SUPPLEMENTARY INFORMATION

Zinc Acetate-Promoted Blocking of ATRA Process with Alkyl Halides Enabling Photochemical Alkylamination of Olefins

Apurba Samanta, Shyamal Pramanik, Subhashis Mondal and Soumitra Maity*
Department of Chemistry \& Chemical Biology, Indian Institute of Technology (ISM) Dhanbad
Dhanbad, JH 826004, INDIA
Email:smaity@iitism.ac.in

Sl. no	Table of Contents	Page
1.	General Information	S 2
2.	Preparation of Starting Materials	S 3
3.	Optimization of the reaction conditions	S 5
4.	Experimental procedures and compound characterization data	S 8
5.	Synthetic Transformations of aminoalkylation products	S 26
6.	Mechanistic Studies and Controlled Experiments	S 30
7.	X-Ray Crystallography Data	S 37
8.	NMR spectra	S 39

1. General Information:

All commercially available chemicals and reagents were used without any further purification unless otherwise stated. Solvents for extraction or column chromatography were of technical quality. All water used was purified via a Merck Millipore reverse osmosis purification system prior to use. All reactions were performed in oven-dried glassware under a positive pressure of argon with freshly distilled anhydrous solvents. ${ }^{1}$ Solvents were transferred via syringe and were introduced into the reaction vessels through a rubber septum Solvents were removed under reduced pressure using Büchi Rotavapor apparatus.

Thin-layer chromatography (TLC): The progress of the reaction was monitored by thin layer chromatography (TLC) using $\mathrm{SiO}_{2}-60$ UV254 coated aluminium sheets (Merck, TLC Silica gel $60 \mathrm{~F}_{254}$). Visualization was achieved using UV light, iodine, and/or chemical staining with vanillin or basic potassium permanganate solutions as appropriate.

Flash column chromatography (FC): Purification of reaction mixture was carried out with flash column chromatography on silica gel 230-400 mesh (Merck, 37-63 $\mu \mathrm{m}$). Solvents for extraction and chromatography were of technical quality. Eluting solvent mixtures are individually reported in parenthesis.

NMR spectra: Proton, Carbon, and Fluorine nuclear magnetic resonance (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR) spectra were recorded on a Bruker Avance III HD $(400,101$, and 377 MHz$)$ spectrometer at $25^{\circ} \mathrm{C}$. Chemical shifts (δ) are given in ppm and reported as follows: multiplicity [s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of triplets), and m (multiplet)], coupling constants (J) in Hz , number of protons; suggested assignment. The residual deuterated solvent was used as internal standard $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}\right.$; $\left.\delta_{\mathrm{C}}=77.16 \mathrm{ppm}\right)$.
Melting point (Mp): Melting points were measured by 'Tempstar' melting point instrument using open glass capillaries in a Remco-Kolkata apparatus and are reported uncorrected.
High-resolution mass spectrometry (HRMS): HRMS were recorded using a QTOF micro MS system by ESI technique.

GC-MS: GC-MS analysis was done by a Thermo Scientific ISQ QD single quadrupole GC-MS system using a TG-5MS column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$).
Photoreactions: Photoreactions were carried out in borosilicate made culture tube using blue light source (PAR38 12W blue LED bulb).

Luminescence spectrometer: Fluorescence quenching studies were carried out using a PerkinElmer LS 55 Fluorescence Spectrometer.

Electrochemical Measurements: Cyclic Voltammetry was performed using a CH Instruments (model: CHI1140C).
Energy Dispersive X-Ray Analysis (EDX): The elemental analysis was investigated using Field Emission Scanning Microscopy (FESEM/EDX, Make-Zeiss, Germany).

Powder X-Ray Diffraction Study: Powder XRD was carried out using X-Ray diffractometer (ModelSmartlab, Make-Rigaku, Japan).

[^0]
2. Preparation of Starting Materials:

2.1 General procedure for $\boldsymbol{\alpha}$-bromination of ketones (GP-1): ${ }^{2}$ Ketones (5.0 mmol .) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Bromine (5.0 mmol .) was then added dropwise to the solution under vigorous stirring. After complete addition, the dark reaction mixture was stirred for 3-4 hat room temperature (dark red solution turned into light yellow). After completion of the reaction (as confirmed by TLC), the mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ solution and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL} \times 3)$. Then the combined organic layer was washed with brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was further purified by silica gel column chromatography to give the corresponding α-bromoketone.

Preparation of substrates 20:

Following the general procedure for bromination (GP-1), 2 o was synthesized using 4-Chlorophenacyl cyclopropyl ketone ($900 \mathrm{mg}, 5 \mathrm{mmol}$).

2,4-Dibromo-1-(4-chlorophenyl)butan-1-one (2t): ${ }^{3}$

Yield: $70 \%(1.18 \mathrm{~g})$.
Nature: white solid
Mp: $80-83{ }^{\circ} \mathrm{C}$

\mathbf{R}_{f} value $=0.5[\mathrm{EtOAc}:$ Petroleum ether $=1: 19(\mathrm{v} / \mathrm{v})]$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{dd}, J=8.1$,
$5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{tt}, J=7.8,5.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ (ppm): 191.4, 140.7, 132.4, 130.5, 129.4, 44.8, 35.6, 30.9

2.2 General procedure for preparation of alkenes:

General Procedure (GP-A): 4-Vinylbenzyl chloride (1.2 mmol) was added to the suspension of respective alcohol/acid (1.0 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{mmol})$ in 10 mL DMF solvent at room temperature. Then the resulting mixture was allowed to be stirred for 10-12h at room temperature. After completion of the reaction (checked by TLC), 10 mL water was added to the reaction mixture and the whole organic layer was extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 3)$, washed with Brine solution and dried over MgSO_{4}. The residue was concentrated under vacuo and purified by column chromatography.
(8S,9R,13R,14R)-13-Methyl-3-((4-vinylbenzyl)oxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (1u): ${ }^{4}$

[^1]Yield: $58 \% ~(226 \mathrm{mg}$)
Nature: white solid.
\mathbf{R}_{f} value $=0.4[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{3 n}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83-6.69(\mathrm{~m}, 3 \mathrm{H}), 5.77(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 2.91(\mathrm{dd}$, $J=11.1,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{dd}, J=18.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, J=8.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=13.7$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.42(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 221.1, 156.9, 137.9, 137.3, 136.9, 136.5, 132.4, 127.7, 126.5, $115.0,114.1,112.4,69.7,50.5,48.1,44.1,38.4,36.0,31.6,29.7,26.6,26.0,21.7,13.9$.

4-Vinylbenzyl (tert-butoxycarbonyl)-L-valinate (1v): ${ }^{5}$

Yield: $62 \% ~(207 \mathrm{mg})$
Nature: colourless oil.
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.

1v
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=$ $17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{dd}, J=9.1$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dt}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 172.4, 155.8, 137.8, 136.4, 135.0, 128.7, 126.5, 114.5, 79.8, 77.5, 66.7, 58.6, 31.4., 28.4, 19.1, 17.6.

2,5,7,8-Tetramethyl-2-(4,8,12-trimethyltridecyl)-6-((4-vinylbenzyl)oxy)chromane (1x): ${ }^{6}$
Yield: 55\% (302 mg)
Nature: gummy liquid.
\mathbf{R}_{f} value $=0.4[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $7.58-7.44(\mathrm{~m}, 4 \mathrm{H}), 6.79(\mathrm{dd}, J=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J$ $=17.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=10.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, $2.22(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{ddt}, J=20.0,13.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{td}, J=10.2$, $5.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 9 \mathrm{H}), 1.23-1.02(\mathrm{~m}, 7 \mathrm{H}), 0.92(\mathrm{dd}, J=9.0,5.6 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ (ppm): 148.2, 148.0, 137.8, 137.2, 136.7, 128.1, 128.0, 126.4, 126.1, $123.1,117.7,114.0,75.0,74.6,40.2,40.1,39.5,37.8,37.7,37.6,37.5,37.4,33.1,33.0,32.9,32.8,31.5$, $31.4,28.13,25.0,24.9,24.6,24.0,22.9,22.8,21.2,20.8,19.9,19.8,19.8,19.713 .0,12.2,12.1$

[^2]General Procedure (GP-B): In a 50 mL round bottom flasked was equipped with stir bar was charged with corresponding acid ($5 \mathrm{mmol}, 1$ equiv.), followed by alcohols ($6 \mathrm{mmol}, 1.2$ equiv), 4-dimethylaminopyridine ($31 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.05$ equiv,) and $\mathrm{DCM}\left(20 \mathrm{~mL}\right.$). Then the flask was sealed with septum and placed in N_{2} atmosphere. DCC ($6 \mathrm{mmol}, 1.4$ equiv.) was added to the reaction mixture via syrine at once and stirred for overnight. After completion the reaction, the reaction mixture was filtered and the solid filtreted were rinsed with DCM $(5 \mathrm{~mL} \times 3)$. The combined filtrate were concentrated under vacuo and purified by column chromatography.
3-Methylbut-3-en-1-yl 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate (1w):

Yield: 50% (436 mg)
Nature: white solid.
Mp: 180-183 ${ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.4[\mathrm{EtOAc}:$ Petroleum ether $=4: 6(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dt}, J=10.9,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{dd}$, $J=3.6,1.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $172.9,164.9,157.0(\mathrm{~d}, J=251.2 \mathrm{~Hz}), 154.5,148.9,142.1$, $137.3,128.7,127.0(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 119.04,114.1,113.9(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 112.4,110.7,63.3,36.9,34.9$, 22.7, 8.3.
$\left\{{ }^{\mathbf{1 9}} \mathbf{F}\right\} \mathbf{N M R}\left(\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): -118.0
HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClFNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 350.0959$; found: 350.0959.

3-Methylbut-3-en-1-yl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (1y):
Yield: 70% (500 mg)
Nature: gummy liquid.
\mathbf{R}_{f} value $=0.4[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}$ (ppm): 7.71 (dd, $\left.J=10.8,5.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.44(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{dd}, J=8.1,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 174.7, 157.7, 141.6, 135.8, 133.7, 129.3, 129.0, 127.1, 126.4, 126.0, 119.0, 112.4, 105.6, 63.0, 55.3, 45.5, 36.7, 22.4, 18.6.

HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 299.1647$; found: 299.1635.

3. Reaction Optimization:

General procedure for optimization of reaction conditions:

In a flame dried culture tube equipped with a magnetic stirring bar was charged with photocatalyst (2 mol $\%$), phenacyl bromide $\mathbf{2 a}(40 \mathrm{mg}, 0.2 \mathrm{mmol})$, additive (x mmol) and dry acetonitrile (1 mL), then the tube was sealed with a Teflon screw cap, evacuated and backfilled with argon. 4-Methylstyrene $1 \mathbf{a}(40 \mu \mathrm{~L}, 0.3$ $\mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(4 \mu \mathrm{~L}, 1$ equiv.) was added via a syringe under argon atmosphere. Afterwards, the reaction mixture was degassed by Freeze-Pump-Thaw cycles two times with argon via syringe needle and irradiated at room temperature with 12 W blue LED bulb at a distance of approximately 5 cm and simultaneously cooled by a fan to maintain the reaction at RT.

Optimized reaction conditions:

Table S1. Different photocatalyst screening

Entry	PC	Yield 3a (\%)	${\text { Yield 3a' (\%) }{ }^{[a]}}^{[1}$
2	$\mathrm{Ru}(\mathrm{bpy})_{3} \cdot \mathrm{Cl}_{2}$	0	7
3	$f a c-\operatorname{-r}(\mathrm{ppy})_{3}$	16	31
4	Eosin Y	0	0
$\mathbf{5}$	$\mathrm{Acr}^{+}-\mathrm{Mes} \mathrm{ClO}_{4}{ }^{-}$	0	0
$\mathbf{4 C Z I I P N}^{[a]}$ NMR Yield using 1,1,2,2-tetrachloroethane as internal standard			

In a flame dried culture tube equipped with a magnetic stirring bar was charged with 4CzIPN ($3 \mathrm{mg}, 2 \mathrm{~mol}$ $\%$), phenacyl bromide $\mathbf{2 a}(40 \mathrm{mg}, 0.2 \mathrm{mmol})$, additive (1.0 equiv.) and dry acetonitrile (1 mL), then the tube was sealed with a Teflon screw cap, evacuated and backfilled with argon. 4-Methylstyrene $1 \mathbf{a}(40 \mu \mathrm{~L}, 0.3$ $\mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(4 \mu \mathrm{~L}, 1$ equiv.) was added via a syringe under argon atmosphere. Afterwards, the reaction mixture was degassed by Freeze-Pump-Thaw cycles two times with argon via syringe needle and irradiated at room
temperature with 12 W blue LED bulb at a distance of approximately 5 cm and simultaneously cooled by fan to maintain the reaction at RT.

Table S2. Additive screening

Entry	Additive (1 equiv.)	Yield 3a (\%)	Yield 3a' ${ }^{(\%))^{[a]}}$
1	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	18	0
2	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	18	5
3	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	32	trace
4	BF_{3}. OEt	38	12
5	FeCl_{3}	30	22
6	ZnCl_{2}	50	trace
7	$\mathrm{Zn}(\mathrm{OTf})_{2}$	12	0
8	$\mathbf{Z n (O A c})_{2} \cdot \mathbf{H}_{\mathbf{2}} \mathrm{O}$	58	0
9	Zn dust	42	trace

Table S3. Loading amount of additive

Entry	additive (x equiv.)	Yield 3a (\%)	Yield 3a' (\%)
$\mathbf{1}$	$\mathbf{0 . 5}$	$\mathbf{5 8}$	$\mathbf{0}$
2	2.0	57	0

A flame dried culture tube equipped with a magnetic stirring bar was charged with photocatalyst ($3 \mathrm{mg}, 2 \mathrm{~mol}$ $\%$), phenacyl bromide $\mathbf{2 a}(40 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OAc})_{2}(21 \mathrm{mg}, 0.1 \mathrm{mmol}$.) and dry acetonitrile $(1 \mathrm{~mL})$, then the tube was sealed with a Teflon screw cap, evacuated and backfilled with argon. 4-Methylstyrene $1 \mathbf{1 a}(40 \mu \mathrm{~L}$, $0.3 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(4 \mu \mathrm{~L}, 1.0$ equiv.) and acid (1.0 equiv.) were added via syringe under argon atmosphere. Afterwards, the reaction mixture was degassed by Freeze-Pump-Thaw cycles two times with argon via syringe needle and irradiated at room temperature with 12 W blue LED bulb at a distance of approximately 5 cm and simultaneously cooled by fan to maintain the reaction at RT.

Table S4. Acid screening

Entry	Acid (1 equiv.)	Yield 3a (\%)	Yield 3a' (\%)
1	$\mathrm{CH}_{3} \mathrm{COOH}$	66	0
2	$\mathrm{H}_{2} \mathrm{SO}_{4}$	69	0
3	HPF_{6}	64	0
4	TsOH	60	0
5	$\mathrm{H}_{3} \mathrm{PO}_{4}$	67	0
$\mathbf{6}$	$\mathbf{C F}_{3} \mathbf{C O O H}$	$\mathbf{7 0}$	$\mathbf{0}$

Table S5. Loading amount of acid.

Entry	Acid (x equiv.)	Yield 3a (\%)	Yield 3a' (\%)
1	1	70	0
2	3	72	0
$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7 4}$	$\mathbf{0}$
4	10	70	0

In a flame dried culture tube equipped with a magnetic stirring bar was charged with $4 \mathrm{CzIPN}(3 \mathrm{mg}, 2 \mathrm{~mol}$ $\%)$, phenacyl bromide $\mathbf{2 a}(40 \mathrm{mg}, 0.2 \mathrm{mmol})$, Zinc acetate ($21 \mathrm{mg}, 0.1 \mathrm{mmol}$) and dry acetonitrile (1 mL), the tube was sealed with a Teflon screw cap, evacuated and backfilled with argon. 4-Methylstyrene $1 \mathbf{a}$ ($40 \mu \mathrm{~L}$, 0.3 mmol), $\mathrm{H}_{2} \mathrm{O}$ ($4 \mu \mathrm{~L}, 1$ equiv.) and $\mathrm{CF}_{3} \mathrm{COOH}$ (5 equiv.) were added via syringe under argon atmosphere. Afterwards, the reaction mixture was degassed by Freeze-Pump-Thaw cycles two times with argon via syringe needle and irradiated at room temperature with 12 W blue LED bulb at a distance of approximately 5 cm and simultaneously cooled by fan to maintain the reaction at RT.

Table S6. Control reaction conditions

Entry	PC	additive	acid	Light	Air	Yield of 3a (\%)
1	\checkmark	\checkmark	\checkmark	\checkmark	\mathbf{x}	74
2	\checkmark	\mathbf{x}	\mathbf{x}	\checkmark	\mathbf{x}	18
3	\mathbf{x}	\checkmark	\checkmark	\checkmark	\mathbf{x}	0
4	\checkmark	\checkmark	\checkmark	\mathbf{x}	\mathbf{x}	0
5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	60

4. Experimental procedures

4.1 General Procedure for Photoredox carboamination of alkenes:

In a flame dried culture tube equipped with a magnetic stirring bar was charged with 4CzIPN ($3 \mathrm{mg}, 2 \mathrm{~mol}$ $\%$), alkyl bromide 2 ($0.2 \mathrm{mmol}, 1$ equiv.), Zinc acetate ($21 \mathrm{mg}, 0.1 \mathrm{mmol}$) and dry acetonitrile (1 mL), then the tube was sealed with a Teflon screw cap, evacuated and backfilled with argon. alkene $\mathbf{1}$ ($0.3 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{H}_{2} \mathrm{O}$ ($4 \mu \mathrm{~L}, 1$ equiv.) and $\mathrm{CF}_{3} \mathrm{COOH}(80 \mu \mathrm{~L}, 5$ equiv.) were added via syringe under argon atmosphere. Afterwards, the reaction mixture was degassed by Freeze-Pump-Thaw cycles two times with argon via syringe needle and irradiated at room temperature with 12 W blue LED bulb at a distance of approximately 5 cm and simultaneously cooled by fan to maintain the reaction at RT. After 6 h , completion
the reaction (checked by TLC), the reaction mixture was poured into 2 mL Saturated NaHCO_{3} solution and extracted with $\mathrm{EtOAc}(5 \mathrm{~mL} \times 2)$. The combined organic layer was washed with brine solution, dried over MgSO_{4} and concentrated under reduced pressure. Finally, the crude residue was purified by flash column chromatography on silica gel 230-400 mesh (EtOAc:Petroleum ether $=40: 60-80: 20$) to get the corresponding aminoalkylation product 3/4.

4.2 Compound characterization data:

N-(4-Oxo-4-phenyl-1-(p-tolyl)butyl)acetamide: (3a)

Yield: 74% (44 mg).
Nature: white solid.
Mp: $165-168{ }^{0} \mathrm{C}$
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=4: 6(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 7.91(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{td}, J=8.5$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{ddd}, J=17.9,7.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{ddd}, J=17.9,7.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.33-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 200.3, 169.6, 138.9, 137.4, 136.8, 133.4, 129.6, 128.7, 128.2, 126.6, 53.3, 35.8, 30.0, 23.6, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~K}[\mathrm{M}+\mathrm{K}]^{+}$: 334.1209; found: 334.1210.
N-(4-Oxo-4-phenyl-1-(p-tolyl)butyl)acetamide: (3b)
Yield: $81 \%(50 \mathrm{mg})$.
Nature: white solid.
Mp: 180-183 ${ }^{\circ} \mathrm{C}$

\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=6: 4(\mathrm{v} / \mathrm{v})]$.
3b
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.81(\mathrm{~d}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.29$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dt}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{ddd}, J=17.8,7.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (ddd, $J=$ $17.8,7.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ (ppm): 200.0, 169.6, 144.2, 139.1, 137.2, 134.3, 129.5, 129.4, 128.2, 126.6, 53.2, 35.6, 30.1, 23.5, 21.7, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 332.1626; found:332.1597.
\boldsymbol{N}-(4-(4-Methoxyphenyl)-4-oxo-1-(p-tolyl)butyl)acetamide: (3c)
Yield: 60\% (39 mg).
Nature: white solid.
Mp: $168-171{ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.1[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{td}, J=8.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.10-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=14.0,7.7 \mathrm{~Hz}$, 1H), 1.91 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 198.9, 169.6, 163.7, 139.1, 137.3, 130.5, 129.9, 129.5, 126.6, 113.9, 55.6, 53.4, 35.4, 30.1, 23.6, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 326.1756$; found: 326.1758 .
N-(4-(4-Cyanophenyl)-4-oxo-1-(p-tolyl)butyl)acetamide: (3d)
Yield: 85% (54 mg).
Nature: white solid.
Mp: $185-188^{0} \mathrm{C}$
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=15.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{ddd}, J=$ $18.1,8.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, J=18.1,8.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{dd}, J=8.3,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 198.6, 169.6, 139.7, 138.5, 137.7, 132.6, 129.7, 128.5, 126.6, $118.0,116.5,53.0,36.1,29.9,23.6,21.2$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 343.1422$; found: 343.1407.
N-(4-(2-Bromophenyl)-4-oxo-1-(p-tolyl)butyl)acetamide: (3e)
Yield: 74% (55 mg).
Nature: white solid.
Mp: 150-153 ${ }^{0} \mathrm{C}$

\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.
3 e
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.57(\mathrm{dd}, J=8.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27$ (ddd, J $=7.9,6.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{td}, J$ $=8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{ddd}, J=18.3,8.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=18.3,7.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 203.9, 169.4, 141.3, 138.6, 137.2, 133.6, 131.6, 129.3, 128.2, 127.4, 126.4, 118.4, 52.8, 39.7, 29.7, 23.3, 21.0.

HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 374.0756$; found: 374.0749.
N-(4-(3-Bromophenyl)-4-oxo-1-(p-tolyl)butyl)acetamide: (3f)

Yield: 70% (52 mg).
Nature: white solid.
Mp: $145-148{ }^{0} \mathrm{C}$

\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.
$3 f$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=7.9,1.9,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{dd}, J=14.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.26(\mathrm{~m}$, 1H), 2.21 - 2.14 (m, 1H), 1.93 (s, 3H).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 198.9, 169.7, 138.8, 138.6, 137.7, 136.3, 131.3, 130.5, 129.8, 126.8,126.7, 123.2, 53.2, 36.0, 30.0, 23.7, 21.3.

HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 374.0756$; found:374.0748.
N-(4-(4-Bromophenyl)-4-oxo-1-(p-tolyl)butyl)acetamide: (3g)
Yield: 76% (57 mg).
Nature: white solid.
Mp: 198-200 ${ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=14.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{ddd}, J=$ $17.9,8.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{ddd}, J=17.9,8.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13$ (m, 1H), 1.92 (s, 3H).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 199.2, 169.5, 138.7, 137.6, 135.5, 132.1, 129.7, 129.7, 128.5, 126.6, 53.2, 35.7, 29.9, 23.6, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 374.0756$; found: 374.0740.
N-(4-(Napthalen-2-yl)-4-oxo-1-(p-tolyl)butyl)acetamide: (3h)
Yield: $58 \%(40 \mathrm{mg})$.
Nature: white solid.
Mp: $209-212{ }^{0} \mathrm{C}$

\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.01-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{dd}, J=8.3,4.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.62-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dt}$, $J=14.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.27-$ $2.22(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 200.3, 169.6, 139.0, 137.4, 135.8, 134.1, 132.6, 129.9, 129.7, 129.6, 128.7, 128.6, 127.9, 127.0, 126.6, 123.9, 53.3, 35.8, 30.1, 23.6, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 346.1807$; found: 346.1801.
N-(4-(Furan-2-yl)-4-oxo-1-(p-tolyl)butyl)acetamide: (3i)
Yield: 72% (42 mg).
Nature: white solid.
Mp: $90-93{ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.1[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): \delta 7.57(\mathrm{dd}, J=1.6,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ $(\mathrm{dd}, J=3.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.00(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 1 \mathrm{H})$, $2.15(\mathrm{dd}, J=7.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $189.3,169.6,152.5,146.7,138.8,137.3,129.5,126.5,117.6$, 112.4, 53.1, 35.5, 29.8, 23.5, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 286.1443$; found: 286.1438 .
N-(4-(Thiofene-2-yl)-4-oxo-1-(p-tolyl)butyl)acetamide: (3j)
Yield: 70\% (42 mg).
Nature: light yellow solid.
Mp: $172-175{ }^{0} \mathrm{C}$
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 7.67(\mathrm{dd}, J=3.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=5.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=4.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ $(\mathrm{td}, J=8.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.16(\mathrm{ddd}, J=$ $14.0,6.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 193.3, 169.6, 144.0, 138.8, 137.4, 134.0, 132.4, 129.6, 128.4, 126.6, 53.2, 36.4, 30.2, 23.5, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 324.1034; found: 324.1028.
N-2-(1-Oxo-1,2,3,4-tetrahydronapthalen-2-yl)-1-(p-tolyl)butyl)acetamide: (3k)
Yield: 60\% (39 mg).
Nature: gummy colourless oil.
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}(\mathbf{p p m}):($ for diastereomeric mixing) $8.08-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}$, $1 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.57$ $(\mathrm{dd}, J=50.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.04(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.35(\mathrm{~m}$, $1 \mathrm{H}), 2.31(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.66(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ (ppm): (for diastereomeric mixing) 201.4, 201.0, 169.9, 169.3, $144.4,144.2,140.1,138.6,137.2,137.1,133.7$, 133.6, 132.4, 129.5, 129.4, 128.9, 127.6, 127.5, 126.8, 126.7, 126.6, 126.4, 51.9, 51.0, 45.9, 45.1, 37.0, 35.4, 29.8, 29.1, 28.5, 23.5, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 322.1807$; found: 322.1788.
N-(2-(-4-Oxocroman-3-yl)-1-(p-tolyl)butyl)acetamide: (31)
Yield: $58 \%(38 \mathrm{mg})$.
Nature: low melting solid.
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): (for diastereomeric mixing) $7.90-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44$ (m, $1 \mathrm{H}), 7.21(\mathrm{dd}, J=12.3,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{dd}, J=72.2,7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.12-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.18(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.33$ $(\mathrm{m}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ (ppm): (for diastereomeric mixing) 195.34, 195.1, 170.0, 169.4, $161.9,161.8,139.3,137.7,137.6,137.5,136.4,136.3,129.6,129.7,127.6,127.5,126.6,126.5,121.6$, $120.6,120.5,118.0,117.9,70.5,70.2,51.4,51.0,43.7,42.8,32.8,31.5,23.6,23.5,21.18$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 324.1600$; found: 324.1582 .

N-(2-(2-Oxotetrahydrofuran-3-yl)-1-(p-tolyl)ethyl)acetamide: (3m)

Yield: 62\% (32 mg).
Nature: colourless oil.
\mathbf{R}_{f} value $=0.1$ [EtOAc: Petroleum ether $\left.=1: 1(\mathrm{v} / \mathrm{v})\right]$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): (for diastereomeric mixing) $7.21-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.14$ (dd, $J=7.9$, $5.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~m}, 2 \mathrm{H}), 4.23-$ $4.16(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{ddd}, J=8.6,4.7,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.98(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.75$ ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) $\boldsymbol{\delta}$ (ppm): (for diastereomeric mixing) 180.2, 180.1, 170.2, 169.5, $138.9,137.8,137.6,137.4,129.8,129.6,126.7,126.4,67.1,67.0,51.5,51.3,37.6,37.3,36.9,35.8,29.7$, 28.2, 23.5, 23.4, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 284.1263; found: 284.1265.
N-(3-(4-Nitrophenyl)-1-(p-tolyl)propyl)acetamide: (3n)
Yield: 75% (47 mg).
Nature: yellow oil.
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}(\mathbf{p p m}): 8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{q}, J=8.3$ $\mathrm{Hz}, 4 \mathrm{H}), 6.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.21$ (ddd, $J=16.7,8.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=11.9,6.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): $169.5,149.5,146.4,138.3,137.7,129.7,129.3,126.7$, 123.7, 53.0, 37.1, 32.6, 23.5, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}] 335.1372$; found: 335.1365.
N-(3-(4-Cyanophenyl)-1-(p-tolyl)propyl)acetamide: (3o)
Yield: 60% (35 mg).
Nature: Colourless oil.
\mathbf{R}_{f} value $=0.1[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): $7.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.08$ $(\mathrm{m}, 4 \mathrm{H}), 6.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.11$ $(\mathrm{m}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): $169.5,147.3,138.5,137.3,132.2,129.5,129.2,126.6$, $119.1,109.6,52.9,37.1,32.8,23.3,21.1$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 293.1654$; found: 293.1653 .
N-(3-Cyano-1-(p-tolyl)propyl)acetamide: (3p) ${ }^{\mathbf{7}}$
Yield: $55 \%(24 \mathrm{mg})$.
Nature: white solid.
Mpt: 121-123 ${ }^{\circ} \mathrm{C}$

\mathbf{R}_{f} value $=0.1$ [EtOAc: Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})$].
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.26-7.13(\mathrm{~m}, 4 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.31(\mathrm{dt}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=$ $3.8 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 169.8, 138.3, 136.9, 130.0, 126.6, 119.5, 52.7, 31.7, 23.5, 21.2, 14.6.

[^3]N-(4-Oxo-1,4-di-p-tolylbutyl)butyramide: (3q)
Yield: 70% (47 mg).
Nature: white solid.
Mp: $154-156{ }^{0} \mathrm{C}$
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=14.9,6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-5.06 .(\mathrm{m}, 1 \mathrm{H}), 3.09-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.36-$ $2.29(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{dd}, J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 200.0, 172.5, 144.2, 139.2, 137.3, 134.4,129.6, 129.4, 128.3, 126.6, 53.2, 38.9, 35.7, 30.0, 21.8, 21.2, 19.2, 13.9.

HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 338.2120$; found: 338.2119.
N-(4-(4-Bromophenyl)-4-oxo-1-(p-tolyl)butyl)isobutyramide: (3r)
Yield: 72% (58 mg).
Nature: white solid.
Mp: $183-186^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dt}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.98(\mathrm{~m}$, 2H), $2.36-2.25(\mathrm{~m}, 5 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{dd}, J=6.9,0.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 199.2, 176.4, 139.0, 137.4, 135.5, 132.1, 129.7, 129.6, 128.6, $126.5,52.9,35.9,35.8,29.8,21.2,19.6,19.7$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 402.1069$; found: 402.1053.
N-(4-(4-Bromophenyl)-4-oxo-1-(p-tolyl)butyl)benzamide: (3s)
Yield: 60% (43 mg).
Nature: white solid.
Mp: 190-193 ${ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 8.09-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H})$, $7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{td}$, $J=8.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{ddt}, J=14.0,8.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.27$ ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 199.0, 166.9, 139.7, 138.6, 137.7, 134.2, 132.6, 131.7, 129.7, 128.6, 128.7, 127.0, 126.6, 118.0, 116.6, 53.6, 36.2, 29.8, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 383.1760$; found: 383.1762 .
N-(5-Bromo-3-(4-chlorobenzoyl)-1-(p-tolyl)pentyl)acetamide: (3t)
Yield: $50 \%(44 \mathrm{mg})$.
Nature: colourless gummy oil.
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}):($ for diastereomeric mixing) $7.76(\mathrm{dd}, J=110.0,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ $(\mathrm{dd}, J=47.6,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.13(\mathrm{~d}, J=156.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.85(\mathrm{~m}, 1 \mathrm{H}), 3.84-$ $3.59(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.20$ -2.26(m, 1H), $2.12-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}):($ for diastereomeric mixing) 201.1, 169.4, 140.4, 139.8, 138.7, 138.0, 137.8, 137.7, 134.6, 131.0, 130.0129.7, 129.6, 129.3, 129.0, 127.0, 126.5, 52.4, 52.2, 42.5, $41.4,38.0,37.9,36.0,34.4,31.9,30.9,23.5,23.2,21.2$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 436.0679$; found: 436.0648.
N-(4-(4-Bromophenyl)-4-oxo-1-phenylbutyl)acetamide: (4a)
Yield: 60% (43 mg).
Nature: white solid.
Mp: 209-212 ${ }^{0} \mathrm{C}$
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}$, $5 \mathrm{H}), 5.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{td}, J=8.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 1 \mathrm{H})$, $2.36-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ (ppm): 199.1, 169.63, 141.8, 135.5, 132.1, 129.7, 129.0, 127.8, 126.7, 53.5, 35.7, 29.9, 23.6.

HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 360.0599$, found: 360.0579 .
N-(4-(4-Bromophenyl)-1-(4-(tert-butyl)phenyl)-4-oxobutyl)acetamide: (4b)

Yield: 82% (69 mg).
Nature: low melting solid.
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{td}, J=8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.85(\mathrm{~m}$, $2 \mathrm{H}), 2.36-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.9(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 199.1, 169.7, 150.6, 138.6, 135.5, 132.0, 129.7, 128.5, 126.4, 125.8, 53.0, 35.7, 34.6, 31.4, 30.0, 23.5.

HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{BrNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 438.1045$, found: 438.1039
N-(4-(4-Bromophenyl)-1-(4-methoxyphenyl)-4-oxobutyl)acetamide: (4c)
Yield: 70% (55 mg).
Nature: white solid
Mp: $160-163{ }^{0} \mathrm{C}$
\mathbf{R}_{f} value $=0.1[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=14.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.08-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{ddd}, J=17.9,7.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{ddd}, J=10.1,7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 199.2, 169.5, 159.2, 135.5, 133.8, 132.1, 129.7, 128.6, $127.9,114.3,55.5,52.9,35.7,29.9,23.6$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 412.0524; found: 412.0520.
N-(4-(4-Bromophenyl)-1-(4-(chloromethyl)phenyl)-4-oxobutyl)acetamide: (4d)
Yield: 72\% (59 mg).
Nature: white solid.
Mp: $193-196^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{td}, J=8.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H})$, $3.01(\mathrm{dtd}, J=18.2,11.1,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=13.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 199.1,169.6,142.2,137.0,135.4,132.1,129.7,129.2,128.7$, 127.1, 53.2, 46.0, 35.7, 29.7, 23.6.

HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 408.0366; found: 408.0351.
N-(4-Oxo-1-(m-tolyl)-4-(p-tolyl)butyl)acetamide: (4e)
Yield: 66% (41 mg).
Nature: white solid.
Mp: 105- $108{ }^{0} \mathrm{C}$

\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{N a}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{td}, J=8.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-2.91(\mathrm{~m}$, $2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=14.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 200.1, 169.6, 144.2, 142.0, 138.6, 134.4, 129.4, 128.8, 128.5, $128.4,127.5,123.6,53.6,35.7,30.1,23.6,21.8,21.6$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 310.1807$; found: 310.1788 .
N-(1-(3-Chlorophenyl)-4-oxo-4-(p-tolyl)butyl)acetamide: (4f)
Yield: 52% (35 mg).
Nature: white solid.
Mp: $150-153{ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=9.3,1.3 \mathrm{~Hz}$, $4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{td}, J=8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-2.95(\mathrm{~m}, 2 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 200.0, 169.8, 144.5, 144.4, 134.2, 134.2, 130.1, 129.5, $128.3,127.8,126.7,124.9,53.4,35.5,29.9,23.5,21.8$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 330.1261$; found: 330.1266 .
N-(4-(4-Bromophenyl)-1-mesityl-4-oxobutyl)acetamide: (4g)
Yield: 59\% (47 mg).
Nature: white solid.
Mp: 190-193 ${ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H})$, $6.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.46$ $(\mathrm{s}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 199.5, 169.5, 136.9, 135.9, 135.6, 134.9, 132.1, 130.5, 129.7, 128.6, 50.1, 36.1, 27.9, 23.4, 21.2, 20.8.

HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrKNO}_{2}[(\mathrm{M}+2)+\mathrm{K}]^{+}: 442.0607$; found: 442.0610
N-(4-(4-Bromophenyl)-4-oxo-1-(thiophen-3-yl)butyl)acetamide: (4h)
Yield: 65% (48 mg).
Nature: white solid.
Mp: $183-186{ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=$ $5.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.16$ (m, 1H), $3.10-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 199.0, 169.6, 142.8, 135.5, 132.1, 129.7, 128.6, 126.7, 126.4, 121.5, 49.0, 35.6, 29.6, 23.6.

HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}_{2} \mathrm{~S}[(\mathrm{M}+2)+\mathrm{H}]^{+}: 368.0143$; found: 368.0129

N-(4-Oxo-4-(p-tolyl)-1-(1-tosyl-1H-indol-3-yl)butyl)acetamide: (4i)

Yield: 30% (29 mg).
Nature: white solid.
Mp: $175-178{ }^{0} \mathrm{C}$
\mathbf{R}_{f} value $=0.1[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dt}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-2.97(\mathrm{~m}$, $2 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 5 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 199.7, 169.8, 145.2, 144.3, 135.5, 135.3, 134.3, 130.1, 129.5, $129.4,128.4,127.0,125.2,123.6,123.1,120.3,113.8,45.4,35.4,28.3,23.5,21.8,21.7$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 489.1848$; found: 489.1823.
N-((1S,2R)-4-(4-Bromophenyl)-1-(4-fluorophenyl)-2-methyl-4-oxobutyl)acetamide: (4j)
Yield: $56 \%(44 \mathrm{mg})$.
Nature: white solid.
Mp: $165-168{ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm):(for diastereomeric mixing) $7.88-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.29(\mathrm{dd}, J=8.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{ddd}, J=12.8,11.7,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{dd}$, $J=61.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.26-2.63(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=110.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{dd}, J=$ 64.6, $6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
 $(\mathrm{d}, J=249.5 \mathrm{~Hz}), 160.9(\mathrm{~d}, J=249.5 \mathrm{~Hz}), 137.4(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 136.5(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 135.7,132.2$,
$132.1,129.8,129.6,128.9(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=$ $21.6 \mathrm{~Hz}), 58.7,57.0,43.2,42.8,34.3,23.6,23.4,18.7,17.1$.
$\left\{{ }^{\mathbf{1 9}} \mathbf{F}\right\} \mathbf{N M R}\left(\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m})$: (for diastereomeric mixing) -114.7, -114.9.
HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrFNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 392.0661$; found: 392.0645
N-((1S,2R)-2-(2-Oxo-2-(p-tolyl)ethyl)-1,2,3,4-tetrahydronaphthalen-1-yl)acetamide: (4k)(syn)
Yield: 53\% (34 mg).
Nature: white solid.
Mp: 190-193 ${ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=9.4,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.21(\mathrm{td}$, $J=7.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=9.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ $(\mathrm{dd}, J=16.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=25.5,13.8,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.72-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.03$ $(\mathrm{s}, 3 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 199.1, 169.5, 143.9, 136.9, 136.6, 134.7, 130.1, 129.4, 129.2, $128.4,127.8,126.5,50.3,40.9,34.9,28.8,24.3,23.7,21.8$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 344.1626$; found: 344.1633

4-Oxo-4-(p-tolyl)butanal: (41) ${ }^{8}$

Yield: 75% (26 mg).
Nature: light yellow solid.
Mp: 44- $47{ }^{\circ} \mathrm{C}$

\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.90(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.15(\mathrm{~m}$, $2 \mathrm{H}), 3.33-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ (ppm): 201.0, 197.6, 144.3, 134.0, 129.4, 128.3, 37.7, 31.0, 21.8.

N-(4-(4-Bromophenyl)-1-cyclohexyl-4-oxobutyl)acetamide: (4m)

Yield: 50\% (37 mg).
Nature: white solid.
Mp: 189-192 ${ }^{0} \mathrm{C}$

\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}(\mathbf{p p m}):$ (for mixture of product) $7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 6 \mathrm{H}), 5.28(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.81(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{td}, J=7.1,3.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.93$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{dd}, J=12.8,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 6 \mathrm{H})$,

[^4]$1.83(\mathrm{t}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{dd}, J=17.0,7.2 \mathrm{~Hz}, 8 \mathrm{H}), 1.65(\mathrm{dt}, J=14.4,7.6 \mathrm{~Hz}, 8 \mathrm{H}), 1.59-1.51(\mathrm{~m}$, $4 \mathrm{H}), 1.39(\mathrm{dd}, J=11.5,6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.23-1.15(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{dd}, J=12.8,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05-0.91$ (m, 4H).
$\left.{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} \mathbf{(p p m}\right):($ for mixture of product) $199.7,199.5,169.7,170.2,135.8$, $135.6,132.1,132.0,129.7,129.6128 .5,128.2,58.6,56.1,54.0,42.8,35.9,34.9,29.7,28.8,26.5,26.3$, 26.2, 25.8, 24.7, 23.6, 21.9, 18.6, 17.9.

HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 366.1069$; found: 366.1067.
N-(2-Methyl-5-oxo-1,5-diphenylpentan-2-yl)acetamide: (4n)
Yield: 56% (35 mg).
Nature: colourless oil.
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=4: 6(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.30-$ $7.22(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~d}$, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=15.0,8.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ (ppm): 200.7, 170.3, 137.6, 136.9, 133.3, 130.7, 128.8, 128.3, 128.2, 126.6, 56.5, 44.1, 33.7, 33.4, 24.6, 24.4.

HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 310.1807$; found: 310.1801.
N-(4-Cyano-2-methyl-1-phenylbutan-2-yl)acetamide: (40)
Yield: 68% (31 mg).
Nature: colourless oil.

\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.32-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J$ $=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{dd}, J=14.4,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.19 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 170.6, 136.6, 130.7, 128.3, 126.9, 120.1, 56.1, 43.9, 33.4, 24.4, 24.3, 12.4.
N-((2R)-4-Cyano-2-(4-methylcyclohex-3-en-1-yl)butan-2-yl)acetamide: (4p)
Yield: 45\% (21 mg).
Nature: colourless oil.
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=4: 6(\mathrm{v} / \mathrm{v})]$.

4p
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}(\mathbf{p p m}):($ for the mixing) $5.37-5.24(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.32$ $(\mathrm{tdd}, J=9.5,6.0,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 5 \mathrm{H}), 1.81-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): (for the mixing) 170.1, 170.1, 134.4, 134.2, 120.4, 120.3, $120.0,119.9,58.4,58.3,40.11,39.9,31.6,31.4,31.0,31.1,26.4,26.3,24.4,24.3,24.2,23.8,23.3,23.3$, 20.2, 19.9, 12.4, 12.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 235.1810; found: 235.1809.
N-(1-(3-Oxo-3-(p-tolyl)propyl)cyclohexyl)acetamide: (4q)
Yield: 52% (30 mg).
Nature: gummy liquid.
\mathbf{R}_{f} value $=0.3[E t O A c:$ Petroleum ether $=4: 6(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H})$, 2.92 (dd, $J=8.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.58-$ 1.51 (m, 4H), $1.43-1.34$ (m, 4H).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 200.7,169.7,143.9,129.4,128.5,58.6,55.9,34.9,33.4$, 25.7, 24.7, 21.9, 21.8, 18.6.

HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NaNO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 310.1783$; found: 310.1788.

N -((R)-2-Methyl-1-((R)-2-oxotetrahydrofuran-3-yl)-3-phenylpropan-2-yl)acetamide: (4r)
Yield: 64% (35 mg).
Nature: colourless oil.
\mathbf{R}_{f} value $=0.2[E t O A c:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR ($\left.\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} \mathbf{(p p m}\right)$: (for the mixing) $7.28-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.65$ (s, 1H), $5.68(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{tt}, J=8.7,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.23-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.56$ (m, 1H), 2.49-2.43(m, 1H), 2.43-2.37(m, 2H), 2.23-2.16(m, 1H), 2.07-1.98(m, 4H), $1.92(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.54(\mathrm{dd}, J=14.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\left.\boldsymbol{\delta} \mathbf{(p p m}\right)$: (for the mixing) 181.2, 180.6, 170.7, 170.6, 137.5, 137.2, $130.7,128.2,126.6,67.2,67.0,56.4,56.0,44.5,43.3,40.3,39.3,36.0,35.7,31.3,30.4,25.0,24.6,24.5$, 23.9.

HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 276.1600$; found: 276.1604 .
N-(1-((tert-Butyldimethylsilyl)oxy)-5-cyano-3-methylpentan-3-yl)acetamide: (4s)
Yield: $68 \%(40 \mathrm{mg})$.
Nature: colourless oil.
\mathbf{R}_{f} value $=0.3[E t O A c:$ Petroleum ether $=4: 6(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 6.82(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.50$ $(\mathrm{m}, 1 \mathrm{H}), 2.36-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 5 \mathrm{H}), 1.47(\mathrm{ddd}, J=14.7,5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.91$ $(\mathrm{s}, 9 \mathrm{H}), 0.09(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 170.0,120.4,77.5,76.8,59.8,55.7,40.8,34.1,26.0,24.6$, $23.6,18.3,12.4,-5.4$

HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 321.1974 ; found: 321.1982 .
N-(2-(4-(3-Oxo-3-(p-tolyl)propyl)cyclohex-3-en-1-yl)propan-2-yl)acetamide: (4t)
Yield: $60 \%(39 \mathrm{mg})$.
Nature: Colourless oil.
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=4: 6(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.45-5.38(\mathrm{~m}, 1 \mathrm{H})$, $5.23(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{ddd}, J=8.0,6.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.14(\mathrm{~m}$, $1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{dd}, J=11.9$, $6.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 200.0, 169.5, 143.8, 136.8, 134.6, 129.4, 128.3, 120.9, 56.4, 40.9, 37.2, 31.9, 29.7, 26.7, 24.7,24.3, 24.2, 24.0, 21.7.

HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 328.2277$; found: 328.2282.
N-(4-(4-Bromophenyl)-1-(4-((($8 S, 9 R, 13 R, 14 R)-13-m e t h y l-17-o x o-7,8,9,11,12,13,14,15,16,17-$ decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)methyl)phenyl)-4-oxobutyl)acetamide: (4u)

Yield: 40% (51 mg)
Nature: white solid.
Mp: $175-178{ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.3$ [EtOAc: Petroleum ether $\left.=1: 1(\mathrm{v} / \mathrm{v})\right]$.

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\boldsymbol{\delta}$ (ppm): $7.85-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dt}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-2.85(\mathrm{~m}, 4 \mathrm{H})$, $2.50(\mathrm{dd}, J=18.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-1.99(\mathrm{~m}, 7 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{dd}, J=12.0,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-$ $1.38(\mathrm{~m}, 5 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 221.1, 199.1, 169.6, 156.9, 141.5, 138.0, 136.9, 135.5, 132.6, $132.1,129.7,128.1,126.9,126.5,115.0,112.5,69.7,53.3,50.6,48.2,44.1,38.5,36.0,35.7,31.7,29.9$, 29.8, 26.7, 26.1, 23.6, 21.7, 14.0.

HRMS (ESI) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 642.2219$; found: 642.2202.

4-(1-Acetamido-4-oxo-4-(p-tolyl)butyl)benzyl (tert-butoxycarbonyl)-L-valinate: (4v)

Yield: 45\% (48 mg)
Nature: colourless oil.

$4 v$
\mathbf{R}_{f} value $=0.1[$ EtOAc $:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.
${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 4 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 6.19(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.12-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.13-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.43$ $(\mathrm{s}, 3 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 200.0, 172.4, 169.6, 155.8, 144.4, 134.8, 134.3, 129.4, 128.9, $128.3,126.9,79.9,66.7,58.7,53.5,35.6,31.4,29.9,28.5,23.5,21.8,19.2,17.6$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 547.2784$; found: 547.2773.

3-Acetamido-5-cyano-3-methylpentyl 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate: (4w)

Yield: 41% (37 mg).
Nature: white solid.
Mp: $183-185{ }^{\circ} \mathrm{C}$

\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=4: 6(\mathrm{v} / \mathrm{v})]$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{H}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~s}, 1 \mathrm{H}), 4.52-4.40(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=8.3,7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 1 \mathrm{H})$, $1.47(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 172.9,171.7,165.7,156.1(\mathrm{~d}, J=251.6 \mathrm{~Hz}), 149.7,137.4$, $128.8,127.7(\mathrm{~d}, J=20.3 \mathrm{~Hz}), 120.8,119.4,113.8(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 110.1,61.4,54.8,37.5,35.1,34.8$, 24.2, 23.4, 12.4, 8.5.
$\left\{{ }^{19} \mathbf{F}\right\} \mathbf{N M R}\left(377 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}):-116.9$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClFN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 448.1439$; found: 448.1441.
N-(4-Oxо-1-(4-(($2,5,7,8$-tetramethyl-2-(4,8,12-trimethyltridecyl)chroman-6-
yl)oxy)methyl)phenyl)-4-(p-tolyl)butyl)acetamide: (4x)
Yield: 42% (62 mg)
Nature: gummy colourless oil.
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=14.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H})$, $3.17-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dt}, J=17.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{dd}, J=$
15.7, 7.1 Hz, 1H), 2.27-2.21 (m, 4H), $2.19(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{ddd}, J=20.1,13.5$, $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{dt}, J=13.2,5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{dd}, J=11.1,5.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.27(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 9 \mathrm{H}), 1.18$ $-1.03(\mathrm{~m}, 7 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 13 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 200.0, 169.6, 148.2, 144.3, 141.6, 137.6, 134.4, 129.5, 128.3, $128.2,128.0,126.8,126.1,123.1,117.8,75.0,74.4,53.5,40.3,39.5,37.5,37.4,35.6,32.9,32.8,31.4$, $30.0,28.1,24.9,24.6,24.0,23.6,22.9,22.8,21.8,21.2,20.8,19.9,19.8,13.0,12.1,12.0$.
HRMS (ESI) m / z calcd for $\mathrm{C}_{49} \mathrm{H}_{71} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 737.5383$; found: 737.5369.

3-Acetamido-5-cyano-3-methylpentyl (2S)-2-(6-methoxynaphthalen-2-yl)propanoate: (4y)
Yield: 55% (44 mg).
Nature: colourless oil.
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.70(\mathrm{dd}, J=8.6,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.5,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{qd}, J=$ $7.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 4 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.12(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 174.7, 170.2, 157.9, 135.4, 129.3, 129.0, 127.5, 126.1, $119.9,119.4,105.7,61.1,55.5,54.8,45.7,45.6,36.8,33.5,24.3,24.2,18.6,18.5,12.1$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~K}[\mathrm{M}+\mathrm{K}]^{+}: 435.1686$; found: 435.1688.

4.2 Gram-scale reaction of compound 3 b :

A flame dried 50 mL round bottom flask equipped with a magnetic stirring bar was charged with 4CzIPN ($74 \mathrm{mg}, 2 \mathrm{~mol} \%$), 4-methyl phenacyl bromide $\mathbf{2 b}(1.0 \mathrm{~g}, 4.7 \mathrm{mmol}$), zinc acetate ($515 \mathrm{mg}, 2.35 \mathrm{mmol}$) and dry acetonitrile $(24 \mathrm{~mL})$, then the tube was sealed with a rubber septum, evacuated and backfilled with argon. 4-methylstyrene $\mathbf{1 a}(0.94 \mathrm{~mL}, 7.05 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}\left(84 \mu \mathrm{~L}, 1\right.$ equiv.) and $\mathrm{CF}_{3} \mathrm{COOH}(1.9 \mathrm{~mL}, 5$ equiv.) were added via syringe under argon atmosphere. Afterwards, the reaction mixture was degassed by Freeze-Pump-Thaw cycles two times with argon via syringe needle and irradiated at room temperature with 12 W blue LED bulb at a distance of approximately 5 cm and simultaneously cooled by fan to maintain the reaction at RT. After 10 h , completion the reaction (checked by TLC). The reaction mixture was poured into 20 mL Saturated NaHCO_{3} solution and extracted with EtOAc ($20 \mathrm{~mL} \times 2$). The combined organic layer was washed with brine solution, dried over MgSO_{4} and concentrated under reduced pressure. Finally, the crude residue was purified by flash column chromatography on silica gel 230-400 mesh $($ EtOAc:Petroleum ether $=40: 60-80: 20)$ to get the corresponding product $\mathbf{3 b}(1.1 \mathrm{~g}, 74 \%)$.

4.3 Photocatalytic ATRA reaction:

4-Bromo-4-(p-tolyl)butanenitrile: (3p $\left.{ }^{\prime}\right)^{\mathbf{9}}$
Yield: 33% (16 mg).
Nature: colourless oil.
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 77.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{dd}, J=$ 8.2, 6.0 Hz, 1H), 2.59-2.39 (m, 4H), 2.35 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 139.2,137.3,129.8,127.2,118.5 .52 .5,35.4,21.3,16.6$

4-Bromo-4-methyl-1,5-diphenylpentan-1-one: (4n')
Yield: 50\% (33 mg).
Nature: colourless oil.
\mathbf{R}_{f} value $=0.5[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $8.03-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=10.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J$ $=10.3,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 3.44-3.28(\mathrm{~m}, 3 \mathrm{H}), 3.26-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.19(\mathrm{~m}, 2 \mathrm{H})$, 1.74 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ (ppm): 199.3, 136.9, 136.6 133.4, 131.1, 128.8, 128.3, 128.2, 127.2, 71.5, 52.1, 38.8, 36.0, 31.1.

HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}: 331.0698$; found: 331.0619.

4-Bromo-4-methyl-5-phenylpentanenitrile: (4o ${ }^{\prime}$)
Yield: 65\% (33 mg).
Nature: colourless oil.

\mathbf{R}_{f} value $=0.5[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.41-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=13.9 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.20(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.10-$ $2.02(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 135.8, 130.9, 128.4, 127.5, 119.5, 68.3, 51.8, 40.1, 30.6, 14.9 .

5. Synthetic transformations of aminoalkylation products

Reaction procedure for the synthesis of Pyrolline derivative 5:

Compound $\mathbf{3 g}(74 \mathrm{mg}, 0.2 \mathrm{mmol}), 6 \mathrm{~N} \mathrm{HCl}(0.5 \mathrm{~mL})$ and 1 mL EtOH was taken sequentially to the 5 mL pear-shaped flask and the reaction mixture was heated to reflux for 20 hours. After completion (as monitored

[^5]by TLC), the reaction mixture was quenched by 1 mL saturated NaHCO_{3} solution and extracted with EtOAc ($5 \mathrm{~mL} \times 2$). Then the organic layer was washed with brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by silica gel column chromatography (EtOAc :Petroleum ether $=0: 100-10: 90$) to afford the desired product 5.

5-(4-Bromophenyl)-2-(p-tolyl)-3,4-dihydro-2H-pyrrole: (5)

Yield: 80% (49 mg).
Nature: white solid.
Mp: $140-142{ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.3[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{q}, J=8.2$ $\mathrm{Hz}, 4 \mathrm{H}), 5.26(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}$, $3 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 172.6, 141.4, 136.6, 133.5, 131.8, 129.6, 129.3, 126.6, 125.2, 76.1, 35.6, 32.6, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]^{+}: 314.0544$; found: 314.0534.

Reaction procedure for the synthesis of Pyrrole derivative 6:

Compound 3b ($64 \mathrm{mg}, 0.2 \mathrm{mmol}$), and $6(\mathrm{~N}) \mathrm{HCl}(0.5 \mathrm{~mL})$ were added sequentially to the 1 mLEtOH in 5 mL pear-shaped flask and the reaction mixture was heated to reflux for 20 hours. After completion, the reaction mixture was quenched by 1 mL saturated NaHCO_{3} solution and extracted with $\mathrm{EtOAc}(5 \mathrm{~mL} \times 2)$. Then the organic layer was washed with brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The crude reaction mixture thus obtained was dissolved in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DDQ ($23 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added. The reaction mixture was then stirred at room temperature for 1 hour. Then the solvent was concentrated under reduced pressure and purified by silica gel column chromatography (EtOAc :Petroleum ether $=0: 100-10: 90$) to afford the desired product 6 .

2,5-Di-p-tolyl-1H-pyrrole: (6) ${ }^{10}$

Yield: 70% (36 mg).
Nature: white solid.
Mp: 202-204 ${ }^{0} \mathrm{C}$
\mathbf{R}_{f} value $=0.5[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.

[^6]${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H})$, $6.53(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 136.2,133.0,129.9,129.7,123.8,107.4,21.3$.

Reaction procedure for the synthesis of Pyrrolidine derivative 7:

Compound 3b ($64 \mathrm{mg}, 0.2 \mathrm{mmol}$), and $6(\mathrm{~N}) \mathrm{HCl}(0.5 \mathrm{~mL})$ were added sequentially to the 1 mL EtOH in 5 mL pear-shape flask and the reaction mixture was heated to reflux for 20 hours. After completion, the reaction mixture was quenched by 1 mL saturated NaHCO_{3} solution and extracted with $\mathrm{EtOAc}(5 \mathrm{~mL} \times 2)$. Then the organic layer was washed with brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum, the residue was dissolved in 2 mL MeOH and added $\mathrm{NaBH}_{4}(20 \mathrm{mg}, 0.6 \mathrm{mmol})$ to this solution and stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Then the solvent was concentrated under reduced pressure and purified by silica gel column chromatography $(\mathrm{EtOAc}:$ Petroleum ether $=0: 100-10: 90)$ to afford the desired product 7.

2,5-Di-p-tolylpyrrolidine: (7)

Yield: 68% (34 mg).
Nature: white solid.
Mp: $132-135{ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): (for diastereomeric mixing) $7.35(\mathrm{dd}, J=37.0,8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.15 $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.39(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}$ (ppm): (for diastereomeric mixing) 143.0, 142.4, 136.5, 129.3, $129.1,126.8,126.4,62.3,62.1,35.7,34.7,21.2,21.1$

HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 252.1752$; found: 252.1750 .

Reaction procedure for the synthesis of GABA derivative 8:

Compound 3c ($66 \mathrm{mg}, 0.2 \mathrm{mmol}$) and m-chloroperbenzopic acid ($\leq 77 \%$ purity, $45 \mathrm{mg}, 0.2 \mathrm{mmol}$) were dissolved in $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 10 mL round bottom flask, equipped with a magnetic stirring bar and sealed with septum. The solution was stirred vigorously at $0^{\circ} \mathrm{C}$ for 5 min . then trifluoroacetic acid ($20 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was added dropwise via syringe to the reaction mixture and stirred overnight allowing to reach room temperature slowly. After consumption of all starting materials (monitored by the TLC) the reaction mixture was quenched with 2 mL saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure purified
by silica gel column chromatography (EtOAc:Petroleum ether $=40: 60-80: 20$) to afford the desired product 8.

4-Methoxyphenyl (S)-4-acetamido-4-(p-tolyl)butanoate : (8)
Yield: 85% (58 mg).
Nature: colourless oil.
\mathbf{R}_{f} value $=0.2[\mathrm{EtOAc}:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.94(\mathrm{~m}$, $2 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=15.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.62-$ $2.50(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dddd}, J=14.0,8.2,7.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 172.6,169.6,157.4,144.2,138.4,137.6,129.6,126.6,122.3$, 114.5, 55.7, 52.9, 31.4, 30.9, 23.5, 21.2.

HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 342.1705$; found: 342.1706.

Reaction procedure for the synthesis of Lactum derivative 9:

In a flame-dried Schlenk tube equipped with stir bar was charged with compound $\mathbf{3 p}(43 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{EtOH}(1.0 \mathrm{~mL})$ and Conc. $\mathrm{HCl}(1.5 \mathrm{~mL})$ in nitrogen atmosphere. Then the reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 2 hour and then another portion of Conc. $\mathrm{HCl}(0.5 \mathrm{~mL})$ was added to this reaction mixture. After 4 hour, $\mathrm{H}_{2} \mathrm{SO}_{4}(30 \%, 1.5 \mathrm{~mL})$ was added to this reaction mixture and allowed to heat another 2 hour at same temperature. Finally, another portion of $\mathrm{H}_{2} \mathrm{SO}_{4}(30 \%, 0.5 \mathrm{~mL})$ was added to this reaction mixture and heated for another 4 hour. Then the reaction mixture was cooled and nutralised with ammonium hydroxide (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}, 10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by silica gel column chromatography $(\mathrm{EtOAc}:$ Petroleum ether $=50: 50-100: 0)$ to afford the desired product 9.
5-(p-Tolyl)pyrrolidin-2-one (9): ${ }^{11}$
Yield: 75% (20 mg).
Nature: white solid
Mpt: $90-92{ }^{\circ} \mathrm{C}$
\mathbf{R}_{f} value $=0.3$ [EtOAc: Petroleum ether $\left.=1: 1(\mathrm{v} / \mathrm{v})\right]$.

${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 7.18(\mathrm{~s}, 4 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.51(\mathrm{~m}$, $1 \mathrm{H}), 2.49-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}(\mathbf{p p m}): 178.6,139.5,37.9,129.7,125.7,58.0,31.6,30.5,21.2$.

[^7]
Reaction procedure for synthesis of 10:

Compound $4 \mathbf{d}$ ($41 \mathrm{mg}, 0.1 \mathrm{mmol}$), 1-Boc-piperazine ($28 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(20 \mathrm{mg}, 0.2 \mathrm{mmol})$ were dissolved in $2 \mathrm{mLCH}_{3} \mathrm{CN}$ and stirred for 16 hrs under argon at room temperature. After full consumption of starting materials (monitored by TLC), the reaction mixture was diluted with 10 mL EtOAc, concentrated under reduced pressure and purified by silica gel column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=\right.$ $2: 98-10: 90)$) to afford the desired product 10.
tert-Butyl-4-(4-(1-acetamido-4-(4-bromophenyl)-4-oxobutyl)benzyl)piperazine-1-carboxylate: (10)
Yield: 90\% (50 mg).
Nature: white solid.
Mp: 160-163 ${ }^{\circ} \mathrm{C}$

\mathbf{R}_{f} value $=0.1[E t O A c:$ Petroleum ether $=1: 1(\mathrm{v} / \mathrm{v})]$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}$, $4 \mathrm{H}), 6.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{td}, J=8.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 4 \mathrm{H}), 3.05(\mathrm{ddd}$, $J=17.9,7.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.17(\mathrm{dd}, J=13.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 199.1, 169.7, 154.9, 140.8, 137.4, 135.5, 132.1, 129.6, 129.7, $128.6,126.6,79.7,77.5,76.8,62.7,53.2,52.9,35.7,23.0,28.5,23.5$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{BrN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 558.1967; found: 558.1982.

6. Controlled experiments and Mechanistic studies:

6.1. Radical inhibition experiment:

To explore the reaction mechanism towards the radical pathway a radical trapping experiment was performed with TEMPO (3 equiv.) free radical in the reaction of 4-methylstyrene $\mathbf{1 a}$ (2 equiv.) and 4-methylphenacyl bromide $\mathbf{2 b}$ (1 equiv.) under the standard reaction condition (Scheme 6.1). Surprisingly, no desired product $\mathbf{3 b}$ was observed but a trace of TEMPO adducts $\mathbf{1 1}$ was isolated with 40% yield and analyzed by NMR and $\mathbf{1 2}$ was detected in GCMS analysis from the crude reaction mixture which demonstrated that the mechanism of this photo-reaction involves the generation of phenacyl radical from $\mathbf{2 b}$. which coupled with TEMPO to give adduct $\mathbf{1 1}$ and existence of another adduct $\mathbf{1 2}$ suggests that the benzyl radical species is the intermediate of this reaction.

Reaction procedure: A flame dried culture tube equipped with a magnetic stirring bar was charged with 4CzIPN ($3 \mathrm{mg}, 2 \mathrm{~mol} \%$), 4-methylphenacyl bromide $\mathbf{2 b}$ ($42 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OAc})_{2}$ ($21 \mathrm{mg}, 0.1 \mathrm{mmol}$) and dry acetonitrile (1 mL). The tube was sealed with a Teflon screw cap, evacuated and backfilled with argon, before styrene 1a $(40 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ and TEMPO free radical $(94 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added to it. Then the reaction mixture was degassed by Freeze-Pump-Thaw cycles with argon and irradiated at room temperature with 12 W blue LED bulb at a distance of approximately 5 cm . A high-speed fan was used to maintain the temperature. After 6h no desired carbo-amination product 3b was formed, a trace amount of the TEMPO adducts $\mathbf{1 2}$ were detected in GCMS analysis from the crude reaction mixture. These results suggested that the reaction passes through the radical pathway.

2-((2,2,6,6-Tetramethylpiperidin-1-yl)oxy)-1-(p-tolyl)ethan-1-one: (11) ${ }^{12}$
Yield: 40% (23 mg).
Nature: colourless oil.
Rf value $=0.5[\mathrm{EtOAc}:$ Petroleum ether $=1: 9(\mathrm{v} / \mathrm{v})]$.

11
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 2.41$
$(\mathrm{s}, 3 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.47(\mathrm{~m}, 4.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.17(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}$ (ppm): 195.5, 144.2, 133.0, 129.4, 128.2, 81.4, 60.2, 39.8, 32.9, 21.8, 20.4, 17.2.

```
as_1233-1##5188 RT: 18.14 AV:1 NL: 3.27E2
```

T. + c El Full ms [50.00-600.00] 407.25

Figure S1. GCMS spectra of crude reaction mixture (compound 12)

[^8]
6.2. Stern-Volmer Fluorescence Quenching Experiments:

Fluorescence quenching studies were carried out using a PerkinElmer LS 55 Fluorescence Spectrometer and the Stern-Volmer Fluorescence Quenching Experiments were run with a freshly prepared solution of $5.0 \times 10^{-}$ ${ }^{5} \mathrm{M} 4 \mathrm{CzIPN}$ in degassed anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ in 10 mm length quartz cuvette at room temperature. The solutions were irradiated at 378 nm (maximum absorption wavelength of 4CzIPN) and luminescence was measured at 540 nm . Plots were derived according to the Stern-Volmer equation and $K_{s v}$ calculated.

$$
\text { Stern-Volmer equation: } \mathrm{I}_{0} / \mathrm{I}=1+K_{s v}[\mathrm{Q}]
$$

Where I_{0} is the luminescence intensity without the quencher, I is the intensity with the quencher, $[\mathrm{Q}]$ is the concentration of added quencher and $K_{s v}$ is the Stern-Volmer quenching constant.
All the emission spectra were recorded after each addition of the quencher. The result of Figure S 8 shows a significant change in emission intensity for 4-bromophenacyl bromide than the styrene (calculated $K_{s v}$ value of 4-bromophenacyl bromide and 4-methylstyrene are $0.56 \mathrm{mM}^{-1}$ and $0.13 \mathrm{mM}^{-1}$ respectively).

Figure S2: Emission spectra and Stern-Volmer plots of 4CzIPN, quenching with varying concentrations of phenacyl bromide and styrene.

6.3. Electrochemical Measurements

Cyclic Voltammetry was performed using a CH Instruments (model: CHI1140C) using a glassy carbon working electrode, saturated calomel reference electrode and a platinum wire counter electrode. The sample was prepared with 2.0 mmol of a substrate in 5 mL of 0.1 M tetrabutylammonium hexafluorophosphate $\left(\mathrm{TBAPF}_{6}\right)$ in dry and degassed acetonitrile. The potential range scanned was normally 0.2 V and -2.2 V at a scan rate $100 \mathrm{mV} / \mathrm{s} . \mathrm{E}_{\mathrm{p} / 2}$ is given as the half-wave potential for irreversible reduction where the current is equal to one-half the peak current of the reduction event.

Figure S3: Cyclic voltammogram of 4-bromophenacyl bromide ($\mathbf{2 g}$)

Figure S4: Cyclic voltammogram of 4-bromophenacyl bromide $\mathbf{(2 g})$ and $\mathrm{Zn}(\mathrm{OAc})_{2}$.

Figure S5: Cyclic voltammogram of 4-bromophenacyl bromide ($\mathbf{2 g}$) and TFA

Figure S6: Cyclic voltammogram of 4-bromophenacyl bromide ($\mathbf{2 g}$), TFA and $\mathrm{Zn}(\mathrm{OAc})_{2}$.

6.4. Analysis with Aqueous Extract of Crude Reaction Mixture

After completion of the photo-amination reaction, the crude reaction mixture was extracted with ethyl acetate and water. The water extract was evaporated in rotary under heat and then dried by a high vacuum pump with temperature to get an off-while solid. The solid material is highly hygroscopic and transformed into liquid upon exposure to air. All the following experiments were conducted with this crude solid.

a) Energy dispersive X-ray (EDX) analysis:

As the material is highly hygroscopic, the EDX analysis was conducted by mixing the crude solid with dry silica gel. As extra elements $(\mathrm{O}, \mathrm{Si}$, and Al$)$ are from silica gel, the spectrum indicates the presence of Zn and Br in the crude solid.

b) Powder X-Ray Diffraction (PXRD) analysis:

The crude solid was analysed through PXRD analysis to find out its material composition. The obtained pattern was matched with the ICDD database and found to be matched with ZnBr_{2} (card number 00-0360756). Hence, the presence of ZnBr_{2} in the solid is confirmed.

c) HRMS analysis

d) Bromination of Malonate:

Reaction Procedure: To the crude solid (obtained from water extract) ($\sim 110 \mathrm{mg}, 1 \mathrm{mmol}$) in 4 mL of cosolvent DCE: $\mathrm{H}_{2} \mathrm{O}(1: 1)$, diethyl malonate ($40 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(135 \mathrm{mg}$, 1 mmol) were added. Then the reaction mixture was heated to reflux for 10 h . After that, the reaction mixture was quenched by $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and was extracted with EtOAc. The combined organic layer was washed with brine solution, dried over MgSO_{4}, and concentrated under reduced pressure. Finally, the crude residue was purified by flash column chromatography.

Diethyl 2-bromomalonate:
Yield: $42 \%(25 \mathrm{mg})$.
Nature: Colourless oil.
\mathbf{R}_{f} value $=0.3[$ EtOAc $:$ Petroleum ether $=1: 19(\mathrm{v} / \mathrm{v})]$.

${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 164.7,63.4,42.5,14.0$.

7. X-ray crystal structure and data for Compound 4 k .

Figure S7. ORTEP plot of compound $\mathbf{4 k}$ with 50% ellipsoid probability.

Crystal data for $\mathbf{4 k}$: X-ray single crystal data were collected using $\operatorname{MoK} \alpha(\lambda=0.71073 \AA$) radiation on a Rigaku SuperNova diffractometer equipped with an Eos S 2 detector. Structure solution/refinement were carried out using Shelx-2013. The structure was solved by direct method and refined in a routine manner. Nonhydrogen atoms were treated anisotropically. All hydrogen atoms were geometrically fixed. CCDC (CCDC No: 2164564) contains the supplementary crystallographic data of $\mathbf{4 k}$. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Table S7: Crystal data and structure refinement for compound 4k.

Identification code	CCDC 2164564
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}$
Formula weight	321.40
Temperature/K	$293(2)$
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/A	$9.537(3)$
b / \AA	$19.937(3)$
c / \AA	$9.6171(19)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$95.72(3)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1819.6(7)$
Z	4
$\rho_{\text {calc }}$ g/cm ${ }^{3}$	1.173

μ / mm^{-1}	0.075
$\mathrm{~F}(000)$	688.0
h, k, lmax	$12,25,12$
Theta (max)	27.000
R (reflections)	$0.0544(2346)$
wR2 (reflections)	$0.1633(3948)$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$

8. NMR Spectra

${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 t}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1105 1H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $\mathbf{2 t}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 u}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

```
SM-AS-1261 (Hy
    8
```


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{1 u}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

응
0
0
品 0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 v}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{1 v}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1309 13C
$\stackrel{\infty}{\infty}$

T	1	1	1	1	1	T	1	,	1	1	T	1	,	1	1			1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 w}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{1 w}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{19}$ F NMR of $\mathbf{1 w}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 x}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：
SM－AS－1308 1H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $\mathbf{1 x}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：
SM－AS－1308 13C
が

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 y}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{1 y}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-SP-1439-1 13C

$\mathcal{f}_{-77.166}^{77.48} \mathrm{CDCl3}$
-63.00
-55.32
-45.55
-36.72

-22.44
-18.57

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 a}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：
SM－AS－1110 13C

$\begin{aligned} & \text { M } \\ & \text { O} \\ & 0 \end{aligned}$		
$\stackrel{\infty}{\sim}$	N	のかべへ
N穴	ก	
	，	$\rightarrow 1$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{3 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 b}$ (101 MHz, CDCl_{3}):
SM-AS-1077-R 13C

8	\%	
-	-	寸 ¢ֹM
\|	\|	-近

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 c}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

1	1	I	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70					20	10	0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1087 1H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 3d (101 MHz, CDCl_{3}):

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 e}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 f}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1090 13C
-

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 g}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1083 13C

\cdots	\cdots	N¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
®	8	か్లM
\|	\|	(${ }^{\text {a }}$

-

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1121 1H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $\mathbf{3 h}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1188 1H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 i}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1188 13C

$\stackrel{\sim}{\sim}$	¢	ก	$\stackrel{\circ}{\circ}$	M M	N0\%	$\stackrel{N}{\text { N }} \stackrel{\infty}{\sim}$
-	8	ก	$\stackrel{+}{+}$	¢ ${ }_{\text {N }}$	N	
	\|		\|	$1 /$,	

산

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 j}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 k}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR of $31\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1133-1R 1H $\quad \stackrel{0}{0}$

31

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $31\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1133-R $13 C$

¢F	OG	
¢ \%	\%\% ¢ ¢ ¢	

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

STVRAS-1247 1H
0

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 m}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1247 13C

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1214 1H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 n}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1214 13C

${ }^{1} \mathrm{H} N \mathrm{NRR}$ of $\mathbf{3 o}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

```
SM-AS-\frac{M2 17 1H}{e}
    O
```


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 o}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1217 13C

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 p}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

3p Ω \qquad

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 p}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1250-R 13 C

®	¢8888
®®-	
$\stackrel{\square}{1}$	「う

\$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 q}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1150-R 1H

O\%	O J No No		웄ㅇㅇㅇㅇㅇㅁ	¢ ¢ ¢ 0
0°	Lo in in in is	мलmmm	ヘ N N	
,	$\xrightarrow{\sim}$	$\xrightarrow{+C+}$	+	+

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 q}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 r}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\left.\mathbf{3 r} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1156-R 13 C

$\stackrel{\square}{1}$	\%	
$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\circ}{\stackrel{\circ}{2}}$	
-		-

${ }^{1} \mathrm{H}$ NMR of 3s $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1215 1 H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 s}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1215 13C

응
0

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{t}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1111-2R 1 H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 t}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1111-R $13 C$

77.48
76.84

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 a}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1157 13C

\pm	\%	
-	$\stackrel{8}{-}$	Ј¢
1	I	-

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 b}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1161-R 1 H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 c}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1161-R 13 C
n
$\stackrel{n}{0}$
$\stackrel{-}{1}$
1
N A
\#

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 d}$ (101 MHz, CDCl_{3}):
SM-AS-1158 13C
77.48
-76.84
N

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 e}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：
SM－AS－1196 13C

$\stackrel{\infty}{+} \stackrel{+}{+}$	ฺ	
Nべ゚	®	
		$1<4$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 f}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 g}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

SM－AS－1164－A 1H

> M O O

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $\mathbf{4 h}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

SM－AS－1164－A 13 C

O	$\bar{\circ}$	の
8	8	ホ ¢ ¢ M
｜	｜	人

－

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 i}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1167-R 1H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 j}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1167-R 13 C
(
中

$\left\{{ }^{19} \mathrm{~F}\right\}$ NMR of $\mathbf{4} \mathbf{j}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
SM－AS－1167－R 19F

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1202-2A

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 k}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of $\mathbf{4 k}$:

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of $\mathbf{4 k}$:

NOESY NMR of $\mathbf{4 k}$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 l}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 1}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1252 HiPl

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 m}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1237-2R 13 C

ON	$\bigcirc{ }_{\sim}^{\circ}$	
	웅	¢్లّ¢
\checkmark	V	$\xrightarrow{\sim}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 n}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 o}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：
SM－AS－1359－2R 1 H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 o}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 p}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SIVRAS-1349U 1H
O

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 p}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1349U 13C

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 q}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 q}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 r}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 r}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：
SM－AS－1350 13C

\％	下i	¢スス～\％
	응	
	r	

응
0

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 s}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1324 13C
${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 t}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 t}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：
SM－AS－1224－L 13 C

\bigcirc	$\stackrel{\square}{1}$	－－
8	0	ウ்¢்
$\stackrel{\square}{\square}$	$\stackrel{-}{-}$	ャ バ
｜		1 \

O
0

$\stackrel{\infty}{+}$	$\stackrel{\text { N }}{ }$	
人 ${ }^{\circ}$	$\stackrel{\circ}{\circ}$	
	10	†mmNNNNNNN
$\xrightarrow{+}$		C－

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 u}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1204 1H 응
0

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 u}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1204 13C
N
てい 66 -

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 v}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

Abstract

SM-AS-1203 1H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 v}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 w}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1346-R $1 \mathrm{H} \xrightarrow{\text { M }}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ of $\mathbf{4 w}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

$\left\{{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}$ of $\mathbf{4 w}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1346-R $19 F$
1691レ-

[^9]${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 x}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1201 1H ल
O
0

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of $\mathbf{4 x}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 y}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1335 1H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 y}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1335 13C

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{f} \end{array}$		90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 p}{ }^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{3 p}$ ' ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
SM-AS-1358 13C

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 n}{ }^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 n}{ }^{\prime}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1357-R $13 C$
(

1	1	1	,	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 o}^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

SM－AS－1359 1H

 $\xrightarrow{2}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{4 o}^{\prime}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

SM－AS－1359 13C

M
O
0

へべか。

${ }^{1} \mathrm{H}$ NMR of $5\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1227 망

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 5 (101 MHz, CDCl_{3}):

${ }^{1} \mathrm{H}$ NMR of $6\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{6}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
SM-AS-1245 13C

${ }^{1} \mathrm{H}$ NMR of $7\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 7 （ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：

SM－AS－1259 13C

$$
\begin{aligned}
& \text { FTデ }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $8\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ：

SM－AS－1220 13C

$\stackrel{\circ}{0}$	$\stackrel{\sim}{0}$	¢ ¢ ¢ ¢	¢冖\％
N®	กั	过 ${ }_{-}^{\sim}$	ヘั่ํㅜํ
11	｜	1 \1	1／1

${ }^{1} \mathrm{H}$ NMR of $9\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 9 (101 MHz, CDCl_{3}):
SM-AS-1248-L 13 C
$\stackrel{\circ}{\stackrel{\circ}{\infty}} \stackrel{+}{\stackrel{\infty}{1}}$

N-

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 0}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

Abstract

SM-AS-1228 1H

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{1 0}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

SM-AS-1228 13C

\cdots	$\%$	$\bar{\square}$	
$\stackrel{\text { ® }}{ }$	$\stackrel{8}{8}$	+	
「		-	--2\%

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\mathbf{1 1}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR of Diethyl bromomalonate ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

SM-SP-1503-R 1H

M
\vdots
0
0
$\stackrel{y}{0}$

$\stackrel{N}{\sim}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of Diethyl bromomalonate ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
SM-SP-1503-R $13 C$
m
$\stackrel{+}{+}$
\vdots

[^0]: ${ }^{1}$ W. L. F. Armarego, C. Chai. Purification of Laboratory Chemicals; 7th ed. Butterworth-Heinemann: Oxford, 2012.

[^1]: ${ }^{2}$ M. Günther, J. Lategahn, M. Juchum, E. Döring, M. Keul, J. Engel, H. L. Tumbrink, D. Rauh, S. Laufer, J. Med. Chem. 2017, 60, 5613-5637.
 ${ }^{3}$ M. Takahashi, N. Takeshi, K. Myojoh, H. Sano, T. Morisawa, J. Heterocyclic Chem. 1983, 20, 209. ${ }^{4}$ Y. Chen, Y. Ma, L. Li, H. Jiang, Z. Li, Org. Lett. 2019, 21, 1480-1483.

[^2]: ${ }^{5}$ K. Matsubara, A. Kurimaru, M. Yamanaka, T. Hirashima, Y. Onishi, E. Murakami, E.;Kawachi, Y. Koga, S. Ando, J Polym Sci Part A: Polym Chem. 2010, 48, 5593-5602.
 ${ }^{6}$ Y. Chen, L. Li, X. He, Z. Li, ACS Catal. 2019, 9, 9098-9102.

[^3]: ${ }^{7}$ N. Zhu, T. Wang, L. Ge, Y. Li, X. Zang, H. Bao, Org. Lett. 2017, 19, 4718.

[^4]: 8 W. H. G. Santos, J. B. M. Ruiz, A. C. Vargas, Org. Lett. 2019, 21, 4092-4096.

[^5]: ${ }^{9}$ W. Pu, D. Sun, W. Fan, W. Pan, Q. Chai, X. Wang, Y, Lv, Chem. Commun., 2019, 55, 4821-4824.

[^6]: ${ }^{10}$ H. Surya Prakash Rao, S. Jothilingam, H. W. Scheeren, Tetrahedron. 2004, 60, 1625.

[^7]: ${ }^{11}$ Y. L. Su, J. W. Liu, L. Tram, H. Qiu, M. P. Doyle, J. Am. Chem. Soc. 2020, 142, 13846-13855.

[^8]: ${ }^{12}$ J.-L. Liu, S.-W. Wu, Q.-Y. Wu, F. Liu, J. Org. Chem. 2018, 83, 8183-8192.

[^9]:

