}}=-2.79\left(c 0.43, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.67-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 1 \mathrm{H}), 4.25$ (dd, J = 9.7, 8.0 Hz, 1H), 3.90 (dd, J = 9.7, 7.0 Hz, 1H), 3.78 (p, J=8.0 Hz, 1H), 3.07 (dd, J=17.0, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.5,146.0,139.1,130.0(\mathrm{q}, \mathrm{J}=27.6 \mathrm{~Hz}), 129.2$ (2C), 127.4 (2C), 126.2 (q, $J=3.8 \mathrm{~Hz}, 2 \mathrm{C}), 125.1,124.2(\mathrm{q}, J=271.9 \mathrm{~Hz}), 120.2(2 \mathrm{C}), 55.5,40.2,37.1 \mathrm{ppm}$.
${ }^{19}$ F-NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathbf{- 6 2 . 6} \mathrm{ppm}$.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}$: 306.1100; found: 306.1095.

B1: The enantiomeric excess was determined by SFC using a Chiralpak IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to 60:40 in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=4.43 \mathrm{~min}, \tau_{\text {major }}=4.85 \mathrm{~min}(38: 62 \mathrm{er})$.

B2: The enantiomeric excess was determined by SFC using a Chiralpak IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to 60:40 in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=4.52 \mathrm{~min}, \tau_{\text {major }}=4.93 \mathrm{~min}(19: 81 \mathrm{er})$.

B3: The enantiomeric excess was determined by HPLC using a Chiralcel AD-H column [90:10 Hexane:IPA, flowrate $\left.1 \mathrm{mLmin}^{-1}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right]$, $\tau_{\text {minor }}=15.19 \mathrm{~min}, \tau_{\text {major }}=17.81$ (76:24 er).

(S)-4-(3-bromophenyl)-1-phenylpyrrolidin-2-one (4h)

Following the general procedure $\mathrm{B},(E)$-3-(3-bromophenyl)acrylic pivalic anhydride 1 h ($56.0 \mathrm{mg}, 0.18 \mathrm{mmol}$) and phenylglycine 2a ($22.7 \mathrm{mg}, 0.15$ mmol) gave product 4h (B1: 47\% yield, 79:21 er; B2: 61\% yield, 79:21 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 80:20. B1: $[\alpha]^{20}{ }_{\mathrm{D}}=-4.26\left(c 0.54, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.21-$ $7.08(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=9.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, \mathrm{J}=9.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.03$ (dd, $J=17.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.77 (dd, J=17.0, 8.8 Hz, 1H) ppm.
${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.6,144.1,139.1,130.8,130.7,130.2,129.1$ (2C), 125.5, 125.0, $123.2,120.2$ (2C), 55.5, 40.2, 37.0 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrNO}[\mathrm{M}-\mathrm{H}]^{+}$: 316.0332; found: 316.0349.

B1: The enantiomeric excess was determined by SFC using a Chiralpak IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to 60:40 in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=6.02 \mathrm{~min}, \tau_{\text {major }}=6.95 \mathrm{~min}(79: 21 \mathrm{er})$.

B2: The enantiomeric excess was determined by SFC using a Chiralpak IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to 60:40 in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=6.11 \mathrm{~min}, \tau_{\text {major }}=7.02 \mathrm{~min}(79: 21 \mathrm{er})$.

(R)-1-Phenyl-4-(thiophen-2-yl)pyrrolidin-2-one (4i)

Following the general procedure B, pivalic (E)-3-(thiophen-2-yl)acrylic anhydride 1 i ($42.9 \mathrm{mg}, 0.18 \mathrm{mmol}$) and phenylglycine 2a ($22.7 \mathrm{mg}, 0.15$ mmol) gave product 4i (B1: 25\% yield, 78:22 er; B2: 86\% yield, 65:35 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 85:15. $\mathrm{B} 1:[\alpha]^{20} \mathrm{D}=-1.25\left(c 0.32, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dt}, \mathrm{J}=4.9,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.14-2.96$ (m, 1H), $2.91-2.70(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.4,144.9,139.1,129.1,127.3,125.0,124.3,124.2,120.3,56.3$, 41.4, 33.3 ppm .

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NOS}[\mathrm{M}-\mathrm{H}]^{+}:$244.0791; found: 244.0809 .

B1: The enantiomeric excess was determined by SFC using a Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to 60:40 in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=5.56 \mathrm{~min}, \tau_{\text {major }}=5.89 \mathrm{~min}(78: 22 \mathrm{er})$. B2: The enantiomeric excess was determined by SFC using a Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to 60:40 in 8 min , flow rate $3.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=5.69 \mathrm{~min}, \tau_{\text {major }}=6.01 \mathrm{~min}(65: 35 \mathrm{er})$.

(R)-1-(4-fluorophenyl)-4-methylpyrrolidin-2-one (4j)

Following the general procedure $B,(E)$-but-2-enoic pivalic anhydride 1a ($30.6 \mathrm{mg}, 0.18 \mathrm{mmol}$) and (4-fluorophenyl)glycine 2b ($25.4 \mathrm{mg}, 0.15$ mmol) gave product 4j(B1: 35\% yield, 84:16 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 80:20. $B 1:[\alpha]^{20}{ }_{D}=-15.00\left(c 0.12, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.61-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.12-6.97(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{dd}, \mathrm{J}=9.4,7.4 \mathrm{~Hz}$, 1 H), 3.41 (dd, $J=9.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (dd, $J=16.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.66-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.24$ (dd, J $=16.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.8,159.6(\mathrm{~d}, \mathrm{~J}=244.1 \mathrm{~Hz}), 135.7(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}), 121.8(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{C}), 115.6$ (d, J = $22.3 \mathrm{~Hz}, 2 \mathrm{C}$), 56.3, 40.9, 26.5, 19.6 ppm .
${ }^{19}$ F-NMR (470 MHz, CDCl_{3}): δ-117.9 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FNO}[\mathrm{M}-\mathrm{H}]^{+}: 194.0976$; found: 194.0981.

B1: The enantiomeric excess was determined by SFC using a Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ 95:5 during 45 min , flow rate $2.0 \mathrm{~mL} / \mathrm{min}], \tau_{\text {minor }}=21.89 \mathrm{~min}, \tau_{\text {major }}=23.17 \mathrm{~min}(84: 16 \mathrm{er})$.
(R)-1-(4-chlorophenyl)-4-methylpyrrolidin-2-one (4k)

Following the general procedure $B,(E)$-but-2-enoic pivalic anhydride 1a ($30.6 \mathrm{mg}, 0.18 \mathrm{mmol}$) and (4-chlorophenyl)glycine 2c (27.8 mg, 0.15 mmol) gave product 4k (B1: 64\% yield, 87:13 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 80:20. $\mathrm{B} 1:[\alpha]^{20}{ }_{\mathrm{D}}=-6.67\left(c 0.45, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.59-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dd}, \mathrm{J}=9.4,7.6 \mathrm{~Hz}$, 1 H), $3.41(\mathrm{dd}, J=9.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=16.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J$ $=16.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR (75 MHz, CDCl_{3}): $\delta 174.0,138.2,129.6,129.0(2 \mathrm{C}), 121.1$ (2C), 55.9, 41.1, 26.4, 19.6 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClNO}[\mathrm{M}-\mathrm{H}]^{+}$: 210.0680; found: 210.0685.

B1: The enantiomeric excess was determined by SFC using a Chiralpak IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ 90:10 during 20 min , flow rate $2.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=10.23 \mathrm{~min}, \tau_{\text {major }}=10.65 \mathrm{~min}(13: 87 \mathrm{er})$.

(R)-4-methyl-1-(p-tolyl)pyrrolidin-2-one (4I)

Following the general procedure $B,(E)$-but-2-enoic pivalic anhydride 1a ($30.6 \mathrm{mg}, 0.18 \mathrm{mmol}$) and p-tolylglycine 2d ($24.8 \mathrm{mg}, 0.15 \mathrm{mmol}$) gave product 4 I (B1: 75\% yield, 78:22 er; B2: 80\% yield, 72:28 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 80:20. $\mathrm{B} 1:[\alpha]^{20}{ }_{\mathrm{D}}=-2.89\left(c 0.76, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{dd}, J=9.5,7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.42 (dd, $J=9.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=16.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, 3 H), 2.24 (dd, $J=16.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.20 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.8,137.1,134.3,129.5$ (2C), 120.2 (2C), 56.2, 41.1, 26.5, 21.0, 19.7 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}$: 190.1226; found: 190.1232.

B1: The enantiomeric excess was determined by SFC using a Chiralpak IG-3 column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ 90:10 during 20 min , flow rate $2.0 \mathrm{~mL} / \mathrm{min}], \tau_{\text {minor }}=13.59 \mathrm{~min}, \tau_{\text {major }}=15.06 \mathrm{~min}(22: 78 \mathrm{er})$.

B2: The enantiomeric excess was determined by SFC using a Chiralpak IG-3 column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ 90:10 during 20 min , flow rate $2.0 \mathrm{~mL} / \mathrm{min}], \tau_{\text {minor }}=12.41 \mathrm{~min}, \tau_{\text {major }}=13.55 \mathrm{~min}(28: 72 \mathrm{er})$.

(R)-1-(5-isopropyl-2-methylphenyl)-4-methylpyrrolidin-2-one (4m)

Following the general procedure $B,(E)$-but-2-enoic pivalic anhydride 1a ($30.6 \mathrm{mg}, 0.18 \mathrm{mmol}$) and (5-isopropyl-2-methylphenyl)glycine 2e (31.1 $\mathrm{mg}, 0.15 \mathrm{mmol}$) gave product 4m (B1: 79\% yield, 68:32 er; B2: 95\% yield, 63:37 er) as a colorless oil which crystallised on standing. Eluent: cyclohexane: ethyl acetate, slow gradient from 95:5 to 75:25. $\mathrm{B} 1:[\alpha]^{20}{ }_{\mathrm{D}}=-1.41\left(c 0.71, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=9.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=9.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-$ $2.54(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.18(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.0,147.8,137.3,132.8,131.2,126.1,124.6,58.2,39.8,33.7$, 27.6, 24.1 (2C), 20.0, 17.7 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{+}$: 232.1696; found: 232.1685.

B1: The enantiomeric excess was determined by SFC using a Chiralpak IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ 90:10 during 20 min , flow rate $2.0 \mathrm{~mL} / \mathrm{min}], \tau_{\text {minor }}=4.85 \mathrm{~min}, \tau_{\text {major }}=5.32 \mathrm{~min}(68: 32 \mathrm{er})$.

B2: The enantiomeric excess was determined by SFC using a Chiralpak IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ 90:10 during 20 min , flow rate $2.0 \mathrm{~mL} / \mathrm{min}$], $\tau_{\text {minor }}=5.07 \mathrm{~min}, \tau_{\text {major }}=5.64 \mathrm{~min}(62: 38 \mathrm{er})$.
(S)-4-(phenoxymethyl)-1-phenylpyrrolidin-2-one (4o)

$=-5.0\left(c 0.78, \mathrm{CHCl}_{3}\right)$.

Following the general procedure $B 3,(E)-4$-phenoxybut-2-enoic pivalic anhydride $\mathbf{1 j}(47.2 \mathrm{mg}, 0.18 \mathrm{mmol})$ and N ((trimethylsilyl)methyl)aniline 5a ($26.9 \mathrm{mg}, 0.15 \mathrm{mmol}$) gave product 40 (B3: 49% yield, $85: 15$ er) as a colourless oil. $\mathrm{B} 3:[\alpha]^{20}{ }_{\mathrm{D}}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-$ $7.12(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{dd}, \mathrm{J}=9.2,7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.85(\mathrm{dd}, \mathrm{J}=9.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=17.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}$, $J=17.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.8,158.5,139.2,129.6,128.9,124.7,121.3,120.0,114.5,69.1$, 51.4, 35.6, 31.0.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}$requires 290.1157, found 290.1143.
B3: The enantiomeric excess was determined by HPLC using a Chiralcel AD-H column [95:5 Hexane:IPA, $\left.1 \mathrm{mLmin}^{-1}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right] \tau_{\text {minor }}=25.99 \mathrm{~min}, \tau_{\text {major }}=31.09 \mathrm{~min}(85: 15 \mathrm{er})$

(R)-4-(tert-butyl)-1-phenylpyrrolidin-2-one (4n)

Following the general procedure B3, (E)-4,4-dimethylpent-2-enoic pivalic anhydride 1k ($38.2 \mathrm{mg}, 0.18 \mathrm{mmol}$) and N -((trimethylsilyl)methyl)aniline 5a ($26.9 \mathrm{mg}, 0.15 \mathrm{mmol}$) gave product 4n (B3: 33\% yield, 95:15 er) as a colourless oil. $\mathrm{B} 3:[\alpha]^{20}{ }_{\mathrm{D}}=-8.6\left(c 0.36, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.64-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{dd}$, $J=9.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=17.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=17.1$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.9,139.6,128.9,124.6,120.2,50.4,42.1,34.9,31.8,27.0 \mathrm{ppm}$.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}$requires 240.1364, found 240.1353

B3: The enantiomeric excess was determined by HPLC using a Chiralcel AD-H [99:1 Hexane:IPA, $\left.1 \mathrm{mLmin}^{-1}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right] \tau_{\text {minor }}=36.71, \tau_{\text {major }}=44.24$ (95:15 er)

(S)-4-methyl-1-(o-tolyl)pyrrolidin-2-one (4p)

Following the general procedure $\mathrm{B},(E)$-but-2-enoic pivalic anhydride 1a ($30.6 \mathrm{mg}, 0.18 \mathrm{mmol}$) and 2-methyl- N -((trimethylsilyl)methyl)aniline 5b ($29.0 \mathrm{mg}, 0.15 \mathrm{mmol}$) gave product 4 p (B3: 65% yield, $82: 18 \mathrm{er}$) as a colourless oil. $\mathrm{B} 3:[\alpha]^{20} \mathrm{D}=+28.8\left(c 0.24, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.28-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=9.7,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.30(\mathrm{dd}, \mathrm{J}=9.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.23$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.0,137.5,135.6,131.2,127.9,126.9,126.6,58.0,39.6,27.5$, 19.9, 18.1 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 190.1232; found: 190.1224 (-1.4 ppm)

B3: The enantiomeric excess was determined by HPLC using a Chiralcel OD-H column [98:2 Hexane:IPA, $\left.1 \mathrm{mLmin}^{-1}, 211 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right] \tau_{\text {major }}=38.60 \mathrm{~min}, \tau_{\text {minor }}=43.67 \mathrm{~min}(82: 18 \mathrm{er})$

(S)-1-([1,1'-biphenyl]-2-yl)-4-methylpyrrolidin-2-one (4q)

Following the general procedure B except using PhMe:MeCN (1:2) instead, (E)-but-2-enoic pivalic anhydride 1a ($30.6 \mathrm{mg}, 0.18 \mathrm{mmol}$) and N -((trimethylsilyl)methyl)-[1,1'-biphenyl]-2-amine 5d (38.3 mg, 0.15 mmol$)$ gave product 4q (B3: 67% yield, $63: 37 \mathrm{er}$) as a colourless oil. B 3 : $[\alpha]^{20}{ }_{\mathrm{D}}=$ +12.9 (c 1.19, CHCl_{3}).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44-7.28(\mathrm{~m}, 9 \mathrm{H}), 3.30(\mathrm{dd}, \mathrm{J}=9.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, \mathrm{J}=9.5,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, \mathrm{J}=16.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=16.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.5,140.0,139.2,136.5,131.0,128.7,128.6,128.5$ (2C), 128.2, 127.7, 57.6, 39.6, 27.1, 19.6 ppm.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires 252.1388 , found 252.1383

B3: The enantiomeric excess was determined by HPLC using a Chiralcel OD-H column [95:5 Hexane:IPA, $\left.1 \mathrm{mLmin}^{-1}, 211 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right] \tau_{\text {minor }}=17.99 \mathrm{~min}, \tau_{\text {major }}=20.51 \mathrm{~min}(63: 37 \mathrm{er})$

(S)-4-methyl-1-(3-(trifluoromethyl)phenyl)pyrrolidin-2-one (4r)

Following the general procedure $B,(E)$-but-2-enoic pivalic anhydride 1a (30.6 mg, 0.18 mmol) and 3 -(trifluoromethyl)- N ((trimethylsilyl)methyl)aniline 5c ($37.1 \mathrm{mg}, 0.15 \mathrm{mmol}$) gave product $\mathbf{4 r}$ (B3: 61\%, 81:19 er) as a colourless oil. $\mathrm{B} 3:[\alpha]^{20}{ }_{\mathrm{D}}=-2.2\left(c 1.32, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.94-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H})$, 3.97 (dd, $J=9.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=9.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=16.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-$ $2.53(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=16.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.2,140.1,129.5,123.0,120.9(\mathrm{q}, \mathrm{J}=3.7 \mathrm{~Hz}) 116.2(\mathrm{q}, J=4.3 \mathrm{~Hz})$, 55.8, 41.1, 26.4, 19.6 ppm.
${ }^{19} \mathrm{~F}$-NMR (471 MHz, CDCl_{3}): $\delta-62.6 \mathrm{ppm}$

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$requires 244.0944, found 244.0948
B3: The enantiomeric excess was determined by HPLC using a Chiralcel IC column [97:3 Hexane:IPA, $\left.2 \mathrm{mLmin}^{-1}, 211 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right] \tau_{\text {minor }}=10.45 \mathrm{~min}, \tau_{\text {major }}=12.12 \mathrm{~min}(81: 19 \mathrm{er})$.

5. Stern-Volmer Luminescence quenching studies

Emission spectra were recorded on a JASCO Spectrofluorometer FP-8600 equipped with a TC815 Peltier thermostated single cell holder (water-cooled) controlled by Spectra Manager Version 2.10.01.

For all luminescence quenching experiments, the excitation wavelength was fixed at 420 nm , while the emission spectra were acquired from 500 nm to 700 nm , observing the maximum emission peak for $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$ at 597 nm . MeCN was used as solvent.

The emission spectrum of the 0.03 mM solution of $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$ is reported in Figure $\mathbf{S 4}$.

Figure S4 Emission spectrum of $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$ (excitation wavelength 420 nm)

In a typical Stern-Volmer luminescence quenching experiment, the appropriate amount of quencher (Q) is added to the MeCN solution of $\operatorname{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.03 \mathrm{mM})$ in a Teflon-top 10×10 mm precision cell (2.4 mL) made of Quartz SUPRASIL ${ }^{\circledR}$. After degassing for 30 sec under an argon atmosphere, the emission spectra of the samples were collected.

The Stern-Volmer plots displayed in Figure S4 show a linear correlation between the concentration of quencher [Q] and $\mathrm{I}_{0} / \mathrm{I}$ according to the equation:

$$
I_{0} I_{I}=K_{S V} \times[Q]+1
$$

Figure S4 Stern-Volmer quenching plot

The data plotted in the chart confirms the lack of interaction between the $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$ and the anhydride, as well as with the organocatalyst. Furthermore, it presents the possibility of the amino acid quenching the excited state of ${ }^{*} \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$, suggesting that the initial step of the reaction should involve the oxidation of the amino acid by ${ }^{*} \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$, as proposed in the plausible mechanism (See main manuscript).

6. References

1. a) Wang, Y.; Gu, M. The Concept of Spectral Accuracy for MS. Anal. Chem., 82, 7055-7062 (2010); b) Y. Wang, Methods for Operating MS Instrument Systems, United States Patent N°. 6,983,213, 2006; c) Ochiaia, N.; Sasamoto, K.; MacNamara, K. Characterization of sulfur compounds in whisky by full evaporation dynamic headspace and selectable one-dimensional/two-dimensional retention time locked gas chromatography-mass spectrometry with simultaneous element-specific detection. Journal of Chromatography A, 1270, 296-304 (2012); d) Ho, H.; Lee, R.; Chen, C.; Wang, S.; Li Z.; Lee, M. Identification of new minor metabolites of penicillin G in human serum by multiple-stage tandem mass spectrometry. Rapid Commun Mass Spectrom., 25, 25-32 (2011).
2. Hong, Y.-T.; Barchuk, A.; Krische, M. J. Angewandte Chemie, International Edition, 45 (41), 6885-6888 (2006).
3. Staderini, M.; Piquero, M.; Abengózar, M. A.; Nachér-Vázquez, M.; Romanelli, G.; LópezAlvarado, P.; Rivas, L.; Bolognesi, M. L.; Menéndez, J. C. Structure-activity relationships and mechanistic studies of novel mitochondria-targeted, leishmanicidal derivatives of the 4aminostyrylquinoline scaffold, European Journal of Medicinal Chemistry, 171, 38-53 (2019).
4. Espelt, L. R.; McPherson, I. S.; Weinsch, E. M.; Yoon, T. P Enantioselective Conjugate Additions of α-Amino Radicals via Cooperative Photoredox and Lewis Acid Catalysis, Journal of the American Chemical Society, 137, 2452-2455 (2015)
5. Pagire, S. K.; Kumagai, N.; Shibasaki M, Introduction of a 7-aza-6-MeO-indoline auxiliary in Lewis-acid/photoredox cooperative catalysis: highly enantioselective aminomethylation of α, β-unsaturated amides, Chemical Science, 11, 5168-5174 (2020).

7. Nuclear Magnetic Resonance Spectra

(E)-But-2-enoic pivalic anhydride (1a)

(E)-Pent-2-enoic pivalic anhydride (1b)

(E)-Oct-2-enoic pivalic anhydride (1c)

(E)-4-Methylpent-2-enoic pivalic anhydride (1d)

(E)-Cinnamic pivalic anhydride (1e)

(E)-3-(4-Methoxyphenyl)acrylic pivalic anhydride (1f)

(E)-3-(4-(Trifluoromethyl)phenyl)acrylic pivalic anhydride (1g)

(E)-3-(3-Bromophenyl)acrylic pivalic anhydride (1h)

Pivalic (E)-3-(thiophen-2-yl)acrylic anhydride (1i)

(E)-4-phenoxybut-2-enoic pivalic anhydride (1j)

(E)-4,4-dimethylpent-2-enoic pivalic anhydride (1k)

(4-Fluoropheny)glycine (2b)

(4-Chlorophenyl)glycine (2c)

p-Tolylglycine (2d)

(5-Isopropyl-2-methylphenyl)glycine (2e)

N-((trimethylsilyl)methyl)aniline (5a)

2-methyl-N-((trimethylsilyl)methyl)aniline (5b)

3-(trifluoromethyl)-N-((trimethylsilyl)methyl)aniline (5c)

(R)-4-Methyl-1-phenylpyrrolidin-2-one (4a)

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

Flow reaction chromatogram (Manuscript, Table 4):

Racemic Gas chromatogram

Batch Reaction Gas chromatogram

(R)-4-Ethyl-1-phenylpyrrolidin-2-one (4b)

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

Flow reaction chromatogram (Manuscript, Table 4):

Batch racemic chromatogram using α-silyl amine

<Chromatogram>

mAU

PDA Ch3 254nm			
Peak\#	Ret. Time		
1	41.684		
2	47.003		
Total			

Batch chromatogram using α-silyl amine

<Chromatogram>

mAU

PDA Ch3 254nm

Peak\#	Ret. Time	Area $\%$
1	40.975	10.566
2	43.634	89.434
Total		100.000

(R)-4-Pentyl-1-phenylpyrrolidin-2-one (4c)

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

Flow reaction chromatogram (Manuscript, Table 4):

	File Information
LCFFile	MSP-4742022-04-2215-51-41.D
File Path	D:PATOSLVAL305 2022-0422 15-51-13
Date	22-Ap-22, 15:54.50
Sample	MSP-474
Sample Info	Msp-474
Barcode	
Operator	SYstem
Method	LA-gradente5_40 MeOH MS.M
Reference	
Andy Sis Tme	7.993 min
Sampling Rate	0.0067 min (0.402 sec), 1200 datapoints

(S)-4-Isopropyl-1-phenylpyrrolidin-2-one (4d)

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

Flow reaction chromatogram (Manuscript, Table 4):

Racemic chromatogram using α-silyl amine

<Peak Table>

Batch chromatogram using α-silyl amine
<Chromatogram>
<Peak Table>

PDA Ch3 254nm		
Peak\#	Ret. Time	Area\%
1	35.212	92.626
2	41.972	7.374
Total		100.000

(S)-1,4-Diphenylpyrrolidin-2-one (4e)

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

Flow reaction chromatogram (Manuscript, Table 4):

(S)-4-(4-Methoxyphenyl)-1-phenylpyrrolidin-2-one (4f)

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

Flow reaction chromatogram (Manuscript, Table 4):

Racemic reaction chromatogram (from the α-silyl amine)
<Chromatogram>
mV

<Peak Table>
Detector A Channel 2 254nm
Peak\# Ret. Time Area\%

Peak\#	Ret. Time	Area\%
1	20.957	49.931
2	28.635	50.069
Total		100.000

Batch reaction chromatogram (from the α-silyl amine)
<Chromatogram>
mV

1	20.947	23.285
2	28.561	76.715
Total		100.000

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

Flow reaction chromatogram (Manuscript, Table 4):

Racemic reaction chromatogram (from the α-silyl amine)

<Chromatogram>

mV

<Peak Table>
Detector A Channel 2 254nm

Peak\#	Ret. Time	Area\%
1	15.193	49.847
2	17.808	50.153
Total		100.000

Batch reaction chromatogram (from the α-silyl amine)

<Peak Table>

Detector A Channel 2 254nm Peak\# Ret. Time | Peak\# | Ret. Time | Area\% |
| ---: | ---: | ---: |
| 1 | 15.164 | 24.003 |
| 2 | 17.747 | 75.997 |
| Total | | 100.000 |

(S)-4-(3-bromophenyl)-1-phenylpyrrolidin-2-one (4h)

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

Flow reaction chromatogram (Manuscript, Table 4):

(R)-1-Phenyl-4-(thiophen-2-yl)pyrrolidin-2-one (4i)

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

Flow reaction chromatogram (Manuscript, Table 4):

(R)-1-(4-fluorophenyl)-4-methylpyrrolidin-2-one (4j)

| |
| :--- | :--- | :--- |
| 0 |

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

(R)-1-(4-chlorophenyl)-4-methylpyrrolidin-2-one (4k)

Racemic chromatogram:

	-29.55.0
File Path	
Date	25-Apr-22, 20:33:24
Sample	RR8608 1 +ac
Sample info	RR8608 1 1-ac
Barcode	
Operator	SYSTEM
Mettrod	IA-2-10-20. MeOH_NO MS.M
Reference	D:PATOSUAA1305 2022-04-25 19-31-08ho S
Analysis Time	20 min
ampling Rate	$0.00077 \mathrm{~min}(0.402 \mathrm{sec})$) 3001 datapoints

(2)
 \square

Batch reaction chromatogram (Manuscript, Table 2):

(R)-4-methyl-1-(p-tolyl)pyrrolidin-2-one (4I)

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

Flow reaction chromatogram (Manuscript, Table 4):

(R)-1-(5-isopropyl-2-methylphenyl)-4-methylpyrrolidin-2-one (4m)

Racemic chromatogram:

Batch reaction chromatogram (Manuscript, Table 2):

Flow reaction chromatogram (Manuscript, Table 4):

(R)-4-(tert-butyl)-1-phenylpyrrolidin-2-one (4n)

(

Racemic chromatogram

<Chromatogram>

mV

<Peak Table>

Detector A Channel 2254 nm

Peak\#	Ret. Time	Area\%
1	35.066	50.384
2	42.370	49.616
Total		100.000

Batch reaction chromatogram
<Chromatogram>
mV

<Peak Table>
Detector A Channel 2 254nm

Peak\#	Ret. Time	Area\%
1	36.711	4.822
2	44.238	95.178
Total		100.000

(S)-4-(phenoxymethyl)-1-phenylpyrrolidin-2-one (40)

$\begin{aligned} & \text { ̃} \\ & \stackrel{\omega}{\sim} \\ & \underset{\sim}{1} \end{aligned}$			 	\vec{m} $\substack{1 \\ 1}$ 1	cin

Racemic chromatogram

<Chromatogram>

mV

<Peak Table>
Detector A Channel 2 254nm
Peak\# Ret. Time Area\%

Peak\#	Ret. Time	Area\%
1	25.562	49.817
2	30.969	50.183
Total		100.000

Batch reaction chromatogram
<Chromatogram>
mAU

<Peak Table>
PDA Ch3 254nm

Peak\#	Ret. Time	Area\%
1	25.988	15.201
2	31.085	84.799
Total		100.000

(S)-4-methyl-1-(o-tolyl)pyrrolidin-2-one (4p)

Racemic reaction chromatogram
<Chromatogram>
maU

<Peak Table>

Peak\#	Ret. Time	Area\%
1	38.598	49.168
2	43.673	50.832
Total		100.000

<Peak Table>

PDA Ch1 211nm

Peak\# Ret. Time	Area\%	
1	40.038	81.865
2	46.177	18.135
Total		100.000

(S)-1-([1,1'-biphenyl]-2-yl)-4-methylpyrrolidin-2-one (4q)

Racemic Reaction chromatogram

<Chromatogram>

$m V$

Batch Reaction chromatogram

<Chromatogram>
mV

<Peak Table>

Detector A Channel 1211 nm Peak\# Ret Time Area\%

Peak\#	Ret. Time	Area\%
1	17.985	50.299
2	20.509	49.701
Total		100.000

<Peak Table>

Detector A Channel 1211 nm		
Peak\#	Ret. Time	Area\%
1	17.909	36.707
2	20.258	63.293
Total		100.000

(S)-4-methyl-1-(3-(trifluoromethyl)phenyl)pyrrolidin-2-one (4r)

 sع9'z9- -
\qquad

	1	1	1	1	T
0	-50	-100	-150	-200	-25

Racemic Reaction chromatogram
<Chromatogram>
mV

Detector A Channel 1211 nm Peak\# Ret. Time Area\%

1	10.447	50.456
2	12.121	49.544
Total		100.000

Batch Reaction Chromatogram

<Chromatogram>

mV

<Peak Table>

Detector A Channel 1211 nm
Peak\# Ret. Time Area\%

Peak\#	Ret. Time	Area\%
1	10.458	19.368
2	12.069	80.632
Total		100.000

8. Single Crystal X-Ray Structure of $\boldsymbol{\gamma}$-lactam 4i

CCDC 2168909

A clear colourless, prism-like specimen of $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NOS}$, approximate dimensions 0.100 mm $\times 0.200 \mathrm{~mm} \times 0.200 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda=0.71073 \AA$).

The total exposure time was 7.91 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 18463 reflections to a maximum θ angle of 25.33° (0.83 Å resolution), of which 2173 were independent (average redundancy 8.497 , completeness $=99.6 \%, \mathrm{R}_{\text {int }}=3.27 \%, \mathrm{R}_{\text {sig }}=1.71 \%$) and 2035 (93.65\%) were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=7.3283(4) \AA, \underline{b}=12.3775(6) \AA, \underline{c}=13.1594(6) \AA$, volume $=1193.64(10) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 7833 reflections above $20 \sigma(I)$ with 6.365° < $2 \theta<52.12^{\circ}$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.891 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9510 and 0.9750 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 2121 21, with $Z=4$ for the formula unit, $\mathrm{C}_{14} \mathrm{H}_{13}$ NOS. The final anisotropic fullmatrix least-squares refinement on F^{2} with 142 variables converged at $R 1=5.71 \%$, for the observed data and $w R 2=16.69 \%$ for all data. The goodness-of-fit was 1.085. The largest peak in the final difference electron density synthesis was $0.864 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.425 \mathrm{e}^{-}$ $/ \AA^{3}$ with an RMS deviation of $0.076 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.354 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000)$, $512 \mathrm{e}^{-}$.

Table 1. Sample and crystal data.

Identification code	03567	
Chemical formula	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NOS}$	
Formula weight	$243.31 \mathrm{~g} / \mathrm{mol}$	
Temperature	$296(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	$0.100 \times 0.200 \times 0.200 \mathrm{~mm}$	
Crystal habit	clear colourless prism	
Crystal system	orthorhombic	
Space group	P 212121	
Unit cell dimensions	$\mathrm{a}=7.3283(4) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=12.3775(6) \AA$	$\beta=90^{\circ}$
Volume	$13.1594(6) \AA$	$\mathrm{A}=90^{\circ}$
Z	$1193.64(10) \AA^{3}$	
Density (calculated)	4	
Absorption coefficient	$1.354 \mathrm{~g} / \mathrm{cm}^{3}$	
F(000)	$0.252 \mathrm{~mm}^{-1}$	

Table 2. Data collection and structure refinement.

Theta range for data collection	3.51 to 25.33°
Index ranges	$-8<=h<=8,-14<=k<=14,-13<=1<=15$
Reflections collected	18463
Independent reflections	2173 [R (int) $=0.0327$]
Coverage of independent reflections	99.6\%
Absorption correction	Multi-Scan
Max. and min. transmission	0.9750 and 0.9510
Structure solution technique	direct methods
Structure solution program	XT, VERSION 2018/2
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-2019/1 (Sheldrick, 2019)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	2173/3/142
Goodness-of-fit on F^{2}	1.085
Final R indices	2035 data; $\mathrm{I} \times 2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0571, \mathrm{wR2}=0.1606$
	all data $\quad \mathrm{R} 1=0.0615, \mathrm{wR2}=0.1669$
Weighting scheme	$\begin{gathered} \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0969 \mathrm{P})^{2}+0.9851 \mathrm{P}\right] \\ \text { where } \mathrm{P}=\left(\mathrm{Fo}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3 \end{gathered}$
Absolute structure parameter	0.06(3)
Largest diff. peak and hole	0.864 and -0.425 e \AA^{-3}
R.M.S. deviation from mean	$0.076 \mathrm{e}^{-3}$

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (\AA^{2}).
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	\mathbf{y} / b	z / c	$\mathrm{U}(\mathrm{eq})$
C2	$0.4203(7)$	$0.8063(3)$	$0.3593(4)$	$0.0355(10)$
C1	$0.4307(7)$	$0.7792(4)$	$0.4703(3)$	$0.0372(10)$
C3	$0.3649(6)$	$0.7002(3)$	$0.3081(3)$	$0.0308(9)$
C4	$0.4443(7)$	$0.6151(3)$	$0.3808(3)$	$0.0364(10)$
C5	$0.4258(7)$	$0.6850(4)$	$0.2001(4)$	$0.0433(8)$
C6	$0.4100(7)$	$0.5878(4)$	$0.1405(3)$	$0.0403(8)$
C7	$0.4835(7)$	$0.6072(4)$	$0.0419(3)$	$0.0403(8)$
C8	$0.5510(7)$	$0.7074(4)$	$0.0272(3)$	$0.0433(8)$
C9	$0.4698(6)$	$0.6110(4)$	$0.5714(3)$	$0.0324(9)$
C10	$0.4262(6)$	$0.6554(4)$	$0.6657(3)$	$0.0355(10)$
C11	$0.4612(7)$	$0.5971(4)$	$0.7540(3)$	$0.0447(12)$
C12	$0.5368(8)$	$0.4963(5)$	$0.7501(3)$	$0.0469(13)$
C13	$0.5803(8)$	$0.4510(4)$	$0.6563(4)$	$0.0466(12)$
C14	$0.5482(7)$	$0.5076(4)$	$0.5675(3)$	$0.0381(10)$
N1	$0.4384(6)$	$0.6687(3)$	$0.4800(3)$	$0.0323(8)$
O1	$0.4367(8)$	$0.8433(3)$	$0.5401(3)$	$0.0680(14)$
S1	$0.5281(2)$	$0.78485(12)$	$0.13172(10)$	$0.0565(5)$

Table 4. Bond lengths (Å).

C2-C1	$1.502(7)$	C2-C3	$1.531(6)$
C1-O1	$1.215(6)$	C1-N1	$1.374(5)$
C3-C5	$1.501(7)$	C3-C4	$1.538(6)$
C4-N1	$1.464(5)$	C5-C6	$1.441(7)$
C5-S1	$1.703(5)$	C6-C7	$1.425(6)$
C7-C8	$1.349(7)$	C8-S1	$1.686(5)$
C9-C10	$1.394(6)$	C9-C14	$1.404(7)$
C9-N1	$1.418(5)$	C10-C11	$1.392(6)$
C11-C12	$1.367(8)$	C12-C13	$1.392(7)$
C13-C14	$1.383(6)$		

Table 5. Bond angles $\left({ }^{\circ}\right)$.

C1-C2-C3	$104.5(3)$	O1-C1-N1	$125.4(4)$
O1-C1-C2	$126.3(4)$	N1-C1-C2	$108.3(4)$
C5-C3-C2	$116.4(4)$	C5-C3-C4	$113.0(4)$
C2-C3-C4	$102.3(3)$	N1-C4-C3	$103.5(3)$
C6-C5-C3	$126.5(4)$	C6-C5-S1	$110.7(3)$
C3-C5-S1	$122.8(4)$	C7-C6-C5	$108.9(4)$
C8-C7-C6	$115.1(4)$	C7-C8-S1	$111.7(4)$
C10-C9-C14	$119.1(4)$	C10-C9-N1	$121.3(4)$
C14-C9-N1	$119.6(4)$	C11-C10-C9	$119.8(4)$
C12-C11-C10	$121.1(4)$	C11-C12-C13	$119.6(4)$
C14-C13-C12	$120.4(5)$	C13-C14-C9	$120.0(4)$
C1-N1-C9	$125.8(4)$	C1-N1-C4	$111.7(4)$
C9-N1-C4	$121.5(3)$	C8-S1-C5	$93.6(2)$

Table 6. Torsion angles (${ }^{\circ}$).

C3-C2-C1-O1	$-165.3(6)$	C3-C2-C1-N1	$16.7(5)$
C1-C2-C3-C5	$-152.2(4)$	C1-C2-C3-C4	$-28.5(4)$
C5-C3-C4-N1	$156.0(4)$	C2-C3-C4-N1	$30.0(5)$
C2-C3-C5-C6	$171.9(5)$	C4-C3-C5-C6	$53.9(6)$
C2-C3-C5-S1	$-7.3(6)$	C4-C3-C5-S1	$-125.4(4)$
C3-C5-C6-C7	$179.8(5)$	S1-C5-C6-C7	$-0.8(5)$
C5-C6-C7-C8	$0.8(6)$	C6-C7-C8-S1	$-0.4(6)$
C14-C9-C10-C11	$0.2(7)$	N1-C9-C10-C11	$-179.1(4)$
C9-C10-C11-C12	$-0.5(7)$	C10-C11-C12-C13	$0.3(8)$
C11-C12-C13-C14	$0.2(8)$	C12-C13-C14-C9	$-0.5(8)$
C10-C9-C14-C13	$0.3(7)$	N1-C9-C14-C13	$179.6(5)$
O1-C1-N1-C9	$-5.6(9)$	C2-C1-N1-C9	$172.5(4)$
O1-C1-N1-C4	$-174.9(6)$	C2-C1-N1-C4	$3.1(6)$
C10-C9-N1-C1	$25.7(7)$	C14-C9-N1-C1	$-153.6(5)$
C10-C9-N1-C4	$-166.0(5)$	C14-C9-N1-C4	$14.8(6)$
C3-C4-N1-C1	$-21.5(5)$	C3-C4-N1-C9	$168.7(4)$
C7-C8-S1-C5	$-0.1(4)$	C6-C5-S1-C8	$0.5(4)$
C3-C5-S1-C8	$179.9(4)$		

Table 7. Anisotropic atomic displacement parameters (\AA^{2}).
The anisotropic atomic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$

	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	\mathbf{U}_{12}
C2	$0.044(2)$	$0.026(2)$	$0.037(2)$	$0.0005(18)$	$-0.002(2)$	$0.0027(17)$
C1	$0.052(2)$	$0.028(2)$	$0.032(2)$	$-0.0022(18)$	$-0.002(2)$	$0.005(2)$
C3	$0.036(2)$	$0.029(2)$	$0.027(2)$	$-0.0013(18)$	$-0.0023(17)$	$-0.0004(18)$
C4	$0.059(3)$	$0.0242(19)$	$0.026(2)$	$-0.0037(16)$	$-0.002(2)$	$0.000(2)$
C5	$0.0489(19)$	$0.052(2)$	$0.0291(17)$	$0.0060(15)$	$-0.0001(15)$	$0.0015(17)$
C6	$0.052(2)$	$0.0422(18)$	$0.0266(15)$	$-0.0042(13)$	$0.0003(15)$	$0.0011(15)$
C7	$0.052(2)$	$0.0422(18)$	$0.0266(15)$	$-0.0042(13)$	$0.0003(15)$	$0.0011(15)$
C8	$0.0489(19)$	$0.052(2)$	$0.0291(17)$	$0.0060(15)$	$-0.0001(15)$	$0.0015(17)$
C9	$0.037(2)$	$0.033(2)$	$0.027(2)$	$0.0008(17)$	$-0.0044(18)$	$-0.0010(19)$
C10	$0.039(2)$	$0.040(2)$	$0.027(2)$	$-0.0038(18)$	$-0.0010(18)$	$0.0007(19)$
C11	$0.046(3)$	$0.060(3)$	$0.028(2)$	$-0.003(2)$	$0.001(2)$	$-0.003(3)$
C12	$0.051(3)$	$0.057(3)$	$0.033(2)$	$0.017(2)$	$-0.003(2)$	$-0.002(3)$
C13	$0.058(3)$	$0.039(3)$	$0.044(3)$	$0.009(2)$	$-0.002(2)$	$0.002(2)$
C14	$0.052(3)$	$0.031(2)$	$0.031(2)$	$-0.0014(18)$	$0.002(2)$	$0.000(2)$
N1	$0.048(2)$	$0.0255(17)$	$0.0232(17)$	$-0.0028(13)$	$-0.0042(16)$	$-0.0003(16)$
O1	$0.136(4)$	$0.0312(18)$	$0.0374(19)$	$-0.0112(15)$	$-0.008(3)$	$0.005(2)$
S1	$0.0829(10)$	$0.0474(8)$	$0.0392(7)$	$0.0036(6)$	$0.0017(7)$	$-0.0153(8)$

Table 8. Hydrogen atomic coordinates and isotropic atomic displacement parameters (\AA^{2}).

	x / a	y / b	z / c	U(eq)
H2A	0.5377	0.8310	0.3342	0.043000
H2B	0.3300	0.8621	0.3470	0.043000
H3	0.2315	0.6946	0.3100	0.037000
H4A	0.3706	0.5499	0.3809	0.044000
H4B	0.5685	0.5966	0.3622	0.044000
H6	0.3599	0.5230	0.1628	0.048000
H7	0.4850	0.5546	-0.0085	0.048000
H8	0.6035	0.7308	-0.0333	0.052000
H10	0.3739	0.7238	0.6696	0.043000
H11	0.4327	0.6273	0.8168	0.054000
H12	0.5589	0.4581	0.8097	0.056000
H13	0.6314	0.3823	0.6534	0.056000
H14	0.5786	0.4772	0.5052	0.046000

Table 9. Hydrogen bond distances (A) and angles (${ }^{\circ}$).
Donor-H Acceptor-H Donor-Acceptor Angle

$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1$	0.93	2.30	$2.854(6)$	117.5

