Electronic supplementary information

for

Metal-free *trans*-hydroboration without a B-H bond: reactions of propargyl amines with Lewis acidic boranes

Jingjing Wang, Haiyu Zhou, Junhui Wei, Fei Liu, and Tongdao Wang*

Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China. Email: wangtd@dlut.edu.cn

Table of contents

General information	2
General procedure A	3
Synthesis and characterization of compound 1a-s	4-13
Synthesis of compound 1a-D	13
General procedure B	14
Synthesis and characterization of compound 2	15-59
The reaction of $\mathbf{1q}$ and $B(C_6F_5)_3$	59
The reaction of $\mathbf{1r}$ and $B(C_6F_5)_3$	60
The reaction of $\mathbf{1s}$ and $B(C_6F_5)_3$	62
Control experiments	63
Reactions of 1a with different boranes	66
Reference	68

General information

All manipulations were performed under an atmosphere of dry and oxygenfree N₂ by means of standard Schlenk or glovebox techniques. *n*-hexane and dichloromethane (DCM) were collected from a (Mikrouna) solvent purification system and stored over activated 3 Å molecular sieves. Dichloromethane-d₂ (CD₂Cl₂), Chloroform-d (CDCl₃) and benzene-d₆ (C₆D₆) were degassed, dried over calcium hydride and stored over 3 Å molecular sieves in the glovebox for at least 8 h prior to use. Unless otherwise noted, all chemicals were used as purchased. The following instruments were used for physical characterization of the compounds: HRMS: Agilent 6224 TOF LC/MS; NMR: Bruker Avance II 400MHz spectrometer (¹H: 400 MHz, ¹³C: 101 MHz, ¹⁹F: 377 MHz, ¹¹B: 128 MHz). NMR chemical shifts are given relative to SiMe₄ and referenced to the respective solvent signals (¹H and ¹³C). Some NMR assignments were supported by additional 2D NMR experiments.

X-Ray diffraction: Single-crystal X-ray diffraction data were collected on a Bruker D8 Venture CMOS-based diffractometer (compound **2a**) with graphite-monochromated Mo_{Ka} radiation ($\lambda = 0.71073$ Å). All of the data were corrected for absorption effects using the multi-scan technique. Final unit cell parameters were based on all observed reflections from integration of all frame data. The structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization that implanted in Olex2. For all compounds, all non-H atoms were refined anisotropically unless otherwise stated, and hydrogen atoms were introduced at their geometric positions and refined as riding atoms unless otherwise stated. CCDC-2160619 (**2a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures/.

General procedure A

$$R^{1}NH_{2} + R^{2} H \xrightarrow{(1) MeOH}_{2) NaBH_{4}} R^{2} N^{R^{1}} \xrightarrow{(1) MeOH}_{K_{2}CO_{3}, KI} R^{2} N^{R^{1}}$$

The secondary amine¹ (1.0 equiv.) was dissolved in DMF (40 mL), then K_2CO_3 (2.0 equiv.), KI (1.1 equiv.), and 1-Bromo-2-butyne (1.2 equiv.) were added successively. The mixture was stirred at room temperature for 12h. Then the solution was extracted with EA (30 mL) and washed with water (3x10 mL) for three times. The combined organic layer was dried with MgSO₄, filtered and concentrated in vacuo to afford the crude material. The crude product was purified by silica gel column chromatography to give compound **1**.

Synthesis and characterization of compound 1a

Ph According to the procedure (A) from the corresponding secondary amine (1.63 g, 10 mmol), 1-Bromo-2-butyne (1.1 mL, 12 mmol), K₂CO₃ (2.76 g, 20 mmol), and KI (1.83 g, 11 mmol). The product was isolated as a brown oil (2.00 g, 93% yield). ¹H NMR (400 MHz, CDCl₃) δ = 7.20-7.39 (m, 5H), 3.79 (s, 2H), 3.30 (m, 2H), 1.82 (t, ⁵J_{HH} = 2.4 Hz, 3H), 1.26 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 141.4, 128.8, 128.3, 126.7, 79.8, 77.5, 55.0, 50.9, 36.6, 28.0, 3.7.

Synthesis and characterization of compound 1b

 $p-CF_3C_6H_4$ N^{tBu} According to the procedure (A) from the corresponding secondary amine (2.31 g, 10 mmol),

1-Bromo-2-butyne (1.1 mL, 12 mmol), K₂CO₃ (2.76 g, 20 mmol), and KI (1.83 g, 11 mmol). The product was isolated as a yellow oil (2.41 g, 85% yield). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.48-7.56 (m, 4H), 3.84 (s, 2H), 3.28 (q, ⁵*J*_{HH} = 2.7 Hz, 2H), 1.80 (t, ⁵*J*_{HH} = 2.4 Hz, 3H), 1.24 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 146.0, 129.0 (q, ¹*J*_{FC} = 32.2 Hz), 128.8, 125.1 (q, ³*J*_{FC} = 3.8 Hz), 80.1, 77.1, 55.1, 50.8, 37.0, 27.9, 3.6.

Synthesis and characterization of compound 1c

 $p-FC_6H_4$ N tBu According to the procedure (A) from the corresponding secondary amine (2.72 g, 15 mmol),

1-Bromo-2-butyne (1.6 mL, 18 mmol), K_2CO_3 (4.15 g, 30 mmol), and KI (2.74 g, 16.5 mmol). The product was isolated as a yellow oil (2.31 g, 66%

yield). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.35-6.95 (m, 4H), 3.75 (s, 2H), 3.27 (br, 2H), 1.81 (t, ⁵*J*_{HH} = 2.4 Hz, 3H), 1.24 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 161.9 (d, ¹*J*_{FC} = 244.7 Hz), 137.0 (d, ⁴*J*_{FC} = 2.9 Hz), 130.1 (d, ³*J*_{FC} = 8.0 Hz), 115.0 (d, ²*J*_{FC} = 21.1 Hz), 79.9, 77.3, 55.0, 50.2, 36.5, 28.0, 3.7.

Synthesis and characterization of compound 1d

According to the procedure (A) from the corresponding secondary amine (2.66 g, 15 mmol), 1-Bromo-2-butyne (1.6 mL, 18 mmol), K₂CO₃ (4.15 g, 30 mmol), and KI (2.74 g, 16.5 mmol). The product was isolated as a colorless oil (2.20 g, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ = 7.12-7.29 (m, 4H), 3.77 (s, 2H), 3.32 (q, ⁵*J*_{HH} = 2.5 Hz, 2H), 2.35 (s, 3H), 1.84 (t, ⁵*J*_{HH} = 2.4 Hz, 3H), 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 138.2, 136.2, 129.0, 128.7, 79.7, 77.5, 54.9, 50.5, 36.4, 28.0, 21.2, 3.7.

Synthesis and characterization of compound 1e

m-tol N ^tBu According to the procedure (A) from the corresponding secondary amine (2.66 g, 15 mmol), 1-Bromo-2-butyne (1.6 mL, 18 mmol), K₂CO₃ (4.15 g, 30 mmol), and KI (2.74 g, 16.5 mmol). The product was isolated as a brown oil (2.80 g, 81% yield). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.04$ -7.21 (m, 4H), 3.79 (s, 2H), 3.34 (d,

 ${}^{5}J_{\text{HH}} = 2.5 \text{ Hz}, 2\text{H}$, 2.36 (s, 3H), 1.84 (t, ${}^{5}J_{\text{HH}} = 2.4 \text{ Hz}, 3\text{H}$), 1.29 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 141.3, 137.8, 129.5, 128.1, 127.5, 125.9,

79.8, 77.5, 55.0, 50.8, 36.6, 28.0, 21.6, 3.7.

Synthesis and characterization of compound 1f

According to the procedure (A) from the corresponding secondary amine (2.35 g, 20 mmol), 1-Bromo-2-butyne (2.2 mL, 24 mmol), K₂CO₃ (5.53 g, 40 mmol), and KI (3.65 g, 22 mmol). The product was isolated as a brown oil (2.02 g, 44% yield). ¹H NMR (400 MHz, CDCl₃) δ = 7.11-7.48 (m, 4H), 3.81 (s, 2H), 3.29 (q, ⁵J_{HH} = 2.4 Hz, 2H), 2.40 (s, 3H), 1.84 (t, ⁵J_{HH} = 2.3 Hz, 3H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 138.8, 137.1, 130.2, 129.5, 126.6, 125.8, 80.0, 77.9, 55.2, 48.3, 36.6, 27.9, 19.5, 3.7.

Synthesis and characterization of compound 1g

m-CH₃OC₆H₄ N⁵Bu According to the procedure (A) from the corresponding secondary amine (2.50 g, 13 mmol), 1-Bromo-2-butyne (1.4 mL, 15.6 mmol), K₂CO₃ (3.57 g, 26 mmol), KI (2.36 g, 14.3 mmol). The product was isolated as a colorless oil (1.60 g, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ = 7.48-6.73 (m, 4H), 3.86 (s, 5H), 3.39 (s, 2H), 1.88 (s, 3H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 159.6, 143.1, 129.1, 121.0, 114.2, 111.8, 79.6, 77.4, 55.1, 54.8, 50.8, 36.6, 27.9, 3.6.

Synthesis and characterization of compound 1h

P-CH₃OC₆H₄ N⁴Bu According to the procedure (A) from the corresponding secondary amine (2.50 g, 13 mmol), 1-Bromo-2-butyne (1.4 mL, 15.6 mmol), K₂CO₃ (3.57 g, 26 mmol), KI (2.36 g, 14.3 mmol). The product was isolated as a colorless oil (1.75 g, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ = 6.84-7.30 (m, 4H), 3.79 (s, 3H), 3.72 (s, 2H), 3.28 (d, ⁵J_{HH} = 2.4 Hz, 2H), 1.82 (t, ⁵J_{HH} = 2.4 Hz, 3H), 1.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 158.5, 133.2, 129.9, 113.7, 79.8, 77.5, 55.4, 54.9, 50.1, 36.2, 28.0, 3.7.

Synthesis and characterization of compound 1i

According to the procedure (A) from the corresponding secondary amine (557.0 mg, 2.3 mmol), 1-Bromo-2-butyne (0.25 mL, 2.76 mmol), K₂CO₃ (0.32 g, 4.6 mmol), KI (0.38 g, 2.53 mmol). The product was isolated as a colorless oil (320.1 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ = 6.67-7.31 (m, 4H), 4.00 (s, 2H), 3.42 (q, ⁵J_{HH} = 2.4 Hz, 2H), 1.82 (t, ⁵J_{HH} = 2.4 Hz, 3H), 1.24 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 139.9, 132.2, 130.0, 128.3, 80.0, 77.2, 55.0, 50.3, 36.6, 28.0, 3.7.

Synthesis and characterization of compound 1j

CI According to the procedure (A) from the corresponding secondary amine (573.4 mg, 2.9 mmol), 1-Bromo-2-butyne (0.3 mL, 3.48 mmol), K₂CO₃ (0.40 g, 5.8

mmol), KI (0.48 g, 3.19 mmol). The product was isolated as a colorless oil (340.5 mg, 47% yield). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.34 (m, 2H), 7.28 (m, 2H), 3.77 (s, 2H), 3.29 (m, 2H), 1.83 (m, 3H), 1.26 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 139.9, 132.2, 130.0, 128.3, 80.0, 77.2, 55.0, 50.3, 36.6, 27.9, 3.7.

Synthesis and characterization of compound 1k

According to the procedure (A) from the corresponding secondary amine (5.06 g, 33 mmol), 1-Bromo-2butyne (3.6 mL, 39.6 mmol), K₂CO₃ (9.12 g, 66 mmol), KI (6.03 g, 36.3 mmol). The product was isolated as a yellow oil (2.20 g, 32% yield). ¹H **NMR** (400 MHz, CDCl₃) $\delta = 6.26$ -7.36 (m, 3H), 3.85 (s, 2H), 3.40 (s, 2H), 1.82 (t, ⁵*J*_{HH} = 2.4 Hz, 3H), 1.20 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃) $\delta = 154.0$, 141.9, 110.2, 108.2, 80.1, 77.0, 55.0, 43.8, 37.0, 27.7, 3.8.

Synthesis and characterization of compound 11

According to the procedure (A) from the corresponding secondary amine (4.23 g, 25 mmol), 1-Bromo-2-

butyne (2.7 mL, 30 mmol), K₂CO₃ (6.91 g, 50 mmol), KI (4.56 g, 27.5 mmol). The product was isolated as a yellow oil (1.87 g, 56% yield). ¹H **NMR** (400 MHz, CDCl₃) δ = 6.67-7.31 (m, 3H), 4.00 (s, 2H), 3.42 (q, ⁵*J*_{HH} = 2.4 Hz, 2H), 1.82 (t, ⁵*J*_{HH} = 2.4 Hz, 3H), 1.24 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃) δ = 146.4, 126.5, 124.8, 124.3, 79.9, 77.2, 55.1, 45.9,

36.8, 28.0, 3.7.

Synthesis and characterization of compound 1m

^tBu N^tBu According to the procedure (A) from the corresponding secondary amine (2.58 g, 18 mmol), 1-Bromo-2-butyne (2.0 mL, 21.6 mmol), K₂CO₃ (4.98 g, 36 mmol), and KI (3.29g, 19.8 mmol). The product was isolated as a purple oil (2.31 g, 66% yield). ¹H **NMR** (400 MHz, CDCl₃) $\delta = 3.41$ (q, ⁵*J*_{HH} = 2.4 Hz, 2H), 2.34 (s, 2H), 1.79 (t, ⁵*J*_{HH} = 2.3 Hz, 3H), 1.10 (s, 9H), 0.89 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃) $\delta = 79.4$, 78.6, 59.6, 55.6, 40.7, 32.7, 29.0, 28.2, 3.8.

Synthesis and characterization of compound 1n

According to the procedure (A) from Dibenzylamine (5.8 mL, 30 mmol), 1-Bromo-2-butyne (3.3 mL, 36 mmol), K₂CO₃ (8.30 g, 60 mmol), and KI (5.48 g, 33 mmol). The

product was isolated as a brown oil (2.99 g, 40% yield). ¹H NMR (400 MHz, CDCl₃) δ = 7.26-7.46 (m,10H), 3.71 (s, 4H), 3.26 (q, ⁵*J*_{HH} = 2.3 Hz, 2H), 1.95 (t, ⁵*J*_{HH} = 2.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 139.3, 129.2, 128.4, 127.1, 81.1, 74.0, 57.6, 41.9, 3.7.

Synthesis and characterization of compound 10

i) Compound 2,6-dimethylaniline (1.0 mL, 10 mmol) was dissolved in

MeOH (8 mL), then PhCHO (1.06 g, 10 mmol) and HCOOH (0.5 mL, 5 mmol) were added successively. The mixture was refluxed at 100°C for 12h. After this time, the solution was concentrated at a low temperature, washed with cold methanol and filtered the supernatant, then concentration in vacuo afforded the crude material.

ii) The crude material was dissolved in anhydrous THF (15 mL) and added dropwise to a suspension of LiAlH₄ in anhydrous THF (5 mL, 12.5 mmol). The mixture was stirred at room temperature. After this time, the solution was added to water and extracted with Et₂O (3x30 mL). The combined organic layer was dried (MgSO₄), filtered and concentration in vacuo afforded the crude material, which was then purified by silica gel column chromatography to give compound **1o-1** as a yellow oil (0.6 g, 31% yield). iii) According to the procedure (A) from the corresponding secondary amine **1o** (0.6 g, 2.87 mmol), 1-Bromo-2-butyne (0.3 mL, 3.44 mmol), K₂CO₃ (0.79 g, 5.74 mmol), KI (0.52 g, 3.16 mmol). The product was isolated as a yellow oil (200.2 mg, 26% yield).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.02-7.41 (m, 8H), 4.35 (s, 2H), 3.64 (m, 2H), 2.41 (s, 6H), 1.83 (t, ⁵*J*_{HH} = 2.3 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 148.5, 140.1, 137.2, 129.1, 129.0, 128.3, 127.0, 125.2, 79.4, 76.9, 56.8, 41.2, 20.0, 3.7.

Synthesis and characterization of compounds 1p and 1s

i) The secondary amine¹ (3.10 g, 19 mmol) was dissolved in DMF (40 mL), then K_2CO_3 (3.56 g, 22.8 mmol) and 3-bromoprop-1-yne (3.00 g, 22.8 mmol) were added successively. The mixture was stirred at room temperature for 12h. After this time, the solution was added to water and extracted with EA (3x30 mL). The combined organic layer was dried (MgSO₄), filtered and concentration in vacuo afforded the crude material, which was then purified by silica gel column chromatography to give compound **1s** as a colorless oil (3.37 g, 88% yield).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.30 (m, 2H), 7.22 (m, 2H), 7.15 (m, 1H), 3.75 (s, 2H), 3.27 (d, ⁴*J*_{HH} = 2.2 Hz, 2H), 2.09 (t, ⁴*J*_{HH} = 2.2 Hz, 1H), 1.20 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 140.7, 128.6, 128.2, 126.7, 82.5, 72.4, 55.0, 50.6, 36.0, 27.8.

ii) The compound **1s** (194.0 mg, 0.96 mmol), PhI (203.3 mg, 1 mmol), CuI (7.4 mg, 0.04 mmol) and Pd(PPh₃)₂Cl₂ (11.7 mg, 0.02 mmol) were dissolved in anhydrous THF (5 mL), then NEt₃ (0.4 mL, 2.9 mmol) was added successively. The mixture was stirred at room temperature for 12h under N₂. After this time, the solution was added to water and extracted with EA (3x30 mL). The combined organic layer was dried (MgSO₄), filtered and concentration in vacuo afforded the crude material, which was then purified by silica gel column chromatography to give compound **1p** as a colorless oil (230.7mg, 86% yield).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.28-7.50 (m, 10H), 3.95 (s, 2H), 3.63 (s, 2H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 141.0, 131.5, 128.8, 128.4, 128.3, 127.9, 126.9, 123.9, 88.4, 84.8, 55.1, 51.0, 37.0, 28.1.

Synthesis and characterization of compound 1q

to the procedure According (A) from N-Ph[^] Ethylbenzylamine (3.38g, 25 mmol), 1-Bromo-2-butyne (2.7 mL, 30 mmol), K₂CO₃ (6.91 g, 50 mmol), and KI (4.57 g, 27.5 mmol). The product was isolated as a brown oil (1.40 g, 30% yield). ¹H **NMR** (400 MHz, CDCl₃) δ = 7.21-7.36 (m, 5H), 3.61 (s, 2H), 3.27 (q, ${}^{5}J_{\rm HH} = 2.3$ Hz, 2H), 2.57 (q, ${}^{3}J_{\rm HH} = 7.2$ Hz, 2H), 1.86 (t, ${}^{5}J_{\rm HH} = 2.3$ Hz, 3H), 1.09 (t, ${}^{3}J_{\text{HH}} = 7.1$ Hz, 3H). 13 C NMR (101 MHz, CDCl₃) $\delta = 139.2$, 129.3, 128.3, 127.1, 80.7, 74.0, 57.8, 47.4, 41.6, 12.9, 3.6.

Synthesis and characterization of compound 1r

i) Compound **1r-1**² (1.04 g, 5 mmol) was dissolved in DMF (30 mL), then NaH (400 mg, 10 mmol) and 1-Bromo-2-butyne (0.46 mL, 5 mmol) S12

were added successively. The mixture was stirred at room temperature for 4h. After this time, the solution was added saturated NH₄Cl and extracted with DCM (3x30 mL). The combined organic layer was dried (MgSO₄), filtered and concentration in vacuo afforded the crude material **1r-2**, which was used directly without other treatment.

ii) CF₃COOH (1.1 mL, 15 mmol) was added dropwise to a suspension of compound **1r-2** in DCM (30 mL). The mixture was stirred at room temperature for 12h. After this time, the solution was added to water and extracted with DCM (3x30 mL). The combined organic layer was dried (MgSO₄), filtered and concentration in vacuo to afford the crude material, which was then purified by silica gel column chromatography to give compound **1r** as a yellow liquid (300 mg, 38% yield).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.19-7.32 (m, 5H), 3.81 (s, 2H), 3.33 (q, ⁵*J*_{HH} = 2.4 Hz, 2H), 1.80 (t, ⁵*J*_{HH} = 2.3 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 139.8, 128.5, 128.5, 127.2, 79.3, 77.2, 52.6, 38.0, 3.7.

Synthesis and characterization of compound 1a-D

i) The amide² (421.0 mg, 2.38 mmol) was dissolved in anhydrous THF (5 mL) and added dropwise to a suspension of $LiAlD_4$ (121.7 mg, 2.90 mmol)

in anhydrous THF (10 mL). The mixture was refluxed at 80°C for 12h under N₂. Then the solution was extracted with EA (30 mL) and washed with water (3x10 mL) for three times. The combined organic layer was dried with MgSO₄, filtered and concentrated in vacuo to afford the crude material. The crude product was purified by silica gel column chromatography to give compound **1a-1** as an orange oil (119.7mg, 31% yield).

ii) According to the procedure (A) from compound **1a-1** (119.7mg, 0.72 mmol), 1-Bromo-2-butyne (115.6 mg, 0.87 mmol), K_2CO_3 (200.2 mg, 1.45 mmol), and KI (132.2 mg, 0.80 mmol). The product was isolated as a yellow oil (100.0 mg, 64% yield).

General procedure B

To a Schlenk bottle equipped with a magnetic stirring bar, the solution of compound **1** (1.0 equiv.) and RB(C₆F₅)₂ (1.0 equiv.) in CH₂Cl₂ (5 mL) was stirred at room temperature for 4h. After the removal of the solvent under vacuum, the obtained residue was washed with *n*-hexane (3×3 mL) and dried in vacuo to give the desired product **2**.

Synthesis and characterization of compound 2a

Ph H $\overline{B}(C_6F_5)_3$

According to the procedure (B) from $B(C_6F_5)_3$ (153.6 mg, 0.3 mmol) and **1a** (65.6 mg, 0.3 mmol). The product was isolated as a white solid (206.1 mg, 93% yield).

Crystals suitable for the X-ray crystal structure analysis were obtained from a solution of the isolated compound 2a in DCM covered with *n*hexane at room temperature.

HRMS (ESI): m/z calcd for C₃₃H₂₁BF₁₅N [M+C1]⁻: 762.1222, found 762.1224.

¹**H NMR** (400 MHz, 299K, CD₂Cl₂): $\delta = 8.90$ (s, 1H, N=C*H*), 7.67-8.11 (m, 5H, Ph), 5.24 (br, 1H, =C*H*), 4.88 (m, 2H, NC*H*₂), 1.62 (br, 9H, C*H*₃^{tBu}), 1.55 (d, ³*J*_{HH} = 7.1 Hz, 3H, C*H*₃).

¹³C {H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 170.0$ (N=*C*H), 137.5, 130.2, 126.7 (Ph), 128.7 (=*C*H), 72.0 (N*C*^{tBu}), 60.7 (N*C*H₂), 29.1 (*C*H₃^{tBu}), 16.1 (*C*H₃). [C₆F₅ and BC not listed]

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CD₂Cl₂): δ^{1} H/ δ^{13} C: 8.90/170.0 (N=*CH*), 5.24/128.7 (=*C*H), 4.88/60.7 (N*CH*₂), 1.55/16.1 (*CH*₃). ¹⁹**F{H} NMR** (377 MHz, 299K, CD₂Cl₂): δ = -126.6, -128.8, -129.6, -131.2, -131.6, -135.3 (each br, each 1F, *o*-C₆F₅), -161.8 (t, ³J_{FF} = 20.3 Hz, 1F), - 163.1 (t, ${}^{3}J_{FF} = 20.4$ Hz, 1F), -164.8 (t, ${}^{3}J_{FF} = 20.7$ Hz, 1F) (*p*-C₆F₅), -163.4, -165.8, -166.2, -166.6, -167.1, -167.5 (each br, each 1F, *m*-C₆F₅). ¹¹**B** NMR (128 MHz, 299K, CD₂Cl₂): $\delta = -15.3$ ($v_{1/2} \sim 30$ Hz).

Fig. S3 19 F{H} NMR (377 MHz, 299K, CD₂Cl₂) spectrum of compound 2a.

55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -**Fig. S4** ¹¹B NMR (128 MHz, 299K, CD₂Cl₂) spectrum of compound **2a**.

X-ray crystal structure analysis of compound 2a: formula $C_{36}H_{28}BF_{15}N$, M = 770.40, colorless crystal, $0.1 \times 0.1 \times 0.1 \times 0.1$ mm, a = 11.053(5), b = 16.413(7), c = 18.289(9) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 90.900(14)^{\circ}$, V = 3317(3) Å³, $\rho_{calc} = 1.542$ gcm⁻³, $\mu = 0.148$ mm⁻¹, empirical absorption correction ($0.6041 \le T \le 0.7284$), Z = 4, monoclinic, space group $P2_1/n$, $\lambda = 0.71073$ Å, T = 150.15 K, ω and φ scans, 38998 reflections collected ($\pm h$, $\pm k$, $\pm l$), 7575 independent ($R_{int} = 0.1448$) and 3472 observed reflections [$I > 2\sigma(I)$], 483 refined parameters, R = 0.0642, $wR^2 = 0.1753$, max. (min.) residual electron density 0.41 (-0.30) e.Å⁻³, all the hydrogen atoms were calculated and refined as riding atoms.

Fig. S5 A view of the molecular structure of compound 2a.

Synthesis and characterization of compound 2b

p-CF₃C₆H₄ H t Bu B(C₆F₅)₃

According to the procedure (B) from $B(C_6F_5)_3$ (158.7 mg, 0.31 mmol) and **1b** (86.5 mg, 0.31 mmol). The product was isolated as a yellow solid (218.5 mg, 90% yield).

HRMS (ESI): m/z calcd for C₃₄H₂₀BF₁₈N [M-H]⁻: 794.1328, found 794.1328.

¹**H NMR** (400 MHz, 299K, CD₂Cl₂): $\delta = 9.03$ (s, 1H, N=C*H*), 7.91-8.30 (m, 4H, Ph), 5.18 (br, 1H, =C*H*), 4.90 (m, 2H, NC*H*₂), 1.63 (br, 9H, C*H*₃^{tBu}), 1.54 (d, ³*J*_{HH} = 7.1 Hz, 3H, C*H*₃).

¹³C{¹H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 169.5$ (N=*C*H), 128.7 (=*C*H), 73.2 (N*C*^{tBu}), 61.0 (N*C*H₂), 29.1 (*C*H₃^{tBu}), 16.1 (*C*H₃). [Ph, C₆F₅ and BC not listed]

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CD_2Cl_2): $\delta^1H/\delta^{13}C$: 9.03/169.5 (N=*CH*), 5.18/128.7 (=*CH*), 4.90/61.0 (N*CH*₂), 1.63/29.1 (*CH*₃^{tBu}), 1.54/16.1 (*CH*₃).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CD₂Cl₂) [selected traces]: δ^{1} H/ δ^{13} C: 9.03/73.2 (N=CH/NC^{tBu}).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CD₂Cl₂): $\delta = -64.1$ (s, 3F, CF₃), -127.1 (br, 1F), -129.4 (m, 2F), -131.1 (br, 1F), -131.6 (br, 1F), -136.0 (br, 1F) (*o*-C₆F₅), -161.5 (br, 1F), -162.9 (t, ${}^{3}J_{FF} = 20.3$ Hz, 1F), -164.6 (m, 1F) (*p*-

C₆F₅), -163.1, -165.4, -166.1, -166.5, -166.9, -167.4 (each m, each 1F, *m*-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CD₂Cl₂): δ = -15.4 ($v_{1/2}$ ~ 30Hz).

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 **Fig. S9** ¹¹B NMR (128 MHz, 299K, CD₂Cl₂) spectrum of compound **2b**.

Synthesis and characterization of compound 2c

According to the procedure (B) from $B(C_6F_5)_3$ (153.6 mg, 0.3 mmol) and **1c** (70.8 mg, 0.3 mmol). The product was isolated as a yellow solid (212.9 mg, 94% yield).

HRMS (ESI): m/z calcd for C₃₃H₂₀BF₁₆N [M+C1]⁻: 780.1127, found 780.1122.

¹**H NMR** (400 MHz, 299K, CDCl₃): $\delta = 8.78$ (s, 1H, N=C*H*), 7.38 and 8.28 (each br, each 2H, Ph), 5.14 (br, 1H, =C*H*), 4.92 (m, 2H, NC*H*₂), 1.60 (br, 9H, C*H*₃^{tBu}), 1.52 (d, ³*J*_{HH} = 7.1 Hz, 3H, C*H*₃).

¹³C{¹H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 168.1$ (N=CH), 168.3 (d, ¹*J*_{FC} = 264.7 Hz), 130.5, 123.2 (d, ³*J*_{FC} = 2.0 Hz), 117.9 (d, ²*J*_{FC} = 22.3 Hz) (Ph), 128.9 (=CH), 72.1 (N*C*^{tBu}), 60.7 (N*C*H₂), 29.0 (*C*H₃^{tBu}), 16.1 (*C*H₃). [C₆F₅ and BC not listed] ¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CD₂Cl₂): δ^1 H/ δ^{13} C: 8.85/168.1 (N=*CH*), 5.22/128.9 (=*CH*), 4.89/60.7 (N*CH*₂), 1.60/29.0 (*CH*₃^{tBu}), 1.52/16.1 (*CH*₃).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CD₂Cl₂) [selected traces]: δ^{1} H/ δ^{13} C: 8.85/72.1 (N=CH/NC^{tBu}).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -94.1$ (br, 1F, F), -127.1, -128.8, -129.7, -130.0, -130.9, -136.6 (each br, each 1F, *o*-C₆F₅), -160.4 (t, ³*J*_{FF} = 21.2 Hz, 1F), -161.7 (t, ³*J*_{FF} = 20.7 Hz, 1F), -163.3 (t, ³*J*_{FF} = 22.5 Hz, 1F) (*p*-C₆F₅), -162.3, -164.5, -165.3, -165.6, -166.2, -166.8 (each br, each 1F, *m*-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CDCl₃): $\delta = -15.4$ ($v_{1/2} \sim 40$ Hz).

Fig. S13 ¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound 2c.

Synthesis and characterization of compound 2d

p-tol H ^tBu N+ B(C₆F₅)₃

According to the procedure (B) from $B(C_6F_5)_3$ (163.8 mg, 0.32 mmol) and **1d** (72.9 mg, 0.32 mmol). The product was isolated as a white solid (225.8 mg, 96% yield).

HRMS (ESI): m/z calcd for C₃₄H₂₃BF₁₅N [M+C1]⁻: 776.1378, found 776.1378.

¹**H NMR** (400 MHz, 299K, CD₂Cl₂): $\delta = 8.79$ (s, 1H, N=C*H*), 7.47-8.09 (m, 4H, Ph), 5.21 (br, 1H, =C*H*), 4.84 (m, 2H, NC*H*₂), 2.53 (s, 3H, C*H*₃^{Ph}), 1.57 (br, 9H, C*H*₃^{tBu}), 1.51 (d, ³*J*_{HH} = 7.2 Hz, 3H, C*H*₃).

¹³C{¹H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 168.9$ (N=*C*H), 150.3, 135.7, 131.0, 124.1 (Ph), 128.6 (=*C*H), 71.4 (N*C*^{tBu}), 60.4 (N*C*H₂), 29.0 (*C*H₃^{tBu}), 22.4 (*C*H₃^{Ph}), 16.1 (*C*H₃). [C₆F₅ and BC not listed]

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CD₂Cl₂): δ^{1} H/ δ^{13} C: 8.79/168.9 (N=*CH*), 5.21/128.6 (=*CH*), 4.84/60.4 (N*CH*₂), 2.53/22.4 (*CH*₃^{Ph}), 1.57/29.0 (*CH*₃^{tBu}), 1.51/16.1 (*CH*₃).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CD₂Cl₂): $\delta = -126.5$, -128.9, -129.6, -131.1, -131.7, -135.4 (each br, each 1F, o-C₆F₅), -161.8 (t, ${}^{3}J_{FF} = 20.7$ Hz, 1F), -163.1 (t, ${}^{3}J_{FF} = 20.5$ Hz, 1F), -164.8 (m, 1F) (p-C₆F₅), -163.5, -165.8, -166.2, -166.6, -167.2, -167.5 (each br, each 1F, m-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CD₂Cl₂): δ = -15.3 ($v_{1/2}$ ~ 40Hz).

-120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 -170 -172 -174 **Fig. S16** ¹⁹F{¹H} NMR (377 MHz, 299K, CD₂Cl₂) spectrum of compound **2d**.

Synthesis and characterization of compound 2e

According to the procedure (B) from $B(C_6F_5)_3$ (158.7 mg, 0.31 mmol) and **1e** (70.0 mg, 0.31 mmol). The product was isolated as a white solid (218.5 mg, 97% yield).

HRMS (ESI): m/z calcd for $C_{34}H_{23}BF_{15}N$ [M-H]⁻: 740.1611, found 740.1617.

¹**H NMR** (400 MHz, 299K, CD₂Cl₂): $\delta = 8.85$ (s, 1H, N=C*H*), 7.55-7.95 (m, 4H, Ph), 5.22 (br, 1H, =C*H*), 4.85 (m, 2H, NC*H*₂), 2.50 (br, 3H, C*H*₃^{Ph}), 1.56 (br, 12H, C*H*₃ and C*H*₃^{tBu}).

¹³C{¹H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 169.9$ (N=*C*H), 141.1, 138.5, 134.4, 130.0, 126.9 (Ph), 128.4 (=*C*H), 71.8 (N*C*^{tBu}), 60.6 (N*C*H₂), 29.1 (*C*H₃^{tBu}), 21.0 (*C*H₃^{Ph}), 16.1 (*C*H₃). [C₆F₅ and BC not listed]

¹**H**, ¹**H** COSY (400 MHz/400 MHz, 299K, CD₂Cl₂): δ¹H/δ¹³C: 4.85/1.56 (NC*H*₂/C*H*₃).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CD₂Cl₂): δ^1 H/ δ^{13} C: 8.85/169.9 (N=*CH*), 5.22/128.4 (=*CH*), 4.85/60.6 (N*CH*₂), 2.50/21.0 (*CH*₃^{Ph}), 1.56/(29.1, 16.1) (*CH*₃ and *CH*₃^{tBu}).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CD₂Cl₂) [selected traces]: δ^{1} H/ δ^{13} C: 8.85/71.8 (N=CH/NC^{tBu}).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CD₂Cl₂): $\delta = -126.9$, -129.1, -129.9, -131.2, -133.2, -136.7 (each br, each 1F, o-C₆F₅), -161.9 (t, ${}^{3}J_{FF} = 18.1$ Hz, 1F), -163.2 (t, ${}^{3}J_{FF} = 20.0$ Hz, 1F), -164.9 (t, ${}^{3}J_{FF} = 18.9$ Hz, 1F) (p-C₆F₅), -163.4 (1F), -165.5 (1F), -166.3 (1F), -166.8 (2F), -167.5 (1F) (each br, m-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CD₂Cl₂): $\delta = -15.1 (v_{1/2} \sim 30$ Hz).

Synthesis and characterization of compound 2f

o-tol H ^tBu N⁺ B(C₆F₅)₃

According to the procedure (B) from $B(C_6F_5)_3$ (153.6 mg, 0.3 mmol) and **1f** (68.8 mg, 0.3 mmol). The product was isolated as a yellow solid (218.0 mg, 98% yield).

HRMS (ESI): m/z calcd for C₃₄H₂₃BF₁₅N [M-H]⁻: 740.1611, found 740.1611.

¹**H NMR** (400 MHz, 299K, CD₂Cl₂): δ = 9.27 (s, 1H, N=C*H*), 7.38-8.35 (m, 4H, Ph), 5.19 (br, 1H, =C*H*), 4.79 (m, 2H, NC*H*₂), 2.40 (br, 3H, C*H*₃^{Ph}), 1.67 (br, 9H, C*H*₃^{tBu}), 1.53 (d, ³*J*_{HH} = 7.0 Hz, 3H, C*H*₃).

¹³C{¹H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 171.4$ (N=*C*H), 127.9 (=*C*H), 72.1 (N*C*^{tBu}), 60.7 (N*C*H₂), 29.5 (*C*H₃^{tBu}), 20.0 (*C*H₃^{Ph}), 16.1 (*C*H₃). [Ph, C₆F₅ and BC not listed]

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CD₂Cl₂): δ^1 H/ δ^{13} C: 5.19/127.9 (=*CH*), 4.79/60.7 (N*CH*₂), 2.40/20.0 (*CH*₃^{Ph}), 1.67/29.5 (*CH*₃^{tBu}), 1.53/16.1 (*CH*₃).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CD₂Cl₂): $\delta = -127.4$ to -134.9 (br, o-C₆F₅), -161.9 (br), -163.4 (br, 2F) (p-C₆F₅), -165.0 to -167.6 (br, m-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CD_2Cl_2): $\delta = -15.5 (v_{1/2} \sim 40Hz)$.

1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 **Fig. S22** ¹H NMR (400 MHz, 299K, CD₂Cl₂) spectrum of compound **2f**.

75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 **Fig. S25** ¹¹B NMR (128 MHz, 299K, CD₂Cl₂) spectrum of compound **2f**.

Synthesis and characterization of compound 2g

m-CH₃OC₆H₄ H t_{Bu} N^{+} $\overline{B(C_6F_5)_3}$

According to the procedure (B) from $B(C_6F_5)_3$ (102.4 mg, 0.2 mmol) and **1g** (48.9 mg, 0.2 mmol). The product was isolated as a white solid (143.3 mg, 95% yield).

HRMS (ESI): m/z calcd for C₃₄H₂₃BF₁₅NO [M+Na]⁺: 780.1525, found 780.1521.

¹**H NMR** (400 MHz, 299K, CDCl₃): $\delta = 8.82$ (s, 1H, N=C*H*), 7.21-8.04 (m, 4H, Ph), 5.16 (br, 1H, =C*H*), 4.86 (m, 2H, NC*H*₂), 3.86 (s, 3H, OC*H*₃), 1.63 (br, 9H, C*H*₃^{tBu}), 1.54 (d, ³*J*_{HH} = 7.0 Hz, 3H, C*H*₃).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 169.5$ (N=CH), 128.7 (=CH), 71.6 (NC^{tBu}), 60.6 (NCH₂), 55.8 (OCH₃), 29.2 (CH₃^{tBu}), 16.1 (CH₃). [C₆F₅, Ph, and BC not listed]

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -127.2$, -129.0, -130.3, 130.8, 131.7, -134.7 (each br, each 1F, o-C₆F₅), -160.7, 162.2, -163.5 (each br, each 1F, p-C₆F₅), -162.2 (2F), $-164.5 \sim -167.0$ (br, 6F, m-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CDCl₃): $\delta = -15.4 (v_{1/2} \sim 40$ Hz).

Fig. S26 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 2g.

Fig. S29 ¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound 2g.

Synthesis and characterization of compound 2h

p-CH₃OC₆H₄ t_{Bu} H $B(C_6F_5)_3$

According to the procedure (B) from $B(C_6F_5)_3$ (102.4 mg, 0.2 mmol) and **1h** (48.9 mg, 0.2 mmol). The product was isolated as a white solid (140.0 mg, 93% yield).

HRMS (ESI): m/z calcd for C₃₄H₂₃BF₁₅NO [M+H]⁺: 758.1706, found 758.1719.

¹**H NMR** (400 MHz, 299K, CDCl₃): $\delta = 8.60$ (s, 1H, N=C*H*), 7.10-8.21 (m, 4H, Ph), 5.17 (br, 1H, =C*H*), 4.84 and 4.73 (each m, each 1H, NC*H*₂), 3.99 (s, 3H. OC*H*₃), 1.57 (br, 9H, C*H*₃^{tBu}), 1.49 (d, ³*J*_{HH} = 7.0 Hz, 3H, C*H*₃). ¹³**C** {**H**} **NMR** (101 MHz, 299K, CDCl₃): $\delta = 167.4$ (N=CH), 128.0 (=CH), 70.2 (NC^{tBu}), 69.9 (NCH₂), 56.3 (OCH₃), 29.0 (CH₃^{tBu}), 16.1 (CH₃). [C₆F₅, Ph, and BC not listed]

¹⁹**F{H} NMR** (377 MHz, 299K, CDCl₃): δ = -126.7, -128.8, -129.3, -130.1, -130.9, -135.7 (each br, each 1F, *o*-C₆F₅), -160.7, -162.6, -163.6 (each m, each 1F, *p*-C₆F₅), -162.2, -164.8, -165.5, -165.9, 166.3, -166.8 (each br, each 1F, *m*-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CDCl₃): $\delta = -15.4 (v_{1/2} \sim 40$ Hz).

-5 -10 -15 -20 -25 -30 -35 -40 -55 -60 -65 -7 30 55 50 45 40 35 30 25 20 15 10 5 0 -45 -50 Fig. S33 ¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound 2h.

Synthesis and characterization of compound 2i

p-BrC₆H₄ ^tBu^{N+}B(C₆F

According to the procedure (B) from $B(C_6F_5)_3$ (102.4 mg, 0.2 mmol) and **1i** (58.8 mg, 0.2 mmol). The product was isolated as a white solid (156.4 mg, 97% yield).

HRMS (ESI): m/z calcd for C₃₃H₂₀BBrF₁₅N [M-H]⁻: 804.0560 found 804.0591.

¹**H NMR** (400 MHz, 299K, CD₂Cl₂): $\delta = 8.80$ (s, 1H, N=C*H*), 7.50-8.30 (br, 4H, Ph), 5.16 (s, 1H, =C*H*), 4.82 (m, 2H, NC*H*₂), 1.56 (s, 9H, C*H*₃^{tBu}), 1.50 (d, ³*J*_{HH} = 5.4 Hz, 3H, C*H*₃).

¹³C {¹H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 168.5$ (N=CH), 128.8 (=CH), 72.4 (NC^{tBu}), 60.7 (NCH₂), 29.0 (CH₃^{tBu}), 16.1 (CH₃). [C₆F₅, Ph and BC not listed]

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CD₂Cl₂): $\delta = -126.8$ (1F), -129.4 (2F), -131.1 (1F), -131.6 (1F), -136.2 (1F) (each br, o-C₆F₅), -161.6 (br), -162.8

(t, ${}^{3}J_{FF} = 20.3 \text{ Hz}$), -164.6 (t, ${}^{3}J_{FF} = 21.8 \text{ Hz}$) (each 1F, *p*-C₆F₅), -163.3, -165.5, -166.0, -166.5, -167.0, -167.4 (each br, each 1F, *m*-C₆F₅). ¹¹**B** NMR (128 MHz, 299K, CD₂Cl₂): $\delta = -15.4 (v_{1/2} \sim 60 \text{Hz})$.

Fig. S34 ¹H NMR (400 MHz, 299K, CD₂Cl₂) spectrum of compound 2i.

Fig. S37 ¹¹B NMR (128 MHz, 299K, CD₂Cl₂) spectrum of compound 2i.

Synthesis and characterization of compound 2j

$$p$$
-CIC₆H₄ H
 t_{Bu} N+ $B(C_6F_5)_3$

According to the procedure (B) from B(C₆F₅)₃ (102.4 mg, 0.2 mmol) and

1j (50.0 mg, 0.2 mmol). The product was isolated as a white solid (146.3 mg, 96% yield).

HRMS (ESI): m/z calcd for C₃₃H₂₀BClF₁₅N [M-H]⁻: 760.1065 found 760.1051.

¹**H NMR** (400 MHz, 299K, CDCl₃): $\delta = 8.79$ (s, 1H, N=C*H*), 7.60-8.30 (br, 4H, Ph), 5.14 (s, 1H, =C*H*), 4.89 (m, 2H, NC*H*₂), 1.59 (s, 9H, C*H*₃^{tBu}), 1.51 (d, ³*J*_{HH} = 7.1 Hz, 3H, C*H*₃).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 167.6$ (N=CH), 128.4 (=CH), 71.9 (NC^{tBu}), 60.6 (NCH₂), 29.0 (CH₃^{tBu}), 16.1(CH₃). [C₆F₅, Ph, and BC not listed]

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -126.8, -129.0, -129.5, -130.4,$ -131.0, -136.2 (each br, each 1F, *o*-C₆F₅), -160.4 (t, ³*J*_{FF} = 20.2 Hz, 1F), -161.7 (t, ³*J*_{FF} = 20.7 Hz, 1F), -163.4 (t, ³*J*_{FF} = 21.7 Hz, 1F) (*p*-C₆F₅), -162.3 (1F), -164.6 (1F), -164.9 (1F), -165.8 (2F), -166.6 (1F) (each br, *m*-C₆F₅). ¹¹**B NMR** (128 MHz, 299K, CDCl₃): $\delta = -15.4$ (*v*_{1/2} ~ 60Hz).

ΜM

122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 -17

Fig. S40 $^{19}F\{^1H\}$ NMR (377 MHz, 299K, CDCl₃) spectrum of compound 2j.

Fig. S41 ¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound 2j.

Synthesis and characterization of compound 2k

According to the procedure (B) from $B(C_6F_5)_3$ (102.4 mg, 0.2 mmol) and **1k** (41.1 mg, 0.2 mmol). The product was isolated as a white solid (134.9 mg, 94% yield).

HRMS (ESI): m/z calcd for C₃₁H₁₉BF₁₅NO [M+H]⁺: 718.1393, found 718.1396.

¹**H NMR** (400 MHz, 299K, CDCl₃): $\delta = 8.55$ (s, 1H, N=C*H*), 6.97-8.06 (br, 3H, furyl), 4.93 (m, 3H, =C*H* and NC*H*₂), 1.57 (br, 9H, C*H*₃^{tBu}), 1.39 (d, ${}^{3}J_{\text{HH}} = 6.9$ Hz, 3H, C*H*₃).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 154.3$ (N=CH), 125.7 (=CH), 69.8 (NC^{tBu}), 59.9 (NCH₂), 28.6 (CH₃^{tBu}), 15.9 (CH₃). [C₆F₅, furyl, and BC not listed]

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -127.0, -129.0, -130.0, -130.3,$ -131.5, -134.7 (each br, each 1F, *o*-C₆F₅), -160.6 (t, ³*J*_{FF} = 20.6 Hz), -162.1 (br), -163.5 (t, ³*J*_{FF} = 20.5 Hz) (each 1F, *p*-C₆F₅), -162.7, -164.9, -165.5, -166.0, -166.5, -167.0 (each br, each 1F, *m*-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CDCl₃): $\delta = -15.3 (v_{1/2} \sim 40$ Hz).

Fig. S45 ¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound 2k.

Synthesis and characterization of compound 21

According to the procedure (B) from $B(C_6F_5)_3$ (102.4 mg, 0.2 mmol) and **11** (44.3 mg, 0.2 mmol). The product was isolated as a yellow solid (135.0 mg, 92% yield).

HRMS (ESI): m/z calcd for $C_{31}H_{19}BF_{15}NS [M+Na]^+$: 756.0984, found 756.1011.

¹**H NMR** (400 MHz, 299K, CDCl₃): $\delta = 8.75$ (s, 1H, N=C*H*), 7.49-8.28 (m, 3H, thienyl), 5.07 (br, 1H, =C*H*), 4.93 (m, 2H, NC*H*₂), 1.61 (br, 9H, C*H*₃^{tBu}), 1.46 (d, ³*J*_{HH} = 7.0 Hz, 3H, C*H*₃).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 156.9$ (N=CH), 127.3 (=CH), 70.3 (NC^{tBu}), 59.7 (NCH₂), 28.8 (CH₃^{tBu}), 15.9 (CH₃). [C₆F₅, thienyl, and BC not listed]

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -127.0$ (br), -129.1 (m), -129.3 (br), -129.9 (m), -131.0 (br), -133.9 (br) (each 1F, o-C₆F₅), -160.6 (t, ³ $J_{FF} = 20.6$ Hz), -162.3 (br), -163.5 (t, ${}^{3}J_{FF} = 20.5$ Hz) (each 1F, p-C₆F₅), $-{}_{S41}$ 162.4 (1F), -164.9 (1F), , -165.5 (2F) -166.3 (1F), -166.6 (1F) (each br, *m*-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CDCl₃): $\delta = -15.2 (v_{1/2} \sim 50 \text{Hz}).$

Fig. S46 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 2l.

Fig. S47 ¹³C {¹H} NMR (101 MHz, 299K, CDCl₃) spectrum of compound 2l.

-118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 -170 **Fig. S48** ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound **2**l.

Fig. S49 ¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound 2l.

Synthesis and characterization of compound 2m

According to the procedure (B) from $B(C_6F_5)_3$ (169.0 mg, 0.33 mmol) and **1m** (65.0 mg, 0.33 mmol). The product was isolated as a white solid (215.3 mg, 91% yield).

HRMS (ESI): m/z calcd for C₃₁H₂₅BF₁₅N [M+Cl]⁻: 742.1535, found 742.1532.

¹**H NMR** (400 MHz, 299K, CD₂Cl₂): $\delta = 8.16$ (s, 1H, N=C*H*), 4.89 (br, 2H, NC*H*₂ and =C*H*), 4.62 (d, ${}^{3}J_{\text{HH}} = 16.6$ Hz, 1H, NC*H*₂), 1.49 (m, 12H, ${}^{N}CH_{3}{}^{\text{tBu}}$ and C*H*₃), 1.33 (br, 9H, C $H_{3}{}^{\text{tBu}}$).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂): $\delta = 184.7$ (N=CH), 127.7 (=CH), 73.6 (NC^{tBu}), 59.1 (NCH₂), 38.9 (C^{tBu}), 29.3 (^NCH₃^{tBu}), 27.5 (CH₃^{tBu}), 15.9 (CH₃). [C₆F₅ and BC not listed]

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CD₂Cl₂): δ^{1} H/ δ^{13} C: 8.16/184.7 (N=*CH*), 4.89/127.7 (=*C*H), (4.89, 4.62)/59.1 (N*CH*₂), 1.49/29.3 (^N*CH*₃^{tBu}), 1.33/27.5 (*CH*₃^{tBu}), 1.49/15.9 (*CH*₃).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CD₂Cl₂) [selected traces]: δ^{1} H/ δ^{13} C: 1.49/73.6 (^NCH₃^{tBu}/NC^{tBu}), 1.49/29.3 (^NCH₃^{tBu}/NCH₃^{tBu}), 1.33/38.9 (CH₃^{tBu}/C^{tBu}), 1.33/27.5 (CH₃^{tBu}/CH₃^{tBu}).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CD₂Cl₂): $\delta = -126.7$, -129.1, -129.7, -130.9, -131.9, -133.5 (each br, each 1F, o-C₆F₅), -161.8 (t, ${}^{3}J_{FF} = 20.6$ Hz, 1F), -163.3 (br, 2F) (p-C₆F₅), -164.7 (m, 1F), -166.5 (m, 1F), -165.8 (br, 1F), -167.0 (br, 1F), -167.5 (br, 2F) (m-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CD₂Cl₂): δ = -15.3 ($v_{1/2}$ ~ 30Hz).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Fig. S51** ${}^{13}C{}^{1}H$ NMR (101 MHz, 299K, CD₂Cl₂) spectrum of compound **2m**.

-118 -122 -126 -130 -134 -138 -142 -146 -150 -154 -158 -162 -166 -170 -174 -178 -18: **Fig. S52** ${}^{19}F{}^{1}H$ NMR (377 MHz, 299K, CD₂Cl₂) spectrum of compound **2m**.

Synthesis and characterization of compound 2n

 $\begin{array}{c} \mathsf{Ph} & \mathsf{H} \\ \mathsf{Bn}^{\mathsf{N}^{\mathsf{+}}} & \bar{\mathsf{B}}(\mathsf{C}_{6}\mathsf{F}_{5})_{3} \end{array}$

According to the procedure (B) from B(C₆F₅)₃ (138.2 mg, 0.27 mmol)

and 1n (66.6 mg, 0.27 mmol). The product was isolated as a yellow solid

(185.5 mg, 91% yield).

HRMS (ESI): m/z calcd for C₃₆H₁₉BF₁₅N [M-H]⁻: 760.1298, found 760.1295.

¹**H NMR** (400 MHz, 299K, CD₂Cl₂): $\delta = 8.51$ (s, 1H, N=C*H*), 7.38-7.92 (m, 10H, Ph), 5.41 (br, 1H, =C*H*), 4.69-5.02 (m, 4H, NC*H*₂ and C*H*₂), 1.59 (d, ³*J*_{HH} = 6.9 Hz, 3H, C*H*₃).

¹³C{¹H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 170.3$ (N=*C*H), 137.8, 133.2, 131.0, 130.5, 130.2, 130.1, 126.3 (Ph), 126.8 (=*C*H), 64.9 (N*C*H₂), 63.8 (*C*H₂), 16.3 (*C*H₃). [C₆F₅ and BC not listed]

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CD₂Cl₂): δ^{1} H/ δ^{13} C: 8.51/170.3 (N=*CH*), 5.41/126.8 (=*C*H), 5.02/64.9 (N*CH*₂), 4.69/63.8 (*CH*₂), 1.59/16.3 (*CH*₃).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CD₂Cl₂): $\delta = -129.6$, -129.8, -130.3, -132.6, -133.6, -136.3 (each br, each 1F, o-C₆F₅), -161.5 (t, ${}^{3}J_{FF} = 20.5$ Hz, 1F), -162.8 (d, ${}^{3}J_{FF} = 20.6$ Hz, 1F), -163.3 (t, ${}^{3}J_{FF} = 20.7$ Hz, 1F), (p-C₆F₅), -164.8 (m, 1F), -165.7 (m, 1F), -166.2 (m, 1F), -166.9 (m, 1F), -167.2 (br, 2F) (m-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CD₂Cl₂): $\delta = -15.2 (v_{1/2} \sim 40$ Hz).

Fig. S57 ¹¹B NMR (128 MHz, 299K, CD₂Cl₂) spectrum of compound 2n.

Synthesis and characterization of compound 20

Ph H N+ B(C₆F₅)₃

According to the procedure (B) from $B(C_6F_5)_3$ (102.4 mg, 0.2 mmol) and

10 (52.7 mg, 0.2 mmol). The product was isolated as a yellow solid (141.1 mg, 91% yield).

HRMS (ESI): m/z calcd for C₃₅H₂₅BF₁₅N [M-H]⁻: 754.1768 found 754.1772.

¹**H NMR** (400 MHz, 299K, CDCl₃): $\delta = 8.44$ (s, 1H, N=C*H*), 7.10-8.28 (m, 8H, Ph), 5.69 (br, 2H, NC*H*₂), 4.60 (br, 1H, =C*H*), 2.14 (s, 6H, C*H*₃^{Ph}), 1.54 (d, ³*J*_{HH} = 6.9 Hz, 3H, C*H*₃).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 173.9$ (N=*C*H), 145.6, 139.6, 135.7, 131.2, 130.7, 129.1, 126.8 (Ph and =*C*H), 65.2 (N*C*H₂), 18.5 and 18.2 (*C*H₃^{Ph}), 15.7 (*C*H₃). [C₆F₅ and BC not listed]

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -129.2$ (1F), -130.5 (1F), -130.9 (1F), -132.6 (1F), -133.5 (2F) (each m, o-C₆F₅), -160.9 (t, ${}^{3}J_{FF} = 20.6$ Hz), -161.4 (m), -161.8 (m), (each 1F, p-C₆F₅), -164.2 (1F), -165.2 (2F), -165.3 (1F), -165.6 (1F), -165.8 (1F), -166.4 (1F) (each m, m-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CDCl₃): $\delta = -14.9 (v_{1/2} \sim 50 \text{Hz}).$

Fig. S61¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound 20.

Synthesis and characterization of compound 2p

Ph H Ph ^{t}Bu N+ $B(C_6F_5)_3$

According to the procedure (B) from $B(C_6F_5)_3$ (102.4 mg, 0.2 mmol) and **1p** (55.5 mg, 0.2 mmol). The product was isolated as a white solid (150.0 mg, 95% yield).

HRMS (ESI): m/z calcd for $C_{38}H_{23}BF_{15}N$ [M+Na]⁺: 812.1576 found 812.1586.

¹**H NMR** (400 MHz, 299K, CDCl₃): $\delta = 8.97$ (s, 1H, N=C*H*), 8.08 (m, 2H), 7.88 (m, 1H), 7.74 (m, 2H), 7.00 (m, 3H), 6.81 (m, 2H) (Ph), 6.25 (br, 1H, =C*H*), 5.15 (m, 2H, NC*H*₂), 1.76 (s, 9H, C*H*₃^{tBu}),.

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 170.1$ (N=*C*H), 138.8, 137.6, 133.3, 132.1, 130.3, 127.7, 127.4, 126.3, 126.2 (Ph and =*C*H), 72.2 (N*C*^{tBu}), 61.0 (N*C*H₂), 29.5 (*C*H₃^{tBu}). [C₆F₅ and BC not listed]

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -128.1$ (m, 1F), -129.0 (br, 2F), -129.6 (br, 2F), -130.6 (m, 1F) (*o*-C₆F₅), -160.2 (t, ${}^{3}J_{FF} = 20.7$ Hz), -162.0 (t, ${}^{3}J_{FF} = 20.5$ Hz), -162.1 (t, ${}^{3}J_{FF} = 20.5$ Hz) (each 1F, *p*-C₆F₅), -163.6 (m, 1F), -165.3 (m, 1F), -166.6 (br, 4F) (*m*-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CDCl₃): $\delta = -15.2 (v_{1/2} \sim 40$ Hz).

Fig. S64 ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound **2p**.

Synthesis and characterization of compound 2d-a

According to the procedure (B) from $Ph(CH)_2B(C_6F_5)_2$ (112.9 mg, 0.25 mmol) and compound **1d** (57.8 mg, 0.25 mmol). The product was isolated as a yellow solid (162.3 mg, 95% yield).

HRMS (ESI): m/z calcd for C₃₆H₃₀BF₁₀N [M+Na]⁺: 700.2204, found 700.2207.

¹**H NMR** (400 MHz, 299K, CDCl₃): $\delta = 8.63$ (s, 1H, N=C*H*), 7.04-7.93 (m, 9H, Ph), 7.28 (br, 1H) and 6.15 (d, ${}^{3}J_{HH} = 17.9$ Hz, 1H) (C*H*=C*H*), 5.15 (q, ${}^{3}J_{HH} = 7.3$ Hz, 1H, =C*H*), 4.76 (br, 2H, NC*H*₂), 2.49 (s, 3H, C*H*₃^{Ph}), 1.58 (s, 12H, C*H*₃^{tBu} and C*H*₃).

¹³C{¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 166.8$ (N=*C*H), 149.9, 141.7, 134.8, 131.0, 128.3, 125.8, 123.9 (Ph), 131.9 and 125.6 (*C*H=*C*H), 125.5 (=*C*H), 69.9 (N*C*^{tBu}), 61.1 (N*C*H₂), 29.2 (*C*H₃^{tBu}), 22.3 (*C*H₃^{Ph}), 16.8 (*C*H₃). [C₆F₅ and BC not listed]

¹**H**, ¹**H NOESY** (101 MHz/101 MHz, 299K, CDCl₃) [selected traces]: δ^{1} H/ δ^{1} H: 8.63/1.58 (N=CH/CH₃^{tBu}), 6.15/1.58 (CH=CH/CH₃), 5.15/1.58 (=CH/CH₃), 4.76/1.58 (NCH₂/CH₃^{tBu}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 8.63/166.8 (N=*CH*), (7.28, 6.15)/(131.9, 125.6) (*CH*=*CH*), 5.15/125.5 (=*CH*), 4.76/61.1 (N*CH*₂), 1.58/29.2 (*CH*₃^{tBu}), 1.58/16.8 (*CH*₃).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -130.1$ (m, 4F, *o*-C₆F₅), -162.6 (m, 2F, *p*-C₆F₅), -165.7 (m, 4F, *m*-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CDCl₃): $\delta = -13.8 (v_{1/2} \sim 60$ Hz).

Synthesis and characterization of compound 2d-b

According to the procedure (B) from ${}^{n}BuCH(C_{6}F_{5})B(C_{6}F_{5})_{2}$ (110.4 mg, 0.25 mmol) and compound **1d** (57.3 mg, 0.25 mmol). The product was isolated as a yellow solid (153.3 mg, 91% yield).

HRMS (ESI): m/z calcd for C₄₀H₃₃BF₁₅N [M+Na]⁺: 846.2359, found 846.2357.

¹**H NMR** (400 MHz, 299K, CD₂Cl₂): $\delta = 8.72$ (s, 1H, N=C*H*), 7.85 (d, ³*J*_{HH} = 8.0 Hz, 2H) and 7.38 (d, ³*J*_{HH} = 8.0 Hz, 2H) (Ph), 5.89 (br, 1H, =C*H*^{nBu}), 5.19 (br, 1H, =C*H*), 4.92 (d, ²*J*_{HH} = 16.8 Hz, 1H) and 4.68 (d, ²*J*_{HH} = 16.9 Hz, 1H) (NC*H*₂), 2.51 (s, 3H, C*H*₃^{Ph}), 1.71 (m, 2H) and 1.11-1.23 (m, 4H)

(CH₂^{nBu}), 1.60 (s, 9H, CH₃^{tBu}), 1.49 (d, ${}^{3}J_{HH} = 7.1$ Hz, 3H, CH₃), 0.76 (t, ${}^{3}J_{HH} = 7.1$ Hz, 3H, CH₃^{nBu}).

¹³C{¹H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 167.9$ (N=*C*H), 150.2, 134.6, 131.0, 124.4 (Ph), 141.4 (=*C*H^{nBu}), 127.9 (=*C*H), 70.6 (N*C*^{tBu}), 61.3 (N*C*H₂), 31.7, 31.6, 22.7(*C*H₂^{nBu}), 29.3 (*C*H₃^{tBu}), 22.3 (*C*H₃^{Ph}), 17.6 (*C*H₃), 14.0 (*C*H₃^{nBu}). [C₆F₅ and BC not listed]

¹H, ¹³C GHMBC (400 MHz/101 MHz, 299K, CD₂Cl₂) [selected traces]: δ^{1} H/ δ^{13} C: 8.72/61.3 (N=CH/NCH₂), 5.89/31.7 (=CH^{nBu}/CH₂^{nBu}), 4.92/127.9 (NCH₂/=CH), 1.71/141.4 (CH₂^{nBu}/=CH^{nBu}), 1.60/29.3 (CH₃^{tBu}/ CH₃^{tBu}), 1.60/70.6 (CH₃^{tBu}/NC^{tBu}).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CD₂Cl₂): $\delta = -127.2$ (br, 2F), -128.8 (br, 2F), -138.4 (m, 1F), -138.5 (m, 1F) (*o*-C₆F₅), -162.1 (t, ${}^{3}J_{FF} = 20.9$ Hz, 1F), -163.2 (t, ${}^{3}J_{FF} = 20.4$ Hz, 1F), -163.5 (t, ${}^{3}J_{FF} = 20.4$ Hz, 1F) (*p*-C₆F₅), -165.9 (m, 1F), -166.3 (m, 1F), -167.1 (m, 2F), -167.3 (m, 2F) (*m*-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CD₂Cl₂): $\delta = -12.0 (v_{1/2} \sim 30$ Hz).

Fig. S70 ¹H NMR (400 MHz, 299K, CD₂Cl₂) spectrum of compound 2d-b.

75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 **Fig. S73** ¹¹B NMR (128 MHz, 299K, CD₂Cl₂) spectrum of compound **2d-b**.

Synthesis and characterization of compound 2d-c

p-tol H Ph t_{Bu} N⁺ B (C₆F₅)₂ According to the procedure (B) from $Ph(CH_2)_2B(C_6F_5)_2$ (71.6 mg, 0.16 mmol) and compound **1d** (36.5 mg, 0.16 mmol). The product was isolated as a yellow solid (96.4 mg, 89% yield).

HRMS (ESI): m/z calcd for $C_{36}H_{32}BF_{10}N$ [M+Na]⁺: 702.2360, found 702.2355.

¹**H NMR** (400 MHz, 299K, CDCl₃): $\delta = 8.60$ (s, 1H, N=C*H*), 7.91-6.86 (m, 9H, Ph), 4.90 (br, 1H, =C*H*), 4.72 (br, 2H, NC*H*₂), 2.49 (s, 3H, C*H*₃^{Ph}), 2.34, 2.05, 1.28 and 1.04 (each m, each 1H, C*H*₂C*H*₂^{Ph}), 1.54 (d, ³*J*_{HH} = 6.9 Hz, 3H, C*H*₃), 1.45 (s, 9H, C*H*₃^{tBu}).

¹³C{¹H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 167.6$ (N=*C*H), 150.0, 148.9, 134.8, 131.0, 128.5, 128.3, 124.9, 124.4 (Ph), 123.4 (=*C*H), 70.1 (N*C*^{tBu}), 60.4 (N*C*H₂), 35.1 (*C*H₂), 28.8 (*C*H₃^{tBu}), 22.3 (*C*H₃^{Ph}), 16.4 (*C*H₃). [C₆F₅ and BC not listed]

¹**H**, ¹**H NOESY** (101 MHz/101 MHz, 299K, CD_2Cl_2) [selected traces]: δ^1H/δ^1H : 8.60/1.45 (N=CH/CH₃^{tBu}), 4.90/1.54 (=CH/CH₃), 4.72/1.45 (NCH₂/CH₃^{tBu}).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CD₂Cl₂) [selected traces]: δ^{1} H/ δ^{13} C: 8.60/60.4 (N=CH/NCH₂), 4.72/123.4 (NCH₂/=CH), 1.45/70.1 (CH₃^{tBu}/NC^{tBu})

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): δ = -131.4 (br, 2F), -131.8 (d, ³*J*_{FF} = 25.0 Hz, 2F) (*o*-C₆F₅), -162.9 (t, ³*J*_{FF} = 20.6 Hz, 1F), -163.4 (t, ³*J*_{FF} = 20.6 Hz, 1F) (*p*-C₆F₅), -165.9 (m, 4F) (*m*-C₆F₅). ¹¹**B** NMR (128 MHz, 299K, CDCl₃): $\delta = -12.8 (v_{1/2} \sim 50 \text{Hz}).$

-128 -132 -136 -140 -144 -148 -152 -156 -160 -164 -168 -17: **Fig. S76** ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound **2d-c**.

65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -7 **Fig. S77** ¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound **2d-c**.

The reaction of 1q with B(C₆F₅)₃

A solution of $B(C_6F_5)_3$ (15.4 mg, 0.03 mmol) and **1q** (5.6 mg, 0.03 mmol) in C_6D_6 (0.6 mL) in the NMR tube was kept for 4 h at room temperature, then NMR experiments were conducted.

75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 **Fig. S80** In-situ ¹¹B NMR (128 MHz, 299K, C_6D_6) spectrum of reaction of **1q** with $B(C_6F_5)_3$.

Reactions of 1r with B(C₆F₅)₃

A solution of $B(C_6F_5)_3$ (10.2 mg, 0.02 mmol) and **10** (3.2 mg, 0.02 mmol) in CDCl₃ (0.6 mL) in the NMR tube was kept for 4 h at room temperature, then NMR experiments were conducted.

¹**H NMR** (400 MHz, 299K, CDCl₃): $\delta = 7.44$ (m, 5H, Ph), 6.21 (br, 1H, N*H*), 4.33 (d, ${}^{3}J_{\text{HH}} = 13.7$ Hz, 1H) and 4.04 (t, ${}^{3}J_{\text{HH}} = 12.0$ Hz, 1H) (PhC*H*₂), 3.66 (s, 2H, NC*H*₂), 1.60 (s, 3H, C*H*₃).

¹³C {H} NMR (101 MHz, 299K, CDCl₃): $\delta = 139.8$, 128.5, 128.5, 127.2 (Ph), 79.3 and 77.2 (*C*=*C*), 52.6 (Ph*C*H₂), 38.0 (N*C*H₂), 3.7 (*C*H₃).[C₆F₅ not listed]

¹⁹**F{H} NMR** (377 MHz, 299K, CDCl₃): $\delta = -125.8$, -127.6, -128.2, -128.7, -137.0, -142.3 (each m, each 1F, o-C₆F₅), -155.3 (t, ${}^{3}J_{FF} = 20.3$ Hz), -155.6 (t, ${}^{3}J_{FF} = 20.6$ Hz), -156.2 (t, ${}^{3}J_{FF} = 20.5$ Hz) (each 1F, p-C₆F₅), -160.2 (1F), -161.0 (1F), -162.3 (2F), -163.1 1F), -163.6 (1F) (each m, m-C₆F₅).

¹¹**B** NMR (128 MHz, 299K, CDCl₃): $\delta = -4.4 (v_{1/2} \sim 300$ Hz).

Fig. S81 In-situ ¹H NMR (400 MHz, 299K, C_6D_6) spectrum of the reaction of 1r with $B(C_6F_5)_3$.

Fig. S82 In-situ ¹³C {¹H} NMR (101 MHz, 299K, CDCl₃) spectrum of the reaction of **1r** with $B(C_6F_5)_{3.}$

-124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 **Fig. S83** In-situ ¹⁹F{¹H} NMR (377 MHz, 299K, C₆D₆) spectrum of the reaction of **1r** with B(C₆F₅)₃.

Fig. S84 In-situ ¹¹B NMR (128 MHz, 299K, C_6D_6) spectrum of the reaction of **1r** with B(C_6F_5)₃.

Reactions of 1s with B(C₆F₅)₃

Ph N
tBu
 + B(C₆F₅)₃ $\xrightarrow{CDCl_3 \text{ or } C_6D_6}$ Messy
1s

In the NMR tube, a solution of $B(C_6F_5)_3$ (10.3 mg, 0.02 mmol) and **1s** (4.2 mg, 0.02 mmol) in CDCl₃ or C_6D_6 (0.6 mL). NMR studies showed that the reaction resulted in several products. Unfortunately, our efforts to isolate the products were not successful. We speculated that this reaction are messy due to several possible pathways which could lead to the 1,1-carboboration products, the deprotonation product and our desired *trans*-hydroboration product.

Control experiments

1st Experiment: In an NMR tube, 1a (4.5 mg, 1.0 equiv.) and 3^3 (14.0 mg, 1.0 equiv.) were dissolved in CDCl₃ (0.6 mL). The NMR tube was kept at room temperature or heated to 60°C, then NMR experiments were conducted after 4 h.

Fig. S85 ¹H NMR (400 MHz, 299K, CDCl₃) spectra of (1) in-situ reaction of **1a** and **3**, (2) compound **1a**, (3) compound **3**.

 2^{nd} Experiments: (1) In an NMR tube, B(C₆F₅)₃ (10.2 mg, 1.0 equiv.), 1a-D (4.3 mg, 1.0 equiv.) and 3 (13.4 mg, 1.0 equiv.) were dissolved in CDCl₃ (0.6 mL). The NMR tube was kept at room temperature for 4 h, then NMR experiments were conducted.

(2) In an NMR tube, $B(C_6F_5)_3$ (10.2 mg, 1.0 equiv.), **1a** (4.3 mg, 1.0 equiv.) and **3** (13.4 mg, 1.0 equiv.) were dissolved in CDCl₃ (0.6 mL). The NMR tube was kept at room temperature for 4 h, then NMR experiments were conducted.

Fig. S86 ¹H NMR (400 MHz, 299K, CDCl₃) spectra of (1) in-situ reaction of $B(C_6F_5)_3$, 1a-D and 3, (2) in-situ reaction of $B(C_6F_5)_3$, 1a and 3, (3) isolated compound 2a.

3rd Experiment: In an NMR tube, $B(C_6F_5)_3$ (10.3 mg, 2.0 equiv.), **1a-D** (2.2 mg, 1.0 equiv.) and **1b** (2.8 mg, 1.0 equiv.) were dissolved in CD_2Cl_2 (0.6 mL). The NMR tube was kept at room temperature for 4 h, then NMR experiments were conducted.

Fig. S87 ¹H NMR (400 MHz, 299K, CDCl₃) spectra of (1) isolated compound **2a**, (2) isolated compound **2b**, (3) in-situ reaction of $B(C_6F_5)_3$, **1a-D** and **1b**. (*CD₂Cl₂)

Reactions of 1a with different boranes

1st Experiments: In the NMR tube, a solution of $(PhCH=CPh)_2B(C_6F_5)$ was in-situ generated by the reaction of $C_6F_5BH_2$ ·SMe₂ (10.0 mg, 0.04 mmol) and 1,2-diphenylethyne (14.8 mg, 0.08 mmol) at room temperature in CDCl₃ (0.6 mL), then **1a** (8.9 mg, 0.04 mmol) was added. NMR studies showed that both of the starting materials kept unchanged at room temperature or at elevated temperature (80 °C).

2nd Experiment: In the NMR tube, a solution of PhCH₂CH₂BR₂ was insitu generated by the reaction of styrene (4.2 mg, 0.04 mmol) and 9-BBN dimer (4.9 mg, 0.02 mmol) at room temperature in CDCl₃ (0.6 mL), then $B(C_6F_5)_3$ (2.1 mg, 0.004 mmol) and **1a** (8.7 mg, 0.04 mmol) was added. NMR studies showed that (i) PhCH₂CH₂BR₂ remained unchanged at room temperature or at elevated temperature (80 °C), and (ii) **1a** were also unchanged except that a small part of **1a** reacted with the catalytic $B(C_6F_5)_3$.

3rd Experiment: In the NMR tube, a solution of PhCH=CHBR₂ was insitu generated by the reaction of PhCCH (4.1 mg, 0.04 mmol) and 9-BBN dimer (4.8 mg, 0.02 mmol) at room temperature in CDCl₃ (0.6 mL), then $B(C_6F_5)_3$ (2.0 mg, 0.004 mmol) and **1a** (8.8 mg, 0.04 mmol) was added. NMR studies showed that (i) PhCH=CHBR₂ remained unchanged at room temperature or at elevated temperature (80 °C), and (ii) **1a** were also unchanged except that a small part of **1a** reacted with the catalytic $B(C_6F_5)_3$.

4th Experiment: A solution of Mes₂BF (10.8 mg, 0.04 mmol), $B(C_6F_5)_3$ (2.2 mg, 0.004 mmol) and **1a** (4.7 mg, 0.04 mmol) in CDCl₃ (0.6 mL) in the NMR tube. NMR studies showed that (i) Mes₂BF remained unchanged at room temperature or at elevated temperature (80 °C), and (ii) **1a** were also unchanged except that a small part of **1a** reacted with the catalytic $B(C_6F_5)_3$.

References:

[1] S. Mo and J. Xu, ChemCatChem., 2014, 6, 1679-1683.

[2] T. Vilaivan, *Tetrahedron Letters*, 2006, **47**, 6739-6742.

[3] Y.-P. Liu, C.-J. Zhu, C.-C. Yu, A.-E Wang and P.-Q. Huang, *Eur. J. Org. Chem.*, 2019, **42**, 7169-7174.

[4] C. Jiang, O. Blacque, T. Fox and H. Berke, Organometallics, 2011, 30, 2117-2124.