Electronic Supplementary Information

Formation of a core-shell droplet in a thermo-responsive

ionic liquid/water mixture by optical tweezers

Maho Tanaka¹, Yasuyuki Tsuboi¹ and Ken-ichi Yuyama*¹

¹Department of Chemistry, Graduate School of Science, Osaka Metropolitan University

S1. Sample preparation

- S2. Optical setup
- S3. Release of the droplet in the prolonged irradiation
- S4. Laser power dependence on the final droplet size

S5. Stability of the core optically manipulated to ta bottom glass substrate

S1. Sample preparation

The ionic liquid was prepared from tetrabutylphosphonium hydroxide (40 w/w% in water) (TCI) and *m*-xylene-4-sulfonic acid (solid, purity: >98.0%) (TCI). Equimolar amounts of them were mixed in a sample tube. The mixture was heated on a hotplate, evaporating the water. The remaining IL was diluted with an appropriate amount of water to adjust the concentration.

S2. Optical setup

A continuous-wave (cw) 1064 nm laser beam (Shanghai Laser & Optics Century, IR 1064T5-3000) was used for the optical tweezers. The laser was introduced into an inverted microscope (Nikon, ECLIPSE Ti2) and focused onto a sample solution sandwiched between glass slides through an objective lens (Nikon, \times 100, oil, N.A.=1.45). The diameter of the trapping laser was estimated to be 0.90 µm at the focal spot. The optical images were captured with an imaging camera (Omron Sentec, STC-MVS322U3V). For confocal Raman microspectroscopy, a cw 532 nm laser (HC

Photonics) was used as the excitation light source. The scattered light was guided to a pinhole with a diameter of 150 μ m. Then, the light was introduced to a spectrograph (SOL instruments) and detected with a charge coupled device (CCD) detector (Andor). Fluorescence images and spectra were obtained under the irradiation of a cw 405 nm laser (Backer & Hickl GmbH, BDS-SM-405-FBE).

S3. Release of the droplet in the prolonged irradiation

Fig. S1 Optical transmission micrographs around the focal spot under the prolonged laser irradiation at 630 mW. The sample is different from that of Fig. 2a.

S4. Laser power dependence on the final droplet size

Fig. S2 The relation of the size of the final microdroplet and the input laser power.

S5. Stability of the core

Fig. S3 Optical transmission micrographs of the core on a bottom glass substrate. The core was moved to the substrate by lowering the focal position and observed for 30 min without the laser irradiation.