Hydrophosphorylation of Electron-Deficient Alkenes and Alkynes Mediated by Convergent Paired

Electrolysis

Xue Sun, ${ }^{\&},{ }^{\text {a }}$ Jianjing, Yang, ${ }^{\&}$, a Kelu Yan, ${ }^{a}$ Xinyu Zhuang, ${ }^{a}$ Jie Yu, ${ }^{a}$ Xiaodan Song, ${ }^{a}$ Fanjun Zhang, ${ }^{\text {a }}$ Bingwen Li ,*, and Jiangwei Wen* a
${ }^{\text {a }}$ Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
${ }^{\text {b }}$ Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China.
${ }^{\&}$ X. Sun and J. Yang contributed equally to this work.
*Corresponding author:wenjy@ qfnu.edu.cn, libingwen0609@163.com

1. General information

All glassware was oven dried at $100{ }^{\circ} \mathrm{C}$ for hours and cooled down under vacuum. Diarylphosphane oxides and deuterated diphenylphosphane were synthesized according to previous reports. ${ }^{1}$ Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis is dual display potentiostat (DJS-292B) (made in China), the carbon $\operatorname{rod}(\phi=6.0 \mathrm{~mm})$, Pt plates $\left(1.0 \times 1.0 \mathrm{~cm}^{2}\right)$, and Ni plates $\left(1.5 \times 1.5 \mathrm{~cm}^{2}\right)$ was purchased from Xuzhou Xinke Instrument and Meter Co. LTD. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (b. p. $60-90{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR data were recorded with Bruker Advance III $(500 \mathrm{MHz})$ spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz . All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks (77.00 ppm , chloroform), respectively.

2. General Procedure

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, $\mathbf{a} / \mathbf{d}(0.25 \mathrm{mmol}), \mathbf{b}(0.5$ $\mathrm{mmol})$, and $\mathrm{Et}_{4} \mathrm{NTs}(0.5 \mathrm{mmol}, 142.5 \mathrm{mg})$ were combined and added. The flask was equipped with a carbon rods $(\phi=6.0 \mathrm{~mm})$ as the anode and Pt plates $\left(1.0 \times 1.0 \mathrm{~cm}^{2}\right)$ as the cathode and was then charged with nitrogen. Under the protection of nitrogen, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under $25^{\circ} \mathrm{C}$ for 1.0 h . When the reaction was finished, the reaction mixture was washed with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The pure product \mathbf{c} was obtained by flash column chromatography on silica gel.

3. Optimization of reaction conditions

Table S1. Optimization of reaction conditions ${ }^{a}$

${ }^{a}$ Standard conditions: carbon rods as the anode, Pt plates $\left(1 \times 1 \mathrm{~cm}^{2}\right)$ as the cathode, constant current $=5$ $\mathrm{mA}, \mathbf{1 a}(0.25 \mathrm{mmol}), \mathbf{1 b}(0.5 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NTs}(0.5 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL}), \mathrm{rt}, \mathrm{N}_{2}, 1.0 \mathrm{~h}, 0.75 \mathrm{Fmol}^{-1} . \mathrm{n}$. d. $=$ not detected. $\mathrm{DCE}=1,2$-dichloroethane, $\mathrm{DMF}=\mathrm{N}, \mathrm{N}$-dimethylacetamide. ${ }^{b}$ Isolated yields.

4. Mechanistic Studies

4.1 Cyclic Voltammetry Experiment

Figure S1. Cyclic Voltammetry at glass carbon as the working electrode, Pt plates $\left(1.5 \times 1.5 \mathrm{~cm}^{2}\right)$ as the counter electrode, $\mathrm{Ag} / \mathrm{AgCl}$ as reference electrode. (a) $\mathbf{1 a}(0.25 \mathrm{mM})$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ containing $0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$. (b)

1b $(0.5 \mathrm{mM})$. Base $(2 \mathrm{mM})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(10.0 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=9 / 1)$ containing $0.1 \mathrm{M}^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$.

4.2 Deuterium Experiment

Figure S2. ${ }^{1} \mathrm{H}$ NMR resluts of $\mathbf{1 c} \mathbf{- d}$.
In an oven-dried undivided three-necked flask $(25 \mathrm{~mL})$ equipped with a stir bar, $1 \mathbf{a}(0.25 \mathrm{mmol}, 52.0$ $\mathrm{mg}), \mathbf{1 b}-\boldsymbol{d}(0.5 \mathrm{mmol}, 101.5 \mathrm{mg})$, and $\mathrm{Et}_{4} \mathrm{NTs}(0.5 \mathrm{mmol}, 142.5 \mathrm{mg})$ were combined and added. The flask was equipped with a carbon rods $(\phi=6.0 \mathrm{~mm})$ as the anode and Pt plates $\left(1.0 \times 1.0 \mathrm{~cm}^{2}\right)$ as the cathode and was then charged with nitrogen. Under the protection of nitrogen, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under $25^{\circ} \mathrm{C}$ for 1.0 h . When the reaction was finished, the pure product $1 \mathbf{c}-\boldsymbol{d}$ was obtained by flash column chromatography on silica gel with a yield of 45%.

4.3 Radical trapping experiments

In an oven-dried undivided three-necked flask $(25 \mathrm{~mL})$ equipped with a stir bar, $\mathbf{1 a}(0.25 \mathrm{mmol}, 52.0$ $\mathrm{mg}), \mathbf{1 b}(0.5 \mathrm{mmol}, 101.0 \mathrm{mg})$, BHT ($0.5 \mathrm{mmol}, 110.0 \mathrm{mg}$), and $\mathrm{Et}_{4} \mathrm{NTs}(0.5 \mathrm{mmol}, 142.5 \mathrm{mg})$ were
combined and added. The flask was equipped with a carbon rods $(\phi=6.0 \mathrm{~mm})$ as the anode and Pt plates $\left(1.0 \times 1.0 \mathrm{~cm}^{2}\right)$ as the cathode and was then charged with nitrogen. Under the protection of nitrogen, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under $25^{\circ} \mathrm{C}$ for 1.0 h . When the reaction was finished, the solution was concentrated in a vacuum and not detected the desired product $\mathbf{1 c}$. The compound $\mathbf{4 2} \mathbf{c}$ can be isolated in a yield of 48%.
4.4 HRMS results of 1 d and 1 b under standard conditions for 30 min (Figure $\mathbf{S 2}$ - S 5).

In an oven-dried undivided three-necked flask $(25 \mathrm{~mL})$ equipped with a stir bar, $\mathbf{1 d}(0.25 \mathrm{mmol}, 51.5$ $\mathrm{mg}), \mathbf{1 b}(0.5 \mathrm{mmol}, 101.0 \mathrm{mg})$, and $\mathrm{Et}_{4} \mathrm{NTs}(0.5 \mathrm{mmol}, 142.5 \mathrm{mg})$ were combined and added. The flask was equipped with a carbon rods $(\phi=6.0 \mathrm{~mm})$ as the anode and Pt plates $\left(1.0 \times 1.0 \mathrm{~cm}^{2}\right)$ as the cathode and was then charged with nitrogen. Under the protection of nitrogen, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under $25^{\circ} \mathrm{C}$ for 30.0 min , and the corresponding composition was monitored by HRMS.

Figure S3. HRMS results of 1d and 1b under standard conditions for 30 min .

Figure S4. Zoomed in HRMS results of 1a.
D:IDATAI2022062016IWJW-4
06/20/22 09:34:37
WJW-4 \#29-35 ${ }^{-} \mathrm{RT}^{-}{ }^{-}$0.13-0.15 ${ }^{-} \mathrm{AV}^{-}{ }^{-7}{ }^{-} \mathrm{SB}^{-}{ }^{-38}{ }^{-} 0.69-0.85{ }^{-} \mathrm{NL}^{-}{ }^{-} 1.04 \mathrm{E} 9$
T: FTMS + p ESI Full ms [100.0000-1500.0000]

Figure S5. Zoomed in HRMS results of 1c and byproduct \mathbf{F} (trace).

Figure S6. Zoomed in HRMS results of byproduct G.

Scheme S1. Postulated reaction pathway for the hydrophosphorylation of ynones.

5. References

1. a) C.-J. Li, J. Lü, Z.-X. Zhang, K. Zhou, Y. Li, G.-H. Qi, Res. Chem. Intermed. 2018, 44, 4547-4562; b) H.-F. Qian, C.-K. Li, Z.-H. Zhou, Z.-K. Tao, A. Shoberu, J.-P. Zou, Org. Lett. 2018, 20, 18, 59475951.
2. a) C. Shan, F. Chen, J. Pan, Y. Gao, P. Xu, Y. Zhao, J. Org. Chem. 2017, 82, 11659-11666; b) Z. Jiang, Y. Zhang, W. Ye, C.-H. Tan, Tetrahedron Letters 2007, 48, 51-54; c) S. Liu, N. Shao, F.-Z. Li, X.-C. Yang, M.-C. Wang, Org. Biomol. Chem., 2017, 15, 9465-9474; d) H. K. Lenker, M. E. Richard, K. P. Reese, A. F. Carter, J. D. Zawisky, E. F. Winter, T. W. Bergeron, K. S. Guydon, R.A. Stockland, Jr. J. Org. Chem. 2012, 77, 1378-1385; e) A. Russo, A. Lattanzi, Eur. J. Org. Chem. 2010, 6736-6739; f) Z. Huang, W. Liu, S. Li, Y. Yang, S. Guo, H. Cai, Synlett 2020, 31, 1295-1297.
3. Detail descriptions for products.

3-(diphenylphosphoryl)-1,3-diphenylpropan-1-one (1c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 2$) with 94% isolated yield $(96.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 4 \mathrm{H})$, $7.33(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.9,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.6(\mathrm{~d}$, $\left.J_{C-P}=13.3 \mathrm{~Hz}\right), 136.4,135.9\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 133.3,132.0\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-P}=100.7\right.$ $\mathrm{Hz}), 131.4\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.5 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{C-P}=94.9 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=8.9\right.$ $\mathrm{Hz}), 129.8\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 128.5,128.3\left(\mathrm{~d}, J_{C-P}=1.8 \mathrm{~Hz}\right), 128.1,128.0$, $127.0\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 41.0\left(\mathrm{~d}, J_{C-P}=69.2 \mathrm{~Hz}\right), 38.9 .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.4$.

3-(diphenylphosphoryl)-3-phenyl-1-(p-tolyl)propan-1-one (2c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 2$) with 82% isolated yield $(87.0 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25$ $-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 3 \mathrm{H}), 4.25-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.95$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.2\left(\mathrm{~d}, J_{C-P}=13.3 \mathrm{~Hz}\right), 144.2,135.9\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 133.9$, $132.0\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{C-P}=100.5 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=94.5 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right)$,
$131.3\left(\mathrm{~d}, J_{C-P}=8.5 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 129.2,128.9\left(\mathrm{~d}, J_{C-P}=11.2\right.$ $\mathrm{Hz}), 128.2\left(\mathrm{~d}, J_{C-P}=1.8 \mathrm{~Hz}\right), 128.2,128.0\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 41.0\left(\mathrm{~d}, J_{C-P}=\right.$ 69.1 Hz), 38.8, 21.6. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.4$.

3-(diphenylphosphoryl)-1-(4-fluorophenyl)-3-phenylpropan-1-one (3c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 1$) with 73% isolated yield $(78.1 \mathrm{mg})$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.91$ $(\mathrm{m}, 2 \mathrm{H}), 4.41-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $195.1\left(\mathrm{~d}, J_{C-P}=13.2 \mathrm{~Hz}\right), 165.8\left(\mathrm{~d}, J_{C-F}=255.4 \mathrm{~Hz}\right), 132.8\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right)$, $131.5\left(\mathrm{~d}, J_{C-P}=100.7 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=97.0 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.5 \mathrm{~Hz}\right)$, $130.9\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{C-P}=9.4 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C-P}=11.2 \mathrm{~Hz}\right)$, $128.3\left(\mathrm{~d}, J_{C-P}=1.7 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 127.1\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 115.6\left(\mathrm{~d}, J_{C-F}=21.9 \mathrm{~Hz}\right)$, $41.1\left(\mathrm{~d}, J_{C-P}=69.0 \mathrm{~Hz}\right), 38.9 .{ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 34.3$.

1-(4-chlorophenyl)-3-(diphenylphosphoryl)-3-phenylpropan-1-one (4c): ${ }^{\mathbf{2}}$ white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) with 62% isolated yield $(68.8 \mathrm{mg})$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.43$ (m, 2H), $7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.40$ $(\mathrm{m}, 1 \mathrm{H}), 4.01-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.31(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.6\left(\mathrm{~d}, J_{C-P}=13.2\right.$ $\mathrm{Hz}), 139.8,135.8\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 134.7,132.0\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-P}=100.6 \mathrm{~Hz}\right), 131.4$ $\left(\mathrm{d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.5 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{C-P}=94.5 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 129.7$ $\left(\mathrm{d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 129.5,128.9\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 128.8,128.3\left(\mathrm{~d}, J_{C-P}=1.8 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{C-P}=11.8\right.$ $\mathrm{Hz}), 127.1\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 41.1\left(\mathrm{~d}, J_{C-P}=68.9 \mathrm{~Hz}\right), 38.9 .{ }^{31} \mathrm{P} \operatorname{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.3$.

1-(4-bromophenyl)-3-(diphenylphosphoryl)-3-phenylpropan-1-one (5c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) with 61% isolated yield $(74.4 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.47-7.43$ $(\mathrm{m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 4.46$ - $4.39(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.31(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.8(\mathrm{~d}, J$ $\left.{ }_{C-P}=13.2 \mathrm{~Hz}\right), 135.7\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 135.1,132.1\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{C-P}=105.3 \mathrm{~Hz}\right), 131.8$ $\left(\mathrm{d}, J_{C-P}=102.8 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.4 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 129.7$ $\left(\mathrm{d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 129.6,128.9\left(\mathrm{~d}, J_{C-P}=11.2 \mathrm{~Hz}\right), 128.6,128.3\left(\mathrm{~d}, J_{C-P}=1.4 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{C-P}=11.8\right.$ $\mathrm{Hz}), 127.1\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 41.1\left(\mathrm{~d}, J_{C-P}=68.6 \mathrm{~Hz}\right), 38.9 .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.4$.

3-(diphenylphosphoryl)-3-phenyl-1-(m-tolyl)propan-1-one (6c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 1)$ with 68% isolated yield $(72.1 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41$ $-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 4.51$ $-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $196.7\left(\mathrm{~d}, J_{C-P}=13.3 \mathrm{~Hz}\right), 138.3,136.4,135.9\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 134.0,132.0\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 131.7$ $\left(\mathrm{d}, J_{C-P}=100.8 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-P}=94.5 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.5 \mathrm{~Hz}\right), 130.9$ $\left(\mathrm{d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C-P}=11.2 \mathrm{~Hz}\right), 128.7,128.4,128.2\left(\mathrm{~d}, J_{C-P}=1.8\right.$ $\mathrm{Hz}), 128.0\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 125.2,41.0\left(\mathrm{~d}, J_{C-P}=69.2 \mathrm{~Hz}\right), 39.0,21.2 .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 35.0$.

3-(diphenylphosphoryl)-3-phenyl-1-(0-tolyl)propan-1-one (7c): $\mathbf{}^{2}$ white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 2$) with 72% isolated yield $(76.3 \mathrm{mg}) . \mathrm{m} . \mathrm{p} .=183-$ $186{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H})$, $7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 5 \mathrm{H}), 4.48-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.81(\mathrm{~m}, 1 \mathrm{H})$, $3.38-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.7\left(\mathrm{~d}, J_{C-P}=13.3 \mathrm{~Hz}\right), 138.1,137.3$, $135.8\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 131.8,131.6\left(\mathrm{~d}, J_{C-P}=81.0 \mathrm{~Hz}\right), 131.4,131.4\left(\mathrm{~d}, J_{C-}\right.$ $\left.{ }_{P}=86.4 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.5 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{C-P}\right.$ $=5.7 \mathrm{~Hz}), 128.9\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 128.4,128.3\left(\mathrm{~d}, J_{C-P}=1.8 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 127.0$ $\left(\mathrm{d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 125.6,41.6,41.6\left(\mathrm{~d}, J_{C-P}=81.0 \mathrm{~Hz}\right), 20.9 .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.0$.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]{ }^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{P}: 425.1665$; found: 425.1665 .

3-(diphenylphosphoryl)-1-(2-methoxyphenyl)-3-phenylpropan-1-one (8c): ${ }^{\mathbf{2}}$ white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=2 / 1)$ with 70% isolated yield $(77.0 \mathrm{mg})$. m. p. $=179-181^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.41-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.44$ $(\mathrm{m}, 1 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.43(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.8$ $\left(\mathrm{d}, J_{C-P}=13.9 \mathrm{~Hz}\right), 158.6,135.6\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}\right), 133.7,132.0\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-P}=2.8\right.$ $\mathrm{Hz}), 131.4\left(\mathrm{~d}, J_{C-P}=8.8 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=74.9 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{C-P}=70.4\right.$ $\mathrm{Hz}), 130.2,130.0\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{C-P}=11.4 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{C-P}=0.7 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{C-P}\right.$ $=8.7 \mathrm{~Hz}), 127.5,126.9\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 120.4,111.4,55.4,43.5,41.3\left(\mathrm{~d}, J_{C-P}=69.1 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}$ (202 MHz, CDCl_{3}) δ 34.0. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]{ }^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{P}: 441.1614$; found: 441.1614 .

3-(diphenylphosphoryl)-3-phenyl-1-(thiophen-2-yl)propan-1-one (9c): yellow solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 2$) with 66% isolated yield (68.7 mg). $\mathrm{m} . \mathrm{p}$. $=149-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}$, 2H), $7.53-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.76(\mathrm{~m}$, $1 \mathrm{H}), 4.87-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.3$ $\left(\mathrm{d}, J_{C-P}=12.6 \mathrm{~Hz}\right), 137.6\left(\mathrm{~d}, J_{C-P}=6.5 \mathrm{~Hz}\right), 136.3,133.4132 .1\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=2.7\right.$ $\mathrm{Hz}), 131.3\left(\mathrm{~d}, J_{C-P}=8.6 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{C-P}=96.0 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}=95.0\right.$ $\mathrm{Hz}), 128.9\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 128.5,128.2,128.1,127.4\left(\mathrm{~d}, J_{C-P}=6.5 \mathrm{~Hz}\right), 126.7\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right)$, $124.9\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 39.9,36.5\left(\mathrm{~d}, J_{C-P}=70.9 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.3 . \mathrm{HkRMS}$ (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{PS}: 417.1073$; found: 417.1069.

3-(diphenylphosphoryl)-1-(naphthalen-2-yl)-3-phenylpropan-1-one (10c): yellow solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) with 61% isolated yield $(70.1 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 2H), $7.51(\mathrm{~m}, 7 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2H), $7.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.55(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.5\left(\mathrm{~d}, J_{C-P}=13.4 \mathrm{~Hz}\right), 135.9\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 135.6,133.6,132.3,132.1\left(\mathrm{~d}, J_{C-P}=\right.$ $2.6 \mathrm{~Hz}), 131.6\left(\mathrm{~d}, J_{C-P}=100.7 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.5 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=\right.$ $103.0 \mathrm{~Hz}), 130.9\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 130.1,129.8\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 129.6,128.9\left(\mathrm{~d}, J_{C-P}=11.2 \mathrm{~Hz}\right)$, 128.6, $128.3\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right), 128.3,128.1\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 127.6,127.1\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 126.8$, 123.5, $41.2\left(\mathrm{~d}, J_{C-P}=69.0 \mathrm{~Hz}\right), 38.9 .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.6 . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / z:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{31} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{P}: 461.1665$; found: 461.1665 .

4-(diphenylphosphoryl)-4-phenylbutan-2-one (11c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 2$) with 78% isolated yield $(67.9 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25$ $-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 3 \mathrm{H}), 4.25-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.95$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 205.3\left(\mathrm{~d}, J_{C-P}=12.7 \mathrm{~Hz}\right), 135.8\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 132.0(\mathrm{~d}, J$ $\left.C_{C-P}=2.6 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=101.7 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.6 \mathrm{~Hz}\right), 131.3(\mathrm{~d}, J$ $\left.{ }_{C-P}=101.5 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C-P}=11.2 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J^{2}\right.$ $\left.C_{C-P}=1.7 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 127.1\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 43.5,41.1\left(\mathrm{~d}, J_{C-P}=68.7 \mathrm{~Hz}\right), 30.6$. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.7$.

3-(4-bromophenyl)-3-(diphenylphosphoryl)-1-phenylpropan-1-one (12c): ${ }^{\mathbf{2}}$ white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) with 69% isolated yield (84.2 mg). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.41-7.36$ $(\mathrm{m}, 3 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 6 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.31(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.4\left(\mathrm{~d}, J_{C-P}=13.2 \mathrm{~Hz}\right), 135.2\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 133.5,132.6\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right)$, $132.1\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=3.4 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=1.6 \mathrm{~Hz}\right)$, $131.3\left(\mathrm{~d}, J_{C-P}=100.5 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{C-P}=8.6 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{C-P}=99.5 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{C-P}=8.8 \mathrm{~Hz}\right)$, $129.0\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{C-P}=12.3 \mathrm{~Hz}\right), 128.6,128.2\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 128.0,121.1(\mathrm{~d}, J$
$\left.C_{C-P}=2.9 \mathrm{~Hz}\right), 40.5\left(\mathrm{~d}, J_{C-P}=68.9 \mathrm{~Hz}\right), 38.9 .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.8$.

3-(diphenylphosphoryl)-3-(2-fluorophenyl)-1-phenylpropan-1-one (13c): ${ }^{\mathbf{2}}$ white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 1)$ with 68% isolated yield $(72.8 \mathrm{mg})$. m. p. $=187-190^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.68$ $(\mathrm{m}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.75$ $(\mathrm{m}, 1 \mathrm{H}), 4.95-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $196.1\left(\mathrm{~d}, J_{C-P}=13.2 \mathrm{~Hz}\right), 160.4\left(\mathrm{dd}, J_{C-F, C_{-P}}=246.3,6.3 \mathrm{~Hz}\right), 136.2,133.3,132.2\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right)$, $131.6\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{C-P}=8.7 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{C-P}=101.6 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=95.2 \mathrm{~Hz}\right)$, $130.7\left(\mathrm{~d}, J_{C-P}=9.4 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{C-P}=11.4 \mathrm{~Hz}\right), 128.5,128.1,128.1\left(\mathrm{~d}, J_{C-P}=11.9 \mathrm{~Hz}\right), 124.3,123.3$ $\left(\mathrm{dd}, J_{C-F, C-P}=14.5,5.4 \mathrm{~Hz}\right), 114.9\left(\mathrm{~d}, J_{C-F}=23.1 \mathrm{~Hz}\right), 38.3,32.4\left(\mathrm{~d}, J_{C-P}=69.4 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR $(471$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-115.9(\mathrm{~d}, J=3.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.0$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]{ }^{+}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{FO}_{2} \mathrm{P}: 429.1414$; found: 429.1414.1

4-(diphenylphosphoryl)pentan-2-one (14c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 67% isolated yield $(95.8 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.86-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 6 \mathrm{H}), 3.18-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=9.2,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}), 1.13(\mathrm{dd}, J=16.4,7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.0\left(\mathrm{~d}, J_{C-P}=13.4 \mathrm{~Hz}\right), 131.8(\mathrm{~d}$, $\left.J_{C-P}=2.5 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=95.9 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=97.8 \mathrm{~Hz}\right), 130.9(\mathrm{~d}, J$ $\left.{ }_{C-P}=9.2 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{C-P}=11.5 \mathrm{~Hz}\right), 42.8,30.5$, $27.3\left(\mathrm{~d}, J_{C-P}=73.9 \mathrm{~Hz}\right), 13.0\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 37.3 . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$. $[\mathrm{M}+\mathrm{H}]{ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{P}: 287.1195$; found: 287.1194.

4-(diphenylphosphoryl)heptan-2-one (15c): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=2 / 1$) with 58% isolated yield (91.1 mg). m. p. $=112-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 6 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.76(\mathrm{~m}, 1 \mathrm{H})$,
$2.70-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.0\left(\mathrm{~d}, J_{C-P}=9.7 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.8$ $\left(\mathrm{d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=97.1 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=18.5 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{C-P}=11.5 \mathrm{~Hz}\right), 41.6$, $31.1\left(\mathrm{~d}, J_{C-P}=72.9 \mathrm{~Hz}\right), 30.6\left(\mathrm{~d}, J_{C-P}=1.8 \mathrm{~Hz}\right), 30.0,20.8\left(\mathrm{~d}, J_{C-P}=11.4 \mathrm{~Hz}\right), 13.9 .{ }^{31} \mathrm{P}$ NMR $(202$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 37.3. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}: 315.1508$; found: 315.1506 .

3-(diphenylphosphoryl)cyclohexan-1-one (16c): ${ }^{2}$ yellow oil was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=2 / 1)$ with 81% isolated yield $(120.7 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.86-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.45(\mathrm{~m}, 6 \mathrm{H}), 2.78-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.24(\mathrm{~m}$, $1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.6\left(\mathrm{~d}, J_{C-P}=14.2 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 130.9(\mathrm{~d}, J$ $\left.{ }_{C-P}=3.4 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{C-P}=3.4 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{C-P}=98.4 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J_{C-P}=97.7 \mathrm{~Hz}\right), 128.9(\mathrm{~d}, J$ $\left.C_{C-P}=2.4 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 41.0,39.2\left(\mathrm{~d}, J_{C-P}=3.2 \mathrm{~Hz}\right), 37.6\left(\mathrm{~d}, J_{C-P}=71.6 \mathrm{~Hz}\right), 26.3(\mathrm{~d}, J$ $\left.C_{C-P}=15.6 \mathrm{~Hz}\right), 23.2\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.6$.

methyl 3-(diphenylphosphoryl)butanoate (17c): ${ }^{2}$ yellow oil was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 1)$ with 41% isolated yield $(61.9 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.85-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 6 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.51$ $-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{dd}, J=16.2,7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4\left(\mathrm{~d}, J_{C-P}=17.7\right.$ $\mathrm{Hz}), 131.8\left(\mathrm{~d}, J_{C-P}=6.9 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=96.4 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}=8.8 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{C-P}=11.1\right.$ $\mathrm{Hz}), 51.9,34.1,29.2\left(\mathrm{~d}, J_{C-P}=73.3 \mathrm{~Hz}\right), 12.9\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.4$.

benzyl 3-(diphenylphosphoryl)-3-phenylpropanoate (18c): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 2$) with 53% isolated yield $(116.6 \mathrm{mg}) . \mathrm{m} . \mathrm{p} .=189-$ $191{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{dd}, J=11.2,7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{dd}, J=6.5,3.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.90(\mathrm{~s}, 2 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 171.2\left(\mathrm{~d}, J_{C-P}=17.5 \mathrm{~Hz}\right), 135.4,134.9\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-P}=2.6\right.$ $\mathrm{Hz}), 131.4\left(\mathrm{~d}, J_{C-P}=8.6 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{C-P}=100.7 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}=103.2\right.$ $\mathrm{Hz}), 129.7\left(\mathrm{~d}, J_{C-P}=5.4 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 128.4,128.3\left(\mathrm{~d}, J_{C-P}=1.7 \mathrm{~Hz}\right), 128.1,128.0(\mathrm{~d}$, $\left.J_{C-P}=4.0 \mathrm{~Hz}\right), 127.8,127.3\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 66.5,43.0\left(\mathrm{~d}, J_{C-P}=67.9 \mathrm{~Hz}\right), 34.9 \cdot{ }^{31} \mathrm{P}$ NMR $(202 \mathrm{MHz}$, CDCl_{3}) δ 36.4. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]{ }^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{P}: 441.1614$; found: 441.1613.

diethyl 2-(diphenylphosphoryl)succinate (19c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 2)$ with 96% isolated yield $(179.6 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.91-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 4 \mathrm{H}), 4.12-4.03(\mathrm{~m}, 3 \mathrm{H}), 3.97-3.80(\mathrm{~m}$, 2H), $3.20-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2\left(\mathrm{~d}, J_{C-P}=15.7 \mathrm{~Hz}\right), 168.4\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 132.3$ $\left(\mathrm{d}, J_{C-P}=2.9 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=9.5 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 130.5\left(\mathrm{~d}, J_{C-P}=102.4 \mathrm{~Hz}\right), 129.6$ $\left(\mathrm{d}, J_{C-P}=102.1 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{C-P}=12.3 \mathrm{~Hz}\right), 61.3\left(\mathrm{~d}, J_{C-P}=48.6 \mathrm{~Hz}\right), 44.5$ $\left(\mathrm{d}, J_{C-P}=59.1 \mathrm{~Hz}\right), 30.7,13.7\left(\mathrm{~d}, J_{C-P}=70.7 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.2$.

diethyl 2-(1-(diphenylphosphoryl)ethyl)malonate (20c): ${ }^{2}$ yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 2$) with 74% isolated yield (143.6 mg). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 6 \mathrm{H}), 4.21-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 1 \mathrm{H})$, $3.86-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9\left(\mathrm{~d}, J_{C-P}=9.3 \mathrm{~Hz}\right), 167.4\left(\mathrm{~d}, J_{C-P}=9.1 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 131.9(\mathrm{~d}, J$ $\left.{ }_{C-P}=3.0 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=9.2 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{C-P}=8.8 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=96.8 \mathrm{~Hz}\right), 130.5\left(\mathrm{~d}, J_{C-}\right.$ $\left.{ }_{P}=98.4 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{C-P}=11.6 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{C-P}=11.7 \mathrm{~Hz}\right), 61.6\left(\mathrm{~d}, J_{C-P}=17.7 \mathrm{~Hz}\right), 50.5,32.5(\mathrm{~d}$, $\left.J_{C-P}=71.3 \mathrm{~Hz}\right), 13.8\left(\mathrm{~d}, J_{C-P}=20.6 \mathrm{~Hz}\right), 10.9\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.3$.

3-(diphenylphosphoryl)-1-(2-hydroxyphenyl)propan-1-one (21c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 1)$ with 47% isolated yield $(82.3 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.98(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=11.7,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H})$,
$7.53-7.42(\mathrm{~m}, 6 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{q}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{q}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.6\left(\mathrm{~d}, J_{C-P}=13.7 \mathrm{~Hz}\right), 162.2,136.6,132.1\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right)$, $131.8\left(\mathrm{~d}, J_{C-P}=100.8 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{C-P}=9.5 \mathrm{~Hz}\right), 129.9,128.8\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 119.1,118.9,118.4$, 30.4, $29.5\left(\mathrm{~d}, J_{C-P}=42.4 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 33.2. HRMS $(\mathrm{ESI}) m / z:[\mathrm{M}+\mathrm{H}]{ }^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{P}: 351.1145$; found: 351.1145 .

methyl 3-(diphenylphosphoryl)propanoate (22c): ${ }^{2}$ yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether $=2 / 1$) with 85% isolated yield $(122.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.69-$ $2.61(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6\left(\mathrm{~d}, J_{C-P}=16.8 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.5$ $\left(\mathrm{d}, J_{C-P}=100.7 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{C-P}=11.9 \mathrm{~Hz}\right), 52.0,26.1\left(\mathrm{~d}, J_{C-P}=2.2 \mathrm{~Hz}\right)$, $24.8\left(\mathrm{~d}, J_{C-P}=73.1 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 33.3$.

ethyl 3-(diphenylphosphoryl)propanoate (23c): ${ }^{2}$ yellow oil was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) with 72% isolated yield $(108.8 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.80-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.41(\mathrm{~m}, 6 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.56(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3\left(\mathrm{~d}, J_{C-P}=16.8 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{C-P}=99.9 \mathrm{~Hz}\right), 132.0(\mathrm{~d}$, $\left.J_{C-P}=2.7 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J_{C-P}=9.4 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 60.9,24.9\left(\mathrm{~d}, J_{C-P}=73.1 \mathrm{~Hz}\right), 14.1$. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.3$.

tert-butyl 3-(diphenylphosphoryl)propanoate (24c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) with 76% isolated yield $(125.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 6 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.5\left(\mathrm{~d}, J_{C-P}=17.1 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{C-P}=100.1\right.$ $\mathrm{Hz}), 130.8\left(\mathrm{~d}, J_{C-P}=9.5 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 81.0,27.9,24.8\left(\mathrm{~d}, J_{C-P}=73.2 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR (202 MHz, CDCl_{3}) $\delta 36.5$.

3-(diphenylphosphoryl)-1-(4-ethylphenyl)-3-phenylpropan-1-one (29c): white solid was obtained by
column chromatography (eluent: EtOAc/petroleum ether $=1 / 2$) with 63% isolated yield $(69.0 \mathrm{mg}) . \mathrm{m} . \mathrm{p}$. $=179-180^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}$, $3 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.31$ $(\mathrm{m}, 1 \mathrm{H}), 2.64(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.2\left(\mathrm{~d}, J_{C-}\right.$ $\left.{ }_{P}=13.2 \mathrm{~Hz}\right), 150.3,136.0\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 134.1,131.9\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{C-P}=105.6 \mathrm{~Hz}\right)$, $131.6\left(\mathrm{~d}, J_{C-P}=98.5 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.7 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right)$, $128.9\left(\mathrm{~d}, J_{C-P}=11.2 \mathrm{~Hz}\right), 128.3,128.2\left(\mathrm{~d}, J_{C-P}=1.7 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 128.0,126.9,41.0$ (d, $J=69.2 \mathrm{~Hz}$), 38.8, 28.9, 15.1. ${ }^{31} \mathrm{P}$ NMR (202 MHz, CDCl_{3}) δ 34.5. HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 439.1821$; found: 439.1821 .

1-(4-(tert-butyl)phenyl)-3-(diphenylphosphoryl)-3-phenylpropan-1-one (30c): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 2$) with 51% isolated yield $(59.4 \mathrm{mg}) . \mathrm{m} . \mathrm{p} .=108-110^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 2 \mathrm{H})$, $7.54-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H})$, $7.10-7.08(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.31(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.1\left(\mathrm{~d}, J_{C-P}=13.4 \mathrm{~Hz}\right), 157.2,135.8\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}\right), 133.8,132.0(\mathrm{~d}, J$ $\left.C_{C-P}=2.6 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-P}=101.1 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.5 \mathrm{~Hz}\right), 131.2(\mathrm{~d}, J$ $\left.{ }_{C-P}=94.7 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 128.2(\mathrm{~d}, J$ $\left.{ }_{C-P}=1.6 \mathrm{~Hz}\right), 128.1,128.0,127.0\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 125.5,41.0\left(\mathrm{~d}, J_{C-P}=69.4 \mathrm{~Hz}\right), 38.8,35.0,31.0 .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 34.5. HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 467.2134$; found: 467.2134 .

3-(diphenylphosphoryl)-1-(3-fluorophenyl)-3-phenylpropan-1-one (31c): white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 1$) with 76% isolated yield $(81.3 \mathrm{mg})$. m. p. $=142-145^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 4 \mathrm{H}), 4.47$ $-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.6\left(\mathrm{~d}, J_{C-P}\right.$ $=11.1 \mathrm{~Hz}), 162.7\left(\mathrm{~d}, J_{C-F}=248.5 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{C-F}=2.4 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=101.7 \mathrm{~Hz}\right), 131.6(\mathrm{~d}, J$
$\left.{ }_{C-P}=9.4 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=100.7 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.5 \mathrm{~Hz}\right), 130.9(\mathrm{~d}, J$ $\left.{ }_{C-P}=8.9 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{C-P}=7.7 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{C-F}\right.$ $=1.7 \mathrm{~Hz}), 128.1\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 127.1\left(\mathrm{~d}, J_{C-F}=2.2 \mathrm{~Hz}\right), 123.9,120.3\left(\mathrm{~d}, J_{C-F}=21.4 \mathrm{~Hz}\right), 114.8(\mathrm{~d}$, $\left.J_{C-F}=22.5 \mathrm{~Hz}\right), 41.1\left(\mathrm{~d}, J_{C-P}=68.9 \mathrm{~Hz}\right), 39.2 .{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-111.6 .{ }^{31} \mathrm{P}$ NMR (202 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 34.4. $\mathrm{HRMS}(\mathrm{EI})$ calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{FO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 429.1414; found: 429.1408.

3-(diphenylphosphoryl)-3-(4-methoxyphenyl)-1-phenylpropan-1-one (32c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=2 / 1$) with 74% isolated yield (81.2 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 6 \mathrm{H})$, $7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 4 \mathrm{H}), 6.70-6.67(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.92(\mathrm{~m}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8\left(\mathrm{~d}, J_{C-P}=13.5 \mathrm{~Hz}\right), 158.5(\mathrm{~d}, J$ $\left.C_{C-P}=2.3 \mathrm{~Hz}\right), 136.4,133.3,132.0\left(\mathrm{t}, J_{C-P}=49.1 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{C-P}=100.3\right.$ $\mathrm{Hz}), 131.5\left(\mathrm{~d}, J_{C-P}=103.9 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{C-P}=8.5 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}=8.8\right.$ $\mathrm{Hz}), 130.8\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C-P}=11.2 \mathrm{~Hz}\right), 128.5,128.1\left(\mathrm{~d}, J_{C-P}=11.7 \mathrm{~Hz}\right), 128.1,127.7$ $\left(\mathrm{d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 113.7\left(\mathrm{~d}, J_{C-P}=1.6 \mathrm{~Hz}\right), 55.1,40.1\left(\mathrm{~d}, J_{C-P}=70.0 \mathrm{~Hz}\right), 39.1 .{ }^{31} \mathrm{P}$ NMR $(202 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 34.0$.

3-(4-chlorophenyl)-3-(diphenylphosphoryl)-1-phenylpropan-1-one (33c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 1$) with 68% isolated yield $(75.5 \mathrm{mg})$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.40$ $-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 1 \mathrm{H})$, 3.41 - $3.31(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4\left(\mathrm{~d}, J_{C-P}=13.2 \mathrm{~Hz}\right), 136.2,134.6\left(\mathrm{~d}, J_{C-P}=\right.$ $5.5 \mathrm{~Hz}), 133.5,133.0\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-}\right.$ $\left.{ }_{P}=100.8 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{C-P}=8.6 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{C-P}=94.9 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 130.8\left(\mathrm{~d}, J^{2}\right.$ $\left.C_{C-P}=8.9 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 128.6,128.4\left(\mathrm{~d}, J_{C-P}=1.6 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right), 128.0$, $40.5\left(\mathrm{~d}, J_{C-P}=68.9 \mathrm{~Hz}\right), 38.9 .{ }^{31} \mathrm{P}$ NMR ($\left.202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.3$.

ethyl 3-(diphenylphosphoryl)-3-phenylpropanoate (34c): ${ }^{2}$ yellow solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) with 30% isolated yield $(56.7 \mathrm{mg}) . \mathrm{m} . \mathrm{p} .=155-$ $157{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 3 \mathrm{H}), 4.13-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.16-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.85(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.3\left(\mathrm{~d}, J_{C-P}=17.2 \mathrm{~Hz}\right), 134.9\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right)$, $131.4\left(\mathrm{~d}, J_{C-P}=8.6 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{C-P}=100.6 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{C-P}=98.8 \mathrm{~Hz}\right)$, $129.7\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{C-P}=11.4 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{C-P}=1.8 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{C-P}=11.8 \mathrm{~Hz}\right)$, $127.2\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 60.7,42.9\left(\mathrm{~d}, J_{C-P}=68.1 \mathrm{~Hz}\right), 34.8,13.9$. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}$ $+\mathrm{H}]^{+}: 379.1458$; found: 379.1458

dimethyl 2,3-bis(diphenylphosphoryl)succinate (35c): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=2 / 1$) with 34% isolated yield $(92.8 \mathrm{mg}) . \mathrm{m} . \mathrm{p} .=89-$ $91{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{dd}, J=11.4,6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.64(\mathrm{dd}, J=11.5,7.3 \mathrm{~Hz}, 4 \mathrm{H})$, $7.56(\mathrm{~m}, 6 \mathrm{H}), 7.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.70(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,132.1\left(\mathrm{~d}, J_{C-P}=15.0 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{C-P}=115.2 \mathrm{~Hz}\right), 131.9\left(\mathrm{t}, J_{C-P}=\right.$ $4.8 \mathrm{~Hz}), 131.7\left(\mathrm{~d}, J_{C-P}=115.3 \mathrm{~Hz}\right), 131.1\left(\mathrm{t}, J_{C-P}=4.8 \mathrm{~Hz}\right), 51.7,48.4\left(\mathrm{dt}, J_{C-P}=44.4,21.9 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR (202 MHz, CDCl_{3}) δ 29.7. $\mathrm{HRMS}(\mathrm{EI})$ calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{P}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 547.1434; found: 547.1434.

3-(di-p-tolylphosphoryl)-1,3-diphenylpropan-1-one (36c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 2$) with 91% isolated yield $(99.7 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.12$ $-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.37$ $(\mathrm{s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8\left(\mathrm{~d}, J_{C-P}=13.3 \mathrm{~Hz}\right), 142.5\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right)$, $141.8\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}\right), 136.4,136.0\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 133.2,131.2\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d}, J_{C-P}\right.$ $=9.3 \mathrm{~Hz}), 129.8\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 129.6\left(\mathrm{~d}, J_{C-P}=11.7 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{C-P}=12.3 \mathrm{~Hz}\right), 128.5,128.3(\mathrm{~d}$,
$\left.J_{C-P}=103.6 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{C-P}=1.9 \mathrm{~Hz}\right), 128.1,128.0\left(\mathrm{~d}, J_{C-P}=97.6 \mathrm{~Hz}\right), 126.9\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right)$, $41.2\left(\mathrm{~d}, J_{C-P}=69.2 \mathrm{~Hz}\right), 41.2\left(\mathrm{~d}, J_{C-P}=69.2 \mathrm{~Hz}\right), 39.0,21.5\left(\mathrm{~d}, J_{C-P}=10.4 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR $(202 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 35.0$.

3-(bis(3,5-dimethylphenyl)phosphoryl)-1,3-diphenylpropan-1-one (37c): yellow oil was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) with 88% isolated yield $(102.6 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{dd}, J=11.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H})$, $7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=11.6,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~s}, 1 \mathrm{H}), 4.46-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.9\left(\mathrm{~d}, J_{C-P}=13.2 \mathrm{~Hz}\right), 138.6\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right), 137.6\left(\mathrm{~d}, J_{C-P}=12.6\right.$ $\mathrm{Hz}), 136.4,136.0\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 133.2,133.2\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}\right), 130.8(\mathrm{~d}$, $\left.J_{C-P}=100.6 \mathrm{~Hz}\right), 130.6\left(\mathrm{~d}, J_{C-P}=94.4 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{C-P}=8.7 \mathrm{~Hz}\right), 128.6(\mathrm{~d}$, $\left.J_{C-P}=9.0 \mathrm{~Hz}\right), 128.5,128.2\left(\mathrm{~d}, J_{C-P}=1.9 \mathrm{~Hz}\right), 128.1,126.9\left(\mathrm{~d}, J_{C-P}=2.4 \mathrm{~Hz}\right), 41.1\left(\mathrm{~d}, J_{C-P}=68.5 \mathrm{~Hz}\right)$, 38.8, $21.2\left(\mathrm{~d}, J_{C-P}=28.3 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 35.6. HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}$ $+\mathrm{H}]^{+}$: 467.2134; found: 467.2135.

3-(bis(4-methoxyphenyl)phosphoryl)-1,3-diphenylpropan-1-one (38c): ${ }^{\mathbf{2}}$ white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=2 / 1$) with 90% isolated yield $(105.8 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.13$ (m, 2H), $7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.97$ $(\mathrm{m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.8\left(\mathrm{~d}, J_{C-P}=\right.$ $13.2 \mathrm{~Hz}), 162.5\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 162.0\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 136.4,136.0\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 133.2,133.1$ $\left(\mathrm{d}, J_{C-P}=9.9 \mathrm{~Hz}\right), 132.8\left(\mathrm{~d}, J_{C-P}=10.4 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 128.5,128.3\left(\mathrm{~d}, J_{C-P}=1.8 \mathrm{~Hz}\right)$, $128.1,127.0\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 122.6\left(\mathrm{~d}, J_{C-P}=108.1 \mathrm{~Hz}\right), 122.0\left(\mathrm{~d}, J_{C-P}=102.0 \mathrm{~Hz}\right), 114.5\left(\mathrm{~d}, J_{C-P}=\right.$ $12.3 \mathrm{~Hz}), 113.6\left(\mathrm{~d}, J_{C-P}=12.9 \mathrm{~Hz}\right), 55.2\left(\mathrm{~d}, J_{C-P}=18.5 \mathrm{~Hz}\right), 41.5\left(\mathrm{~d}, J_{C-P}=69.9 \mathrm{~Hz}\right), 38.9 .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.6$.

3-(bis(4-fluorophenyl)phosphoryl)-1,3-diphenylpropan-1-one (39c): white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) with 64% isolated yield (71.4 mg). $\mathrm{m} . \mathrm{p}$. $=194-196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}$, $1 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.98-6.90(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.93(\mathrm{~m}$, $1 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4\left(\mathrm{~d}, J_{C-P}=12.8 \mathrm{~Hz}\right), 164.9\left(\mathrm{dd}, J_{C-F, C-P}\right.$ $=250.5,62.7 \mathrm{~Hz}), 136.2,135.6\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 133.9\left(\mathrm{dd}, J_{C-P, C-F}=10.7,9.4 \mathrm{~Hz}\right), 133.4\left(\mathrm{dd}, J_{C-P, C-}\right.$ $\left.{ }_{F}=10.8,9.5 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{C-P}=5.8 \mathrm{~Hz}\right), 128 ., 128.4\left(\mathrm{~d}, J_{C-P}=1.9 \mathrm{~Hz}\right), 128.0,127.3\left(\mathrm{~d}, J_{C-P}=2.5 \mathrm{~Hz}\right)$, $127.2\left(\mathrm{dd}, J_{C-P, C-F}=100.5,51.5 \mathrm{~Hz}\right), 127.2\left(\mathrm{dd}, J_{C-P, C-F}=101.0,51.5 \mathrm{~Hz}\right), 116.4\left(\mathrm{dd}, J_{C-P, C-F}=21.4\right.$, $12.3 \mathrm{~Hz}), 115.5\left(\mathrm{dd}, J_{C-P, C-F}=21.4,12.9 \mathrm{~Hz}\right), 41.2\left(\mathrm{~d}, J_{C-P}=70.2 \mathrm{~Hz}\right), 38.9 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ-106.1, -106.9. ${ }^{31} \mathrm{P}$ NMR (202 MHz, CDCl_{3}) δ 33.4. HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]{ }^{+}$: 447.1320; found: 447.1315.

3-(di(naphthalen-2-yl)phosphoryl)-1,3-diphenylpropan-1-one (40c): ${ }^{2}$ white solid was obtained by column chromatography (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) with 88% isolated yield $(112.2 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=13.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.93(\mathrm{~m}$, $3 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.38(\mathrm{~m}$, 2H), $7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.16-$ $4.06(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.44(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.7\left(\mathrm{~d}, J_{C-P}=13.2 \mathrm{~Hz}\right), 136.3$, $135.8\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 134.7\left(\mathrm{~d}, J_{C-P}=2.2 \mathrm{~Hz}\right), 134.4\left(\mathrm{~d}, J_{C-P}=2.3 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, J_{C-P}=7.6 \mathrm{~Hz}\right)$, $133.4\left(\mathrm{~d}, J_{C-P}=8.3 \mathrm{~Hz}\right), 133.3,132.7\left(\mathrm{~d}, J_{C-P}=12.4 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, J_{C-P}=12.9 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J_{C-P}=5.7\right.$ $\mathrm{Hz}), 129.1\left(\mathrm{~d}, J_{C-P}=109.7 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{C-P}=10.6 \mathrm{~Hz}\right), 128.8,128.6\left(\mathrm{~d}, J_{C-P}=97.4 \mathrm{~Hz}\right), 128.5,128.4$ $\left(\mathrm{d}, J_{C-P}=1.6 \mathrm{~Hz}\right), 128.3,128.1,128.0\left(\mathrm{~d}, J_{C-P}=7.3 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 127.6,127.2\left(\mathrm{~d}, J_{C-P}\right.$ $=2.4 \mathrm{~Hz}), 127.1,126.6,125.7\left(\mathrm{~d}, J_{C-P}=3.4 \mathrm{~Hz}\right), 125.6\left(\mathrm{~d}, J_{C-P}=3.2 \mathrm{~Hz}\right), 41.0\left(\mathrm{~d}, J_{C-P}=69.3 \mathrm{~Hz}\right), 39.0$. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.6$

(3,5-di-tert-butyl-4-hydroxybenzyl)diphenylphosphine oxide (42c): ${ }^{\mathbf{2}}$ white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether $=1 / 2$) with 48% isolated yield $(50.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.7$ $\left(\mathrm{d}, J_{C-P}=3.5 \mathrm{~Hz}\right), 135.8\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, J_{C-P}=97.9 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 131.4(\mathrm{~d}$, $\left.J_{C-P}=9.0 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{C-P}=11.5 \mathrm{~Hz}\right), 126.9\left(\mathrm{~d}, J_{C-P}=5.1 \mathrm{~Hz}\right), 121.2\left(\mathrm{~d}, J_{C-P}=7.8 \mathrm{~Hz}\right), 38.1\left(\mathrm{~d}, J_{C-P}\right.$ $=67.3 \mathrm{~Hz}), 34.1,30.1$.

7. Copies of product NMR Spectra

1c

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR

3c
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR

\qquad
4c

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{31} \mathbf{P} \mathbf{N M R}$

$6 c$

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR

음
in

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR

$$
\begin{aligned}
& \begin{array}{l}
\% \\
\stackrel{\circ}{\circ} \\
\stackrel{6}{0} \\
1
\end{array} \\
& -35.0095 \\
& \text { 8c }
\end{aligned}
$$

${ }^{13}$ C NMR

	\％		$\stackrel{\bar{\circ}}{\stackrel{\text { g }}{+}}$		\％ $⿳ ⿻ 十 ⿵ 冂 ⿰ ⿱ 丶 丶 ⿱ 丶 丶 ⿸ 厂 ⿱ 二 ⿺ 卜 丿$	

${ }^{31} \mathbf{P}$ NMR

$$
\begin{aligned}
& \bar{\circ} \\
& \bar{\circ} \\
& \stackrel{\rightharpoonup}{T}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR

10c

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

200	190	180	170	160	150	140	130	120	110	$\mathrm{f} 1(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10	0

${ }^{31} \mathbf{P}$ NMR
$\stackrel{\infty}{\infty}$
$\stackrel{+}{\infty}$
$\stackrel{+}{0}$
$\stackrel{1}{1}$

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR

12c

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{31} \mathbf{P} \mathbf{N M R}$

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{0} \\
& 0 \\
& \tilde{M} \\
& 1
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

\% ${ }_{\text {\% }}$ (
\% \%	¢ $\underline{\text { ¢¢ }}$	

${ }^{19}$ F NMR

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

然骨咨

$\underbrace{\text { On }}_{\mathrm{H}}$

${ }^{31} \mathbf{P}$ NMR

15c

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR
$<_{205.9804}^{206.0571}$

-

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

すから

[^0]${ }^{31} \mathbf{P}$ NMR

17c

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR
$\mathscr{\circ}$
$\stackrel{\circ}{6}$
$\stackrel{0}{0}$
$\stackrel{0}{1}$

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

준운					

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{31} \mathbf{P}$ NMR

21c

${ }^{1} \mathrm{H}$ NMR

${ }^{31} \mathbf{P}$ NMR

N
N
N
in

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{31} \mathbf{P}$ NMR

23c

${ }^{1} \mathrm{H}$ NMR

```
%)
```


${ }^{13} \mathrm{C}$ NMR

$\begin{aligned} & \text { 으․ } \\ & 0 \\ & \cline { 2 - 3 } \\ & \hline \end{aligned}$	 		蹄	

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

x

[^1]${ }^{31} \mathbf{P}$ NMR

29c

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

210	200	190	180	170	160	150	140	130	120	${ }_{f 1}^{110(\mathrm{ppm})} 100$	90	80	70	60	50	40	30	20	10	0

${ }^{31} \mathbf{P}$ NMR

[^2]${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

 テivion

${ }^{31} \mathbf{P}$ NMR

31c

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19} \mathrm{~F}$ NMR

$$
-111.6856
$$

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR

34c

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

35c
${ }^{1} \mathrm{H}$ NMR

䰚

L

${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR

$$
\begin{aligned}
& \stackrel{0}{ల} \\
& \stackrel{\sim}{N} \\
& \stackrel{N}{1}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR


```
ヘヘイド
```


1

${ }^{13} \mathrm{C}$ NMR

${ }^{31} \mathbf{P}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	170

${ }^{31} \mathbf{P}$ NMR

40c

${ }^{1} \mathrm{H}$ NMR


```
*)
```


${ }^{13}$ C NMR

${ }^{31} \mathbf{P}$ NMR

														,				
110	100	90	80	70	60	50	40	30	$\stackrel{20}{\mathrm{f} 1(\mathrm{ppm})}$	10	0	-10	-20	-30	-40	-50	-60	-70

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

[^0]:

[^1]:

[^2]:

