Supporting Information

Ionic-electronic Dual-conductive Polymer Modified LiCoO₂ Cathodes

for Solid Lithium Batteries

Mengyang Jia, Zhijie Bi and Xiangxin Guo*

College of Physics, Qingdao University, Ningxia Road, Qingdao 266071, China

* Corresponding author: Xiangxin Guo

E-mail address: xxguo@qdu.edu.cn

Experimental Section:

In this study, the PEG doped PANI was synthesized via the emulsion polymerization, where dodecyl-benzene sulfonic acid (DBSA) was used as the emulsifier and PEG was used as the dopant. First, aniline, PEG (molecular weight: 1000), and DBSA were mixed in 60 ml of deionized water and stirred for 10 min to form a uniform mixture. The dosage of the above materials are listed in **Table S1**, the PANI-PEG prepared according to the different ratio of aniline, PEG, and DBSA were respectively denoted as PANI-PEG-1, PANI-PEG-2 and PANI-PEG-3. Subsequently, the oxidant solution composed of 5 g ammonium persulfate (APS) and 40 mL deionized water was added into the preparing mixture dropwise. The whole polymerization was performed at 0~5 °C for 6 h. The precipitate was sequentially washed and centrifuged several times with anhydrous ethanol, and then dried at 80 °C overnight.

	PANI-PEG-	PANI-PEG-	PANI-PEG-
	1	2	3
Aniline	2 mL	2 mL	2 mL
PEG	10 g	10 g	15 g
DBSA	1 g	2.5 g	2.5 g

Table S1. The dosage of aniline, PEG, and DBSA in the polymerization of PANI-PEG

2 g LCO powders were mixed with prepared PANI-PEG of 0.2 g in 30 ml anhydrous ethanol under constant stirring at 400 rpm at 60 °C for about 2 h until all the ethanol was removed. The resulting powders were subsequently moved to a drying oven of 80 °C for 12 h, the PANI-PEG modified LCO materials were obtained thereby, which was denoted as LCO/PANI-PEG.

The LCO composite cathodes were prepared by casting the cathode mixture composed of 80 wt% LCO, 10 wt% Super-P, and 10 wt% PVDF on Al foils. The mass loading of LCO cathodes was 2.5~3.0 mg cm⁻² for the regular test. Li metals which have a thickness of 1 mm and a diameter of 15.6 mm were applied as the anodes. The composite solid electrolytes consisted of poly(vinylidene fluoride) (PVDF), LiTFSI, and Li_{6.4}La₃Zr_{1.4}Ta_{0.6}O₁₂ (LLZTO) were acquired by casting the mixed slurry with the m_(PVDF):

 $m_{(LiTFSI)}$: $m_{(LLZTO)}$ ratio of 20:10:3 on polytetrafluoroethylene plates and drying at 80 °C overnight. The prepared composite solid electrolytes were denoted as PVDF:LLZTO, having a thickness of 40 μ m and a diameter of 19 mm. 1 μ L cm⁻² N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI) ionic liquid with the LiTFSI concentration of 0.1 mol/L was used to wet the electrolyte/electrode interfaces before assembling. The LCO/PVDF:LLZTO/Li and LCO-PANI/PEG/PVDF:LLZTO/Li batteries were assembled using coin cells of 2032 in an Ar-filled glove box with O₂ and H₂O contents below 0.1 ppm.

The surface morphologies of samples were examined by SEM (Hitachi S-4800) with the accelerating voltage of 5 kV. The morphological images of cathode particles were observed by TEM (JEM 2100F) with EDS operated at 200 kV. The crystal structures of materials were identified by X-ray diffraction (XRD, Bruker D2 Phaser). The compositions of samples were investigated by Fourier transform infrared spectroscopy (FTIR, NETZSCH X70) with the wavenumber ranging from 600 cm⁻¹ to 4000 cm⁻¹ and X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250XI). The TGA analysis (TA, SDT-650) was conducted with a temperature range of 35 to 600 °C at a heating rate of 10 °C min⁻¹. Differential scanning calorimetry data (DSC) were also collected in nitrogen from 35 °C to 200 °C at a heating rate of 10 °C min⁻¹.

The ionic conductivities of PANI-PEG pellets were obtained via measuring the electrochemical impedance spectroscopies (EIS) data by the electrochemical working station (Princeton, USA) in the frequency ranging from 7 MHz to 1 Hz with a 10 mV AC amplitude. Herein, the PANI-PEG pellets were obtained by tableting PANI-PEG powders with 1 wt% LiTFSI under an axial pressure of 15 MPa and spayed by gold on both sides. The electronic conductivity of the PANI-PEG pellets was measured by a four-point probe d.c. techniques. All the electrochemical measurements of PANI-PEG were carried out at 30 °C.

The ionic conductivities of PVDF:LLZTO electrolytes were got via EIS measurements with the frequency range of 7 MHz~1 Hz and the AC amplitude of 10 mV, during which the temperature was increased from 90 °C and decreased to 30 °C with each step of 15 °C. The PVDF:LLZTO electrolytes were sandwiched by stainless steel (SS) plates to assemble the SS/PVDF:LLZTO/SS symmetric blocking electrodes. 1 μ L cm⁻² PP13-TFSI ionic liquid with the LiTFSI concentration of 0.1 mol/L was used to wet the double sides of solid electrolyte membranes. Linear sweep voltammetry (LSV) was carried out by SS/PVDF:LLZTO/Li coin cells in the voltage range of 1.0~5.0 V with a scan rate of 1 mV s⁻¹. Cyclic voltammetry (CV) at various sweep rates was measured by an electrochemistry workstation (Princeton). All the electrochemical measurements of PVDF:LLZTO solid electrolytes were performed at 30 °C.

The prepared LCO/PVDF:LLZTO/Li and LCO-PANI/PEG/PVDF:LLZTO/Li cells were cycled at 30 °C between 3.0 and 4.2 V with the charge/discharge rate of 0.1 C. The C-rate measurements of Li/LCO cells were carried out between 3.0 and 4.2 V at varied currents at 30 °C.

Fig. S1 The schemes of dual-conductive materials prepared by: (a) physical mixing of electronic conductive and ionic conductive materials; (b) copolymerization of electronic conductive and ionic conductive materials; (c) doping the electronic conductive polymers with ionic conductive groups.

Fig. S2 XRD scans of PANI-PEG powders.

Fig. S3 FT-IR spectra of PANI-PEG powders.

Fig. S4 Nyquist plots of (a) PANI-PEG1; (b) PANI-PEG2; and (c) PANI-PEG3 pellets; Bode plots of (d) PANI-PEG1; (e) PANI-PEG2; and (f) PANI-PEG3 pellets.

Fig. S5 The electronic and ionic conductivities of PANI-PEG materials measured by EIS and four-point probe technique.

Fig. S6 Nyquist plots of (a) PANI-PEG3 pellet at different temperatures; (b) The relationship between the conductivity of PANI-PEG and the temperature.

Fig. S7 The cross-sectional EDS mappings of LCO/PANI-PEG composite cathode

Fig S8 Ionic conductivities of PVDF:LLZTO composite solid electrolytes as a function of LLZTO content at different temperatures.

Fig. S9 LSV scan at the scanning rate of 1 mV s⁻¹ for the PVDF:LLZTO composite solid electrolyte.

Fig. S10 Specific capacities of LCO-based/PVDF:LLZTO/Li batteries with the cathode mass loading of 7.4 mg cm⁻².

Fig. S11 Rate capabilities of LCO-based/PVDF:LLZTO/Li batteries with the cathode mass loading of 7.4 mg cm⁻².

Fig. S12 Cyclic voltammetric profiles of (a) LCO and (c) LCO/PANI-PEG at various scan rates ($0.01-0.1 \text{ mV s}^{-1}$); peak current density as a function of the square root of the scan rate of (b) LCO and (d) LCO/PANI-PEG.

The chemical diffusion coefficient of Li⁺ (D_{Li}^{C} in LCO cathodes is measured by cyclic voltammetry (CV) and calculated according to the Randles–Sevcik equation:

$$I_{M} = 2.69 \times 10^{5} \times n^{2/3} \times A \times D_{Li+}^{C \ 1/2} \times v^{1/2} \times \Delta C$$
(1)

Herein, I_M is the anodic peak current intensity (A) obtained from the CV profile, A is the electrode area (0.5 cm²), ΔC is the bulk concentration of Li⁺ in electrode (0.051 mol cm⁻³), and v is the potential scan rate (V s⁻¹). The slope $I_M/v^{1/2}$ can be acquired from the linear fitting results as 0.00953 and 0.01071 for LCO and LCO/PANI-PEG as displayed in the inset tables of Fig. S12b and d. The values for the delithiation process are 2.43×10⁻¹² cm² S⁻¹ for LCO and 1.93×10⁻¹² cm² S⁻¹ for LCO@PANI-PEG at RT.

Fig. S13 Relative content histograms of the cathode interface for (a) SO_3^{2-} , (b) LiF, (c) TFSI⁻ derived from the above XPS spectra.

Table S2. Comparison on cycling performances between our work and recent publications.									
Electrolyte	Liquid	Cathode	С	Voltage	1 st capacity	Capacity	Cycle	т	Ref.
	addition	mass loading	rate	range	(discharge)	retention	number		
		/mg cm ⁻²	/c	/v	∕ mAh g⁻¹	/%		/°C	
PVDF-based composite	$5 \ \mu L \ cm^{-2}$	1.5	0.5	3~4.5	164.4	90.1	30	25	[1]
LLZTO-Cu ₃ N	0.75 mg cm ⁻²	2.0	0.2	3.2~4.2	130	81.1	300	25	[2]
PEO-based composite	0 F w#9/	% 1.2	0.025 3.0~4.2	2 0~4 2	2 135.5	74.3	100	60	[3]
electrolyte	8.5 WL/6			5.0 4.2					
Poly(vinyl alcohol)-based	90 wt%	6.4	0.2	2 5~4 2	120 7	07	100	25	[4]
hybrid electrolyte	80 Wt76	0.4 0.2	2.5 4.2 159.7	57	100	25	[4]		
LLZO pellet	10 µL	1.5	0.4	2.8~4.2	135.1	64.7	70	25	[5]
LLZO pellet	$1 \mu L cm^{-2}$	2.0	0.2	3~4.05	106.1	80.2	400	60	[6]
LLZO/PVDF composite	1 μL cm ⁻² 2.5~3	2 5~2 0	0.1	3~4.2	126.3	98.8	200	25	This
		2.3 3.0						25	work

hin 62 C .. r Ь

Table S3. Impedance data for PANI-PEG samples at 30 °C					
Samples	<i>R_i</i> (Ω)	Fitting errors (%)	<i>R</i> _e (Ω)	Fitting errors (%)	
PANI-PEG-1	3232.91	2.3621	541.72	1.1724	
PANI-PEG-2	2201.12	0.5987	183.45	0.5281	
PANI-PEG-3	142.55	1.3372	111.96	0.9118	

References:

- 1. X,.Yu, L. Wang, J. Ma, X. Sun, X. Zhou and G. Cui, Adv. Energy Mater. 2020, 10(18), 1903939.
- 2. H. Huo, Y. Chen, R. Li, N. Zhao, J. Luo, S. Pereira da Silva, R. Mücke, O. Kaghazchi, X. Guo and X. Sun, *Energy Environ. Sci.* 2020, **13**(1), 127-134.
- 3. E. Cheng, M. Shoji, T. Abe and K. Kanamura, *iScience* 2022, **25**(3), 103896.
- 4. H. Hoang and D. Kim, Chem. Eng. J. 2022, 435, 135092.

- 5. J. Zhang, R. Yu, J. Li, H. Zhai, G. Tan and X. Tang, *Energ. & Environ. Mat.* 2021, *0*, 1-7.
- Z. Bi, N. Zhao, L. Ma, Z. Fu, F. Xu, C. Wang and X. Guo, *Chem. Eng. J.* 2020, *387*(1), 124089.