Supplementary Information

KO'Bu-promoted C3-homocoupling of quinoxalinones through single electron transfer from a sp^2 carbanion intermediate

Na Yeon Kwon,¹ Neeraj Kumar Mishra,¹ Jung Su Park,² Sang Kook Woo,³ Prithwish Ghosh¹,* and In Su Kim¹,*

¹ School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
² Department of Chemistry, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Republic of Korea.
³ Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Republic of Korea.

* Corresponding authors. E-mails: prithwish_ghosh2001@yahoo.com (P.G.), insukim@skku.edu (I.S.K.)

List of the Contents

General methods --- S3
List of quinoxalinone substrates (1a–1x) -------------------------- S4
General procedure and characterization data for the synthesis of N-methyl-7-cyclopropyl quinoxalinone (1c) --- S5
Characterization data for N-benzyl quinoxalinone 1h ------------------ S6
Characterization data for N-(hetero)aryl quinoxalinones (1j, 1l and 1m) ------ S7–S8
General procedure and characterization data for the synthesis of N-methyl-6-(hetero)aryl quinoxalinones (1n–1q and 1t) ----------------------------- S9–S11
Experimental procedure and results of the control experiments for the influence of molecular oxygen --- S12–S14

Experimental procedures and results for the radical scavenging reactions --------- S15–S18

Experimental procedure for the characterization of intermediate V’ ----------------- S19–S20

Experimental procedure and result of EPR experiments ----------------------------- S21–S22

Electrochemical measurements --- S23

General procedure for the C3-homocoupling of quinoxalinones (2a–2h, 2l–2r, 2t and 2u) --- S24

Experimental procedure for the synthesis of dimerized quinoxalinones (2i, 2k and 2s) -- S24

Experimental procedure for the synthesis of dimerized quinoxalinone 2j --------------- S24

Experimental procedure for the synthesis of dimerized quinoxalinone 2v --------------- S25

Experimental procedure for gram-scale synthesis of 2a ----------------------------- S26

Characterization data for the products (2a–2v) -------------------------------------- S27–S37

X-ray crystal structure determination --- S38–S40

Experimental procedures for the intermolecular competition experiments --------- S41–S43

References -- S44

^1H NMR and ^13C NMR spectra of all compounds ------------------------------------- S45–S77
General methods

Commercially available reagents and solvents (purchased from Sigma-Aldrich, TCI, Alfa-Aesar, Acros, and Combi-block) were used without additional purification, unless otherwise stated. Sealed tubes (13 × 100 mm²) were purchased from Fischer Scientific and dried in oven for overnight and cooled at room temperature prior to use. Thin layer chromatography was carried out using plates coated with Kieselgel 60 F254 (Merck). For flash column chromatography, E. Merck Kieselgel 60 (230–400 mesh) was used. The physical texture of the reported compounds is recorded at room temperature. Melting points were obtained on a melting point apparatus and the data are uncorrected. Nuclear magnetic resonance spectra (¹H and ¹³C NMR) were recorded on a Bruker Unity 700, 500 and 400 spectrometers in CDCl₃ and DMSO-d₆ solution and chemical shifts are reported as parts per million (ppm). Resonance patterns are reported with the notations s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). Coupling constants (J) are reported in hertz (Hz). IR spectra were recorded on a JASCO FT/IR-4200 Infrared spectrophotometer and are reported as cm⁻¹. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-700 spectrometer. Electron paramagnetic resonance (EPR) studies were performed using a Bruker EMX/Plus spectrometer equipped with a dual mode cavity (ER 4116DM).
List of quinoxalinone substrates (1a–1x)

- N-Alkyl quinoxalinone 1a, N-benzyl quinoxalinones (1f and 1h), N-(hetero)aryl quinoxalinones 1i–1m and pyrido-pyrazinone 1u were synthesized according to a literature procedure.¹
- N-Alkyl quinoxalinones (1b, 1e, 1v, and 1x) and N-benzyl quinoxalinone 1g were synthesized according to a literature procedure.²
- N-Alkyl quinoxalinone 1d and N-methyl benzo[g]quinoxalinone 1r were synthesized according to a literature procedure.³
- N-Benzyl benzo[g]quinoxalinone 1s was synthesized according to a literature procedure.⁴
- Benzoazinone 1w was synthesized according to a literature procedure.⁵
General procedure and characterization data for the synthesis of N-methyl-7-cyclopropyl quinoxalinone (1c)

To an oven-dried sealed tube charged with 7-chloro-1-methylquinoxalinone (1.0 mmol, 1.0 equiv.), cyclopropylboronic acid pinacol ester (1.5 mmol, 1.5 equiv.), and PdCl₂(dppf)·CH₂Cl₂ (0.2 mmol, 0.2 equiv.) was added DME (6 mL) and aqueous solution of 2 M Na₂CO₃ (2 mL) under argon atmosphere. The reaction mixture was allowed to stir at 120 °C for 2 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by flash column chromatography (n-hexanes/acetone = 9:1) to afford the corresponding N-methyl-7-cyclopropyl quinoxalinone (1c).

7-Cyclopropyl-1-methylquinoxalin-2(1H)-one (1c)

78.1 mg (39%); pale red solid; mp = 117.8–119.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 2.0 Hz, 1H), 6.99 (dd, J = 8.4, 2.0 Hz, 1H), 3.69 (s, 3H), 2.08–2.02 (m, 1H), 1.16–1.07 (m, 2H), 0.85–0.81 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 148.6, 132.9, 131.8, 130.4 (two carbons overlap), 121.0, 111.0, 28.8, 16.4, 10.6; IR (KBr) ν 3292, 3088, 3013, 2945, 1642, 1605, 1543, 1435, 1362, 1283, 1217, 1159, 1063, 1018, 965 cm⁻¹; HRMS (quadrupole, El) calcd for C₁₂H₁₂N₂O [M]+ 200.0950, found 200.0950.
Characterization data for \(N \)-benzyl quinoxalinone 1h

3-((2-Oxoquinoxalin-1(2H)-yl)methyl)benzonitrile (1h)

\[
\text{\includegraphics[width=0.2\textwidth]{structure.png}}
\]

752.0 mg (42%); white solid; mp = 230.1–233.4 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.42 (s, 1H), 7.94 (dd, \(J = 8.0, 1.6 \) Hz, 1H), 7.59 (dt, \(J = 7.2, 1.6 \) Hz, 1H), 7.55–7.49 (m, 3H), 7.46 (t, \(J = 8.0 \) Hz, 1H), 7.40–7.34 (m, 1H), 7.17 (dd, \(J = 8.0, 1.6 \) Hz, 1H), 5.50 (s, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 155.1, 150.3, 136.8, 133.8, 132.3, 131.8, 131.5, 131.4, 131.2, 130.6, 130.1, 124.4, 118.4, 114.1, 113.4, 45.0; IR (KBr) v 3048, 2958, 2926, 2229, 1654, 1603, 1589, 1555, 1464, 1371, 1314, 1273, 1139, 1062 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{16}\)H\(_{11}\)N\(_3\)O [M]\(^+\) 261.0902, found 261.0902.
Characterization data for \(N\)-(hetero)aryl quinoxalinones (1j, 1l and 1m)

Ethyl 3-(2-oxoquinoxalin-1(2H)-yl)benzoate (1j)

![Chemical structure](image)

235.5 mg (80%); white solid; mp = 108.3–111.4 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.41 (s, 1H), 8.26 (dt, \(J = 8.0, 1.6\) Hz, 1H), 8.00 (t, \(J = 2.0\) Hz, 1H), 7.94 (dd, \(J = 7.6, 1.6\) Hz, 1H), 7.72 (t, \(J = 8.0\) Hz, 1H), 7.51 (ddd, \(J = 7.6, 2.0, 1.2\) Hz, 1H), 7.39 (td, \(J = 7.2, 1.6\) Hz, 1H), 7.35 (td, \(J = 7.6, 1.6\) Hz, 1H), 6.68 (dd, \(J = 8.4, 1.2\) Hz, 1H), 4.45–4.33 (m, 2H), 1.38 (t, \(J = 7.2\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 165.4, 154.7, 150.9, 135.5, 133.8, 133.3, 133.2, 132.8, 131.0, 130.9, 130.7, 130.4, 129.7, 124.3, 115.5, 61.6, 14.4; IR (KBr) \(\nu\) 3053, 2982, 1719, 1672, 1603, 1555, 1484, 1461, 1442, 1270, 1214 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for \(C_{17}H_{14}N_2O_3\) [M]+ 294.1004, found 294.1000.

1-(Pyridin-4-yl)quinoxalin-2(1H)-one (1l)

![Chemical structure](image)

29.0 mg (14%); white solid; mp = 185.6–188.0 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.93 (d, \(J = 4.8\) Hz, 2H), 8.39 (s, 1H), 7.95 (dd, \(J = 7.6, 1.6\) Hz, 1H), 7.43 (td, \(J = 7.6, 1.6\) Hz, 1H), 7.38 (td, \(J = 7.6, 1.6\) Hz, 1H), 7.33 (d, \(J = 1.6\) Hz, 1H), 7.32 (d, \(J = 1.6\) Hz, 1H), 6.70 (dd, \(J = 8.4, 1.2\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 153.9, 152.4, 150.7, 143.2, 133.2, 132.7, 131.2, 130.7, 124.7, 123.6, 115.1; IR (KBr) \(\nu\) 3056, 3015, 1668, 1601, 1581, 1458, 1408, 1363, 1300, 1268, 1222, 962 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for \(C_{13}H_{9}N_3O\) [M]+ 223.0746, found 223.0743.
1-(1-Methyl-1H-pyrazol-4-yl)quinoxalin-2(1H)-one (1m)

88.2 mg (39%); white solid; mp = 205.3–207.3 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.37 (s, 1H), 7.90 (dd, \(J = 8.0, 1.6\) Hz, 1H), 7.62 (s, 1H), 7.58 (s, 1H), 7.45 (ddd, \(J = 8.8, 7.2, 1.6\) Hz, 1H), 7.35 (ddd, \(J = 8.8, 8.0, 1.6\) Hz, 1H), 7.12 (dd, \(J = 8.4, 1.2\) Hz, 1H), 4.03 (s, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 155.0, 150.6, 137.2, 134.3, 133.4, 131.0, 130.3, 128.7, 124.3, 116.3, 115.7, 40.0; IR (KBr) \(\nu\) 3119, 3055, 1656, 1602, 1587, 1550, 1464, 1365, 1291, 1268, 1223, 985 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{12}\)H\(_{10}\)N\(_4\)O [M]\(^+\) 226.0855, found 226.0850.
General procedure and characterization data for the synthesis of N-methyl-6-(hetero)aryl quinoxalinones (1n–1q and 1t)

To an oven-dried sealed tube charged with 6-chloro-1-methylquinoxalinone (1e) (1.0 mmol, 1.0 equiv.), (hetero)arylboronic acid (1.5 mmol, 1.5 equiv.), and PdCl$_2$(dppf)·CH$_2$Cl$_2$ (0.2 mmol, 0.2 equiv.) was added DME (6 mL) and aqueous solution of 2 M Na$_2$CO$_3$ (2 mL) under argon atmosphere. The reaction mixture was allowed to stir at 120 °C for 2 h. The reaction mixture was cooled to room temperature, filtered through celite pad and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (n-hexane/acetone) to afford the corresponding N-methyl-6-(hetero)aryl quinoxalinones (1n–1q and 1t).

6-(4-Methoxyphenyl)-1-methylquinoxalin-2(1H)-one (1n)

229.0 mg (86%); pale red solid; mp = 133.2–136.1 °C; 1H NMR (500 MHz, CDCl$_3$) δ 8.34 (s, 1H), 8.06 (d, J = 2.0 Hz, 1H), 7.80 (dd, J = 8.5, 2.0 Hz, 1H), 7.62–7.55 (m, 2H), 7.39 (d, J = 8.5 Hz, 1H), 7.06–7.07 (m, 2H), 3.87 (s, 3H), 3.72 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 159.7, 155.1, 150.7, 136.8, 133.9, 132.1, 131.8, 129.7, 128.2, 128.0, 114.7, 114.3, 55.6, 29.0; IR (KBr) ν 3053, 2957, 2933, 2836, 1652, 1606, 1490, 1458, 1363, 1276, 1246, 1176, 1114, 1074, 1026 cm$^{-1}$; HRMS (quadrupole, EI) calcd for C$_{16}$H$_{14}$N$_2$O$_2$ [M]$^+$ 266.1055, found 266.1050.

6-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1-methylquinoxalin-2(1H)-one (1o)
162.0 mg (55%); pale red solid; mp = 220.2–222.6 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.34 (s, 1H), 8.04 (d, \(J = 2.0\) Hz, 1H), 7.78 (dd, \(J = 8.8, 2.4\) Hz, 1H), 7.38 (d, \(J = 8.8\) Hz, 1H), 7.17 (d, \(J = 2.4\) Hz, 1H), 7.14 (dd, \(J = 8.4, 2.0\) Hz, 1H), 6.97 (d, \(J = 8.4\) Hz, 1H), 4.32 (s, 4H), 3.72 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 155.1, 150.7, 144.1, 143.7, 136.6, 133.8, 132.8, 132.2, 129.7, 128.1, 120.1, 118.0, 115.8, 114.3, 64.6, 64.5, 29.0; IR (KBr) v 3054, 2987, 2931, 1655, 1587, 1490, 1362, 1284, 1267, 1249, 1223, 1066 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{17}\)H\(_{14}\)N\(_2\)O\(_3\) [M]\(^+\) 294.1004, found 294.1003.

1-Methyl-6-(pyren-1-yl)quinoxalin-2(1H)-one (1p)

220.3 mg (61%); brown solid; mp = 248.2–250.5 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.41 (s, 1H), 8.27–8.13 (m, 7H), 8.07–8.00 (m, 3H), 7.88 (dd, \(J = 8.4, 2.0\) Hz, 1H), 7.51 (d, \(J = 8.4\) Hz, 1H), 3.79 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 155.2, 150.9, 137.1, 135.5, 133.6, 133.5, 132.6, 132.1, 131.6, 131.1, 131.0, 128.6, 128.1, 127.9, 127.8, 127.5, 126.3, 125.6, 125.2, 125.1, 125.0, 124.9, 124.7, 29.1; IR (KBr) v 3052, 2925, 2854, 1662, 1578, 1552, 1456, 1416, 1362, 1268, 1223, 1064 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{25}\)H\(_{16}\)N\(_2\)O [M]\(^+\) 360.1263, found 360.1259.

6-(4-(Diphenylamino)phenyl)-1-methylquinoxalin-2(1H)-one (1q)
248.6 mg (89%); yellow solid; mp = 184.6–186.2 °C; \(^1\)H NMR (700 MHz, CDCl\(_3\)) \(\delta\) 8.34 (s, 1H), 8.08 (d, \(J = 2.1\) Hz, 1H), 7.83 (dd, \(J = 9.1, 2.1\) Hz, 1H), 7.56–7.51 (m, 2H), 7.39 (d, \(J = 9.1\) Hz, 1H), 7.31–7.27 (m, 4H), 7.18–7.16 (m, 2H), 7.16–7.13 (m, 4H), 7.07–7.05 (m, 2H), 3.73 (s, 3H); \(^{13}\)C NMR (175 MHz, CDCl\(_3\)) \(\delta\) 155.1, 150.7, 147.9, 147.7, 136.7, 133.9, 132.8, 132.2, 129.6, 129.5, 127.9, 127.7, 124.8, 123.8, 123.4, 114.3, 29.0; IR (KBr) \(\nu\) 3056, 2927, 1657, 1586, 1551, 1518, 1487, 1362, 1271, 1223, 1166, 1073 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{27}\)H\(_{21}\)N\(_3\)O [M]\(^+\) 403.1685, found 403.1681.

1-Methyl-6-(thiophen-2-yl)quinoxalin-2(1H)-one (1t)

123.6 mg (51%); pale red solid; mp = 168.5–170.2 °C; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.33 (s, 1H), 8.10 (s, 1H), 7.83 (d, \(J = 11.0\) Hz, 1H), 7.38–7.32 (m, 3H), 7.12 (t, \(J = 5.5\) Hz, 1H), 3.70 (s, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 155.0, 151.0, 142.5, 133.7, 132.5, 130.6, 128.9, 128.5, 127.2, 125.6, 123.8, 114.4, 29.0; IR (KBr) \(\nu\) 3105, 3064, 1653, 1579, 1550, 1436, 1416, 1363, 1270, 1223, 1161, 1064 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{13}\)H\(_{10}\)N\(_2\)OS [M]\(^+\) 242.0514, found 242.0515.
Experimental procedure and results of the control experiments for influence of molecular oxygen

To an oven-dried sealed tube charged with 1-methylquinoxalin-2(1H)-one (1a) (32 mg, 0.2 mmol, 1.0 equiv.) and KO'Bu (22.4 mg, 0.2 mmol, 1.0 equiv.) was added dimethoxyethane (1 mL) at room temperature under air or O₂. The reaction mixture was allowed to stir at 40 °C for 1 h. The reaction mixture was cooled to room temperature, diluted with CH₂Cl₂/MeOH (20 mL, 9:1) and stirred under air for 0.2 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash chromatography (n-hexane/EtOAc to CH₂Cl₂/MeOH) to afford 2a, 2aa, and recovered 1a.

<table>
<thead>
<tr>
<th>entry</th>
<th>atmosphere</th>
<th>Result (%) yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1a</td>
</tr>
<tr>
<td>1</td>
<td>air</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>O₂</td>
<td>16</td>
</tr>
</tbody>
</table>

Table S1. Control experiment for the influence of molecular oxygen.
1H NMR spectrum (500 MHz, DMSO-d_6)

13C NMR spectrum (125 MHz, DMSO-d_6)
HRMS data of 2aa

Exact Mass: 176.0586

[Elemental Composition]
Data : HR-YV-183-005 Date : 10-Feb-2022 12:27
Sample: SKKU Univ. Prof. Kim
Note : SMLab Mass analysis
Inlet : Direct Ion Mode : EI+
RT : 0.54 min Scan#: 17+25-26
Elements : C 10/0, H 10/0, O 2/0, N 2/0
Mass Tolerance : 1000ppm, 3 ppm if m/z < 3, 5 ppm if m/z > 5
Unsaturation (U.S.) : -0.5 - 7.0

Observed m/z Int% Err[ppm / mmu] U.S. Composition
176.0583 27.4 -1.6 / -0.3 7.0 C 9 H 8 O 2 N 2
Experimental procedures and results for the radical scavenging reactions

Reaction of 1a in the presence of TEMPO

To an oven-dried sealed tube charged with 1-methylquinoxalin-2(1H)-one (1a) (32 mg, 0.2 mmol, 1.0 equiv.), KO'Bu (22.4 mg, 0.2 mmol, 1.0 equiv.), and 2,2,6,6-tetramethyl-1-piperidinyloxy, free radical (TEMPO) (78.1 mg, 5.0 mmol, 2.5 equiv.) was added dimethoxyethane (1 mL) at room temperature under N₂. The reaction mixture was allowed to stir at 40 °C for 1 h. The reaction mixture was cooled to room temperature and concentrated in vacuo. No adduct of TEMPO corresponding to 1a was identified by the analysis of TLC. No adduct of TEMPO corresponding to 1a was detected by either ¹H NMR (CDCl₃) or HRMS analysis of the residue.

Reaction of 1a in the presence of BHT

To an oven-dried sealed tube charged with 1-methylquinoxalin-2(1H)-one (1a) (32 mg, 0.2 mmol, 1.0 equiv.), KO'Bu (22.4 mg, 0.2 mmol, 1.0 equiv.), and butylated hydroxytoluene (BHT) (156.3 mg, 1.0 mmol, 5.0 equiv.) was added dimethoxyethane (1 mL) at room temperature under N₂. The reaction mixture was allowed to stir at 40 °C for 1 h. The reaction mixture was cooled to room temperature, diluted with CH₂Cl₂/MeOH (20 mL, 9:1) and stirred under air for 0.2 h. The reaction mixture was concentrated in vacuo. The residue was purified by
flash column chromatography (n-hexane/EtOAc to CH$_2$Cl$_2$/MeOH) to afford 2a (4.0 mg, 12%) and recovered 1a (27.0 mg, 84%). BHT-adducts were detected by the HRMS analysis of the reaction mixture.
HRMS data of 3a

[Mass Spectrum]
Data : HRMS-YV568-001 Date : 03-Nov-2021 13:28
Sample: SKKU. Univ. Prof. Kim
Note : SMLab Mass analysis
Inlet : Direct Ion Mode : EI+
Spectrum Type : Normal [an IMF-Linear]
RT : 1.20 min Scan# : 37
BP : m/z 380.2460 Int. : 99.94
Output m/z range : 380.2195 to 380.5147 Cut Level : 0.00 %

[Elemental Composition]
Data : HRMS-YV568-001 Date : 03-Nov-2021 13:28
Sample: SKKU. Univ. Prof. Kim
Note : SMLab Mass analysis
Inlet : Direct Ion Mode : EI+
RT : 1.20 min Scan# : 37
Elements : C 25/0, H 36/0, O 2/0, N 2/0
Mass Tolerance : 1000 ppm, 3 ppm if m/z < 3, 5 ppm if m/z > 5
Unsaturation (U.S.) : -0.5 - 70.0

Observed m/z Int% Err[ppm / ppm] U.S. Composition
380.2460 14.3 -0.9 / -0.3 10.0 C 24 H 32 O 2 N 2

Exact Mass: 380.2464
HRMS data of 3b

[Mass Spectrum]
Data: HRMS-YV569-001 Date: 03-Nov-2021 13:28
Sample: SKKU. Univ. Prof. Kim
Note: SMLab Mass analysis
Inlet: Direct Ion Mode: EI+
Spectrum Type: Normal Ion (MF-Linear)
RT: 1.54 min Scan#: 47
BP: m/z 36B.2377 Int.: 99.94
Output m/z range: 378.0460 to 378.5644 Cut Level: 0.00 %

[Elemental Composition]
Data: HRMS-YV569-001 Date: 03-Nov-2021 13:28
Sample: SKKU. Univ. Prof. Kim
Note: SMLab Mass analysis
Inlet: Direct Ion Mode: EI+
Elements: C 25/0, H 36/0, O 2/0, N 2/0
Mass Tolerance: 1000ppm, 3mmu if m/z < 3, 5mmu if m/z > 5
Unsaturation (U.S.): -0.5 - 70.0

Observed m/z Int% Err[ppm / mmu] U.S. Composition
378.2363 9.1 -1.1 / -0.4 11.0 C 24 H 30 O 2 N 2
Experimental procedure for the characterization of intermediate V'

To an oven-dried sealed tube charged with 1-methylquinoxalin-2(1H)-one (1a) (32 mg, 0.2 mmol, 1.0 equiv.) and KO'Bu (22.4 mg, 0.2 mmol, 1.0 equiv.) was added dimethoxyethane (1 mL) at room temperature under N2. The reaction mixture was allowed to stir at 40 °C for 0.1 h. The reaction mixture was cooled to room temperature. Then the reaction mixture was directly analyzed by HRMS. Intermediate V' was detected by HRMS analysis of the reaction mixture.

LRMS data of reaction mixture (2a and V')

2a, exact mass: 318.1117

V', exact mass: 320.1273
HRMS data of V’

[Mass Spectrum]
Data : HR-YV-456-001 Date : 10-Feb-2022 12:02
Sample: SKKU Univ. Prof. Kim
Note : SMLab Mass analysis
Inlet : Direct Ion Mode : EI+
Spectrum Type : Normal Ion (MF-Linear)
RT : 0.80 min Scan# : 25
BP : m/z 320.1272 Int. : 18.83
Output m/z range : 316.6894 to 329.5578 Cut Level : 66.18 %

[Elemental Composition]
Data : HR-YV-456-001 Date : 10-Feb-2022 12:02
Sample: SKKU Univ. Prof. Kim
Note : SMLab Mass analysis
Inlet : Direct Ion Mode : EI+
RT : 0.80 min Scan# : 25
Elements : C 20/0, H 26/0, O 2/0, N 5/0
Mass Tolerance : 1000ppm, 3ppm if m/z < 3, 5ppm if m/z > 5
Unsaturation (U.S.) : -0.5 - 70.0

Observed m/z Int% Err[ppm / ppm] U.S. Composition
320.1272 100.0 -0.3 / -0.1 13.0 C 18 H 16 O 2 N 4
Experimental procedure and result of EPR experiments

Experimental procedure with KOtBu

To an oven-dried sealed tube charged with 1-methylquinoxalin-2(1H)-one (1a) (32 mg, 0.2 mmol, 1.0 equiv.) and KOtBu (22.4 mg, 0.2 mmol, 1.0 equiv.) was added degassed dimethoxyethane (1 mL) under Ar at room temperature. The reaction mixture was degassed by freeze thawing (three cycles) with liquid nitrogen and backfilled with Ar gas. The reaction mixture was allowed to stir at 40 °C for 0.1 h under Ar gas. The reaction mixture was cooled to room temperature and 0.3 mL of it was transferred to a Low Pressure/Vacuum Suprasil EPR tube previously filled with Ar gas. The mixture in the EPR tube was degassed by freeze thawing (three cycles) with liquid nitrogen and subsequently analysed by EPR at 100 K.

![EPR spectra of the reaction mixture of 1a and KOtBu in dimethoxyethane recorded at 100 K.](image)

Figure S1: EPR spectra of the reaction mixture of 1a and KOtBu in dimethoxyethane recorded at 100 K. Electron paramagnetic resonance (EPR) studies were performed using a Bruker EMX/Plus spectrometer equipped with a dual mode cavity (ER 4116DM). Microwave frequencies: 9.64 GHz (perpendicular mode) and 9.4 GHz (parallel mode), modulation amplitude 1G, modulation frequency 100 kHz, and microwave power 0.001 mW.
Experimental procedure with NaHMDS

To an oven-dried schlenk tube charged with 1-methylquinoxalin-2(1H)-one (1a) (16 mg, 0.1 mmol, 1.0 equiv.) was added degassed THF (10 mL) under Ar at room temperature. NaHMDS (1.0 M in THF, 0.1 mL, 0.1 mmol, 1.0 equiv.) was added dropwise in the reaction mixture under Ar at 0 °C. The reaction mixture was degassed by freeze thawing (three cycles) with liquid nitrogen, backfilled with Ar gas and allowed to stir at room temperature for 0.1 h. Then 0.3 mL of the reaction mixture was transferred to a Low Pressure/Vacuum Suprasil EPR tube previously filled with Ar gas. The mixture in the EPR tube was degassed by freeze thawing (three cycles) with liquid nitrogen and subsequently analysed by EPR at 20 K.

Figure S2: EPR spectra of the reaction mixture of 1a and NaHMDS in THF recorded at 20 K. Electron paramagnetic resonance (EPR) studies were performed using a Bruker EMX/Plus spectrometer equipped with a dual mode cavity (ER 4116DM). Microwave frequencies: 9.65 GHz (perpendicular mode), modulation amplitude 5G, modulation frequency 100 kHz, and microwave power 0.93 mW.
Electrochemical measurements

Cyclic voltammograms

Electrochemical study was performed using a CH instrument (CHI600E model). The redox potentials of substrates (vs Ag/AgCl) were determined through cyclic voltammetry using a 5.0 mM solution of that material in 50 mM solution of Bu4NPF$_6$ (purged DMF with N$_2$). Measurements employed a glassy carbon working electrode, platinum wire counter electrode, 3.0 M NaCl Ag/AgCl reference electrode, a scan rate 100 mV/s. The obtained value was referenced to Ag/AgCl and converted to SCE by subtracting 0.032 V.

![Cyclic voltammogram study for 1a](image1)

Figure S3. Cyclic voltammogram study for 1a

![Cyclic voltammogram study for KO'Bu](image2)

Figure S4. Cyclic voltammogram study for KO'Bu
General procedure for the C3-homocoupling of quinoxalinones (2a–2h, 2l–2r, 2t and 2u)

To an oven-dried sealed tube charged with 1-methylquinoxalin-2(1H)-one (1a) (32 mg, 0.2 mmol, 1.0 equiv.) and KOtBu (22.4 mg, 0.2 mmol, 1.0 equiv.) was added dimethoxyethane (1 mL) at room temperature under N2. The reaction mixture was allowed to stir at 40 °C for 1 h. The reaction mixture was cooled to room temperature, diluted with CH2Cl2/MeOH (20 mL, 9:1) and stirred under air for 0.2 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (CH2Cl2/MeOH = 98:2) to afford 30.9 mg of 2a in 98% yield.

Experimental procedure for the synthesis of dimerized quinoxalinones (2i, 2k and 2s)

To an oven-dried sealed tube charged with 1-(m-tolyl)quinoxalin-2(1H)-one (1i) (47.2 mg, 0.2 mmol, 1.0 equiv.) and KOtBu (22.4 mg, 0.2 mmol, 1.0 equiv.) was added THF (1 mL) at room temperature under N2. The reaction mixture was allowed to stir at 40 °C for 1 h. The reaction mixture was cooled to room temperature, diluted with CH2Cl2/MeOH (20 mL, 9:1) and stirred under air for 0.2 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (using only CH2Cl2) to afford 33.0 mg of 2i in 70% yield.

Experimental procedure for the synthesis of dimerized quinoxalinone 2j

To an oven-dried sealed tube charged with ethyl 3-(2-oxoquinoxalin-1(2H)-yl)benzoate (1j) (58.8 mg, 0.2 mmol, 1.0 equiv.) and KOtBu (17.9 mg, 0.16 mmol, 0.8 equiv.) was added dimethoxyethane (1 mL) at room temperature under N2. The reaction mixture was allowed to stir at 40 °C for 1 h. The reaction mixture was cooled to room temperature, diluted with CH2Cl2/MeOH (20 mL, 9:1) and stirred under air for 0.2 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (CH2Cl2/MeOH = 98:2) to afford 37.0 mg of 2j in 63% yield.
Experimental procedure for the synthesis of dimerized quinoxalinone 2v

To an oven-dried sealed tube charged with 1-methyl-7-nitroquinoxalin-2(1H)-one (1v) (41.0 mg, 0.2 mmol, 1.0 equiv.) and KO'Bu (11.2 mg, 0.1 mmol, 0.5 equiv.) was added dimethoxyethane (1 mL) at room temperature under N₂. The reaction mixture was allowed to stir at 40 °C for 1 h. The reaction mixture was cooled to room temperature and directly purified by flash column chromatography (only using CH₂Cl₂) to afford 8.2 mg of 2v in 20% yield.
Experimental procedure for gram-scale reaction of 2a

To an oven-dried sealed tube charged with 1-methylquinoxalin-2(1H)-one (1a) (1 g, 6.24 mmol, 1.0 equiv.) and KO'Bu (0.7 g, 6.24 mmol, 1.0 equiv.) was added dimethoxyethane (32 mL) at room temperature under N₂. The reaction mixture was allowed to stir at 40 °C for 1 h. The reaction mixture was cooled to room temperature, diluted with CH₂Cl₂/MeOH (300 mL, 9:1) and stirred under air for 2 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (CH₂Cl₂/MeOH = 98:2) to afford 0.9 g of 2a in 91% yield.
Characterization data for the products (2a–2v)

4,4'-Dimethyl-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2a)

![Chemical Structure](image)

31.2 mg (98%); off-white solid; mp = 252.8–254.3 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.00 (dd, \(J = 8.0, 1.2\) Hz, 2H), 7.64 (dd, \(J = 8.4, 7.2, 1.2\) Hz, 2H), 7.42–7.37 (m, 4H), 3.77 (s, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 154.6, 154.2, 134.2, 134.2, 133.1, 131.7, 131.2, 124.0, 113.9, 29.3; IR (KBr) \(\nu\) 3055, 2853, 1647, 1602, 1557, 1472, 1417, 1363, 1224, 1211, 1126, 1039 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{18}\)H\(_{14}\)N\(_4\)O\(_2\) [M]\(^+\) 318.1117, found 318.1116.

4,4'-Diethyl-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2b)

![Chemical Structure](image)

30.1 mg (87%); pale yellow solid; mp = 237.1–239.5 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.01 (dd, \(J = 8.0, 1.6\) Hz, 2H), 7.64 (ddd, \(J = 8.4, 7.2, 1.6\) Hz, 2H), 7.42–7.36 (m, 4H), 4.39 (q, \(J = 7.2\) Hz, 4H), 1.41 (t, \(J = 7.2\) Hz, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 154.7, 153.7, 133.5, 133.1, 131.6, 131.5, 123.8, 113.8, 37.5, 12.5; IR (KBr) \(\nu\) 3054, 2979, 2935, 1637, 1601, 1588, 1557, 1465, 1370, 1310, 1270, 1155, 1066, 984 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{20}\)H\(_{18}\)N\(_4\)O\(_2\) [M]\(^+\) 346.1430, found 346.1427.

6,6'-Dicyclopropyl-4,4'-dimethyl-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2c)
31.8 mg (80%); pale yellow solid; mp = 158.3–160.7 °C; \(^1\)H NMR (700 MHz, CDCl\(_3\)) \(\delta\) 7.85 (d, \(J = 8.4\) Hz, 2H), 7.07 (d, \(J = 1.4\) Hz, 2H), 7.00 (dd, \(J = 8.4, 1.4\) Hz, 2H), 3.74 (s, 6H), 2.09–2.05 (m, 2H), 1.15–1.12 (m, 4H), 0.87–0.85 (m, 4H); \(^1\)\(^3\)C NMR (175 MHz, CDCl\(_3\)) \(\delta\) 154.5, 153.1, 149.0, 134.2, 131.5, 131.0, 121.0, 111.0, 29.1, 16.5, 10.7; IR (KBr) \(\nu\) 3057, 3005, 1746, 1648, 1608, 1550, 1470, 1441, 1419, 1363, 1269, 1223 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{24}\)H\(_{22}\)N\(_4\)O\(_2\) [M]\(^+\) 398.1743, found 398.1742.

\textbf{4,4',6,6',7,7'-Hexamethyl-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2d)}

24.0 mg (64%); pale yellow solid; mp = 314.5–316.0 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.73 (s, 2H), 7.13 (s, 2H), 3.73 (s, 6H), 2.45 (s, 6H), 2.35 (s, 6H); \(^1\)\(^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 154.4, 153.6, 141.6, 132.9, 132.3, 131.7, 131.2, 114.4, 29.1, 20.9, 19.4; IR (KBr) \(\nu\) 3057, 2923, 2855, 1642, 1616, 1547, 1469, 1359, 1268, 1223, 1139, 1047, 1007 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{22}\)H\(_{22}\)N\(_4\)O\(_2\) [M]\(^+\) 374.1743, found 374.1741.

\textbf{7,7'-Dichloro-4,4'-dimethyl-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2e)}

S28
30.2 mg (78%); yellow solid; mp = 319.0–320.4 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.98 (d, \(J = 2.4\) Hz, 2H), 7.61 (dd, \(J = 8.8, 2.4\) Hz, 2H), 7.34 (d, \(J = 8.8\) Hz, 2H), 3.75 (s, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 155.5, 153.8, 133.5, 132.9, 131.9, 130.4, 129.5, 116.0, 29.5; IR (KBr) \(\nu\) 3056, 2923, 2852, 1652, 1584, 1554, 1486, 1458, 1363, 1269, 1223, 1090, 1062 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{18}\)H\(_{12}\)Cl\(_2\)N\(_4\)O\(_2\)[M]+ 386.0337, found 386.0335.

4,4'-Dibenzyl-[2,2'-biquinoxaline]-3,3'(4\(H,4'\)H)-dione (2f)

35.3 mg (75%); yellow solid; mp = 219.8–222.4 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.02 (dd, \(J = 8.0, 1.2\) Hz, 2H), 7.51 (ddd, \(J = 8.4, 7.2, 1.6\) Hz, 2H), 7.38–7.30 (m, 12H), 7.29–7.23 (m, 2H), 5.59 (s, 4H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 154.8, 154.4, 135.2, 133.5, 133.4, 131.7, 131.3, 129.1, 127.9, 127.2, 124.1, 114.8, 46.1; IR (KBr) \(\nu\) 3057, 2924, 2854, 1646, 1600, 1558, 1453, 1362, 1314, 1267, 1223, 1160, 1007 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{30}\)H\(_{22}\)N\(_4\)O\(_2\)[M]+ 470.1743, found 470.1738.

4,4'-Bis(4-methoxybenzyl)-[2,2'-biquinoxaline]-3,3'(4\(H,4'\)H)-dione (2g)
37.1 mg (70%); yellow solid; mp = 187.2–190.0 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.01 (dd, \(J = 8.0, 1.2\) Hz, 2H), 7.52 (ddd, \(J = 8.4, 7.2, 1.6\) Hz, 2H), 7.39–7.33 (m, 4H), 7.28–7.26 (m, 4H), 6.86–6.84 (m, 4H), 5.52 (s, 4H), 3.76 (s, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 159.3, 154.9, 154.4, 133.5, 133.4, 131.6, 131.3, 128.7, 127.3, 124.0, 114.8, 114.5, 55.4, 46.4; IR (KBr) \(\nu\) 3055, 3004, 2931, 2835, 1643, 1600, 1511, 1464, 1362, 1304, 1245, 1177, 1071, 1032 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{32}\)H\(_{26}\)N\(_4\)O\(_4\) [M]\(^+\) 530.1954, found 530.1953.

\[
\text{3,3’-((3,3’-Dioxo-[2,2’-biquinoxaline]-4,4'(3H,3’H)-diyl)bis(methylene))dibenzonitrile (2h)}
\]

![Chemical Structure](image)

30.2 mg (58%); off-white solid; mp = 305.9–307.3 °C; \(^1\)H NMR (700 MHz, CDCl\(_3\)) \(\delta\) 8.07 (dd, \(J = 8.4, 1.4\) Hz, 2H), 7.65–7.64 (m, 2H), 7.59–7.54 (m, 6H), 7.45 (t, \(J = 7.7\) Hz, 2H), 7.42 (ddd, \(J = 8.4, 7.0, 1.4\) Hz, 2H), 7.25 (dd, \(J = 8.4, 1.4\) Hz, 2H), 5.59 (s, 4H); \(^{13}\)C NMR (175 MHz, CDCl\(_3\)) \(\delta\) 154.4, 154.2, 136.8, 133.5, 133.1, 132.1, 131.9, 131.8, 131.7, 130.9, 130.2, 124.6, 118.4, 114.2, 113.5, 45.3; IR (KBr) \(\nu\) 3057, 2226, 1652, 1601, 1561, 1484, 1465, 1438, 1363, 1313, 1268, 1223, 1077 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{32}\)H\(_{20}\)N\(_6\)O\(_2\) [M]\(^+\) 520.1648, found 520.1646.

4,4’-Di-\(m\)-tolyl-[2,2’-biquinoxaline]-3,3’(4H,4’H)-dione (2i)
33.0 mg (70%); off-white solid; mp = 285.9–287.1 °C; 1H NMR (400 MHz, CDCl$_3$) δ 8.04 (dd, $J = 7.6$, 1.6 Hz, 2H), 7.46 (t, $J = 7.6$ Hz, 2H), 7.44–7.39 (m, 2H), 7.38–7.30 (m, 4H), 7.15–7.11 (m, 4H), 6.77 (dd, $J = 8.4$, 1.6 Hz, 2H), 2.41 (s, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 155.3, 153.8, 140.6, 140.5, 135.2, 135.1, 133.0, 131.2, 130.7, 130.4, 130.1, 128.9, 125.4, 124.0, 115.8, 21.5; IR (KBr) ν 3054, 2988, 1661, 1600, 1555, 1462, 1362, 1304, 1268, 1223, 1159, 1049 cm$^{-1}$; HRMS (quadrupole, EI) calcd for C$_{30}$H$_{22}$N$_4$O$_2$ [M]$^+$ 470.1743, found 470.1739.

Diethyl 3,3'-((3,3'-dioxo-[2,2'-biquinoxaline]-4,4'(3H,3'H)-diyl)dibenzoate (2j)

35.2 mg (60%); off-white solid; mp = 202.1–204.9 °C; 1H NMR (700 MHz, CDCl$_3$) δ 8.23 (dt, $J = 7.7$, 1.4 Hz, 2H), 8.06 (dd, $J = 8.4$, 1.4 Hz, 2H), 8.03 (q, $J = 1.4$ Hz, 2H), 7.68 (t, $J = 7.7$ Hz, 2H), 7.56–7.54 (m, 2H), 7.44 (ddd, $J = 9.1$, 7.7, 1.4 Hz, 2H), 7.39 (ddd, $J = 9.1$, 7.7, 1.4 Hz, 2H), 6.72 (dd, $J = 8.4$, 1.4 Hz, 2H), 4.42–4.33 (m, 4H), 1.37 (td, $J = 7.7$, 1.4 Hz, 6H); 13C NMR (175 MHz, CDCl$_3$) δ 165.4, 155.0, 153.6, 135.5, 134.8, 133.1 (two carbons overlap), 133.0, 131.5, 131.0, 130.9, 130.5, 129.8, 124.4, 115.5, 61.6, 14.4; IR (KBr) ν 3057, 2987, 1716, 1658,
1602, 1556, 1463, 1442, 1365, 1268, 1223, 1100, 1080, 1051 cm⁻¹; HRMS (quadrupole, EI) calcd for C₃₄H₂₆N₄O₆ [M]⁺ 586.1852, found 586.1852.

4,4'-Di(naphthalen-2-yl)-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2k)

38.5 mg (71%); yellow solid; mp = 331.2–332.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10–8.04 (m, 4H), 7.94 (d, J = 8.4 Hz, 2H), 7.88–7.85 (m, 4H), 7.61–7.53 (m, 4H), 7.42–7.33 (m, 6H), 6.81–6.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 154.0, 135.2, 133.9, 133.5, 133.1, 132.7, 131.3, 130.8, 130.6, 128.4, 128.1, 127.9, 127.4, 127.0, 125.6, 124.2, 115.9; IR (KBr) ν 3056, 3007, 1658, 1600, 1555, 1463, 1362, 1315, 1306, 1268, 1223, 1049 cm⁻¹; HRMS (quadrupole, EI) calcd for C₃₆H₂₂N₄O₂ [M]⁺ 542.1743, found 542.1738.

4,4'-Di(pyridin-4-yl)-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2l)
28.9 mg (65%); orange solid; mp = 341.7–343.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.90 (dd, J = 4.4, 1.6 Hz, 4H), 8.07 (dd, J = 7.6, 1.6 Hz, 2H), 7.48 (td, J = 7.6, 1.6 Hz, 2H), 7.42 (td, J = 8.0, 1.2 Hz, 2H), 7.37 (dd, J = 4.8, 2.0 Hz, 4H), 6.76 (dd, J = 8.0, 1.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 152.9, 152.3, 143.1, 133.7, 132.9, 131.9, 131.2, 124.9, 123.7, 115.1; IR (KBr) ν 3055, 1668, 1602, 1546, 1463, 1415, 1363, 1320, 1269, 1223 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₆H₁₆N₆O₂ [M]⁺ 444.1335, found 444.1336.

4,4'-Bis(1-methyl-1H-pyrazol-4-yl)-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2m)

35.6 mg (79%); yellow solid; mp = > 350 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.01 (dd, J = 7.7, 1.4 Hz, 2H), 7.65 (s, 2H), 7.61 (s, 2H), 7.49 (ddd, J = 8.4, 7.0, 1.4 Hz, 2H), 7.39–7.36 (m, 2H), 7.18 (dd, J = 8.4, 1.4 Hz, 2H), 4.00 (s, 6H); ¹³C NMR (175 MHz, CDCl₃) δ 154.7, 153.8, 137.3, 135.2, 133.1, 131.5, 130.9, 128.9, 124.4, 116.2, 115.6, 40.0; IR (KBr) ν 3117, 3055, 1663, 1601, 1555, 1461, 1363, 1303, 1269, 1223, 1053, 979 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₄H₁₈N₆O₂ [M]⁺ 450.1553, found 450.1550.

7,7'-Bis(4-methoxyphenyl)-4,4'-dimethyl-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2n)
52.5 mg (99%); orange solid; mp = 279.4–281.7 °C; \(^1\)H NMR (700 MHz, CDCl\(_3\)) \(\delta\) 8.21 (d, \(J = 2.1\) Hz, 2H), 7.86 (dd, \(J = 9.1, 2.1\) Hz, 2H), 7.60 (d, \(J = 9.1\) Hz, 4H), 7.44 (d, \(J = 8.4\) Hz, 2H), 7.02 (d, \(J = 9.1\) Hz, 4H), 3.87 (s, 6H), 3.80 (s, 6H); \(^{13}\)C NMR (175 MHz, CDCl\(_3\)) \(\delta\) 159.70, 155.0, 154.2, 136.8, 133.5, 132.9, 131.8, 130.2, 128.5, 128.1, 114.7, 114.3, 55.6, 29.4; IR (KBr) \(\nu\) 3056, 3005, 2835, 1648, 1609, 1555, 1492, 1362, 1274, 1249, 1223, 1182, 1074, 1041 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{32}\)H\(_{26}\)N\(_4\)O\(_4\)[M]\(^+\) 530.1954, found 530.1957.

\textbf{7,7'-Bis(2,3-dihydrobenzo\([b]\)[1,4]dioxin-6-yl)-4,4'-dimethyl-[2,2'-biquinoxaline]-3,3'(4\(H\),4'\(H\))-dione (2o)}

55.1 mg (94%); red solid; mp = 280.3–282.1 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.19 (d, \(J = 2.0\) Hz, 2H), 7.82 (dd, \(J = 8.8, 2.0\) Hz, 2H), 7.42 (d, \(J = 8.8\) Hz, 2H), 7.18–7.17 (m, 2H), 7.16–7.13 (m, 2H), 6.96 (d, \(J = 8.4\) Hz, 2H), 4.30 (s, 8H), 3.79 (s, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 155.0, 154.1, 144.1, 143.7, 136.6, 133.4, 133.0, 132.8, 130.2, 128.6, 120.1, 118.0, 115.9, 114.3, 64.6, 64.5, 29.4; IR (KBr) \(\nu\) 3055, 2985, 2931, 2878, 1643, 1585, 1489, 1458, 1362, 1305, 1281, 1246, 1169, 1065 cm\(^{-1}\); HRMS (quadrupole, FAB) calcd for C\(_{34}\)H\(_{27}\)N\(_4\)O\(_6\)[M+H]\(^+\) 587.1931, found 587.1930.

\textbf{4,4'-Dimethyl-7,7'-di(pyren-1-yl)-[2,2'-biquinoxaline]-3,3'(4\(H\),4'\(H\))-dione (2p)}

27.0 mg (75%); yellow solid; mp = > 350 °C; \(^1\)H NMR (700 MHz, CDCl\(_3\)) \(\delta\) 8.34 (d, \(J = 2.1\) Hz, 2H), 8.26 (d, \(J = 7.7\) Hz, 2H), 8.22 (dd, \(J = 7.7, 1.4\) Hz, 2H), 8.19–8.17 (m, 4H), 8.12 (s,
4H), 8.06–8.05 (m, 2H), 8.04–8.02 (m, 4H), 7.93 (dd, *J* = 8.4, 2.1 Hz, 2H), 7.59 (d, *J* = 7.0 Hz, 2H), 3.91 (s, 6H); 13C NMR (175 MHz, CDCl₃) δ 155.3, 154.3, 137.3, 135.6, 134.1, 133.5, 133.2, 132.7, 131.6, 131.2, 131.1, 128.7, 128.1, 127.9, 127.8, 126.3, 125.5, 125.2, 125.1, 125.0, 124.9, 124.8, 114.1, 29.5; IR (KBr) ν 3055, 1648, 1611, 1583, 1554, 1490, 1418, 1362, 1268, 1223 cm⁻¹; HRMS (quadrupole, FAB) calcd for C₅₀H₃₁N₄O₂ [M+H]^+ 719.2447, found 719.2446.

7,7'-Bis(4-(diphenylamino)phenyl)-4,4'-dimethyl-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2q)

![Chemical structure of 7,7'-Bis(4-(diphenylamino)phenyl)-4,4'-dimethyl-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2q)](image)

60.4 mg (75%); brown solid; mp = 293.5–295.5 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.23 (d, *J* = 2.1 Hz, 2H), 7.89 (dd, *J* = 8.4, 2.1 Hz, 2H), 7.55–7.53 (m, 4H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.29–7.27 (m, 8H), 7.16–7.14 (m, 12H), 7.06–7.04 (m, 4H), 3.80 (s, 6H); ¹³C NMR (175 MHz, CDCl₃) δ 155.0, 154.1, 147.9, 147.7, 136.6, 133.5, 133.0, 132.7, 130.0, 129.5, 128.4, 127.6, 124.8, 123.8, 123.4, 114.3, 29.4; IR (KBr) ν 3057, 1653, 1588, 1554, 1519, 1490, 1459, 1417, 1362, 1312, 1271, 1222, 1074 cm⁻¹; HRMS (quadrupole, FAB) calcd for C₅₄H₄₁N₆O₂ [M+H]^+ 805.3291, found 805.2389.

4,4'-Dimethyl-[2,2'-bibenzo[g]quinoxaline]-3,3'(4H,4'H)-dione (2r)

![Chemical structure of 4,4'-Dimethyl-[2,2'-bibenzo[g]quinoxaline]-3,3'(4H,4'H)-dione (2r)](image)
40.0 mg (95%); pale red solid; mp = 252.4–254.1 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.01 (dd, \(J = 8.0, 1.6\) Hz, 2H), 7.66 (s, 2H), 7.60 (s, 2H), 7.49 (ddd, \(J = 8.8, 7.6, 1.6\) Hz, 2H), 7.37 (ddd, \(J = 8.4, 7.6, 1.6\) Hz, 2H), 7.17 (dd, \(J = 8.4, 1.2\) Hz, 2H), 4.00 (s, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 154.6, 153.8, 137.4, 135.2, 133.1, 131.5, 130.9, 128.9, 124.4, 116.2, 115.7, 39.9; IR (KBr) \(\nu\) 3118, 3056, 3006, 1664, 1600, 1552, 1460, 1417, 1363, 1271, 1223, 978 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{26}\)H\(_{18}\)N\(_4\)O\(_2\) [M]+ 418.1430, found 418.1426.

4,4'-Dibenzyl-[2,2'-bibenzo[g]quinoxaline]-3,3'(4\(H\),4'\(H\))-dione (2s)

![4,4'-Dibenzyl-[2,2'-bibenzo[g]quinoxaline]-3,3'(4\(H\),4'\(H\))-dione (2s)](image)

37.1 mg (65%); yellow solid; mp = 267.0–270.1 °C; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.56 (s, 2H), 7.98 (dd, \(J = 8.5, 1.0\) Hz, 2H), 7.81 (dd, \(J = 8.5, 1.0\) Hz, 2H), 7.65 (s, 2H), 7.56 (ddd, \(J = 8.0, 6.5, 1.5\) Hz, 2H), 7.48 (ddd, \(J = 8.5, 7.0, 1.5\) Hz, 2H), 7.42–7.38 (m, 4H), 7.34 (t, \(J = 7.5\) Hz, 4H), 7.26 (t, \(J = 7.5\) Hz, 2H), 5.66 (s, 4H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 155.3, 154.4, 135.3, 134.4, 132.7, 131.3, 131.2, 129.9, 129.2, 128.9, 128.6, 127.9, 127.6, 127.2, 125.7, 111.5, 46.1; IR (KBr) \(\nu\) 3058, 3031, 2925, 1654, 1627, 1596, 1454, 1363, 1269, 1223, 1092, 1071 cm\(^{-1}\); HRMS (quadrupole, EI) calcd for C\(_{38}\)H\(_{36}\)N\(_4\)O\(_2\) [M]+ 570.2056, found 570.2050.

4,4'-Dimethyl-7,7'-di(thiophen-2-yl)-[2,2'-biquinoxaline]-3,3'(4\(H\),4'\(H\))-dione (2t)

![4,4'-Dimethyl-7,7'-di(thiophen-2-yl)-[2,2'-biquinoxaline]-3,3'(4\(H\),4'\(H\))-dione (2t)](image)

35.2 mg (73%); red solid; mp = > 350 °C; \(^1\)H NMR (700 MHz, CDCl\(_3\)) \(\delta\) 8.27 (d, \(J = 2.1\) Hz, 2H), 7.90 (dd, \(J = 9.1, 2.1\) Hz, 2H), 7.41 (d, \(J = 9.1\) Hz, 2H), 7.39 (dd, \(J = 3.5, 0.7\) Hz, 2H),
7.33 (dd, J = 5.6, 1.4 Hz, 2H), 7.12 (dd, J = 4.9, 3.5 Hz, 2H), 3.79 (s, 6H); 13C NMR (175 MHz, CDCl$_3$) δ 155.2, 154.0, 142.6, 133.4, 133.3, 130.8, 129.4, 128.5, 127.7, 125.6, 123.8, 114.5, 29.4; IR (KBr) ν 3088, 3067, 1647, 1550, 1491, 1418, 1362, 1270, 1223, 1607 cm$^{-1}$; HRMS (quadrupole, EI) calcd for C$_{26}$H$_{18}$N$_4$O$_2$S$_2$ [M]$^+$ 482.0871, found 482.0871.

$^{4,4'}$-Diisopropyl-[2,2'-bipyrido[2,3-b]pyrazine]-3,3'($^{4H,4'H}$)-dione (2u)

5.6 mg (15%); brown solid; mp = 221.1–223.8 °C; 1H NMR (400 MHz, CDCl$_3$) δ 8.62 (dd, J = 4.2, 1.4 Hz, 2H), 8.23 (dd, J = 7.7, 2.1 Hz, 2H), 7.33 (dd, J = 7.7, 3.5 Hz, 2H), 6.00–5.89 (m, 2H), 1.69 (s, 6H), 1.68 (s, 6H); 13C NMR (175 MHz, CDCl$_3$) δ 156.7, 155.4, 150.2, 144.7, 138.5, 128.6, 119.7, 47.0, 19.4; IR (KBr) ν 3058, 3006, 2973, 1653, 1585, 1515, 1440, 1364, 1271, 1223, 1139, 1098, 1028 cm$^{-1}$; HRMS (quadrupole, EI) calcd for C$_{20}$H$_{20}$N$_6$O$_2$ [M]$^+$ 376.1648, found 376.1646.

$^{4,4'}$-Dimethyl-6,6'-dinitro-[2,2'-biquinoxaline]-3,3'($^{4H,4'H}$)-dione (2v)

8.2 mg (20%); yellow solid; mp = > 350 °C; 1H NMR (700 MHz, CDCl$_3$) δ 8.31 (d, J = 2.8 Hz, 2H), 8.25 (dd, J = 8.4, 2.1 Hz, 2H), 8.15 (d, J = 9.1 Hz, 2H), 3.85 (s, 6H); 13C NMR (175 MHz, CDCl$_3$) δ 157.3, 153.5, 149.1, 136.1, 134.6, 132.5, 118.7, 110.0, 29.8; IR (KBr) ν 3087, 2920, 2850, 1655, 1593, 1527, 1463, 1345, 1318, 1241, 1105, 1061 cm$^{-1}$; HRMS (quadrupole, FAB) calcd for C$_{18}$H$_{13}$N$_6$O$_6$ [M+H]$^+$ 409.0897, found 409.0897.
X-ray crystal structure determination

The X-ray diffraction data of 2e were collected on a Bruker APEX-II diffractometer equipped with a monochromator in the Mo Kα (λ = 0.71073 Å) incident beam. Each crystal was mounted on a glass fiber. The frames were integrated and scaled using the Bruker-SAINT software package, and the structure was solved and refined using the Bruker SHELXTL software package. All hydrogen atoms were placed in the calculated positions. The crystallographic data for the three compounds are listed in Table S1. Structural information was deposited at the Cambridge Crystallographic Data Centre. The CCDC reference number is 2143525 for 2e.
Table S2. Crystallographic data for compound 2e.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>2143525</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>C₁₈H₁₂Cl₂N₄O₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>387.22 g/mol</td>
</tr>
<tr>
<td>Temperature</td>
<td>296(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>0.040 x 0.070 x 0.080 mm</td>
</tr>
<tr>
<td>Space group</td>
<td>P -1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 7.4478(5) Å, α = 74.939(2)°</td>
</tr>
<tr>
<td></td>
<td>b = 9.0425(6) Å, β = 86.769(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 12.7861(8) Å, γ = 84.018(2)°</td>
</tr>
<tr>
<td>Volume</td>
<td>826.61(9) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.556 g/cm³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.415 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>396</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.040 x 0.070 x 0.080 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.65 to 28.28°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-9≤h≤9, -12≤k≤12, -17≤l≤17</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>34242</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4076 [R(int) = 0.0663]</td>
</tr>
<tr>
<td>Coverage of independent reflections</td>
<td>99.8%</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Multi-Scan</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9840 and 0.9680</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4076 / 0 / 238</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.033</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R₁ = 0.0495, wR₂ = 0.1238</td>
</tr>
<tr>
<td>Final R indices (all data)</td>
<td>R₁ = 0.1231, wR₂ = 0.1801</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.907 and -1.095 e.Å⁻³</td>
</tr>
</tbody>
</table>
X-ray crystallographic data of compound 2e (CCDC 2143525)

Sample preparation (vapor diffusion): compound 2e (10.1 mg) was dissolved with 1.5 mL of CHCl₃ and 0.5 mL of EtOAc in opened inner vessel, and n-hexane (6 mL) as an anti-solvent has been employed in closed outer vessel. After vapor diffusion for 14 days, the single crystals of compound 2e were obtained.

Figure S5. ORTEP diagram of compound 2e (CCDC 2143525).
Experimental procedures for the competition experiments

Competition reaction between quinoxalinones 1a and 1f

To an oven-dried sealed tube charged with 1-methylquinoxalin-2(1H)-one (1a) (16.1 mg, 0.1 mmol, 1.0 equiv.), 1-benzylquinoxalin-2(1H)-one (1f) (23.6 mg, 0.1 mmol, 1.0 equiv.), and KOtBu (22.4 mg, 0.2 mmol, 2.0 equiv.) was added dimethoxyethane (1 mL) at room temperature under N₂. The reaction mixture was allowed to stir at 40 °C for 1 h. The reaction mixture was cooled to room temperature, diluted with CH₂Cl₂/MeOH (20 mL, 9:1) and stirred under air for 0.2 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography to afford 2f (9.7 mg, 32%, n-hexanes/EtOAc = 1:1) and cross-over product 2af (9.9 mg, 25%, n-hexanes/EtOAc = 1:1), and 2a (6.2 mg, 39%, CH₂Cl₂/MeOH = 98:2).

4-Benzyl-4'-methyl-[2,2'-biquinoxaline]-3,3'(4H,4'H)-dione (2af)
9.9 mg (25%); off-white solid; mp = 233.6–236.1 °C; 1H NMR (400 MHz, CDCl$_3$) δ 8.04–7.99 (m, 2H), 7.68–7.62 (m, 1H), 7.54–7.48 (m, 1H), 7.41 (t, $J = 7.2$ Hz, 2H), 7.37–7.27 (m, 7H), 5.57 (s, 2H), 3.79 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 154.8, 154.7, 154.4, 154.3, 135.2, 134.2, 133.4, 133.2, 131.7, 131.6, 131.3, 129.1, 129.0, 127.9, 127.2, 124.1, 114.8, 113.9, 47.1, 29.3; IR (KBr) ν 3052, 2923, 2852, 1641, 1600, 1557, 1468, 1455, 1316, 1264, 1160, 1067 cm$^{-1}$; HRMS (quadrupole, EI) calcd for C$_{24}$H$_{18}$N$_4$O$_2$ [M]$^+$ 394.1430, found 394.1433.
Competition reaction between quinoxalinones 1d and 1x

To an oven-dried sealed tube charged with 1,6,7-trimethylquinoxalin-2(1H)-one (1d) (18.8 mg, 0.1 mmol, 1.0 equiv.), 6,7-difluoro-1-methylquinoxalin-2(1H)-one (1x) (19.6 mg, 0.1 mmol, 1.0 equiv.), and KOtBu (22.4 mg, 0.2 mmol, 1.0 equiv.) was added dimethoxyethane (1 mL) at room temperature under N₂. The reaction mixture was allowed to stir at 40 °C for 1 h. The reaction mixture was cooled to room temperature, diluted with CH₂Cl₂/MeOH (20 mL, 9:1) and stirred under air for 0.2 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (CH₂Cl₂/MeOH) to afford 2d (11.6 mg, 62%) only. ¹H NMR spectra of the isolated product 2d were found identical to those of the standard sample. No formation of dimerized product 2x or cross-over product 2dx was detected.
References

1H NMR and 13C NMR spectra of all compounds

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (700 MHz, CDCl$_3$)

![NMR spectrum of 1H](image)

13C NMR (175 MHz, CDCl$_3$)

![NMR spectrum of 13C](image)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (700 MHz, CDCl$_3$)

13C NMR (175 MHz, CDCl$_3$)
1H NMR (700 MHz, CDCl$_3$)

13C NMR (175 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (100 MHz, CDCl$_3$)
1H NMR (700 MHz, CDCl$_3$)

13C NMR (175 MHz, CDCl$_3$)
1H NMR (700 MHz, CDCl$_3$)

13C NMR (175 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
\(^1\)H NMR (700 MHz, CDCl\(_3\))

\(^{13}\)C NMR (175 MHz, CDCl\(_3\))
1H NMR (700 MHz, CDCl$_3$)

13C NMR (175 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
1H NMR (700 MHz, CDCl$_3$)

13C NMR (175 MHz, CDCl$_3$)
1H NMR (700 MHz, CDCl$_3$)

13C NMR (175 MHz, CDCl$_3$)
1H NMR (700 MHz, CDCl₃)

13C NMR (175 MHz, CDCl₃)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)