Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Biphosphine copolymer encapsulated single-atom Rh catalyst for regioselective hydroaminomethylation of alkenes

Kang Zhao,^{a,b} Hongli Wang,^{a,b} Xinzhi Wang,^{a,b} Xinjiang Cui,*^a and Feng Shi*^a

^{*a.*} State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China

^{b.} University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, People's Republic of China

E-mail: xinjiangcui@licp.cas.cn, fshi@licp.cas.cn

Contents

1.	General Information
	Chemicals and materials
	Instrumental measurements and physical characterization3
2.	Synthetic procedure of the ligands4
3.	Synthetic procedure of the porous organic polymer catalysts7
4.	General procedure for the hydroaminomethylation9
5.	Optimization of the reaction conditions11
6.	NMR data of the products18
7.	Catalyst characterization26
	FT-IR spectra
	Scanning electron micrographs
	TGA analysis31
	Experimental PXRD profiles
	Transmission electron micrographs
	X-ray photoelectron spectroscopy analysis35
8.	Copies of quantitative GC and NMR spectra
9.	References75

1. General Information

Chemicals and materials

All solvents and chemicals, unless otherwise noted, were obtained commercially and were used as received without further purification. All glassware was dried before using. Analytical thin layer chromatography (TLC) was performed using pre-coated Jiangyou silica gel HSGF254 (0.2mm±0.03mm). Flash chromatography was performed using silica gel 60, 0.063-0.2 mm, 200-300 mesh (Jiangyou, Yantai) with the indicated solvent system.

Instrumental measurements and physical characterization

Gas chromatography analysis was performed on Agilent 7890A GC equipped with a HP-5 capillary column and FID detector. GC-MS analysis was in general recorded on an Agilent 5977A MSD GC-MS.

High resolution mass spectra were recorded on a Bruker Q-TOF II MSD.

The contents of Rh in the catalysts were measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES), using Iris advantage Thermo Jarrel Ash device.

Fourier transform infrared (FT-IR) spectrum were recorded with a Bruker VERTEX 70FTIR spectrometer.

The liquid nuclear magnetic resonance spectra (NMR) were recorded on a Bruker AvanceTM III 400 MHz in deuterated chloroform unless otherwise noted. Data are reported in parts per million (ppm) as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, dd = doublet of doublet and br = broad signal), coupling constant in Hz and integration.

Solid-state nuclear magnetic resonance (SSNMR, ¹³C and ³¹P) were carried out on a Bruker NEO WB 400M spectrometer, a sample spinning rate of 5.0 kHz was used for ¹³C, a sample spinning rate of 10.0 kHz was used for ³¹P.

Powder X-ray diffraction (PXRD) measurements were conducted were conducted by a STADIP automated transmission diffractometer (STOE) equipped with an incident beam curved germanium monochromator selecting CuK α 1 radiation and a 6° position sensitive detector (PSD) (step size: 0.014°, step time: 25.05 s). The XRD patterns were scanned in the 2 θ range of 10-90°.

Nitrogen adsorption-desorption isotherms were measured at 77 K using an American Quantachrome iQ₂ automated gas sorption analyzer. The samples were outgassed at 120 °C for 12 h before the measurements. Surface areas were calculated from the adsorption data using Langmuir and Brunauer-Emmett-Teller (BET) methods. The pore-size-distribution curves were obtained from the adsorption branches using non-local density functional theory (NLDFT) method.

X-ray photoelectron spectroscopy (XPS) measurements were carried out by a VG ESCALAB 210 instrument equipped with a dual Mg/Al anode X-ray source, a hemispherical capacitor analyzer, and a 5 keV Ar⁺ ion gun. All spectra were recorded by using AlKa (1361 eV) radiation. The electron binding energy was referenced to the C1s peak at 284.8 eV.

The thermal properties of Rh@POPs catalysts were evaluated using a METTLER TOLEDO simultaneous thermal analyzer over the temperature range from 30 to 800 °C under nitrogen atmosphere (20 mL/min) with a heating rate of 5 °C/min.

Field emission scanning electron microscopy (SEM) observations were performed on a Hitachi S-4800 microscope operated at an accelerating voltage of 5.0 kV.

High-resolution transmission electron microscope (HR-TEM) analysis was carried out on a Talos F200S operating at 200 kV.

The abreaction-corrected HAADF-STEM images were obtained on a Titan FEI Titan Themis 60-300 equipped with a probe corrector, with a guaranteed resolution of 80 pm and accelerating voltage of 200 kV.

2. Synthetic procedure of the ligands

A solution of *n*-butyllithium in hexane (2.5 M, 12.6 ml, 31.5 mmol) was added dropwise over a period of 20 min to a solution of *p* or *m*-bromovinylbenzene (6.04 g, 33 mmol) in anhydrous tetrahydrofuran (40 ml) at -78 °C under argon atmosphere. The solution was stirred for 1 h and then phosphorus trichloride (1.37 g, 10 mmol) dissolved in anhydrous tetrahydrofuran (5 ml) was added dropwise over a period of 5 min. The mixture was continued to stir at -78 °C for 1 h and the system was recovered to room temperature, and allowed to react overnight. The reaction was quenched with 2N HCl solution. The mixture was extracted with ethyl acetate and water for 3 times, the combined organic phases were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using EtOAc–petroleum ether mixture as an eluent to afford the desired compound *p*-3vPPh₃ or *m*-3vPPh₃ as a white solid.

Tris(4-vinylphenyl)phosphane (*p*-3vPPh₃)¹: white solid, 2.4 g, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 7.0 Hz, 6H), 7.27 (t, *J* = 7.7 Hz, 6H), 6.69 (dd, *J* = 17.6, 10.9 Hz, 3H), 5.76 (d, *J* = 17.6 Hz, 3H), 5.26 (d, *J* = 10.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.09, 136.81, 136.70, 136.47, 134.09, 133.90, 126.47, 126.40, 114.82. ³¹P NMR (162 MHz, CDCl₃) δ -6.85.

Tris(3-vinylphenyl)phosphane (*m*-3vPPh₃)¹: white solid, 2.4 g, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.1 Hz, 6H), 7.34 – 7.24 (m, 3H), 7.17 (t, *J* = 7.2 Hz, 3H), 6.64 (dd, *J* = 17.6, 10.9 Hz, 3H), 5.67 (d, *J* = 17.6 Hz, 3H), 5.21 (d, *J* = 11.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.80 (d, *J* = 7.7 Hz), 137.33 (d, *J* = 11.1 Hz), 136.59, 133.13 (d, *J* = 16.5 Hz), 132.01 (d, *J* = 23.0 Hz), 128.85 (d, *J* = 6.3 Hz), 126.63, 114.55. ³¹P NMR (162 MHz, CDCl₃) δ -5.15.

Compound S2 and S3 were prepared according to literature precedent.²

N, *N*-Diallyl-3-bromoaniline: yellow viscous liquid, 17.1 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.01 (t, *J* = 8.1 Hz, 1H), 6.78 (dd, *J* = 7.6, 5.3 Hz, 2H), 6.58 (dd, *J* = 8.4, 1.9 Hz, 1H), 5.81 (ddd, *J* = 15.5, 9.7, 4.7 Hz, 2H), 5.37 − 4.81 (m, 4H), 4.19 − 3.59 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 150.00, 133.33, 130.36, 123.45, 119.13, 116.39, 115.08, 110.94, 52.79.

4,4'-Methylenebis(*N*, *N*-diallyl-3-bromoaniline): light yellow viscous liquid, 14 g, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.89 (d, *J* = 2.1 Hz, 1H), 6.81 (d, *J* = 8.6 Hz, 1H), 6.53 (dd, *J* = 8.6, 2.4 Hz, 1H), 5.81 (ddt, *J* = 17.6, 9.7, 4.7 Hz, 2H), 5.39 – 4.93 (m, 5H), 3.95 (s, 1H), 3.86 (d, *J* = 4.4 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 148.26, 133.63, 130.91, 127.01, 125.67, 116.38, 116.07, 111.76, 52.85, 39.88.

A solution of *n*-butyllithium in hexane (2.5 M, 8.4 ml, 21 mmol) was added dropwise over a period of 10 min to a solution of S3 (5.16 g, 10 mmol) in anhydrous tetrahydrofuran (60 ml) at -78 °C under argon atmosphere. The solution was stirred for 1 h and then chlorodiphenylphosphine (4.84 g, 22 mmol) dissolved in anhydrous tetrahydrofuran (5 ml) was added dropwise. The mixture was continued to stir at -78 °C for 1 h and the system was recovered to room temperature, and allowed to react overnight. The reaction was quenched with 2N HCl solution. The mixture was extracted with ethyl acetate and water for 3 times, the combined organic phases were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using EtOAc–petroleum ether mixture as an eluent to afford the desired compound DPMphos as a colorless viscous liquid, 2.4 g, 33% yield.

4,4'-Methylenebis(*N*,*N*-diallyl-3-(diphenylphosphaneyl)aniline) (DPMphos): ¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 20H), 6.78 (dd, *J* = 7.5, 4.3 Hz, 2H), 6.48 (d, *J* = 6.9 Hz, 2H), 6.18 (s, 2H), 5.82 – 5.44 (m, 4H), 4.94 (dd, *J* = 21.7, 13.8 Hz, 8H), 4.19 (s, 2H), 3.62 (s, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 146.63, 137.56, 137.45, 136.17, 136.05, 134.21, 134.10, 134.01, 133.74, 130.74, 130.70, 130.66, 128.31, 128.26, 117.89, 116.07, 113.16, 52.99, 36.18. ³¹P NMR (162 MHz, CDCl₃) δ -12.84. HRMS (ESI): Calcd. for $C_{49}H_{49}N_2P_2$ [M+H]⁺: 727.3371, found: 727.3365.

3. Synthetic procedure of the porous organic polymer catalysts

Preparation of POL-p-3vPPh₃

Under argon atmosphere, 0.48 g of p-3vPPh₃ was dissolved in 5 mL of THF, followed by the addition of 16 mg of AIBN. The mixture was transferred into an autoclave, stirred at room temperature for 0.5 h, and then heated to 100 °C for 24 h without stirring. After the polymerization was finished, the resulted white solid was filtered, washed with THF (20 ml×3), and dried under vacuum at 60 °C for 12 h. Finally, POL-p-3vPPh₃ was obtained.

Preparation of CPOL-DPMphos&p-3vPPh₃

Under argon atmosphere, 0.48 g of p-3vPPh₃ and 0.12 g of DPMphos was dissolved in 6 mL of THF, followed by the addition of 16 mg of AIBN. The mixture was transferred into an autoclave, stirred at room temperature for 0.5 h, and then heated to 100 °C for 24 h without stirring. After the polymerization was finished, the resulted yellowish solid was filtered, washed with THF (20 ml×3), and dried under vacuum at 60 °C for 12 h. Finally, CPOL-DPMphos&p-3vPPh₃ was obtained.

Preparation of Rh/POL-p-3vPPh₃

Under argon atmosphere, 7.7 mg of Rh(CO)₂(acac) was dissolved in 10 mL of THF, followed by the addition of 0.43 g of CPOL-DPMphos&p-3vPPh₃. After stirring for 24 h under argon atmosphere at room temperature, the resulted yellowish solid was filtered, washed with THF (20 ml×3), and dried under vacuum at 60 °C for 12 h, quantitative yield of the Rh/POL-p-3vPPh₃ was obtained. 0.426 wt.% of Rh contents was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES).

Preparation of Rh/CPOL-DPMphos&p-3vPPh₃

Under argon atmosphere, 10.32 mg of Rh(CO)₂(acac) was dissolved in 10 mL of THF, followed by the addition of 0.5 g of CPOL-DPMphos&*p*-3vPPh₃. After stirring for 24 h under argon atmosphere at room temperature, the resulted yellowish solid was filtered, washed with THF (20 ml×3), and dried under vacuum at 60 °C for 12 h, quantitative yield of the Rh/CPOL-DPMphos&*p*-3vPPh₃ was obtained. 0.520 wt.% of Rh contents was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES).

Preparation of Rh@POL-p-3vPPh3 or Rh@POL-m-3vPPh3

Under argon atmosphere, 0.48 g of p-3vPPh₃ and 7.7 mg of Rh(CO)₂(acac) was dissolved in 10 mL of THF, the mixture was stirred at room temperature for 3 h, and evaporated to dryness under vacuum. Then, the dried mixture and 16 mg of AIBN were dissolved in 5 mL of THF under argon atmosphere. The obtained solution was transferred into an autoclave, stirred at room temperature for 0.5 h, and then heated to 100 °C for 24 h without stirring. After the polymerization was finished, the resulted yellowish solid was filtered, washed with THF (20 mL×3), and dried under vacuum at 60 °C for 12 h. Finally, Rh@POL-p-3vPPh₃ was obtained. 0.517 wt.% of Rh contents was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES).

Rh@POL-*m*-3vPPh₃ was obtained as a yellowish solid according to the above procedure just by replacing 0.48 g of *p*-3vPPh₃ with 0.48 g of *m*-3vPPh₃. 0.507 wt.% of Rh contents was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES).

Preparation of Rh@CPOL-DPMphos&p-3vPPh₃ or Rh@CPOL-DPMphos&m-3vPPh₃

Under argon atmosphere, 0.12 g of DPMphos and 10.32 mg of Rh(CO)₂(acac) was dissolved in 10 mL of THF, the mixture was stirred at room temperature for 3 h, and evaporated to dryness under vacuum. Then, the dried mixture, 0.48 g of *p*-3vPPh₃, and 16 mg of AIBN were dissolved in 6 mL of THF under argon atmosphere. The obtained solution was transferred into an autoclave, stirred at room temperature for 0.5 h, and then heated to 100 °C for 24 h without stirring. After the polymerization was finished, the resulted yellowish solid was filtered, washed with THF (20 mL×3), and dried under vacuum at 60 °C for 12 h. Finally, Rh@CPOL-DPMphos&*p*-3vPPh₃ was obtained. 0.434 wt.% of Rh contents was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES).

Rh@CPOL-DPMphos&m-3vPPh₃ was obtained as a yellowish solid according to the above procedure just by replacing 0.48 g of p-3vPPh₃ with 0.48 g of m-3vPPh₃. 0.428 wt.% of Rh contents was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES).

Figure S1. General mechanism of hydroaminomethylation of alkenes and amines.

4. General procedure for the hydroaminomethylation

Rh@CPOL-DPMphos&p-3vPPh3

As a typical hydroaminomethylation recipe, the as-prepared Rh@CPOL-DPMphos&*p*-3vPPh₃ catalyst (25 mg containing 1.0 µmol of Rh), 1-octene (112 mg, 1.0 mmol), *N*-Methylaniline (108 mg, 1.0 mmol), PTSA.H₂O (15.2 mg, 0.08 mol) and MeOH (2.0 ml) were added into a 80 ml stainless-steel autoclave with a magnetic stir bar. After the autoclave was sealed and purged with CO for four times, the pressure of syngas (CO/H₂ = 1:1) was adjusted to 2 MPa and the autoclave was put into a preheated reactor, then stirring at 120 °C for 24 h. After the reaction, the autoclave was cooled to room temperature and the pressure was carefully released. Subsequently, the reaction mixture was diluted with ethyl acetate (6 ml), and the catalyst was removed from the system by centrifugation and analyzed by gas chromatography (Agilent 7890A GC equipped with a HP-5 capillary column with 5 wt.% phenyl groups and the FID detector) to give the ratio of I/b of the products. GC yield was obtained by GC analysis using *n*-decane as the internal standard, isolated yield was obtained by flash column chromatography on silica gel using EtOAc–petroleum ether mixture as an eluent.

For recycling, the Rh@CPOL-DPMphos&p-3vPPh₃ catalyst was separated by centrifugation, washed with MeOH (8.0 ml×3), and used directly for the next run. The Rh contents of the used catalyst and filtrate after each run were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES).

Scheme S1 Substrate scope of amines and alkenes. ^{*a*} Reaction conditions: alkenes (1 mmol), amines (1 mmol), Rh@CPOL-DPMphos&*p*-3vPPh₃ (25 mg, containing 1 µmol of Rh), TsOH·H₂O (0.08 mmol), total pressure (2 MPa) of syngas (CO : $H_2 = 1 : 1$), methanol (2 ml), 120 °C, 24 h. Isolated yields of the products of *n*- and *iso*-amines. The ratio of *n*-/*iso*-amines was determined by GC analysis. ^{*b*} aniline (0.5 mmol), product of double hydroaminomethylation was obtained.

5. Optimization of the reaction conditions

Finter	Col.	Com. (0()		Sel. (%)		
Entry	501.	CONV. (%)	field (%)	Amine (l/b)	Others	
1	Toluene	96	47	49 (73/27)	51	
2	1,4-Dioxane	95	32	34 (63/37)	66	
3	THF	95	74	78 (74/26)	22	
4	MeOH	95	94	99 (82/18)	1	
5	EtOH	95	69	73 (73/27)	27	
6	DME	95	69	73 (38/62)	27	
7	CH₃CN	95	36	38 (82/18)	62	
8	Anisole	61	27	44 (70/30)	56	
9	DMF	66	38	58 (75/25)	42	
10	<i>n</i> -Hexane	97	91	94 (79/21)	6	
11	DCE	-	-	-	-	

 Table S1. Screen of the reaction solvents.^a

^{*a*} Reaction conditions: 1-octene (1 mmol), *N*-methylaniline (1 mmol), Rh@CPOL-DPMphos&*p*-3vPPh₃ (25 mg, containing 1 μ mol of Rh), TsOH·H₂O (0.08 mmol), total pressure (6 MPa) of syngas (CO : H₂ = 1 : 5), Solvent (2 ml), 120 °C, 12 h.

Conversion, yield and, ratio of *n*-/*iso*-amines were determined by GC analysis using *n*-decane as the internal standard.

Entry	Total pressure (X MPa) of syngas	Comy (%)	Viold (%)	Sel. (%)		
Entry	(CO : H ₂ = Y : Z)	COIIV. (%)	field (%)	Amine (l/b)	Others	
1	1/5	98	97	99 (82/18)	1	
2	1/4	93	91	98 (82/18)	2	
3	1/3	96	95	99 (83/17)	1	
4	1/2	95	93	98 (84/16)	2	
5	1/1	94	86	91 (85/15)	9	
6	0.5/0.5	96	50	52(88/12)	48	
7	2/2	95	95	>99(78/22)	<1	
8	3/3	95	93	98(83/17)	2	

Table S2. Screen of CO/H₂ pressure.^a

^{*a*} Reaction conditions: 1-octene (1 mmol), *N*-methylaniline (1 mmol), Rh@CPOL-DPMphos&*p*-3vPPh₃ (25 mg, containing 1 μ mol of Rh), TsOH·H₂O (0.08 mmol), total pressure (X MPa) of syngas (CO : H₂ = Y : Z), MeOH (2 ml), 120 °C, 12 h. Conversion, yield and, ratio of *n*-/*iso*-amines were determined by GC analysis using *n*-decane as the internal standard.

Finture (т (°С)	Com: (9/)	Viold (%)	Sel. (%)		
Entry		CONV. (%)	field (%)	Amine (l/b)	Others	
1	80	95	45	47(87/13)	53	
2	100	95	70	83(86/14)	17	
3	120	96	80	84(87/13)	16	
4	140	92	74	83(86/14)	17	
5	160	91	20	22(88/12)	78	

 Table S3. Screen of the reaction temperature.^a

^{*a*} Reaction conditions: 1-octene (1 mmol), *N*-methylaniline (1 mmol), Rh@CPOL-DPMphos&*p*-3vPPh₃ (25 mg, containing 1 μ mol of Rh), TsOH·H₂O (0.08 mmol), total pressure (2 MPa) of syngas (CO : H₂ = 1 : 1), MeOH (2 ml), T, 12 h. Conversion, yield and, ratio of *n*-/*iso*-amines were determined by GC analysis using *n*-decane as the internal standard.

Table S4	. Screen	of PTSA·H ₂ O	dosage. ^a
----------	----------	--------------------------	----------------------

Entry	PTSA·H₂O (X mmol)	Conv. (%)	Viold (%)	Sel. (%)		
Entry			field (%)	Amine (l/b)	Others	
1	0	95	12	13(59/41)	87	
2	0.02	96	35	36(88/12)	64	
3	0.04	94	58	62(86/14)	38	
4	0.08	90	80	89(85/15)	11	
5	0.16	96	78	81(84/16)	19	

^{*a*} Reaction conditions: 1-octene (1 mmol), *N*-methylaniline (1 mmol), Rh@CPOL-DPMphos&*p*-3vPPh₃ (25 mg, containing 1 μ mol of Rh), TsOH·H₂O (X mmol), total pressure (2 MPa) of syngas (CO : H₂ = 1 : 1), MeOH (2 ml), 120 °C, 12 h. Conversion, yield and, ratio of *n*-/*iso*-amines were determined by GC analysis using *n*-decane as the internal standard.

Table S5.	Screen	of the	Rh	dosage. ^a
-----------	--------	--------	----	----------------------

Finitian (Com. (9()	Viold (%)	Sel. (%)		
Entry	kn content (X mol%)	CONV. (%)	field (%)	Amine (l/b)	Others	
1	0.05	95	60	63(85/15)	37	
2	0.1	90	80	89(85/15)	11	
3	0.15	94	78	82(86/14)	18	
4	0.2	95	79	83(85/15)	17	
5	0.25	94	79	84(85/15)	16	
6	0.3	95	81	84(85/15)	16	

^{*a*} Reaction conditions: 1-octene (1 mmol), *N*-methylaniline (1 mmol), Rh@CPOL-DPMphos&*p*-3vPPh₃ (Rh, X mol%), TsOH·H₂O (0.08 mmol), total pressure (2 MPa) of syngas (CO : H₂ = 1 : 1), MeOH (2 ml), 120 °C, 12 h. Conversion, yield and, ratio of *n*-/*iso*-amines were determined by GC analysis using *n*-decane as the internal standard.

Finter (Time (b)	Com. (0/)	Viold (%)	Sel. (%)		
Entry	Time (n)	CONV. (%)	field (%)	Amine (l/b)	Others	
1	1	95	13	14(86/14)	86	
2	3	88	34	39(88/12)	61	
3	6	94	49	52(86/14)	48	
4	9	94	60	64(86/14)	36	
5	12	90	80	89(85/15)	11	
6	18	94	87	93(84/16)	7	
7	24	96	95 (90) ^b	99(85/15)	1	

Table S6. Screen of the reaction time.^a

^{*a*} Reaction conditions: 1-octene (1 mmol), *N*-methylaniline (1 mmol), Rh@CPOL-DPMphos&*p*-3vPPh₃ (25 mg, containing 1 µmol of Rh), TsOH·H₂O (0.08 mmol), total pressure (2 MPa) of syngas (CO : H₂ = 1 : 1), MeOH (2 ml), 120 °C, t. Conversion, yield and, ratio of *n*-/*iso*-amines were determined by GC analysis using *n*-decane as the internal standard. ^{*b*} Isolated yield.

Figure S2. Kinetic curve and hot filtration experiments for hydroaminomethylation of 1-octene.

Table S7. Comparison of the reaction performance of Rh@CPOL-DPMphos&*p*-3vPPh₃ reported in this work with other

Alkene/Amine (M/N)	Cat.	CO/H2 (X/Y MPa)	T (°C)	Conv. (%)	Yield (%)	Amine (l/b)	Ref.
1-octene/ <i>N</i> -methylaniline (1/1)	Rh@CPOL-DPMphos&p-3vPPh ₃	1/1	120	96	95	85/15	This work
1-octene/di- <i>n</i> -propylamine (1/1.5)	Ph ₂ P(CH ₂ CH ₂ O) _n CH ₃ (n=16)-stabilized Rh nanoparticle catalyst	3/3	120	99	96	79/21	3
1-hexene/ <i>N</i> -methylaniline (1/8.8)	Au/Co ₃ O ₄	2/2	120	100	39	41/59	4
1-hexene/morpholine (1/1)	Rh-HMS-F	1.35/5.4	120	100	73	64/36	5
1-hexene/pyrrolidine (1/1)	Rh-ETS-10	1.35/5.4	100	100	81	56/44	6

heterogeneous catalysts.

Table S8. Rh contents in the catalysts and the filtration after each cycle, and the corresponding reaction performance.^a

Entry	Recycling	Rh contents in the catalysts (wt.%)	Rh contents in the filtration (ppm)	Conv. (%) ^{<i>b</i>}	Yield (%) ^b	Amine (l/b) ^b
1	The 1 st run	0.434	<0.1 ppm	90	80	85/15
2	The 2 nd run	0.426	<0.1 ppm	89	76	84/16
3	The 3 rd run	0.432	<0.1 ppm	86	77	82/18

^{*a*} Rh content was determined by ICP-AES. ^{*b*} Reaction conditions: 1-octene (1 mmol), *N*-methylaniline (1 mmol), Rh dosage (1 μ mol), TsOH·H₂O (0.08 mmol), total pressure (2 MPa) of syngas (CO : H₂ = 1 : 1), methanol (2 ml), 120 °C, 12 h. Conversion, yield, and ratio of *n*-/*iso*-amines were determined by GC analysis using *n*-decane as the internal standard.

6. NMR data of the products

N-Methyl-N-nonylaniline: yellow oil liquid, 210 mg, 90% yield, 85% linear selectivity. ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.00 (m, 2H), 6.99 – 6.40 (m, 3H), 3.29 (t, *J* = 7.5 Hz, 2H), 2.91 (s, 3H), 1.56 (d, *J* = 6.3 Hz, 2H), 1.28 (d, *J* = 12.9 Hz, 12H), 0.88 (t, *J* = 5.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.47, 129.25, 115.87, 112.16, 52.95, 38.39, 32.02, 29.77, 29.71, 29.43, 27.34, 26.76, 22.82, 14.26.

N-Ethyl-N-nonylaniline: colorless oil liquid, 146 mg, 60% yield, 93% linear selectivity. ¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (dd, *J* = 15.8, 7.8 Hz, 2H), 6.63 (dd, *J* = 16.8, 7.8 Hz, 3H), 3.35 (q, *J* = 7.0 Hz, 2H), 3.29 – 3.16 (m, 2H), 1.57 (s, 2H), 1.29 (d, *J* = 14.8 Hz, 12H), 1.14 (t, *J* = 7.0 Hz, 3H), 0.88 (t, *J* = 6.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 148.13, 129.35, 115.29, 111.85, 50.59, 45.01, 32.03, 29.79, 29.72, 29.44, 27.65, 27.37, 22.82, 14.26, 12.44.

1-Nonylindoline: colorless oil liquid, 208 mg, 83% yield, 82% linear selectivity. ¹**H NMR** (400 MHz, CDCl₃) δ 7.10 – 6.96 (m, 2H), 6.61 (t, *J* = 7.2 Hz, 1H), 6.52 – 6.35 (m, 1H), 3.31 (t, *J* = 8.3 Hz, 2H), 3.08 – 2.80 (m, 4H), 1.67 – 1.51 (m, 2H), 1.29 (t, *J* = 19.2 Hz, 12H), 0.88 (t, *J* = 6.0 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 153.49, 152.89, 130.09, 129.69, 128.68, 128.56, 127.86, 127.37, 124.43, 124.39, 121.37, 121.02, 120.99, 119.23, 119.20, 117.31, 116.98, 109.68, 109.47, 106.94, 106.46, 100.92, 100.81, 56.99, 54.17, 53.16, 49.43, 46.51, 34.95, 34.67, 34.39, 32.64, 32.03, 31.96, 30.38, 29.81, 29.75, 29.68, 29.63, 29.60, 29.45, 29.39, 29.37, 28.74, 28.69, 27.48, 27.42, 27.17, 27.14, 26.99, 22.82, 22.78, 18.14, 17.90, 14.25, 14.23.

N-Nonyl-N-phenylaniline: colorless oil liquid, 161 mg, 55% yield, 96% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 7.8 Hz, 4H), 6.98 (d, *J* = 7.9 Hz, 4H), 6.92 (t, *J* = 7.2 Hz, 2H), 3.76 – 3.57 (m, 2H), 1.64 (d, *J* = 6.8 Hz, 2H), 1.27 (d, *J* = 16.5 Hz, 12H), 0.87 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.24, 129.35, 121.13, 121.01, 52.49, 32.00, 29.74, 29.59, 29.39, 27.57, 27.23, 22.80, 14.25.

N-Nonylaniline: yellow oil liquid, 120 mg, 55% yield, 75% linear selectivity. ¹**H NMR** (400 MHz, CDCl₃) δ 7.16 (t, *J* = 7.7 Hz, 2H), 6.67 (dd, *J* = 8.7, 5.0 Hz, 1H), 6.58 (d, *J* = 7.8 Hz, 2H), 3.59 (s, 0.89H), 3.08 (t, *J* = 7.1 Hz, 1.63H), 2.95 – 2.72 (m, 0.33H), 1.80 – 1.65 (m, 0.32H), 1.59 (dt, *J* = 14.3, 7.0 Hz, 1.60H), 1.46 – 1.18 (m, 12H), 0.95 (d, *J* = 6.6 Hz, 0.77H), 0.88 (t, *J* = 6.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 148.66, 129.31, 117.15, 117.01, 112.78, 112.72, 50.44, 44.10, 34.93, 33.04, 32.01, 29.75, 29.70, 29.60, 29.41, 27.31, 27.08, 22.80, 18.18, 14.24.

4-Methyl-*N***-nonylaniline:** yellow oil liquid, 166 mg, 71% yield, 78% linear selectivity. ¹**H NMR** (400 MHz, CDCl₃) δ 6.96 (d, *J* = 7.9 Hz, 2H), 6.50 (d, *J* = 8.1 Hz, 2H), 3.39 (s, 1H), 3.04 (t, *J* = 7.1 Hz, 1.74H), 2.82 (dd, *J* = 12.1, 7.4 Hz, 0.26H), 2.22 (s, 3H), 1.74 – 1.64 (m, 0.27H), 1.55 (dd, *J* = 14.0, 7.0 Hz, 1.74H), 1.27 (s, 12H), 0.93 (d, *J* = 6.6 Hz, 0.68H), 0.88 (t, *J* = 6.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 146.40, 129.75, 126.21, 126.05, 112.94, 112.86, 50.79, 44.44, 34.92, 32.99, 32.00, 29.73, 29.69, 29.60, 29.40, 27.31, 27.06, 22.78, 20.44, 18.12, 14.20.

4-Methoxy-*N***-nonylaniline:** yellow oil liquid, 156 mg, 63% yield, 78% linear selectivity. ¹**H** NMR (400 MHz, CDCl₃) δ 6.76 (d, *J* = 8.7 Hz, 2H), 6.55 (d, *J* = 8.7 Hz, 2H), 3.72 (s, 3H), 3.29 (s, 1H), 3.03 (t, *J* = 7.1 Hz, 1.68H), 2.81 (dd, *J* = 11.9, 7.3 Hz, 0.29H), 1.74 – 1.63 (m, 0.26H), 1.57 (dt, *J* = 14.3, 7.0 Hz, 1.68H), 1.39 – 1.19 (m, 12H), 0.94 (d, *J* = 6.6 Hz, 0.55H), 0.88 (t, *J* = 6.4 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 151.98, 142.96, 114.92, 114.02, 55.83, 55.81, 51.43, 45.07, 34.91, 33.02, 31.97, 29.77, 29.71, 29.66, 29.58, 29.37, 27.30, 27.04, 22.76, 18.14, 14.18.

4-Fluoro-N-nonylaniline: yellow oil liquid, 182 mg, 77% yield, 80% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 6.87 (t, J = 8.7 Hz, 2H), 6.51 (dd, J = 8.8, 4.4 Hz, 2H), 3.45 (s, 0.78H), 3.28 – 3.12 (m, 0.18H), 3.04 (t, J = 7.1 Hz, 1.56H), 2.97 (dd, J = 12.0, 6.1 Hz, 0.22H), 2.88 – 2.79 (m, 0.26H), 1.70 (td, J = 12.8, 6.6 Hz, 0.22H), 1.64 – 1.51 (m, 1.72H), 1.27 (s, 12H), 0.95 (d, J = 6.6 Hz, 0.62H), 0.88 (t, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.95, 156.85, 154.62, 154.53, 145.15, 145.06, 145.05, 115.81, 115.59, 113.58, 113.50, 113.43, 51.17, 44.82, 34.92, 33.04, 32.02, 29.74, 29.69, 29.60, 29.41, 27.30, 27.07, 22.81, 18.17, 14.24.

4-Chloro-*N***-nonylaniline:** yellow oil liquid, 160 mg, 63% yield, 81% linear selectivity. ¹**H NMR** (400 MHz, CDCl₃) δ 7.08 (d, *J* = 8.6 Hz, 2H), 6.48 (d, *J* = 8.6 Hz, 2H), 3.59 (s, 0.86H), 3.03 (t, *J* = 7.1 Hz, 1.75H), 2.89 – 2.77 (m, 0.28H), 1.68 (dd, *J* = 12.4, 6.3 Hz, 0.28H), 1.56 (dd, *J* = 14.1, 7.1 Hz, 1.77H), 1.31 (d, *J* = 34.7 Hz, 12H), 0.94 (d, *J* = 6.6 Hz, 0.70H), 0.88 (t, *J* = 6.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 147.18, 129.08, 113.76, 50.52, 44.19, 34.86, 32.96, 32.00, 31.98, 29.71, 29.67, 29.56, 29.54, 29.39, 27.25, 27.04, 22.79, 18.10, 14.23.

N-Benzyl-N-ethylnonan-1-amine: yellow oil liquid, 170 mg, 65% yield, 85% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.01 (m, 5H), 3.55 (s, 2H), 2.50 (dd, *J* = 14.1, 7.0 Hz, 2H), 2.45 – 2.33 (m, 2H), 1.45 (d, *J* = 6.4 Hz, 2H), 1.25 (s, 12H), 1.03 (t, *J* = 7.1 Hz, 3H), 0.88 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.27, 129.00, 128.21, 126.74, 58.16, 53.38, 47.37, 32.05, 29.75, 29.46, 27.65, 27.12, 22.84, 14.28, 11.86.

N-Benzyl-*N*-nonylaniline: colorless oil liquid, 222 mg, 72% yield, 81% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (q, *J* = 7.4 Hz, 2H), 7.22 – 7.10 (m, 5H), 6.64 (t, *J* = 9.1 Hz, 3H), 4.51 (s, 2H), 3.35 (dd, *J* = 15.7, 8.0 Hz, 1.81H), 3.28 – 3.07 (m, 0.34H), 1.64 (s, 1.95H), 1.28 (d, *J* = 14.6 Hz, 12H), 0.92 (d, *J* = 6.6 Hz, 0.47H), 0.88 (t, *J* = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.89, 148.70, 139.26, 138.94, 129.28, 129.18, 128.63, 128.60, 126.79, 126.61, 116.00, 112.49, 112.16, 58.70, 55.43, 54.56, 51.44, 34.91, 32.35, 32.01, 29.80, 29.75, 29.65, 29.40, 27.30, 27.23, 27.18, 22.80, 18.00, 14.25.

N,*N*-DibutyInonan-1-amine: yellow oil liquid, 196 mg, 77% yield, 85% linear selectivity. ¹H NMR (400 MHz, CDCl₃)
 δ 2.38 (dd, *J* = 13.0, 5.6 Hz, 6H), 1.48 − 1.36 (m, 6H), 1.30 (dd, *J* = 16.9, 9.6 Hz, 16H), 0.98 − 0.80 (m, 9H). ¹³C NMR (101 MHz, CDCl₃)
 δ 54.39, 54.08, 32.05, 29.81, 29.78, 29.46, 29.36, 27.82, 27.18, 22.83, 20.96, 14.26.

N-Ethyl-N-nonylcyclohexanamine: colorless oil liquid, 152 mg, 60% yield, 87% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 2.53 (q, *J* = 7.1 Hz, 2H), 2.45 – 2.36 (m, 2H), 1.77 (d, *J* = 9.8 Hz, 4H), 1.62 (d, *J* = 11.9 Hz, 1H), 1.42 (dd, *J* = 14.1, 7.4 Hz, 2H), 1.31 – 1.16 (m, 18H), 1.02 (t, *J* = 7.1 Hz, 3H), 0.88 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 60.00, 50.35, 44.40, 32.05, 29.81, 29.79, 29.46, 29.35, 27.84, 26.64, 26.40, 22.82, 14.26.

1-Nonyl-2-phenylpyrrolidine: colorless oil liquid, 232 mg, 85% yield, 83% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 7.27 – 7.19 (m, 1H), 3.34 (td, *J* = 8.7, 2.3 Hz, 1H), 3.23 – 3.10 (m, 1H), 2.51 (dt, *J* = 11.7, 8.2 Hz, 1H), 2.22 – 2.07 (m, 2H), 1.93 (ddt, *J* = 13.1, 8.5, 5.8 Hz, 2H), 1.80 (dddd, *J* = 12.2, 9.1, 6.1, 2.8 Hz, 1H), 1.68 (dddd, *J* = 12.2, 10.8, 9.2, 6.2 Hz, 1H), 1.41 (dd, *J* = 13.7, 7.7 Hz, 2H), 1.30 – 1.16 (m, 12H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.35, 139.00, 128.38, 127.61, 126.90, 70.59, 54.72, 53.80, 35.29, 32.03, 29.71, 29.70, 29.44, 28.93, 27.62, 22.81, 22.58, 14.26.

4-Nonylmorpholine: yellow oil liquid, 183 mg, 86% yield, 82% linear selectivity. ¹**H NMR** (400 MHz, CDCl₃) δ 3.81 – 3.62 (m, 4H), 2.44 (s, 4H), 2.32 (dd, *J* = 8.7, 6.8 Hz, 2H), 1.57 – 1.40 (m, 2H), 1.37 – 1.18 (m, 12H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 66.96, 59.25, 53.81, 31.90, 29.59, 29.56, 29.30, 27.53, 26.56, 22.68, 14.11.

N,*N*-Dinonylaniline: colorless oil liquid, 112 mg, 65% yield, 77% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (t, *J* = 7.9 Hz, 2H), 6.61 (dd, *J* = 10.6, 8.0 Hz, 3H), 3.40 – 2.91 (m, 4H), 1.56 (s, 4H), 1.29 (d, *J* = 12.1 Hz, 24H), 0.87 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 148.48, 148.19, 129.23, 129.13, 115.06, 112.01, 111.66, 77.08, 58.18, 52.14, 51.11, 34.81, 31.97, 29.78, 29.73, 29.64, 29.38, 27.29, 27.28, 27.15, 26.43, 22.76, 17.83, 14.19.

N-(4,4-Dimethylpentyl)-*N*-methylaniline: colorless oil liquid, 154 mg, 75% yield, >99% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (dd, *J* = 8.3, 7.5 Hz, 2H), 6.67 (t, *J* = 9.0 Hz, 3H), 3.25 (t, *J* = 7.6 Hz, 2H), 2.91 (s, 3H), 1.63 –

1.40 (m, 2H), 1.18 (dd, *J* = 10.8, 6.1 Hz, 2H), 0.88 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.47, 129.27, 115.89, 112.12, 53.72, 41.44, 38.31, 30.41, 29.53, 21.88.

N-Heptadecyl-N-methylaniline: white solid, 269 mg, 78% yield, 84% linear selectivity. ¹**H NMR** (400 MHz, CDCl₃) δ 7.22 (t, *J* = 7.9 Hz, 2H), 6.67 (dd, *J* = 13.2, 7.4 Hz, 3H), 3.38 – 3.18 (m, 2H), 2.91 (s, 3H), 1.55 (d, *J* = 6.0 Hz, 2H), 1.28 (d, *J* = 16.7 Hz, 28H), 0.88 (t, *J* = 6.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.47, 129.26, 129.19, 115.88, 112.17, 111.87, 60.02, 52.97, 39.63, 38.41, 34.86, 32.37, 32.09, 30.17, 29.86, 29.82, 29.78, 29.72, 29.53, 27.35, 27.22, 26.77, 22.86, 17.93, 14.29.

N1,N8-Dimethyl-N1,N8-diphenyloctane-1,8-diamine: colorless oil liquid, 110 mg, 68% yield, 72% linear selectivity. ¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (t, *J* = 7.8 Hz, 4H), 6.66 (t, *J* = 8.6 Hz, 6H), 3.31 – 3.23 (m, 3.33H), 3.21 – 3.13 (m, 0.44H), 3.07 – 2.96 (m, 0.42H), 2.91 (s, 1H), 2.89 (s, 5H), 1.88 (s, 0.42H), 1.54 (s, 3.71H), 1.39 (d, *J* = 7.9 Hz, 0.69H), 1.30 (s, 6.84H), 1.16 – 1.00 (m, 0.39H), 0.88 (d, *J* = 6.5 Hz, 1.3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.71, 149.40, 129.22, 129.16, 115.87, 115.67, 112.13, 111.85, 59.91, 52.85, 39.58, 38.37, 34.72, 32.26, 29.65, 27.60, 27.22, 27.09, 26.73, 17.86.

Methyl 12-(methyl(phenyl)amino)dodecanoate: yellow oil liquid, 249 mg, 78% yield, 81% linear selectivity. ¹H **NMR** (400 MHz, CDCl₃) δ 7.20 (t, *J* = 7.9 Hz, 2H), 6.66 (dd, *J* = 13.4, 7.5 Hz, 3H), 3.65 (s, 3H), 3.34 – 3.23 (m, 1.64H), 3.18 (dt, *J* = 16.6, 8.3 Hz, 0.21H), 3.09 – 2.95 (m, 0.20H), 2.93 (s, 0.49H), 2.90 (s, 2.46H), 2.29 (t, *J* = 7.5 Hz, 2H), 1.89 (s, 0.14H), 1.66 – 1.49 (m, 3.81H), 1.27 (d, *J* = 2.4 Hz, 14H), 1.08 (dd, *J* = 17.3, 9.2 Hz, 0.26H), 0.88 (d, *J* = 6.6 Hz, 0.59H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.30, 149.69, 149.36, 129.14, 129.07, 115.79, 115.56, 112.07, 111.78, 59.89, 52.83, 51.45, 39.50, 38.29, 34.71, 34.12, 32.25, 29.96, 29.66, 29.59, 29.57, 29.47, 29.29, 29.18, 27.23, 27.07, 26.68, 24.99, 17.81.

7-(Methyl(phenyl)amino)heptan-2-one: colorless oil liquid, 110 mg, 50% yield, 89% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, *J* = 7.8 Hz, 2H), 6.66 (t, *J* = 7.6 Hz, 3H), 3.36 – 3.22 (m, 2H), 2.94 (s, 0.33H), 2.90 (s, 2.70H), 2.41 (t, *J* = 7.3 Hz, 2H), 2.11 (s, 3H), 1.66 – 1.48 (m, 3.79H), 1.36 – 1.20 (m, 2.74H), 0.89 (d, *J* = 6.6 Hz, 3H), 2.90 (m, 2.74H), 0.89 (d, *J* = 6.6 Hz, 3H), 3.90 (m, 2.74H), 3.90

0.51H). ¹³**C NMR** (101 MHz, CDCl₃) δ 209.01, 149.28, 129.17, 129.13, 115.91, 112.10, 111.91, 59.68, 52.57, 43.62, 41.42, 39.58, 38.32, 31.84, 29.96, 29.90, 29.74, 28.40, 26.72, 26.54, 23.66, 17.54.

N-(3-(Cyclohex-3-en-1-yl)propyl)-N-methylaniline: yellow oil liquid, 160 mg, 70% yield, 95% linear selectivity. ¹**H NMR** (400 MHz, CDCl₃) δ 7.14 (ddd, *J* = 7.7, 5.8, 2.3 Hz, 2H), 6.76 – 6.45 (m, 3H), 5.58 (s, 2H), 3.35 – 3.06 (m, 2H), 2.84 (s, 3H), 2.10 – 1.84 (m, 3H), 1.77 – 1.36 (m, 5H), 1.34 – 1.05 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.47, 129.26, 127.16, 126.63, 115.96, 112.21, 53.20, 38.39, 34.17, 33.63, 32.06, 29.09, 25.37, 24.10.

N-Methyl-N-(3-phenylpropyl)aniline: colorless oil liquid, 186 mg, 82% yield, 40% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.13 (m, 7H), 6.67 (t, *J* = 9.7 Hz, 3H), 3.48 (dd, *J* = 14.6, 7.6 Hz, 0.63H), 3.41 – 3.28 (m, 1.45H), 3.20 (dt, *J* = 14.2, 7.1 Hz, 0.68H), 2.90 (s, 1.21H), 2.73 (s, 1.89H), 2.64 (t, *J* = 7.7 Hz, 0.81H), 1.97 – 1.79 (m, 0.79H), 1.29 (d, *J* = 6.9 Hz, 2.12H). ¹³C NMR (101 MHz, CDCl₃) δ 149.39, 149.08, 145.25, 141.90, 129.27, 128.57, 128.49, 128.45, 127.40, 126.48, 125.99, 115.84, 112.29, 111.83, 61.09, 52.34, 39.64, 38.40, 38.38, 33.44, 28.27, 18.92.

N-(3-(4-(Tert-butyl)phenyl)propyl)-*N*-methylaniline: colorless oil liquid, 232 mg, 83% yield, 43% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, J = 7.0 Hz, 2H), 7.25 – 7.16 (m, 2H), 7.12 (dd, J = 10.2, 8.4 Hz, 2H), 6.65 (t, J = 7.1 Hz, 3H), 3.46 – 3.36 (m, 1.10H), 3.32 (dd, J = 15.6, 8.2 Hz, 0.90H), 3.16 (dd, J = 14.3, 7.1 Hz, 0.66H), 2.88 (s, 1.31H), 2.76 (s, 1.70H), 2.60 (t, J = 7.7 Hz, 0.85H), 1.94 – 1.77 (m, 0.87H), 1.30 (s, 9H), 1.27 (d, J = 7.0 Hz, 2.13H). ¹³C NMR (101 MHz, CDCl₃) δ 149.40, 149.23, 149.14, 148.72, 142.06, 138.80, 129.24, 128.10, 126.96, 125.39, 125.34, 116.09, 115.80, 112.29, 111.85, 61.06, 52.40, 39.62, 38.39, 37.86, 34.48, 34.45, 32.86, 31.54, 28.26, 18.95.

N-(3-([1,1'-Biphenyl]-4-yl)propyl)-*N*-methylaniline: colorless oil liquid, 186 mg, 62% yield, 45% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.6 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.36 – 7.18 (m, 5H), 6.69 (t, *J* = 6.9 Hz, 3H), 3.52 (dd, *J* = 14.6, 7.7 Hz, 0.55H), 3.47 – 3.32 (m, 1.39H), 3.30 – 3.18 (m, 0.69H), 2.92 (s, 1.39H), 2.78 (s, 0.64H), 2.68 (t, *J* = 7.7 Hz, 0.87H), 2.01 – 1.87 (m, 0.86H), 1.33 (d, *J* = 6.9 Hz, 1.72H). ¹³C NMR (101 MHz, CDCl₃) δ 149.42, 149.10, 144.38, 141.15, 141.07, 141.05, 139.40, 138.96, 129.31, 128.89, 128.87, 127.83, 127.28, 127.23, 127.18, 127.12, 116.16, 115.91, 112.33, 111.90, 61.10, 52.37, 39.75, 38.45, 38.08, 33.08, 28.29, 18.96.

N-Methyl-N-(4-phenylbutyl)aniline: colorless oil liquid, 200 mg, 84% yield, 80% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (ddt, *J* = 22.6, 15.7, 7.7 Hz, 7H), 6.63 (dd, *J* = 19.3, 8.5 Hz, 3H), 3.26 (dd, *J* = 14.5, 8.2 Hz, 1.81H), 3.12 – 2.97 (m, 0.27H), 2.90 (s, 0.74H), 2.84 (s, 2.34H), 2.77 – 2.66 (m, 0.26H), 2.60 (t, *J* = 6.9 Hz, 1.66H), 2.32 (dd, *J* = 13.1, 8.8 Hz, 0.20H), 2.19 (dt, *J* = 13.1, 6.6 Hz, 0.19H), 1.71 – 1.50 (m, 3.23H), 0.85 (d, *J* = 6.6 Hz, 0.64H). ¹³C NMR (101 MHz, CDCl₃) δ 149.34, 142.35, 129.21, 128.44, 128.38, 125.83, 115.95, 112.14, 59.38, 52.66, 41.39, 39.53, 38.34, 35.88, 34.57, 29.09, 26.48, 17.87.

N-(4-(4-Methoxyphenyl)butyl)-*N*-methylaniline: colorless oil liquid, 202 mg, 75% yield, 80% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (dd, *J* = 14.4, 6.9 Hz, 2H), 7.06 (t, *J* = 8.1 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 2H), 6.64 (dd, *J* = 21.1, 7.9 Hz, 3H), 3.76 (s, 3H), 3.30 (s, 1.81H), 3.05 (dd, *J* = 14.5, 8.2 Hz, 0.25H), 2.94 (s, 0.66H), 2.88 (s, 2.36H), 2.73 – 2.63 (m, 0.29H), 2.57 (s, 1.58H), 2.30 (dd, *J* = 13.3, 8.7 Hz, 0.19H), 2.22 – 2.08 (m, 0.19H), 1.60 (s, 2.32H), 0.87 (d, *J* = 6.6 Hz, 0.67H). ¹³C NMR (101 MHz, CDCl₃) δ 157.89, 157.81, 149.68, 149.40, 134.51, 132.88, 130.06, 129.35, 129.25, 129.17, 115.95, 115.80, 113.81, 113.71, 112.17, 111.96, 59.40, 55.33, 52.75, 40.52, 39.60, 38.41, 34.99, 34.72, 29.38, 26.46, 17.91.

N-(4-(4-Fluorophenyl)butyl)-*N*-methylaniline: colorless oil liquid, 180 mg, 70% yield, 84% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.15 (m, 2H), 7.07 (dt, *J* = 11.8, 6.1 Hz, 2H), 6.93 (t, *J* = 8.6 Hz, 2H), 6.72 – 6.58 (m, 3H), 3.30 (d, *J* = 6.7 Hz, 1.85H), 3.11 – 2.98 (m, 0.21H), 2.93 (s, 0.5H), 2.87 (s, 2.53H), 2.75 – 2.65 (m, 0.22H), 2.57 (d, *J* = 6.6 Hz, 1.68H), 2.30 (dd, *J* = 13.3, 8.9 Hz, 0.16H), 2.15 (dd, *J* = 13.6, 6.9 Hz, 0.16H), 1.66 – 1.51 (m, 3.37H), 0.85 (d, *J* = 6.6 Hz, 0.56H). ¹³C NMR (101 MHz, CDCl₃) δ 162.51, 160.09, 149.63, 149.37, 138.00, 137.97, 136.48, 136.45, 130.49, 130.41, 129.80, 129.72, 129.26, 129.20, 116.03, 115.21, 115.00, 112.19, 111.99, 59.37, 52.67, 40.54, 39.59, 38.39, 35.07, 34.69, 29.23, 26.42, 17.75.

N-Methyl-N-(4-(naphthalen-1-yl)butyl)aniline: yellow oil liquid, 243 mg, 84% yield, 82% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 1H), 7.86 – 7.75 (m, 1H), 7.67 (d, *J* = 8.1 Hz, 1H), 7.49 – 7.38 (m, 2H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.29 – 7.13 (m, 3H), 6.64 (dd, *J* = 16.5, 8.4 Hz, 3H), 3.32 – 3.24 (m, 2H), 3.18 (dd, *J* = 14.6, 7.4 Hz, 0.28H), 3.04 (t, *J* = 7.3 Hz, 1.79H), 2.95 (s, 0.61H), 2.84 (s, 2.65H), 2.63 (dd, *J* = 13.7, 9.2 Hz, 0.25H), 2.37 (dq, *J* =

13.6, 6.8 Hz, 0.19H), 1.81 – 1.57 (m, 3.65H), 0.86 (d, *J* = 6.6 Hz, 0.66H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.63, 149.39, 138.46, 136.98, 134.03, 133.97, 132.06, 131.89, 129.26, 129.19, 128.88, 128.80, 127.26, 126.84, 126.68, 126.03, 125.82, 125.78, 125.62, 125.50, 125.47, 125.32, 124.03, 123.86, 116.02, 112.22, 112.16, 59.94, 52.69, 39.82, 38.46, 38.37, 33.67, 33.05, 28.41, 26.99, 18.19.

N-(4-(3,4-Dimethoxyphenyl)butyl)-N-methylaniline: colorless oil liquid, 235 mg, 79% yield, 80% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, *J* = 7.8 Hz, 2H), 6.77 (d, *J* = 7.9 Hz, 1H), 6.73 – 6.58 (m, 5H), 3.97 – 3.66 (m, 6H), 3.30 (t, *J* = 11.5 Hz, 1.81H), 3.05 (dd, *J* = 14.6, 8.0 Hz, 0.24H), 2.95 (s, 0.58H), 2.89 (s, 2.39H), 2.66 (dd, *J* = 12.3, 7.0 Hz, 0.29H), 2.57 (d, *J* = 6.4 Hz, 1.58H), 2.34 (dd, *J* = 13.3, 8.4 Hz, 0.18H), 2.24 – 2.12 (m, 0.18H), 1.61 (d, *J* = 3.2 Hz, 3.33H), 0.89 (d, *J* = 6.5 Hz, 0.59H). ¹³C NMR (101 MHz, CDCl₃) δ 149.58, 149.33, 148.79, 148.72, 147.21, 147.12, 135.02, 133.34, 129.19, 129.12, 121.05, 120.17, 115.91, 115.77, 112.18, 112.11, 111.92, 111.66, 111.17, 111.01, 59.28, 55.93, 55.82, 52.66, 40.99, 39.63, 38.36, 35.45, 34.49, 29.28, 26.44, 18.04.

Methyl 2-hydroxy-3-methoxy-5-(4-(methyl(phenyl)amino)butyl)benzoate: colorless viscous liquid, 274 mg, 80% yield, 79% linear selectivity. ¹H NMR (400 MHz, CDCl₃) δ 10.87 (s, 0.19H), 10.85 (s, 0.72H), 7.26 – 7.15 (m, 3H), 6.84 (s, 1H), 6.73 – 6.57 (m, 3H), 3.92 (s, 3.07H), 3.87 (s, 2.26H), 3.84 (s, 0.77H), 3.32 (d, J = 6.5 Hz, 1.78H), 3.07 (dd, J = 14.6, 7.7 Hz, 0.26H), 2.94 (s, 0.65H), 2.89 (s, 2.35H), 2.74 – 2.62 (m, 0.26H), 2.56 (d, J = 6.6 Hz, 1.57H), 2.33 (dd, J = 13.5, 8.4 Hz, 0.20H), 2.25 – 2.12 (m, 0.20H), 1.68 – 1.55 (m, 3.26H), 0.89 (d, J = 6.5 Hz, 0.73H). ¹³C NMR (101 MHz, CDCl₃) δ 170.87, 150.28, 150.20, 149.53, 149.29, 148.34, 148.29, 132.59, 130.97, 129.18, 129.12, 120.76, 119.99, 117.59, 117.10, 115.95, 115.88, 112.10, 111.95, 59.19, 56.18, 52.58, 52.33, 40.86, 39.63, 38.33, 35.36, 34.24, 29.06, 26.29, 17.90.

7. Catalyst characterization

FT-IR spectra

Figure S3. FT-IR spectra of *p*-3vPPh₃, DPMphos, Rh@CPOL-DPMphos&*p*-3vPPh₃ and Rh@CPOL-DPMphos&*p*-3vPPh₃-reused (magenta line for *p*-3vPPh₃, blue line for DPMphos, red line for Rh@CPOL-DPMphos&*p*-3vPPh₃, olive line for Rh@CPOL-DPMphos&*p*-3vPPh₃-reused).

N₂ adsorption-desorption analysis

Figure S4. N₂ adsorption-desorption isotherm of the POPs catalysts.

Figure S5. Pore size distribution of the POPs catalysts.

Entry	Catalyst	SA (m ² g ⁻¹) ^a	APW (nm) ^a	PV (cm ⁻³ g ⁻¹) ^a
1	POL- <i>p</i> -3vPPh₃	1251.820	5.473	1.713
2	CPOL-DPMphos& <i>p</i> -3vPPh ₃	1037.315	5.815	1.345
3	Rh/POL- <i>p</i> -3vPPh₃	1197.569	5.329	1.596
4	Rh/CPOL-DPMphos& <i>p</i> -3vPPh₃	1126.451	4.992	1.406
5	Rh@POL- <i>p</i> -3vPPh₃	1220.837	8.142	2.485
6	Rh@CPOL-DPMphos& <i>p</i> -3vPPh₃	1013.211	6.291	1.593
7	Rh@POL- <i>m</i> -3vPPh₃	835.971	1.034	2.160
8	Rh@CPOL-DPMphos& <i>m</i> -3vPPh ₃	767.364	9.084	1.743
9	Rh@CPOL-DPMphos&p-3vPPh ₃ -reused	679.511	5.938	1.009

Table S9. The physical properties of the POPs catalysts.

^{*a*} Determined by an IQ₂ automated gas sorption analyzer. SA: BET surface area; APW: average pore width; PV: pore volume.

Scanning electron micrographs

CPOL-DPMphos&p-3vPPh₃

Rh@CPOL-DPMphos&p-3vPPh₃

Figure S6. SEM images of the CPOL-DPMphos&*p*-3vPPh₃ and Rh@CPOL-DPMphos&*p*-3vPPh₃.

TGA analysis

Figure S7. TGA analysis of the CPOL-DPMphos&*p*-3vPPh₃, Rh@CPOL-DPMphos&*p*-3vPPh₃, and Rh@CPOL-DPMphos&*p*-3vPPh₃-reused.

Experimental PXRD profiles

Figure S8. PXRD profiles of CPOL-DPMphos&*p*-3vPPh₃ and Rh@CPOL-DPMphos&*p*-3vPPh₃.

Transmission electron micrographs

Figure S9. TEM images of the Rh@CPOL-DPMphos&p-3vPPh₃.

Figure S10. TEM images of the Rh@CPOL-DPMphos&*p*-3vPPh₃-reused.

Figure S11. (a) Rh3d-XPS analysis of Rh/CPOL-DPMphos&p-3vPPh₃ (0.52 wt.% Rh) and Rh@CPOL-DPMphos&p-3vPPh₃ (0.434 wt.% Rh), (b) Rh3d-XPS analysis of Rh/CPOL-DPMphos&p-3vPPh₃ (1.0 wt.% Rh) and Rh@CPOL-DPMphos&p-3vPPh₃ (0.97 wt.% Rh).

Figure S12. P2p-XPS analysis of CPOL-DPMphos&p-3vPPh₃.

Figure S13. P2p-XPS analysis of Rh@CPOL-DPMphos&p-3vPPh3.

8. Copies of quantitative GC and NMR spectra

Quantitative GC spectra of 1-octene hydroaminomethylation FID1 A, 前部信号 (D:\CHEM DATA\ZK\氢胺甲基化反应\DEF_GC 2022-01-07 12-26-59\102F0201.D) pА 200000 150000 3aa-L *n*-decane 100000 3aa-B 45% (1119): 67013.8 50000 7.595 7.101 0 2 10 4 6 8

Peak No.	Ret. time	Area	Area%
1	2.547	67074	43.4885
2	7.101	13074	8.47673
3	7.595	74085	48.03472
Total		15423	100.0000

min

36
NMR spectra of the ligands

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Nov25-2019-0SSO_cJ ZK-X191125-31P-2

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl(ppm)

00.0—

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(ppm)

00'0----

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(ppm)

																_
140	110	80	60	40	20	0	-20	-40 f1 (p	-60 opm)	-80	-100	-130	-160	-190	-220	

NMR spectra of the products

PROTON CDCl3 {E:\data} ROOT 15

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) icon_3_ZK_220127_R_355_4

PROTON CDCl3 {E:\data} ROOT 1

3ao Chemical Formula: C₁₃H₂₇NO

Exact Mass: 213.2093

C

9. References

- 1. G. Ji, C. Li, D. Xiao, G. Wang, Z. Sun, M. Jiang, G. Hou, L. Yan and Y Ding, J. Mater. Chem. A, 2021, 9, 9165-9174.
- 2. T. Egawa, Y. Koide, K. Hanaoka, T. Komatsu, T. Terai and T. Nagano, *Chem. Commun.*, 2011, 47, 4162-4164.
- 3. K. Li, Y. Wang, Y. Xu, W. Li, M. Niu, J. Jiang and Z. Jin, Catal. Commun., 2013, 34, 73-77.
- 4. X. Liu, A. Hamasaki, Y. Yamane, S. Aikawa, T. Ishida, M. Haruta and M. Tokunaga, *Catal. Sci. Technol.*, 2013, **3**, 3000-3006.
- 5. N. Sudheesh and R. S. Shukla, Appl. Catal., A, 2013, 453, 159-166.
- 6. N. Sudheesh and R. S. Shukla, Appl. Catal., A, 2014, 473, 116-124.