Supporting Information

Cyclic (amino)(barrelene)carbenes: An original family of CAACs through a Novel Synthetic Pathway

Table of Contents

Supplementary Methods	2
1. General considerations	2
2. Experimental procedures	2
3. Spectra	16
4. X-ray Crystallographic Data	47
5. Supplementary References	53

Supplementary Methods

<u>1. General Considerations</u>

All commercial reagents were used as purchased unless otherwise mentioned. All reactions were performed under an atmosphere of argon using standard Schlenk techniques or in an argon filled glovebox. Acetonitrile, dichloromethane, and *n*-hexanes were distilled over CaH₂. Diethyl ether and THF were distilled over sodium wire.

NMR: Multinuclear NMR spectra were recorded on a either Bruker Avance 300 MHz, a Varian INOVA 500 MHz (¹H: 500 MHz, ¹³C: 126 MHz) spectrometer, or JOEL 400 MHz (¹H: 400 MHz, ¹³C: 101 MHz) spectrometer with complete proton decoupling for nucleus other than ¹H. Chemical shifts are reported in parts per million with the solvent resonance as the internal standard (CDCl₃, ¹H: δ 7.26 ppm, ¹³C: δ 77.16 ppm). Coupling constants (*J*) are reported in Hertz (Hz). Multiplicities in ¹H NMR are reported using following abbreviations: s = singlet, br s = broad singlet, d = doublet, dd = double doublet doublet, dt = double triplet, t = triplet, q = quartet, quint = quintet, sept = septet, m = multiplet.

High Resolution Mass Spectrometry (HRMS): HRMS were performed at the UC San Diego Mass Spectrometry Laboratory on an Agilent 6230 Accurate-Mass TOFMS spectrometer using electrospray ionization.

Single crystal X-Ray diffraction data were collected on Bruker Apex II diffractometers using Mo-K_{α} radiation ($\lambda = 0.71073$ Å) or Cu-K α radiation ($\lambda = 1.54178$ Å). Crystals were selected under oil, mounted on nylon loops then immediately placed in a cold stream of N₂. Structures were solved and refined using SHELXTL and Olex2 software.

2. Experimental procedures

In a Teflon sealed Schlenk, 2-methyl-3-butyn-2-amine (7.7 mL, 73 mmol) was added to a toluene solution of anthracene-9-carboxaldehyde (10.00 g, 48 mmol). The Schlenk was sealed and heated at 120 $^{\circ}$ C overnight. The mixture was then cooled to room temperature and the volatiles were removed under vacuum. The solid was then crystallized from ethyl acetate (200 mL) and Imine **1** was isolated as a yellow solid (9.30 g, 71%).

¹**H** NMR (500 MHz, CDCl₃) δ 8.78 (s, 1H), 7.32 (d, *J* = 6.5 Hz, 2H), 7.25 (d, *J* = 6.5 Hz, 2H), 6.97 (m, 4H), 7.58 (d, *J* = 6.0 Hz, 1H), 5.19 (d, *J* = 6.0 Hz, 1H), 1.25 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 160.90, 146.32, 145.57, 124.85, 124, 53, 123. 30, 120.27, 72.71, 71.80, 52.09, 29.25.

HRMS: m/z calculated for $[C_{20}H_{17}N+H]^+$ [M+H]⁺ 272.1434, found 272.1440.

In an aluminum foil covered Schlenk, 1-bromoadamantane (1.00 g, 4.648 mmol) and 2,6-di-*tert*butyl-4-methylpyridine (0.125 g, 0.609 mmol) were dissolved in 15 mL of hexanes. To this solution, silver triflate (1.40 g, 5.438 mmol) was added and the reaction was stirred overnight at room temperature. The mixture was then cannulated into a new Schlenk containing imine **1** with 3 x 15 mL extractions of hexanes. The reaction was stirred for another 24 hours at room temperature to yield a pink suspension. The suspension was dissolved in acetonitrile, filtered, and concentrated. The solid was washed with diethyl ether and then set for crystallization in acetonitrile by slow diffusion of diethyl ether. The resultant white crystals were filtered and washed with diethyl ether (1.81 g, 70%)

¹**H** NMR (400 MHz, CD₃CN) δ 10.41 (s, 1H), 7.47 (dd, J = 6.9, 1.5 Hz, 2H), 7.36 (dd, J = 7.1, 1.5 Hz, 2H), 7.12 (td, J = 7.4, 1.5 Hz, 2H), 7.07 (td, J = 7.4, 1.5 Hz, 2H), 7.02 (dd, J = 6.1, 0.9 Hz, 1H), 5.50 (d, J = 6.1 Hz, 1H), 2.51 (d, J = 3.0 Hz, 6H), 1.84 (s, 6H), 1.73 (s, 6H). ¹³C NMR (101 MHz, CD₃CN) δ 186.23, 152.30, 144.79, 143.86, 142.80, 134.58, 132.54, 131.43, 127.36, 126.37, 125.60, 121.44, 86.82, 68.37, 52.00, 27.80, 20.92, 19.83.

HRMS: m/z calculated for $[C_{30} H_{32} N]^+ [M]^+ 406.2529$, found 406.2525.

2b

In a Teflon sealed Schlenk, 2-bromopropane (1.9 mL, 20 mmol) was added to an acetonitrile solution of Imine **1** (4.10 g, 15 mmol). The Schlenk was sealed and heated at 90 °C overnight. After cooling to room temperature, the volatiles were removed under vacuum and the residue was washed with diethyl ether. The residue was redissolved in dichloromethane (50 mL), and lithium trifluoromethanesulfonate (6.20 g, 40 mmol) was added, and the solution was refluxed at 50 °C for 6 hours. After cooling to room temperature, the solution was filtered, and solvent was concentrated to about 10 mL. Diethyl ether (50 mL) was added to precipitate salt **2b** and the solution was filtered off. Salt **2b** was isolated as an off-white solid off-white solid (6.65 g, 95% yield).

¹**H** NMR (500 MHz, CD₃CN) δ 10.51 (s, 1H), 7.47 (d, J = 7.3 Hz, 2H), 7.35 (d, J = 7.2 Hz, 2H), 7.16 – 6.98 (m, 5H), 5.52 (d, J = 6.1 Hz, 1H), 4.54 (sept, J = 6.5 Hz, 1H), 1.76 (d, J = 6.7 Hz, 6H), 1.53 (s, 6H).

¹³**C NMR** (126 MHz, CD₃CN) δ 177.54, 152.90, 144.88, 143.72, 132.00, 127.10, 126.03, 125.21, 123.22, 121.53, 120.67, 80.89, 67.72, 55.23, 51.87, 26.77, 24.72.

HRMS: m/z calculated for $[C_{23} H_{24} N]^+ [M]^+ 314.1903$, found 314.1913.

In a Teflon sealed Schlenk, iodomethane (1.6 mL, 26 mmol) was added to an acetonitrile solution of Imine **1** (4.10 g, 15 mmol). The Schlenk was sealed and heated at 90 °C overnight. After cooling to room temperature, the volatiles were removed under vacuum and the residue was washed with diethyl ether. Isolated as a yellow solid (5.60 g, 90%).

¹**H NMR** (500 MHz, CD₃CN) δ 9.95 (s, 1H), 7.44 (d, *J* = 6.8 Hz, 2H), 7.39 (d, *J* = 6.8 Hz, 2H), 7.02-7.11 (m, 5H), 5.47 (d, *J* = 6.7 Hz, 1H), 3.85 (s, 3H), 1.45 (s, 6H).

¹³**C NMR** (126 MHz, CD₃CN) δ 178.61, 153.53, 145.03, 143.74, 131.81, 126.99, 125.78, 125.03, 122.44, 78.83, 67.73, 51.92, 39.40, 25.42.

HRMS: m/z calculated for $[C_{21} H_{20} N]^+ [M]^+ 286.1590$, found 286.1589.

In a Teflon sealed Schlenk, *tert*-butyl(2-iodoethoxy)-dimethylsilane (5.70 g, 20 mmol) was added to an acetonitrile solution of Imine **1** (4.10 g, 15 mmol). The Schlenk was sealed and heated at 90 °C overnight. After cooling to room temperature, the volatiles were removed under vacuum and the residue was washed with diethyl ether. Isolated as an off-white solid (7.30 g, 87%).

¹**H** NMR (500 MHz, CDCl₃) δ 10.96 (s, 1H), 7.65 (d, J = 6.3 Hz, 2H), 7.37 (d, J = 6.8 Hz, 2H), 6.95-7.05 (m, 5H), 5.36 (d, J = 6.6 Hz, 1H), 4.72 (br m, 1H), 4.39 (br m Hz, 1H), 1.48 (s, 6H), 0.92 (s, 9H), 0.18 (m, 6H).

¹³**C NMR** (125 MHz, CDCl₃) δ 177.11, 152.44, 143.25, 142.38, 130.66, 126.14, 125.46, 124.00, 122.23, 78.63, 67.57, 61.53, 52.89, 51.54, 26.86, 25.88, 18.44, -5.10

HRMS: m/z calculated for $[C_{28}H_{36}N \text{ O Si}]^+$ [M]⁺ 430.2561, found 430.2075.

In a Teflon sealed Schlenk, *tert*-butyl(2-iodoethoxy)-dimethylsilane (2.4 mL, 20 mmol) was added to an acetonitrile solution of Imine **1** (4.10 g, 15 mmol). The Schlenk was sealed and heated at 90 °C overnight. After cooling to room temperature, the volatiles were removed under vacuum and the residue was washed with diethyl ether. Isolated as an off-white solid (6.50 g, 92%).

¹**H** NMR (500 MHz, CD₃CN) δ 10.67 (s, 1H), 7.57 (d, J = 6.9 Hz, 2H), 7.47 (d, J = 6.9 Hz, 2H), 7.03-7.10 (m, 5H), 5.52 (d, J = 6.6 Hz, 1H), 4.28 (t, J = 6.5 Hz, 2H), 2.57 (t, J = 6.5 Hz, 2H), 2.42 (q, J = 6.5 Hz, 2H), 1.52 (s, 6H), 0.17 (m, 9H).

¹³**C NMR** (125 MHz, CD₃CN) δ 177.72, 153.31, 144.93, 143.71, 131.73, 126.94, 125.80, 125.03, 122.41, 105.35, 87.31, 80.18, 67.85, 51.88, 50.30, 28.36, 26.80, 17.18, -0.04.

HRMS: m/z calculated for $[C_{28}H_{32}N Si]^+ [M]^+410.2299$, found 410.2311.

3a

In a Schlenk, imine **1** (0.3002 g, 1.106 mmol) was mixed with diphenyliodonium triflate (0.4755 g, 1.105 mmol), and Cu(OAc)₂ (0.011 g, 0.055 mmol) in anhydrous DMF (7 mL) for 24 hours at 100 °C. After removal of solvent, the solid was resuspended in acetonitrile and passed over decolorizing charcoal to yield a clear blue solution that was crystallized by slow diffusion of diethyl ether into acetonitrile. White crystals were washed with diethyl ether and isolated (0.4852 g, 88%). Further purification can be obtained by a recrystallization by slow diffusion of diethyl ether into dichloromethane.

¹**H** NMR (400 MHz, CD₃CN) δ 10.32 (s, 1H), 7.87-7.80 (m, 1H), 7.80-7.70 (m, 2H), 7.74-7.67 (m, 2H), 7.56-7.46 (m, 4H), 7.21 (dd, *J* = 6.0, 1.0 Hz, 1H), 7.13 (quintd, *J* = 7.7, 1.5 Hz, 4H), 5.58 (d, *J* = 6.1 Hz, 1H), 1.52 (s, 6H).

¹³**C NMR** (101 MHz, CD₃CN) δ182.54, 152.43, 144.86, 143.73, 133.53, 132.60, 131.01, 127.26, 126.96, 126.05, 125.32, 122.18, 83.28, 68.04, 51.96, 27.53.

HRMS: m/z calculated for $[C_{26} H_{22} N]^+ [M]^+ 348.1747$, found 348.1744.

In a Schlenk, imine **1** (0.2000 g, 0.737 mmol) was mixed with di(*p*-tolyl)iodonium triflate (0.5067 g, 1.106 mmol), and Cu(OAc)₂ (0.0090 g, 0.050 mmol) in anhydrous DMF (3 mL) at 100 °C for 15 hours. The solvent was then removed under vacuum and the mixture was stirred vigorously in NH₄OH and extracted 3x with dichloromethane. The combined organic layers were washed 3x with NH₄OH, followed by brine. The organic layer was dried with MgSO₄ and concentrated to an orange oil. The oil was then resuspended in diethyl ether and HCl Et₂O (0.45 mL 2M, 1.22 equiv) was added to the solution. The precipitate was filtered, washed with diethyl ether, and resuspended in a warm aqueous solution with spare acetone. A warm aqueous solution of NaBF₄ (0.18 g, 2 equiv) was slowly added and a precipitate evolved. After stirring overnight, a fluffy white precipitate was filtered and washed with diethyl ether (0.20 g, 0.445 mmol, 60%)

¹**H** NMR (400 MHz, CD₃CN) δ 10.24 (s, 1H), 7.56 (s, 4H), 7.52-7.46 (m, 4H), 7.20 (d, *J* = 6.1 Hz, 1H) 7.17-7.06 (m, 4H), 5.56 (d, *J* = 6.1 Hz, 1H) 2.52 (s, 3H), 1.51 (s, 6H).

¹³**C NMR** (101 MHz, CD₃CN) δ 182.54, 152.59, 144.91, 144.87, 144.48, 143.77, 132.54, 131.40, 127.25, 126.70, 126.05, 125.29, 122.17, 83.06, 67.92, 51.95, 27.57, 21.27.

HRMS: *m/z* calculated for [C₂₇ H₂₄ N]⁺ [M]⁺ 362.1903, found 362.1904.

3c

In a Schlenk, imine **1** (0.1001 g, 0.368 mmol) was mixed with (*p*-anisyl)-2,4,6-triisopropylphenyl iodonium tetrafluoroborate (0.1933, 0.368 mmol), and Cu(OAc)₂ (0.0034 g, 0.018 mmol) in anhydrous DMF (6 mL) for 24 hours at 110 °C. After removal of solvent, the solid was resuspended in acetonitrile and passed over decolorizing charcoal to yield a clear lavender solution that was crystallized by slow diffusion of diethyl ether into acetonitrile. Beige crystals were isolated and washed with diethyl ether (0.1118 g, 65%). Compound can be further purified through a recrystallization by slow diffusion of diethyl ether into dichloromethane.

¹**H NMR** (500 MHz, CD₃CN) δ 10.24 (s, 1H), 7.67-7.58 (m, 2H), 7.51 (ddd, *J* = 7.1, 2.9, 1.5 Hz, 4H), 7.28-7.21 (m, 2H), 7.19 (dd, *J* = 6.0, 1.0 Hz, 1H), 7.17-7.06 (m, 4H), 5.56 (d, *J* = 6.1 Hz, 1H), 3.93 (s, 3H), 1.51 (s, 6H).

¹³**C NMR** (126 MHz, CD₃CN) δ 181.67, 163.25, 152.50, 144.74, 143.61, 132.48, 132.16, 128.34, 128.21, 127.19, 126.89, 126.02, 125.71, 125.20, 125.01, 122.16, 121.97, 115.87, 115.58, 82.79, 67.61, 56.64, 56.46, 51.82, 51.68, 27.46, 27.30.

HRMS: *m*/*z* calculated for [C₂₇ H₂₄ N O]⁺ [M]⁺ 378.1852, found 378.1851.

Prepared from a modified procedure of Barmettler and Hansen.² A 1,4-dioxane solution of Cu⁰ (0.05 g, 2 mol%), CuCl (0.5 g, 14 mol%), 2,4,6-trimethylaniline (5.0 mL, 35.5 mmol) and triethylamine (6.9 mL, 50 mmol) was cooled to 0 °C and stirred vigorously. To this solution 3-chloro-3-methyl-1-butyne³ (5.5 mL, 53 mmol) was added dropwise. The mixture was warmed to room temperature overnight. The red mixture was then concentrated under reduced pressure and extracted with pentanes. The combined organic layer was concentrated under reduced pressure to yield a red oil, which was then distilled under vacuum at 115 °C to yield an orange oil (3.4 g, 48%). The oil was stored in a -8 °C freezer unless immediately used.

¹**H** NMR (500 MHz, CDCl₃) δ 6.87 (s, 2H), 2.37 (s, 6H), 2.26 (s, 4H), 1.50 (s, 6H). ¹³**C** NMR (126 MHz, CDCl₃) δ 139.96, 135.29, 133.59, 129.32, 90.14, 70.27, 52.23, 31.34, 20.86, 20.17.

5

In a Schlenk, K₂CO₃ (4.59 g, 33.19 mmol) was heated under vacuum and allowed to cool to room temperature. Once cooled, 9-(bromomethyl)anthracene^{4,5} (1.00 g, 3.69 mmol) and *N*-mesityl dimethyl propargylamine (0.7424 g, 3.69 mmol) were added and dissolved in acetonitrile (30 mL). The mixture was stirred at room temperature for 48 hours. The mixture was then concentrated and an aqueous workup with diethyl ether extractions (3x 50 mL) was performed. The combined organic layer was washed with brine (100 mL) and dried with MgSO₄. The solution was concentrated under reduced pressure at 25 °C to yield a yellow oil. The crude mixture of **5** and **4** (1.23 g), containing 45% substituted product by NMR, was used in the next step immediately without purification.

¹**H** NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 8.8 Hz, 2H), 8.35 (s, 1H), 7.97-7.91 (m, 2H), 7.45-7.32 (m, 6H), 6.70 (s, 2H), 5.48 (s, 2H), 2.79 (s, 1H), 2.19 (s, 3H), 2.14 (s, 6H), 1.54 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 144.22, 140.38, 135.09, 131.70, 131.62, 131.23, 129.42, 128.87, 127.35, 125.98, 124.88, 124.73, 90.70, 72.47, 55.30, 47.64, 31.29, 20.94, 20.26.

To an ethereal solution of the crude substituted anthracene mixture, DDQ (0.84g, 3.69 mmol) was added at room temperature. A maroon precipitate formed and the mixture was stirred overnight. After 12 hours, the mixture was heated at 40 °C for three hours. The mixture was then filtered and the precipitate was washed with diethyl ether (3 x 30 mL). The precipitate was then reacted with excess KOH in DI H₂O and extracted with diethyl ether (4 x 50 mL). The combined extractions were dried over MgSO₄ and concentrated under vacuum to yield a crude yellow solid (1.43 g, 49%) used in the next step without purification.

Hydroxy pyrrolidine **6d** can be cleanly obtained from the addition of a 1M solution of KOH to iminium 3d in diethyl ether.

¹**H NMR** (500 MHz, CDCl₃) δ 8.44 (m, 1H), 7.48 (m, 1H), 7.34 (m, 1H), 7.31 (m, 1H), 7.05 (s, 1H), 6.99 (m, 5H), 6.63 (d, J = 4.9 Hz 1H), 6.60 (d, J = 6.1 Hz 1H), 5.14 (d, J = 6.1 Hz 1H), 2.60 (s, 3H), 2.56 (d, *J* = 5.1 Hz 1H), 2.35 (s, 3H), 2.11 (s, 3H), 1.40 (s, 3H), 1.02 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 164.57, 148.42, 147.51, 146.96, 146.63, 141.75, 140.41, 137.30, 136.29, 130.00, 129.81, 124.98, 124.56, 124.15, 124.08, 124.00, 123.91, 123.02, 122.67, 121.54, 89.77, 63.57, 62.49, 52.14, 33.72, 26.31, 21.25, 20.98, 20.65.

3d PF_6

The crude mixture of **5** was dissolved in diethyl ether. HCl Et_2O (1.2 equiv) was added slowly to the solution and a beige precipitate was filtered and washed with diethyl ether. The solid was then dissolved in warm DI H₂O and a solution of KPF₆ (3.0 equiv) in warm DI H₂O was slowly added. A beige precipitate formed and after stirring for 5 hours, was filtered and washed with diethyl ether. The solid was then crystallized by slow diffusion of diethyl ether into dichloromethane. White crystals were obtained, filtered, washed with diethyl ether, and then dried under vacuum (0.74 g, 84%).

¹**H NMR** (400 MHz, CD₃CN) δ 10.33 (s, 1H), 7.54 (d, J = 7.0 Hz, 2H), 7.48 (d, J = 7.0 Hz, 2H), 7.27 (s, 2H), 7.16 (m, 5H), 5.60 (d, J = 6.1 Hz, 1H), 2.41 (s, 3H), 2.30 (s, 6H), 1.50 (s, 6H). ¹³C NMR (101 MHz, CD₃CN) δ 186.23, 152.30, 144.79, 143.86, 142.80, 134.58, 132.54, 131.43, 127.36, 126.37, 125.60, 121.44, 86.82, 68.37, 52.00, 27.80, 20.92, 19.83. **HRMS**: *m/z* calculated for [C₂₉ H₂₈ N]⁺ [M]⁺ 390.2216, found 390.2215.

Carb2a

In a J-Young NMR tube containing iminium salt **2a** (0.052 g, 0.094 mmol) and KHMDS (0.017g, 0.0.085 mmol), C_6D_6 (0.5 mL) was added and the tube was inverted to mix the suspension. **¹H NMR** (500 MHz, C_6D_6) δ 7.95 (m, 2H), 7.22-7.18 (m, 2H), 6.94-6.79 (m, 4H), 6.20 (d, *J* = 5.7 Hz, 1H), 4.94 (d, *J* = 5.7 Hz, 1H), 2.49 (br m 6H), 2.14-2.00 (br s, 3H), 1.74-1.53 (br q, 6H), 1.11 (s, 6H).

¹³**C NMR** (126 MHz, C₆D₆) δ 306.17, 165.12, 149.31, 146.87, 124.86, 124.77, 124.56, 124.51, 124.46, 124.16, 123.22, 122.74, 78.66, 76.27, 65.33, 52.46, 52.01, 45.70, 36.61, 31.48, 30.75.

Carb3a

In a J-Young NMR tube containing iminium salt **3a** (0.045 g, 0.104 mmol) and KHMDS (0.020g, 0.101 mmol), C_6D_6 (0.5 mL) was added and the tube was inverted to mix the suspension.

¹**H** NMR (500 MHz, C_6D_6) δ 8.01 (d, J = 8.6 Hz, 2H), 7.20 (t, J = 6.5 Hz, 4H), 7.12 (d, J = 5.6 Hz, 3H), 6.96 (t, J = 7.4 Hz, 2H), 6.88 (t, J = 7.4 Hz, 2H), 6.30 (d, J = 5.7 Hz, 1H), 4.93 (d, J = 5.7 Hz, 1H), 0.87 (s, 6H).

¹³**C** NMR (126 MHz, C₆D₆) δ 308.00, 171.33, 160.39, 160.36, 148.69, 146.46, 144.41, 129.43, 128.69, 126.60, 126.27, 125.31, 124.96, 124.55, 124.32, 123.78, 123.55, 122.98, 122.75, 122.66, 78.62, 77.80, 52.54, 51.89, 28.52.

Carb3b

In a vial containing iminium salt **3b** (0.060 g, 0.134 mmol) and KHMDS (0.025 g, 0.127 mmol), C_6D_6 (0.5 mL) was added and the vial was swirled to mix the suspension. The resultant slurry was immediately filtered into a J-Young NMR tube.

¹**H** NMR (300 MHz, C₆D₆) δ 8.02 (d, *J* = 8.3 Hz, 2H), 7.21 (d, *J* = 7.4 Hz, 2H), 6.97 (d, *J* = 7.3 Hz, 5H), 6.88 (t, *J* = 6.8 Hz, 3H), 6.30 (d, *J* = 5.7 Hz, 1H), 4.93 (d, *J* = 6.0 Hz, 1H), 2.13 (s, 3H), 0.91 (s, 6H).

¹³**C NMR** (126 MHz, C₆D₆) δ 311.10, 160.81, 149.00, 146.60, 142.37, 137.58, 129.36, 124.81, 124.48, 123.98, 123.29, 122.93, 78.79, 77.60, 52.41, 28.59, 21.01.

Carb3c

In a J-Young NMR tube containing iminium salt **3c** (0.072 g, 0.150 mmol) and KHMDS (0.028g, 0.143 mmol), C₆D₆ (0.5 mL) was added and the tube was inverted to mix the suspension. **'H NMR** (500 MHz, C₆D₆) δ 7.94 (d, *J* = 7.1 Hz, 2H), 7.17 (d, *J* = 7.1 Hz, 2H), 7.10-6.96 (m, 4H), 6.86 (d, *J* = 7.3 Hz, 2H), 6.74 (d, *J* = 3.4 Hz, 2H), 6.27 (d, *J* = 5.9 Hz, 1H), 4.89 (d, *J* = 5.9 Hz, 1H), 3.31 (s, 3H), 0.85 (s, 6H).

¹³**C NMR** (126 MHz, C₆D₆) δ 303.99, 160.18, 159.75, 148.46, 146.37, 136.93, 128.86, 126.61, 124.99, 124.73, 123.34, 122.57, 114.50, 77.68, 55.03, 52.18, 28.41.

Carb3d

In a J-Young NMR tube containing iminium salt **3d** (0.10 g, 0.19 mmol) and KHMDS (0.036 g, 0.18 mmol), C_6D_6 (0.5 mL) was added and the tube was inverted to mix the sample.

¹**H** NMR (500 MHz, C₆D₆) δ 8.07 (d, *J* = 7.2 Hz, 2H), 7.23 (d, *J* = 7.1 Hz, 2H), 6.95-6.91 (m, 2H), 6.90-6.86 (m, 2H), 6.80 (s, 2H), 6.30 (d, *J* = 5.7 Hz, 1H), 4.98 (d, *J* = 5.7 Hz, 1H), 2.21 (s, 6H), 2.14 (s, 3H), 0.92 (s, 7H).

¹³**C NMR** (126 MHz, C₆D₆) δ 314.51, 160.36, 149.11, 146.66, 139.75, 136.82, 135.45, 129.91, 125.85, 124.95, 124.56, 123.27, 122.76, 80.94, 52.44, 27.87, 20.88, 19.71.

6a

Iminium salt **2a** (0.25 g, 0.45 mmol) was dissolved in acetonitrile (15 mL). To this, a solution of KOH (1.50 g) in DI H₂O (12 mL) was added and the mixture was stirred vigorously for 1 hour. The organic layer was separated and the mixture was extracted 3x with diethyl ether. The combined extractions were concentrated under vacuum and the residue was then extracted with hexanes/diethyl ether (10:1) and dried over MgSO₄. After filtration, the extracts were dried under vacuum to yield a white solid (0.29 g), a mixture of hydroxy pyrrolidine **6a** (68%)and imine **1** (32%).

¹**H NMR** (400 MHz,CDCl₃) δ 8.01 (s, 1H), 7.35-7.28 (m, 2H), 7.20 (d, *J*= 6.74 Hz, 1H), 7.00-6.97 (m, 2H), 6.94-6.85 (m, 2H), 6.60 (d, *J*= 6.02 Hz, 1H), 5.21 (d, *J*= 6.05 Hz, 1H), 2.23 (br s, 6H), 2.18 (br s, 3H), 1.75 (br s, 6H), 1.57 (s, 3H), 1.26 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 165.68, 149.04, 147.93, 147.85, 144.81, 125.27, 124.36, 124.11, 123.88, 123.62, 122.62, 122.51, 119.73, 83.80, 63.25, 62.87, 56.21, 51.86, 45.10, 36.70, 34.64, 34.03, 30.34.

6c

The iminium salt 2c (0.25 g, 0.61 mmol) was dissolved in acetonitrile (12 mL). To this, a solution of KOH (0.90 g) in DI H₂O (12 mL) was added and the mixture was stirred vigorously for 30 minutes. The organic layer was separated and the mixture was extracted 3x with diethyl ether. The combined extractions were concentrated under vacuum and the residue was then extracted with hexanes/diethyl ether (10:1) and dried over MgSO₄. After filtration, the extracts were dried under vacuum to yield **6c** as a pale-yellow solid (0.17 g, 94%).

¹**H NMR** (400 MHz,CDCl₃) δ 8.10 (br s, 1H), 7.36, (br s, 1H), 7.29-7.26 (m, 2H), 6.98-6.93 (m, 4H), 6.60 (d, *J* = 6.0 Hz, 1H) 5.90 (s, 1H), 5.07 (d, *J* = 6.0 Hz, 1H), 2.58 (s, 3H), 1.20 (br s, 3H), 0.98 (br s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.82, 147.97, 126.14, 124.38, 124.23, 122.85, 90.04, 61.60, 59.76, 51.93, 31.79, 30.18, 14.37.

HRMS: m/z calculated for $[C_{21} H_{22} N O]^+ [M+H]^+ 304.1696$, found 304.1693.

Cu2b

THF was slowly added to a solid mixture of iminium **2b** (230 mg, 0.5 mmol), CuCl (99 mg, 1 mmol), and KHMDS (100 mg, 0.5 mmol) at -78 °C. The mixture was stirred in the cold bath and was allow to slowly warm to room temperature overnight. Solvents and volatiles were evaporated under vacuum and washed with hexanes (2x20 mL). The solid residue was extracted with benzene (2x30 mL). After evaporation under vacuum, complex **Cu2b** was as a yellow/off-white solid (97 mg, 47%).

 1 H NMR (500 MHz, CDCl₃): δ 7.72 (m, 2H), 7.32 (m, 2H), 6.96 (m, 4H), 6.72 (br s, 1H), 5.21 (br s, 1H), 4.15 (br s, 1H), 1.92 (br m, 6H), 1.34 (br m, 6H),

¹³**C NMR** (75 MHz, CDCl₃): δ 230.81, 156.10, 145.78, 145.03, 128.27, 125.10, 124.84, 123.46, 121.78, 73.40, 51.62, 51.14, 27.58, 26.29.

HRMS for (C₂₃H₂₃ClCuN) (M⁺): calc.: 411.0815, found: 411.0829.

Au2b_{Ph}

THF was slowly added to a solid mixture of iminium **2b** (280 mg, 0.6 mmol), Au(PPh₃)Ph (270 mg, 0.5 mmol), and KHMDS (110 mg, 0.55 mmol) at -78 °C. The mixture was stirred in the cold bath and was allow to slowly warm to room temperature overnight. Solvents and volatiles were evaporated under vacuum until complete dryness. The solid residue was extracted with benzene (2x30 mL). After evaporation under vacuum, complex **Au2b**_{Ph} was as an off-white solid (162 mg, 55%).

¹**H** NMR (500 MHz, C_6D_6): δ 8.26 (m, 2H), 7.59 (d, J = 7.5 Hz, 2H), 7.29 (d, J = 7.5 Hz, 2H), 7.24 (d, J = 7.0 Hz, 2H), 7.02 (t, J = 7.0 Hz, 1H), 6.97 (m, 4H), 6.74 (d, J = 5.7 Hz, 1H), 5.20 (d, J = 5.7 Hz, 1H), 4.21 (m, 1H), 2.1 (d, J = 7.1 Hz, 6H), 1.34 (s, 6H).

¹³C NMR (75 MHz, C₆D₆): δ 245.46, 168.90, 156.84, 145.95, 145.04, 141.59, 128.38, 127.27, 125.34, 124.91, 124.76, 123.30, 123.20, 76.49, 75.51, 51.93, 51.20, 27.57, 24.85.

Au2b

HCl (300 μ L, 2.0M in ether, 0.6 mmol) was added to a solution of complex **Au2b**_{Ph} in benzene at room temperature. The solution was stirred for 20 minutes, and volatiles were evaporated under vacuum. The solid residue was washed with hexanes (2x30 mL), and complex **Au2b** was isolated as an off-white solid (146 mg, 98%).

¹**H** NMR (400 MHz, CDCl₃): δ 7.80-7.66 (m, 2H), 7.31 (dd, J = 4.2, 2.4 Hz, 2H), 6.98 (dd, J = 5.9, 2.8 Hz, 4H), 6.73 (s, 1H), 5.21 (d, J = 5.9 Hz, 1H), 4.17 (quint, J = 6.7 Hz, 1H), 1.94 (d, J = 6.6 Hz, 6H), 1.36 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 219.45, 155.25, 145.02, 144.64, 129.27, 125.28, 124.91, 123.48, 122.57, 76.71, 73.80, 51.76, 51.65, 27.62, 24.62.

HRMS for (C₂₃H₂₃ClAuN) (M⁺): calc.: 545.1185, found: 545.1209.

Au3d

A Schlenk containing iminium salt **3d** (0.50 g, 0.875 mmol), KHMDS (0.17 g, 0.875 mmol), and (tht)AuCl (0.28 g, 0.875 mmol) was cooled to -78 °C. THF (12 mL) was then dripped into the Schlenk and the mixture was allowed to warm to room temperature over 90 minutes. After this time the mixture was concentrated and extracted with dichloromethane. The dichloromethane extractions were then concentrated for a crystallization through slow diffusion of diethyl ether, (0.34 g, 63%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.21-8.18 (m, 2H), 7.35-7.33 (m, 2H), 7.03 (s, 4H), 6.81 (d, *J*= 5.94 Hz, 1H), 5.26 (d, *J*= 5.88 Hz, 1H), 2.35 (s, 3H), 2.28 (s, 6H), 1.31 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 231.26, 155.53, 144.99, 144.63, 139.34, 136.23, 134.07, 130.47, 129.20, 128.40, 125.36, 125.00, 123.67, 122.44, 80.56, 72.82, 51.75, 28.20, 21.13, 19.78.

Se2a

Procedure from iminium 2a:

In a Schlenk, iminium salt **2a** (0.30 g, 0.524 mmol), KHMDS (0.10 g, 0.501 mmol), and Se powder (0.17 g, 2.15 mmol) were cooled to -78 °C. THF (12 mL) was added and the mixture was warmed to room temperature overnight. A thick yellow precipitate formed. The mixture was filtered over celite with copious extractions of THF (100 mL) and DCM (30 mL). The combined filtrate was concentrated and the residue was stirred vigorously in diethyl ether (20 mL) and then filtered. The residue was then stirred vigorously in acetone (20 mL) and filtered. Finally, the residue was stirred vigorously in acetonitrile (10 mL) and filtered to yield a yellow solid (0.11 g, 45%).

Procedure from hydroxy pyrrolidine 6a:

Se2a was also prepared from the hydroxy pyrrolidine 6a by the following procedure:

A J-Young NMR tube containing hydroxy pyrrolidine **6a** (0.1030 g, 0.243 mmol) and elemental Se (0.0670 g, 0.851 mmol) in THF (0.5 mL) was heated at 75 °C for 24 hours. After this time the mixture was filtered over celite, extracted with dichloromethane, and then concentrated. The yellow residue was then washed with hexanes and diethyl ether and then dried under vacuum to yield a yellow solid (0.0440 g, 37%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.40 (dd, J = 5.6, 3.3 Hz, 2H), 7.25 (dd, J = 5.5, 3.1 Hz, 2H), 6.96 (dd, J = 5.5, 3.2 Hz, 4H), 6.66 (d, J = 5.9 Hz, 1H), 5.12 (d, J = 5.9 Hz, 1H), 3.16 (s, 6H), 2.25 (s, 3H), 1.88 (d, J = 12.3 Hz, 3H), 1.71 (d, J = 12.3 Hz, 3H), 1.52 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 195.78, 160.02, 145.44, 145.04, 128.66, 124.60, 124.07, 123.39, 122.60, 76.14, 74.47, 68.12, 51.44, 39.07, 36.23, 32.41, 30.78. ⁷⁷Se NMR (57 MHz, CD₂Cl₂) δ 793.19. **HRMS**: m/z calculated for $[C_{30} H_{32} N Se]^+ [M+H]^+ 486.1696$, found 486.1698.

Se₂c

Procedure from iminium 2c:

THF was slowly added to a solid mixture of iminium 2c (220 mg, 0.5 mmol), Se powder (160 mg, 2 mmol), and KHMDS (50 mg, 0.5 mmol) at -78 °C. The mixture was stirred in the cold bath and was allow to slowly warm to room temperature overnight. Solvents and volatiles were evaporated under vacuum until complete dryness. The remaining solid was extracted with hexanes (2x20 mL). The solution was concentrated to about 5 mL. The Schlenk was sealed and stored at -20 °C for 44 hours while compound **Se2c** slowly crystallized out of the hexanes solution. After filtration in air, selenoamide Se2c was isolated as yellow crystals (75 mg, 40%).

Procedure from hydroxy pyrrolidine 6c:

A J-Young NMR tube containing hydroxy pyrrolidine 6c (0.0600g, 0.198 mmol) and Se powder (0.0547 g, 0.692 mmol) in THF (0.5 mL) was heated at 75 °C for 24 hours. After this time the mixture was filtered over celite, extracted with THF, and then concentrated. The residue was then washed with hexanes (10 mL) and diethyl ether (10 mL) to yield a light pink solid (0.0236 g, 33%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.35 - 8.19 (m, 2H), 7.34 - 7.28 (m, 2H), 7.03 - 6.93 (m, 4H), 6.83 (d, J = 6.0 Hz, 1H), 5.19 (d, J = 6.0 Hz, 1H), 3.44 (s, 3H), 1.28 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 196.12, 156.68, 145.03, 144.35, 129.45, 124.82, 124.34, 122.87, 122.57, 72.12, 70.37, 51.42, 34.01, 27.25.

⁷⁷Se NMR (57 MHz, CDCl₃) δ 561.68.

HRMS: *m/z* calculated for [C₂₁H₁₉NSe]⁺ [M+H]⁺ 366.0755, found 366.0772.

Se3d

In a J-Young NMR tube containing iminium salt **3d** (0.0950 g, 0.177 mmol), KHMDS (0.0340 g, 0.170 mmol) and Se powder (0.042 g, 0.53 mmol), THF (1 mL) was added at room temperature and the mixture was sonicated for one hour. The yellow mixture was then filtered over celite and extracted with dichloromethane (20 mL). The extracts were concentrated and the yellow residue was then vigorously stirred overnight with hexanes (100 mL). After filtration of the hexanes, the

yellow solid was stirred in diethyl ether: acetonitrile (10:1, 10 mL) and filtered. The final yellow solid was dried under vacuum (0.0656 g, 79%).

¹**H NMR** (300 MHz, CDCl₃) δ 8.36 (dd, *J* = 5.5, 3.3 Hz, 2H), 7.35 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.12 -6.97 (m, 6H), 6.86 (d, *J* = 5.9 Hz, 1H), 5.25 (d, *J* = 5.9 Hz, 1H), 2.37 (s, 3H), 2.24 (s, 6H), 1.28 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.73, 157.90, 145.24, 144.59, 138.53, 136.13, 133.86, 130.22, 129.34, 124.94, 124.58, 123.03, 122.54, 75.23, 51.66, 28.30, 21.28, 20.02.

⁷⁷Se NMR (57 MHz, (CD₃)₂CO) δ 650.77.

HRMS: *m/z* calculated for [C₂₉ H₂₈ N Se]⁺ [M+H]⁺ 470.1383, found 470.1383.

Carb2cRh(CO)₂Cl

A Schlenk containing iminium salt 2c (0.070 g, 0.174 mmol), KHMDS (0.0364 g, 0.1827 mmol), and [Rh(COD)Cl]₂ (0.0344g, 0.0696 mmol) was cooled to -78 °C. THF was then added to the mixture and the solution was stirred for 20 minutes before being warmed to room temperature. The solution was concentrated and then resuspended in pentanes. A yellow solid was isolated and dissolved in DCM and CO_(g) was bubbled into the solution for 30 seconds.

¹**H NMR** (500 MHz, CD₂Cl₂) δ 8.21 (d, *J* = 7.7 Hz, 1H), 7.34-7.32 (m, 2H), 7.02-6.97 (m, 4H), 6.76 (d, *J* = 5.8 Hz, 1H), 5.33 (d, *J* = 6.2 Hz, 1H), 5.21 (d, *J* = 5.8 Hz, 1H), 4.05 (s, 3H), 1.33 (s, 6H).

¹³**C NMR** (126 MHz, CD₂Cl₂) δ , 242.83 (d, $J_{C-Rh} = 39.1$ Hz), 186.48 (d, $J_{C-Rh} = 54.2$ Hz), 185.12 (d, $J_{C-Rh} = 54.2$ Hz), 157.12, 145.58, 145.51, 129.13, 125.37, 124.81, 124.39, 124.00, 123.63, 75.77 (br d, $J_{C-Rh} = 1.5$ Hz), 75.66 (br), 52.21, 42.22, 27.34.

FTIR: (KBr, DCM solution) 2075.1 (CO), 2001.8 (CO) cm⁻¹.

3. Spectra

Figure S1: ¹H NMR (500 MHz, CDCl₃) Imine 1

Figure S2: ¹³C NMR (126 MHz, CDCl₃) Imine 1

Figure S3: ¹H NMR (300 MHz, CD₃CN) 2a [TfO]⁻

Figure S4: ¹³C NMR (101 MHz, CD₃CN) 2a [TfO]⁻

Figure S5: ¹H NMR (500 MHz, CD₃CN) 2b [TfO]⁻

Figure S6: ¹³C NMR (126 MHz, CD₃CN) 2b [TfO]⁻

Figure S8: ¹³C NMR (101 MHz, CD₃CN) 2c [I]⁻

Figure S10: ¹³C NMR (75 MHz, CDCl₃) **2d [I]**.

Figure S12: ¹³C NMR (75 MHz, CD₃CN) 2e [I]⁻

Figure S13: ¹H NMR (400 MHz, CD₃CN) 3a [TfO]⁻

Figure S14: ¹³C NMR (101 MHz, CD₃CN) 3a [TfO]⁻

Figure S15: ¹H NMR (300 MHz, CD₃CN) 3b [BF₄]⁻

Figure S16: ¹³C NMR (101 MHz, CD₃CN) 3b [BF₄]⁻

Figure S17: ¹H NMR (500 MHz, CD₃CN) 3c[BF₄]⁻

Figure S18: ¹³C NMR (126 MHz, CD₃CN) 3c [BF₄]⁻

Figure S19: ¹H NMR (500 MHz, CDCl₃) 4

Figure S20: ¹³C NMR (126 MHz, CDCl₃) 4

Figure S21: ¹H NMR (400 MHz, CDCl₃) crude mixture of 5 and 4

Figure S22: ¹³C NMR (126 MHz, CDCl₃) crude mixture of 5 and 4

Figure S23: ¹H NMR (500 MHz, CDCl₃) 6d

Figure S24: ¹³C NMR (126 MHz, CDCl₃) 6d

Figure S25: ¹H NMR (400 MHz, CD₃CN) 3d [PF₆]⁻

Figure S26: ¹³C NMR (101 MHz, CD₃CN) 3d [PF₆]⁻

Figure S27: ¹H NMR (500 MHz, C_6D_6) Carb2a

Figure S28: ¹³C NMR (126 MHz, C₆D₆) Carb2a

Figure S29: ¹H NMR (500 MHz, C₆D₆) Carb3a

Figure S30: ¹³C NMR (126 MHz, C₆D₆) Carb3a

Figure S31: ¹H NMR (500 MHz, C₆D₆) Carb3b

Figure S32: ¹³C NMR (126 MHz, C₆D₆) **Carb3b**

Figure S33: ¹H NMR (500 MHz, C_6D_6) Carb3c

Figure S34: ¹³C NMR (126 MHz, C₆D₆) Carb3c

Figure S35: ¹H NMR (500 MHz, C₆D₆) Carb3d

Figure S36: ${}^{13}C$ NMR (126 MHz, C_6D_6) Carb3d

Figure S37: ¹H NMR (400 MHz, CDCl₃) 6a

Figure S38: ¹³C NMR (101 MHz, CDCl₃) 6a

Figure S39: ¹H NMR (400 MHz, CDCl₃) 6c

Figure S40: ¹³C NMR (101 MHz, CDCl₃) 6c

Figure S41: ¹H NMR (400 MHz, CDCl₃) Se2a

Figure S42: ¹³C NMR (101 MHz, CDCl₃) Se2a

Figure S43: ⁷⁷Se NMR (57 MHz, CD₂Cl₂) Se2a

Figure S44: ¹H NMR (300 MHz, CDCl₃) Se2c

Figure S45: ¹³C NMR (126 MHz, CDCl₃) Se2c

Figure S46: ⁷⁷Se NMR (57 MHz, CDCl₃) **Se2c**

Figure S47: ¹H NMR (500 MHz, CDCl₃) Se3d

Figure S48: ¹³C NMR (126 MHz, CDCl₃) Se3d

Figure S49: ⁷⁷Se NMR (126 MHz, (CD₃)₂CO) **Se3d** a

Figure S50: ¹H NMR (400 MHz, CDCl₃) Cu2b

Figure S51: ¹³C NMR (400 MHz, CDCl₃) Cu2b

Figure S53: ¹³C NMR (400 MHz, CDCl₃) Au2b_{Ph}

Figure S55: ¹³C NMR (400 MHz, CDCl₃) Au2b

Figure S56: ¹H NMR (400 MHz, CDCl₃) Au3d

Figure S57: ¹³C NMR (101 MHz, CDCl₃) Au3d

Figure S58: ¹H NMR (500 MHz, CDCl₃) Carb2cRh(COD)Cl

Figure S59: ¹³C NMR (126 MHz, CDCl₃) Carb2cRh(COD)Cl

Figure S60: ¹H NMR (500 MHz, CD₂Cl₂) Carb2cRh(CO)₂Cl

Figure S61: ¹³C NMR (126 MHz, CD₂Cl₂) Carb2cRh(CO)₂Cl

4. X-ray Crystallographic Data

Crystallographic data for Se2a (CCDC: 2170658), Se3a (CCDC: 2170659), Cu2b (CCDC: 2170655), Au2b (CCDC: 2170657), and Au3d (CCDC: 2170656) can be obtained free of charge from www.ccdc.cam.ac.uk/structures/

Crystal data and structure refinement for Se2a:

 Table S1: Crystal data and structure refinement for Se2a.

CCDC	2170658		
Empirical formula	C30 H31 N Se		
Formula weight	484.52		
Temperature	100.00 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 9.8164(7) Å	α= 90°.	
	b = 10.6281(8) Å	β= 90°.	
	c = 21.1616(15) Å	$\gamma = 90^{\circ}$.	
Volume	2207.8(3) Å ³		
Z	4		
Density (calculated)	1.458 Mg/m ³		
Absorption coefficient	1.720 mm ⁻¹		
F(000)	1008		
Crystal size	0.21 x 0.2 x 0.15 mm ³		
Theta range for data collection	1.925 to 25.481°.	1.925 to 25.481°.	
Index ranges	-11<=h<=11, -12<=k<=1	-11<=h<=11, -12<=k<=12, -18<=l<=25	
Reflections collected	24772	24772	
Independent reflections	4077 [R(int) = 0.0545]	4077 [R(int) = 0.0545]	
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equ	ivalents	

Max. and min. transmission	0.6875 and 0.6293
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4077 / 0 / 292
Goodness-of-fit on F ²	1.047
Final R indices [I>2sigma(I)]	R1 = 0.0223, wR2 = 0.0586
R indices (all data)	R1 = 0.0231, wR2 = 0.0589
Absolute structure parameter	0.055(9)
Extinction coefficient	n/a
Largest diff. peak and hole	0.306 and -0.215 e.Å ⁻³

Crystal data and structure refinement for Se3d:

 Table S2: Crystal data and structure refinement for Se3d.

CCDC	2170659		
Empirical formula	C29 H27 N Se		
Formula weight	468.47		
Temperature	100.00 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pnma		
Unit cell dimensions	a = 14.5039(11) Å	α= 90°.	
	b = 10.7587(9) Å	β= 90°.	
	c = 14.0722(11) Å	$\gamma = 90^{\circ}$.	
Volume	2195.9(3) Å ³		
Z	4		
Density (calculated)	1.417 Mg/m ³		
Absorption coefficient	1.727 mm ⁻¹		
F(000)	968		
Crystal size	0.15 x 0.12 x 0.08 mm ³		
Theta range for data collection	2.016 to 25.435°.		
Index ranges	-17<=h<=17, -12<=k<=12	-17<=h<=17, -12<=k<=12, -13<=l<=16	

Reflections collected	23073
Independent reflections	2143 [R(int) = 0.0683]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6257 and 0.4756
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2143 / 0 / 160
Goodness-of-fit on F ²	1.064
Final R indices [I>2sigma(I)]	R1 = 0.0418, wR2 = 0.1172
R indices (all data)	R1 = 0.0460, wR2 = 0.1211
Extinction coefficient	n/a
Largest diff. peak and hole	0.687 and -1.616 e.Å ⁻³

Crystal data and structure refinement for Cu2b:

Table S3: Crystal data and structure refinement for Cu2b.

CCDC	2170655	
Empirical formula	C24 H24 Cl4 Cu N	
Formula weight	531.78	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 10.6000(11) Å	α= 90°.
	b = 13.4559(14) Å	β= 90°.
	c = 17.580(2) Å	$\gamma = 90^{\circ}$.
Volume	2507.5(5) Å ³	
Z	4	
Density (calculated)	1.409 Mg/m^3	
Absorption coefficient	1.308 mm ⁻¹	

F(000)	1088
Crystal size	0.3 x 0.29 x 0.2 mm ³
Theta range for data collection	1.906 to 25.384°.
Index ranges	-12<=h<=12, -16<=k<=16, -21<=l<=20
Reflections collected	23506
Independent reflections	4604 [R(int) = 0.0348]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.2524 and 0.2242
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4604 / 0 / 276
Goodness-of-fit on F ²	1.077
Final R indices [I>2sigma(I)]	R1 = 0.0295, wR2 = 0.0829
R indices (all data)	R1 = 0.0305, wR2 = 0.0836
Absolute structure parameter	0.014(16)
Extinction coefficient	n/a
Largest diff. peak and hole	0.782 and -0.655 e.Å ⁻³

Crystal data and structure refinement for Au2b:

Table S4: Crystal data and structure refinement for Au2b.

CCDC	2170657	
Empirical formula	C24 H24 Au Cl4 N	
Formula weight	665.21	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 10.6880(10) Å	$\alpha = 90^{\circ}$.
	b = 13.5775(14) Å	β= 90°.

	$c = 17.3369(18) \text{ Å}$ $\gamma = 90^{\circ}.$
Volume	2515.9(4) Å ³
Ζ	4
Density (calculated)	1.756 Mg/m ³
Absorption coefficient	6.284 mm ⁻¹
F(000)	1288
Crystal size	0.25 x 0.22 x 0.09 mm ³
Theta range for data collection	2.239 to 25.430°.
Index ranges	-12<=h<=12, -13<=k<=16, -17<=l<=20
Reflections collected	19666
Independent reflections	4615 [R(int) = 0.0331]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.4901 and 0.4201
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4615 / 36 / 303
Goodness-of-fit on F ²	1.055
Final R indices [I>2sigma(I)]	R1 = 0.0194, wR2 = 0.0445
R indices (all data)	R1 = 0.0208, wR2 = 0.0450
Absolute structure parameter	-0.007(4)
Extinction coefficient	n/a
Largest diff. peak and hole	0.939 and -0.475 e.Å ⁻³

Crystal data and structure refinement for Au3d:

Table S5:	Crystal	data and	structure	refinement	for A	u3d.
-----------	---------	----------	-----------	------------	-------	------

CCDC	2170656
Empirical formula	C30 H28 Au Cl4 N
Formula weight	741.30
Temperature	100.0 K

Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 16.2539(4) Å	α= 90°.
	b = 12.5480(3) Å	β= 90°.
	c = 27.7949(6) Å	$\gamma = 90^{\circ}$.
Volume	5668.9(2) Å ³	
Ζ	8	
Density (calculated)	1.737 Mg/m ³	
Absorption coefficient	5.588 mm ⁻¹	
F(000)	2896	
Crystal size	$0.43 \ x \ 0.39 \ x \ 0.25 \ mm^3$	
Theta range for data collection	1.465 to 26.440°.	
Index ranges	-17<=h<=20, -13<=k<=15, -33<=l<=34	
Reflections collected	46129	
Independent reflections	5835 [R(int) = 0.0376]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.4908 and 0.4113	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5835 / 0 / 330	
Goodness-of-fit on F ²	1.018	
Final R indices [I>2sigma(I)]	R1 = 0.0187, wR2 = 0.0406	
R indices (all data)	R1 = 0.0275, wR2 = 0.0438	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.515 and -0.642 e.Å ⁻³	

5. Supplementary References

- (1) E. Ciganek, J. Org. Chem. 1980, 45, 1497–1505.
- (2) P. Barmettler and H. J. Hansen, *Helv. Chim. Acta* 1990, **73**, 1515–1573.
- (3) E. Kumarasamy and J. Sivaguru, *Chem. Commun.* 2013, **49**, 4346–4348.
- (4) P. Lan, D. Berta, J. A. Porco, M. S. South and J. J. Parlow, *J. Org. Chem.* 2003, **68**, 9678–9686.
- (5) K. J. Rodriguez, A. M. Hanlon, C. K. Lyon, J. P. Cole, B. T. Tuten, C. A. Tooley, E. B. Berda and S. Pazicni, *Inorg. Chem.* 2016, **55**, 9493–9496.