Supporting Information

Gold-catalyzed redox cycloisomerization/nucleophilic addition/

reduction: direct access to 2-phosphoryl indolin-3-ones

Xingcui Zhou, Ting Xiong and Jun Jiang*

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China. E-mail: jiangjun@gxu.edu.cn

Contents

1. General Information	1
2. Experiment Section	1
2.1. Preparation for the synthesis of <i>o</i> -nitroalkynes ^{[1],[2]}	1
2.2. Preparation for the synthesis of <i>H</i> -phosphine oxides ^[3]	2
3. General Procedure for the Synthesis of 2-Phosphoryl Indolin-3-ones	2
4. Control Reactions (Scheme 4)	2
5. Reference	3
6. Characterization Data for Compounds	4
7. Single Crystal X-ray Structure Determinations of Compounds	15
8. Copies of NMR Spectra	16

1. General Information

All reactions were carried out under an atmosphere of N_2 unless otherwise noted. All the reactions were monitored by thin layer chromatography (TLC), carried out on 0.25mm silica gel plates using UV light as visualizing agent. Column chromatography was carried out on silica gel (particle size 300-400 mesh). Unless stated otherwise, all the vields refer to isolated products after flash column chromatography. The solvent mixtures employed in flash column chromatography purifications are reported as volume by volume and in percentages. NMR spectra were recorded with BrukerAvance III HD500 and BrukerAvance III HD400 spectrometer at 500 MHz or 400 MHz. All ¹³C, ¹H, ³¹P and ¹⁹F NMR spectra were recorded using CDCl₃, DMSO-*d*₆ or MeOD-*d*₄ as solvent. Tetramethylsilane (TMS) signals or residual solvent signals were used [TMS δ=0.00(¹H NMR), CDCl₃=7.26 ppm (¹H NMR), 77.16 ppm (¹³C NMR), DMSO d_6 =2.50 ppm (¹H NMR), 39.52 ppm (¹³C NMR), MeOD- d_4 =4.88 ppm (¹H NMR), 47.60 ppm (13 C NMR)] as internal standards. Coupling constants (J) are reported in Hz. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, dd = doublet doublet, t = triplet, q = quartet, m = multiplet, td = doublettriplet doublet, qd = quartet doublet, ddq = doublet doublet quartet. High-resolution mass spectra were recorded on Agilent 6545 Q-TOF LC/MS. There lative configuration of 3s was determined by NMR Data, molecular weight compared and X-ray single crystal diffraction.

2. Experiment Section

2.1. Preparation for the synthesis of *o*-nitroalkynes^{[1],[2]}

Under N₂ atmosphere, a 100 mL three-necked round-bottomed flask equipped with an egg-shaped Teflon-coated magnetic stir bar was charged with the 1-bromo-2nitrobenzene (2.0 mmol, 1.0 equiv.), PdCl₂ (0.1 mol, 17.7 mg), CuI (0.1 mol, 19.0 mg), PPh₃ (0.3 mol, 78.7 mg) and anhydrous THF/Et₃N (20 mL, v/v = 1:1). The mixture was stirred at 50 °C for 30 min by placement onto a pre-heated oil bath (50 °C, oil bath temperature) and then terminal alkyne (4 mmol, 2.0 equiv.) was slowly added by syringe. The resultant mixture was further stirred at the same temperature for 4 – 7 h. Upon cooling to room temperature, water (60 mL) was added, and the mixture was extracted with ethyl acetate (3 x 40 mL). The combined organic layers were combined, washed by brine, dried over anhydrous MgSO₄, and filtered. The filtrate was concentrated with a rotary evaporator under reduced pressure. The crude residue was purified by column chromatography on silica gel to afford *o*-nitroalkynes.

2.2. Preparation for the synthesis of *H*-phosphine oxides^[3]

To a solution of arylmagnesium bromide (0.1 mol) in THF (100 mL), diethyl phosphate (0.03 mol, 4.1 g) in THF (20 mL) was added dropwise with vigorous stirring under the cooling of ice-water bath. Then the resulting mixture stirred at rt for 3 h. After the reaction, the resulting reaction mixture was cooled to 0 °C, and sat. aq. NH₄Cl solution was added slowly upon stirring. The solution was then evaporated under reduced pressure. The residue was extracted with dichloromethane (150 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to give the product *H*-phosphine oxide as a white solid.

3. General Procedure for the Synthesis of 2-Phosphoryl Indolin-

3-ones

Under N₂ atmosphere, a 10 mL oven-dried reaction vessel was charged with AuCl (10 mol%), *o*-nitroalkyne **1** (0.1 mmol) with anhydrous DCE (0.5 mL). Shaking the reaction vessel to make the catalyst dissolve in the solution as much as possible. Then the resultant mixture was added *H*-phosphine oxides **2** (0.16 mmol, 1.6 equiv.) with anhydrous CH₃CN (0.5 mL). The reaction vessel was stirred at rt for 24 h. After the reaction is completed, the solution was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1 - 1.5:1) to give the pure product **3** as a yellow solid.

4. Control Reactions (Scheme 4)

Under N₂ atmosphere, a 10 mL oven-dried flask was charged with AuCl (10 mol%, 4.64 mg), *o*-nitroalkynes **1** (0.2 mmol, 44.6 mg) with anhydrous DCE (1.0 mL) and anhydrous CH₃CN (1.0 mL). Then the reaction vessel was stirred at rt for 10 h. After the reaction is completed, the solution was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 50:1) to give a red solid **4** in 75% yield (**4** was detected by ¹**H** NMR and **HRMS**).

3-oxo-2-phenyl-3*H***-indole 1-oxide (4).** ¹**H** NMR (500 MHz, Chloroform-*d*) δ 8.67 – 8.61 (m, 2H), 7.69 – 7.67 (m, 2H), 7.64 – 7.62 (m, 1H), 7.55 – 7.44 (m, 4H). **HRMS** (ESI) m/z calcd for C₁₄H₁₀NO₂ [M+H]⁺: 224.0712, found: 224.0704.

Under N₂ atmosphere, a solution of **4** (0.1 mmol, 22.3 mg) with anhydrous DCE (0.5 mL) was added **2a** (1.6 mmol, 32.3 mg) with anhydrous CH₃CN (0.5 mL). The reaction vessel was stirred at rt for 24 h, **3a** and **5** were isolated in yields of 74% and 73%.

Diphenylphosphinic acid (5): ¹**H NMR** (500 MHz, Methanol-*d*₄) δ 7.79 (dd, *J* = 11.6, 7.3 Hz, 4H), 7.40 – 7.35 (m, 2H), 7.34 – 7.31 (m, 4H). **HRMS** (ESI) m/z calcd for C₁₂H₁₁O₂PNa [M+Na]⁺: 241.0389, found: 241.0392.

Under N₂ atmosphere, a solution of **4** (0.1 mmol, 22.3 mg) with anhydrous DCE (0.5 mL) was added **2a** (2.0 mmol, 40.4 mg) with anhydrous CH₃CN (0.5 mL). The reaction vessel was stirred at rt for 24 h, giving the product **3a** in 93% yield and **5** in 89% yield.

5. Reference

Meng, H.; Xu, Z.; Qu, Z.; Huang, H.; Deng, G. Copper(0)/PPh3-Mediated Bisheteroannulations of *o*-Nitroalkynes with Methylketoximes Accessing Pyrazo-Fused Pseu-doindoxyls. Org. Lett. 2020, 22, 6117–6121.
Liu, R.; Ye, S.; Lu, C.; Zhuang, G.; Gao, J.; Jia, Y. Dual Catalysis for the Redox Annulation of Nitroalkynes with Indoles: Enantioselective Construction of Indolin-3-ones Bearing Quaternary Stereocenters. Angew. Chem. Int. Ed. 2015, 54, 11205–11208.

[3] Wang, J.; Deng, G.; Liu, C.; Chen, Z.; Yu, K.; Chen, W.; Zhang, H.; Yang, X. Transition Metal-Free Synthesis of α-Aminophosphine Oxides through C(sp³)–P Coupling of 2-Azaallyls. Adv. Synth. Catal. 2020, 362, 2268–2273.

6. Characterization Data for Compounds

2-(diphenylphosphoryl)-2-phenylindolin-3-one (3a). Yellow solid, 30.7 mg, 75%

yield. ¹**H** NMR (500 MHz, Chloroform-*d*) δ 8.02 (t, J = 9.5 Hz, 2H), 7.90 – 7.81 (m, 2H), 7.76 – 7.73 (m, 2H), 7.53 – 7.49 (m, 1H), 7.43 (m, 3H), 7.43 – 7.39 (t, J = 7.5 Hz, 1H), 7.32 – 7.29 (m, 1H), 7.27 – 7.15 (m, 5H), 6.87 (d, J = 8.2 Hz, 1H), 6.67 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.73 (d, J = 1.0 Hz), 159.84 (d, J = 3.7 Hz), 137.35 , 133.23 (d, J = 102.4 Hz), 133.13 (d, J = 2.5 Hz), 133.01 (d, J = 9.2 Hz), 132.38

(d, J = 2.7 Hz), 132.20 (d, J = 2.7 Hz), 132.19 (d, J = 101.8 Hz), 132.12 (d, J = 9.0 Hz), 128.15, 128.07 (d, J = 1.3Hz), 128.03 (d, J = 3.8 Hz), 127.99 (d, J = 3.8 Hz), 127.44 (d, J = 4.0 Hz), 124.60, 121.54, 119.13, 112.21, 74.83 (d, J = 60.8 Hz). ³¹P NMR (202 MHz, Chloroform-*d*) δ 29.43. **HRMS** (ESI) m/z calcd for C₂₆H₂₀NO₂PNa [M+Na]⁺: 432.1124, found: 432.1126.

2-(bis(4-methoxyphenyl)phosphoryl)-2-phenylindolin-3-one (3b). Yellow solid,

28.6 mg, 61% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 8.57 (s, 1H), 7.81 – 7.73 (m, 2H), 7.70 (t, J = 9.3 Hz, 2H), 7.49 (dd, J = 10.5, 8.5 Hz, 2H), 7.42 – 7.34 (m, 1H), 7.30 (d, J = 6.7 Hz, 3H), 7.23 (d, J = 7.7 Hz, 1H), 6.97 (d, J =8.3 Hz, 1H), 6.93 (m, 4H), 6.61 (t, J = 7.4 Hz, 1H), 3.75 (s, 3H), 3.74 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 195.78, 162.54 (d, J = 2.7 Hz), 162.38 (d, J = 2.7 Hz), 160.81 (d, J = 4.7 Hz), 137.65, 134.93 (d, J = 9.5 Hz),

134.21, 133.98 (d, J = 10.0 Hz), 128.23, 128.20, 127.17 (d, J = 3.4 Hz), 124.30, 122.20 (d, J = 104.4 Hz), 120.51 (d, J = 104.0 Hz), 119.85, 118.48, 114.19 (d, J = 12.6 Hz), 114.05 (d, J = 12.3 Hz), 112.76, 74.68 (d, J = 68.4 Hz), 55.76, 55.75. ³¹P NMR (202 MHz, Chloroform-*d*) δ 25.86. **HRMS** (ESI) m/z calcd for C₂₈H₂₅NO₄P [M+H]⁺: 470.1516, found: 470.1519.

2-(di-p-tolylphosphoryl)-2-phenylindolin-3-one (3c). Yellow solid, 32.3 mg, 74%

yield. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.87 – 7.80 (m, 2H), 7.80 – 7.76 (m, 2H), 7.76 – 7.70 (m, 2H), 7.58 (s, 1H), 7.45 (dd, J = 7.9, 1.2 Hz, 1H), 7.32 – 7.25 (m, 1H), 7.26 – 7.16 (m, 5H), 7.04 (dd, J = 8.1, 2.9 Hz, 2H), 6.85 (dd, J = 8.3, 0.9 Hz, 1H), 6.66 (t, J = 7.4 Hz, 1H), 2.39 (s, 3H), 2.27 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.97, 160.15 (d, J = 3.8 Hz), 142.76 (d, J = 2.8 Hz), 142.53 (d, J = 2.9 Hz),

137.18, 133.36 (d, J = 2.1 Hz), 133.00 (d, J = 9.5 Hz), 132.13 (d, J = 9.4 Hz), 128.83 (d, J = 5.5 Hz), 128.73 (d, J = 5.2 Hz), 127.87, 127.86 (d, J = 2.1 Hz), 127.57 (d, J = 3.9 Hz), 125.97 (d, J = 99.3 Hz), 125.54 (d, J = 101.4 Hz), 124.51, 121.38, 118.66, 112.32, 75.04 (d, J = 61.9 Hz), 21.67 (d, J = 1.0 Hz), 21.47 (d, J = 1.0 Hz). ³¹P NMR (202 MHz, Chloroform-*d*) δ 30.23. **HRMS** (ESI) m/z calcd for C₂₈H₂₅NO₂P [M+H]⁺: 438.1617, found: 438.1617.

2-(di-m-tolylphosphoryl)-2-phenylindolin-3-one (3d). Yellow solid, 31.9 mg, 73%

yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 (s, 1H), 7.75 (d, *J* = 7.7 Hz, 2H), 7.68 (t, *J* = 10.7 Hz, 2H), 7.63 – 7.51 (m, 2H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 18.0 Hz, 3H), 7.16 (dt, *J* = 18.7, 6.8 Hz, 5H), 6.83 (d, *J* = 8.3 Hz, 1H), 6.64 (t, *J* = 7.5 Hz, 1H), 2.31 (s, 3H), 2.15 (s, 3H). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 196.78, 160.08 (d, *J* = 2.7 Hz), 138.36 (d, *J* = 92.9 Hz), 137.93 (d, *J* = 2.4 Hz), 137.81 (d, *J* = 2.7 Hz), 137.18,

133.61 (d, J = 8.3 Hz), 133.16, 133.13 (d, J = 1.8 Hz), 132.90 (d, J = 1.8 Hz), 132.82 (d, J = 8.3 Hz), 130.09 (d, J = 9.5 Hz), 129.17 (d, J = 9.3 Hz), 128.78 (d, J = 95.1 Hz), 128.29 (d, J = 96.4 Hz), 127.95, 127.60 (d, J = 3.0 Hz), 124.46, 121.56, 118.83, 112.30, 75.00 (d, J = 61.7 Hz), 21.41, 21.23. ³¹P NMR (162 MHz, Chloroform-*d*) δ 30.33. HRMS (ESI) m/z calcd for C₂₈H₂₅NO₂P [M+H]⁺: 438.1617, found: 438.1625.

2-(bis(3,5-dimethylphenyl)phosphoryl)-2-phenylindolin-3-one (**3e**). Yellow solid, 32.6 mg, 70% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.78 – 7.72 (m, 2H), 7.47 (dd, *J* = 9.8, 2.5 Hz, 3H), 7.40 (dd, *J* = 11.6, 1.5 Hz, 2H), 7.34 – 7.29 (m, 1H), 7.22 (q, *J* = 7.0, 6.3 Hz, 3H), 7.14 (s, 1H), 7.06 (d, *J* = 4.1 Hz, 1H), 6.97 (s, 1H), 6.85 (d, *J* = 8.2 Hz, 1H), 6.69 (t, *J* = 7.4 Hz, 1H), 2.30 (s, 6H), 2.16 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.53, 159.81 (d, *J* = 3.3 Hz), 137.68 (d, *J* = 9.2 Hz), 137.54, 137.03, 134.07 (d, *J* = 2.9 Hz), 133.81 (d, *J* = 2.9 Hz), 133.21 (d, *J* = 1.8 Hz), 130.61

137.03, 134.07 (d, J = 2.9 Hz), 133.81 (d, J = 2.9 Hz), 133.21 (d, J = 1.8 Hz), 130.61 (d, J = 9.2 Hz), 129.81 (d, J = 9.1 Hz), 128.43 (d, J = 95.8 Hz), 127.90 (d, J = 2.5 Hz), 127.89 (d, J = 97.7 Hz), 127.76 (d, J = 2.1 Hz), 127.57 (d, J = 3.8 Hz), 124.37, 121.88, 118.99, 112.26, 74.81 (d, J = 59.9 Hz), 21.29, 21.13. ³¹P NMR (202 MHz, Chloroformd) δ 31.20. **HRMS** (ESI) m/z calcd for C₃₀H₂₉NO₂P [M+H]⁺: 466.1930, found: 466.1928.

2-(bis(4-(tert-butyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3f). Pale yellow

solid, 27.1 mg, 52% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (t, *J* = 9.5 Hz, 2H), 7.76 (d, *J* = 6.6 Hz, 4H), 7.62 (s, 2H), 7.42 (d, *J* = 7.8 Hz, 3H), 7.37 (d, *J* = 7.9 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 3H), 7.15 (s, 1H), 6.81 (d, *J* = 8.2 Hz, 1H), 6.59 (t, *J* = 7.4 Hz, 1H), 1.31 (s, 9H), 1.18 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.90, 160.23, 155.81 (d, *J* = 2.7 Hz), 155.52 (d, *J* = 2.3 Hz), 136.98, 133.39 (d, *J* = 1.3 Hz), 132.96 (d, *J* = 9.5 Hz), 132.16 (d, *J* = 9.4 Hz),

127.87 (d, J = 1.6 Hz), 127.81 (d, J = 1.9 Hz), 127.61 (d, J = 3.7 Hz), 125.71 (d, J = 99.7 Hz), 125.44 (d, J = 101.0 Hz), 125.08 (d, J = 12.4 Hz), 124.91 (d, J = 12.1 Hz), 124.48, 121.44, 118.60, 112.40, 75.18 (d, J = 60.8 Hz), 35.02, 34.85, 31.09, 30.92. ³¹**P NMR** (162 MHz, Chloroform-*d*) δ 30.03. HRMS (ESI) m/z calcd for C₃₄H₃₇NO₂P [M+H]⁺: 522.2556, found: 522.2555.

2-(bis(4-fluorophenyl)phosphoryl)-2-phenylindolin-3-one (3g). Yellow solid, 19.6

mg, 44% yield. ¹**H** NMR (500 MHz, Chloroform-*d*) δ 8.04 (td, *J* = 9.5, 5.5 Hz, 2H), 7.86 (td, *J* = 9.7, 9.3, 5.3 Hz, 2H), 7.77 (d, *J* = 7.2 Hz, 3H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.22 (dt, *J* = 14.8, 7.1 Hz, 2H), 7.17 – 7.10 (m, 2H), 6.94 (t, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.3 Hz, 1H), 6.70 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.99, 166.30 (dd, *J* = 29.6, 3.4 Hz), 164.27 (dd, *J* = 29.2, 3.9 Hz), 160.18 (d, *J* = 3.9 Hz), 137.73, 135.60 (dd, *J* = 11.3,

8.8 Hz), 134.69 (dd, J = 11.3, 10.0 Hz), 132.82 (d, J = 2.0 Hz), 128.27 (d, J = 2.6 Hz), 128.13 (d, J = 2.2 Hz), 127.47 (d, J = 4.1 Hz), 124.78 (dd, J = 99.8, 3.0 Hz), 124.59, 124.35 (dd, J = 102.6, 3.3 Hz), 121.11, 119.12, 115.69 (dd, J = 16.4, 5.0 Hz), 115.49 (dd, J = 16.4, 5.0 Hz), 112.22, 75.03 (d, J = 64.1 Hz). ³¹P NMR (202 MHz, Chloroform-d) δ 28.40. ¹⁹F NMR (471 MHz, Chloroform-d) δ -105.31, -105.53. HRMS (ESI) m/z calcd for C₂₆H₁₈F₂NO₂PNa [M+Na]⁺: 468.0935, found: 468.0936.

2-(bis(3-fluoro-4-methylphenyl)phosphoryl)-2-phenylindolin-3-one (3h). Yellow

solid, 34.1 mg, 72% yield. ¹**H NMR** (500 MHz, Chloroformd) δ 7.82 – 7.71 (m, 3H), 7.70 – 7.62 (m, 2H), 7.46 (q, J = 8.7, 7.2 Hz, 3H), 7.36 – 7.15 (m, 5H), 7.06 (d, J = 8.3 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 6.67 (t, J = 7.5 Hz, 1H), 2.30 (s, 3H), 2.18 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 196.70, 161.76 (dd, J = 13.6, 2.6 Hz), 160.18 (d, J = 3.8 Hz), 159.80 (dd, J = 17.2, 2.8 Hz), 137.58, 132.79 (d, J = 1.0 Hz), 131.57

(dd, J = 10.0, 5.0 Hz), 131.42 (dd, J = 7.6, 3.8 Hz), 130.19 (dd, J = 17.0, 2.5 Hz), 129.99 (dd, J = 14.5, 2.6 Hz), 128.52 (dd, J = 8.7, 3.5 Hz), 128.24, 128.10, 128.01 (dd, J = 88.0, 7.6 Hz), 127.57 (dd, J = 86.0, 6.1 Hz), 127.55 (dd, J = 8.8, 3.8 Hz), 127.47 (d, J = 3.6 Hz), 124.61, 121.13, 119.44 (dd, J = 24.1, 10.1 Hz), 118.97, 118.72 (dd, J = 23.8, 10.4 Hz), 112.32, 74.93 (d, J = 64.7 Hz), 14.83 (d, J = 3.3 Hz), 14.63 (d, J = 3.1 Hz). ³¹P NMR (202 MHz, Chloroform-d) δ 27.61. ¹⁹F NMR (471 MHz, Chloroform-d) δ - 115.65, -115.73. HRMS (ESI) m/z calcd for C₂₈H₂₃F₂NO₂P [M+H]⁺: 474.1429, found: 474.1424.

2-(bis(4-chlorophenyl)phosphoryl)-2-phenylindolin-3-one (**3i**). Yellow solid, 31.1 mg, 65% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 (t, *J* = 9.3 Hz, 2H), 7.74 (d, *J* = 7.0 Hz, 5H), 7.42 (dd, *J* = 16.5, 7.9 Hz, 3H), 7.32 (t, *J* = 7.7 Hz, 1H), 7.18 – 7.25 (m, 5H), 6.84 (d, *J* = 8.3 Hz, 1H), 6.70 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.80, 160.15 (d, *J* = 4.1 Hz), 139.33 (d, *J* = 3.2 Hz), 139.13 (d, *J* = 3.5 Hz),

Cí 137.84, 134.34 (d, J = 10.1 Hz), 133.42 (d, J = 10.0 Hz), 132.65, 128.62 (d, J = 13.4 Hz), 128.51 (d, J = 13.2 Hz), 128.39 (d, J = 1.0 Hz), 128.21(d, J = 2.5 Hz), 127.46 (d, J = 4.0 Hz), 127.26 (d, J = 97.3 Hz), 126.88 (d, J = 100.3 Hz), 124.65, 121.05, 119.23, 112.26, 74.93 (d, J = 63.9 Hz). ³¹P NMR (202 MHz, Chloroform-*d*) δ 28.55. **HRMS** (ESI) m/z calcd for C₂₆H₁₈Cl₂NO₂PNa [M+Na]⁺: 500.0344, found: 500.0341.

2-(bis(3-chlorophenyl)phosphoryl)-2-phenylindolin-3-one (3j). Yellow solid, 28.7

mg, 60% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 – 7.90 (m, 2H), 7.88 – 7.85 (m, 1H), 7.80 – 7.75 (m, 2H), 7.73 (s, 1H), 7.68 – 7.64 (m, 1H), 7.52 – 7.48 (m, 1H), 7.46 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.39 (td, *J* = 7.8, 3.9 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.26 – 7.16 (m, 4H), 6.88 – 6.83 (m, 1H), 6.69 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.52, 160.10 (d,

J = 4.1 Hz), 137.83, 134.83 (d, J = 5.5 Hz), 134.70 (d, J = 6.0 Hz), 132.88 (d, J = 9.7 Hz), 132.76 (d, J = 2.8 Hz), 132.58 (d, J = 2.7 Hz), 132.37 (d, J = 2.1 Hz), 132.15 (d, J = 9.5 Hz), 130.97 (d, J = 9.3 Hz), 130.84 (d, J = 94.5 Hz), 130.42 (d, J = 96.9 Hz), 129.95 (d, J = 9.2 Hz), 129.62 (d, J = 4.9 Hz), 129.52 (d, J = 4.5 Hz), 128.46 (d, J = 2.5 Hz), 128.24 (d, J = 2.1 Hz), 127.43 (d, J = 4.2 Hz), 124.64, 121.14, 119.31, 112.33, 74.89 (d, J = 64.1 Hz). ³¹P NMR (202 MHz, Chloroform-*d*) δ 27.36. HRMS (ESI) m/z calcd for C₂₆H₁₈Cl₂NO₂PNa [M+Na]⁺: 500.0344, found: 500.0344.

2-(bis(4-bromophenyl)phosphoryl)-2-phenylindolin-3-one (3k). Yellow solid, 28.4

mg, 50% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.87 – 7.81 (m, 2H), 7.74 (d, *J* = 7.8 Hz, 2H), 7.66 (d, *J* = 7.8 Hz, 2H), 7.57 (d, *J* = 7.8 Hz, 2H), 7.44 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.36 (d, *J* = 7.7 Hz, 2H), 7.35 – 7.28 (m, 1H), 7.24 (d, *J* = 7.1 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 2H), 6.84 (d, *J* = 8.3 Hz, 1H), 6.70 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.76, 160.23, 137.88, 134.46 (d, *J* = 8.2 Hz), 133.49 (d, *J* = 8.5 Hz), 132.54, 132.43 (d, *J* =

13.0 Hz), 132.17 (d, J = 11.7 Hz), 131.58 (d, J = 11.2 Hz), 131.48 (d, J = 11.8 Hz), 128.43, 128.22, 127.76 (d, J = 95.6 Hz), 127.49, 127.32 (d, J = 96.6 Hz), 124.65, 120.98, 119.21, 112.32, 74.95 (d, J = 64.9 Hz). ³¹**P NMR** (202 MHz, Chloroform-*d*) δ 28.90. **HRMS** (ESI) m/z calcd for C₂₆H₁₈Br₂NO₂PNa [M+Na]⁺: 587.9334, found: 587.9326.

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3l). Yellow

solid, 40.9 mg, 75% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.33 (s, 1H), 8.25 – 8.21 (m, 2H), 8.05 – 8.00 (m, 2H), 7.86 – 7.78 (m, 2H), 7.74 (dd, J = 8.4, 2.7 Hz, 2H), 7.57 – 7.44 (m, 3H), 7.35 – 7.32 (m, 1H), 7.31 – 7.26 (m, 1H), 7.20 (t, J = 7.7 Hz, 2H), 6.88 (dd, J = 8.3, 2.1 Hz, 1H), 6.72 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.64 (d, J = 1.6 Hz), 160.39 (d, J = 4.5

Hz), 138.06, 134.26 (qdd, J = 32.5, 15.2, 2.7 Hz), 133.56 (d, J = 9.7 Hz), 132.91 (d, J = 94.6 Hz), 132.70 (d, J = 96.4 Hz), 132.63 (d, J = 9.5 Hz), 132.27 (d, J = 2.0 Hz), 128.64 (d, J = 2.3 Hz), 128.31 (d, J = 1.5 Hz), 127.52 (d, J = 4.1 Hz), 125.04 (tq, J = 12.4, 3.4 Hz), 124.69, 123.34 (qd, J = 272.7, 29.2 Hz), 120.81, 119.31, 112.28, 74.97 (d, J = 65.5 Hz). ³¹P NMR (202 MHz, Chloroform-*d*) δ 27.67. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -63.34, -63.54. HRMS (ESI) m/z calcd for C₂₈H₁₈F₆NO₂PNa [M+Na]⁺: 568.0872, found:568.0872.

2-(bis(3-(trifluoromethyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3m). Yellow

solid, 39.2mg, 72% yield. ¹H NMR (500 MHz, Chloroformd) δ 8.32 – 8.23 (m, 2H), 8.19 (d, J = 11.3 Hz, 1H), 7.97 – 7.90 (m, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.76 – 7.72 (m, 2H), 7.66 – 7.61 (m, 2H), 7.45 (s, 1H), 7.44–7.41 (m, 2H), 7.36 – 7.33 (m, 1H), 7.27 – 7.19 (m, 3H), 6.86 (d, J = 8.3 Hz, 1H), 6.71 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 196.46 (d,

J = 1.3 Hz), 159.89 (d, J = 4.2 Hz), 138.01 , 136.11 (d, J = 9.6 Hz), 135.12 (d, J = 9.0 Hz), 132.09 (d, J = 2.2 Hz), 131.36 – 130.40 (m), 130.19 – 129.99 (m), 129.85 (d, J = 96.1 Hz), 129.41 – 129.26 (m), 129.31 (d, J = 99.0 Hz), 129.26 – 129.14 (m), 129.15 – 129.01 (m), 128.86 (d, J = 4.3 Hz), 128.77 (d, J = 3.9 Hz), 128.63 (d, J = 2.5 Hz), 128.36 (d, J = 2.1 Hz), 127.28 (d, J = 4.2 Hz), 124.65, 121.15, 119.62, 112.26, 74.78 (d, J = 64.5 Hz). ³¹P NMR (202 MHz, Chloroform-*d*) δ 27.50. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.94, -62.99. **HRMS** (ESI) m/z calcd for C₂₈H₁₈F₆NO₂PNa [M+Na]⁺: 568.0872, found:568.0871.

2-(bis(3,5-bis(trifluoromethyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3n).

Yellow solid, 37.5 mg, 55% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.51 (dd, J = 11.1, 1.6 Hz, 2H), 8.29 (dd, J = 11.0, 1.5 Hz, 2H), 8.07 (s, 1H), 7.90 (s, 1H), 7.89 (s, 1H), 7.78 – 7.71 (m, 2H), 7.51 – 7.45 (m, 1H), 7.39 – 7.35 (m, 1H), 7.27 (d, J = 1.8 Hz, 1H), 7.20 (t, J = 7.7 Hz, 2H), 6.85 (d, J = 8.3 Hz, 1H), 6.75 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.17 (d, J = 1.9 Hz), 160.07

(d, J = 4.8 Hz), 138.62, 133.36 – 131.58 (m), 132.36 – 131.83 (m), 131.13 (d, J = 95.1 Hz), 131.06 (d, J = 2.3 Hz), 130.59 (d, J = 98.0 Hz), 129.21 (d, J = 2.6 Hz), 128.69 (d, J = 2.2 Hz), 127.16 (d, J = 4.5 Hz), 126.68-126.44 (m), 124.82, 122.52 (qd, J = 273.5, 33.1 Hz), 120.81, 120.16, 112.32, 74.79 (d, J = 68.0 Hz). ³¹P NMR (202 MHz, Chloroform-*d*) δ 25.84. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -63.14, -63.21. HRMS (ESI) m/z calcd for C₃₀H₁₆F₁₂NO₂PNa [M+Na]⁺: 704.0619, found: 704.0607.

2-(bis(benzo[d][1,3]dioxol-4-yl)phosphoryl)-2-phenylindolin-3-one (30). Yellow

solid, 26.3 mg, 53% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.79 – 7.73 (m, 2H), 7.53 – 7.46 (m, 1H), 7.46 – 7.40 (m, 2H), 7.35 – 7.29 (m, 2H), 7.25 – 7.18 (m, 4H), 7.15 (s, 1H), 6.87 (d, J = 8.3 Hz, 1H), 6.82 (dd, J = 8.0, 2.3 Hz, 1H), 6.72 – 6.61 (m, 2H), 6.02 – 5.98 (m, 2H), 5.90 – 5.87 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.91, 160.00 (d, J = 2.8 Hz), 151.14

(d, J = 2.0 Hz), 150.90 (d, J = 2.0 Hz), 147.62 (d, J = 12.6 Hz), 147.48 (d, J = 11.9 Hz), 137.40, 133.29, 128.81 (d, J = 9.8 Hz), 128.09, 128.06, 127.84 (d, J = 10.1 Hz), 127.47 (d, J = 3.4 Hz), 124.64, 121.93 (d, J = 102.6 Hz), 121.43, 120.00 (d, J = 102.5 Hz), 119.04, 112.40 (d, J = 12.2 Hz), 112.30, 111.67 (d, J = 11.9 Hz), 108.45 (d, J = 15.3Hz), 108.26 (d, J = 15.0 Hz), 101.57, 101.48, 75.18 (d, J = 62.8 Hz). ³¹P NMR (202 MHz, Chloroform-*d*) δ 30.07. **HRMS** (ESI) m/z calcd for C₂₈H₂₁NO₆P [M+H]⁺: 498.1101, found: 498.1101. 2-(butyl(phenyl)phosphoryl)-2-phenylindolin-3-one (3p). Yellow solid, 20.6 mg, 53%

yield. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.13 – 8.06 (m, 2H), 7.98 (s, 1H), 7.88 (s, 1H), 7.77 – 7.69 (m, 2H), 7.67 – 7.59 (m, 3H), 7.58 – 7.51 (m, 3H), 7.50 – 7.37 (m, 6H), 7.35 – 7.30 (m, 2H), 7.22 (td, *J* = 7.7, 2.8 Hz, 2H), 7.19 – 7.15 (m, 2H), 7.12 (dd, *J* = 8.3, 6.6 Hz, 2H), 7.07 (d, *J* = 8.3 Hz, 1H), 6.87 – 6.81 (m, 1H), 6.73 (d, *J* = 8.3 Hz, 1H), 6.53 – 6.50 (m, 1H), 2.72 – 2.57 (m, 1H), 2.08 – 1.92 (m, 3H), 1.66 – 1.53 (m, 1H), 1.37 (h,

J = 7.1 Hz, 3H), 1.32 - 1.23 (m, 4H), 0.83 (t, J = 7.1 Hz, 3H), 0.76 (t, J = 7.3 Hz, 3H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 196.83 (d, J = 1.8 Hz), 196.75 (d, J = 1.3 Hz), 160.36 (d, J = 3.6 Hz), 160.15 (d, J = 3.3 Hz), 137.65, 137.06, 132.96 (d, J = 2.4 Hz), 132.77 (d, J = 2.3 Hz), 132.55 (d, J = 8.9 Hz), 132.36 (d, J = 2.6 Hz), 132.16 (d, J = 8.7Hz), 132.02 (d, J = 2.6 Hz), 128.49 (d, J = 1.9 Hz), 128.24 (d, J = 2.1 Hz), 128.01 (d, J = 11.8 Hz), 127.93 (d, J = 94.0 Hz), 127.86 (d, J = 11.4 Hz), 127.68 (d, J = 2.3 Hz), 127.63 (d, J = 1.9 Hz), 127.55 (d, J = 94.5 Hz) 127.40 (d, J = 3.4 Hz), 126.81 (d, J = 3.8 Hz), 124.77, 124.20, 121.14, 120.81, 118.92, 118.37, 112.78, 112.11, 74.37 (d, J = 18.4 Hz), 73.91 (d, J = 20.3 Hz), 24.09 (d, J = 6.3 Hz), 23.98 (d, J = 5.3 Hz), 23.93 (d, J = 65.5 Hz), 23.45 (d, J = 4.7 Hz), 22.87 (d, J = 4.7 Hz), 22.73 (d, J = 65.7 Hz), 13.58 , 13.56 . ³¹P NMR (202 MHz, Chloroform-*d*) δ 42.55, 41.68. HRMS (ESI) m/z calcd for C₂₄H₂₅NO₂P [M+H]⁺: 390.1617, found: 390.1617.

2-(dimethyl phosphoryl)-2-phenylindolin-3-one (3q). Yellow solid, 18.8 mg, 66%

yield. ¹**H** NMR (500 MHz, DMSO- d_6) δ 8.85 (s, 1H), 7.86 – 7.80 (m, 2H), 7.57 – 7.51 (m, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.42 (dd, J = 8.5, 6.8 Hz, 2H), 7.35 (m, 1H), 7.09 (d, J = 8.3 Hz, 1H), 6.78 (t, J = 7.4 Hz, 1H), 1.35 (d, J = 12.9 Hz, 3H), 1.26 (d, J = 12.4 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 195.97, 160.88 (d, J = 3.8 Hz), 138.23,

133.80 (d, J = 1.0 Hz), 128.58 (d, J = 1.9 Hz), 128.34 (d, J = 2.1 Hz), 126.83 (d, J = 3.4 Hz), 124.62, 119.73, 118.66, 112.72, 73.76 (d, J = 60.9 Hz), 12.91 (d, J = 90.1 Hz), 12.38 (d, J = 89.1 Hz). ³¹**P NMR** (202 MHz, DMSO-*d*₆) δ 44.51. **HRMS** (ESI) m/z calcd for C₁₆H₁₆NO₂PNa [M+Na]⁺: 308.0811, found: 308.0813.

J = 7.0 Hz, 3H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 195.49, 195.08, 159.84 (d, J = 3.3 Hz), 159.63 (d, J = 3.9 Hz), 137.09, 136.97, 133.66 (d, J = 9.4 Hz), 133.18 (d, J = 9.4 Hz), 133.02 (d, J = 2.7 Hz), 132.87, 132.83, 132.73 (d, J = 2.6 Hz), 128.21 (d, J = 2.1 Hz), 128.15 (d, J = 2.4 Hz), 128.01 (d, J = 1.8 Hz), 127.93 (d, J = 3.1 Hz), 127.90 (d, J = 1.8 Hz), 127.88 (d, J = 2.3 Hz), 127.43 (d, J = 85.4 Hz), 127.31 (d, J = 3.7 Hz), 126.90 (d, J = 4.2 Hz), 126.41 (d, J = 83.5 Hz), 124.90, 124.59, 121.24, 120.87, 119.24,

118.93, 112.44, 112.07, 73.49 (d, J = 94.8 Hz), 73.29 (d, J = 91.8 Hz), 63.05 (d, J = 7.6 Hz), 62.65 (d, J = 7.3 Hz), 16.44 (d, J = 5.4 Hz), 16.30 (d, J = 5.7 Hz). ³¹**P** NMR (202 MHz, Chloroform-*d*) δ 36.21, 30.45. **HRMS** (ESI) m/z calcd for C₂₂H₂₁NO₃P [M+H]⁺: 378.1254, found: 378.1257.

diethyl-(3-oxo-2-phenylindolin-2-yl)phosphonate (3s). Yellow solid, 9.3 mg, 27%

yield. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.98-7.96 (m, 2H), 7.64 – 7.59 (m, 1H), 7.48 – 7.41 (m, 1H), 7.37 – 7.34 (m, 2H), 7.32 – 7.29 (m, 1H), 7.06 – 6.92 (m, 1H), 6.82 (t, *J* = 7.4 Hz, 1H), 6.47 (s, 1H), 4.15 – 4.03 (m, 2H), 4.01 – 3.90 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.07 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, Chloroform*d*) δ 194.73 (d, *J* = 3.6 Hz), 159.94 (d, *J* = 4.6 Hz), 137.28, 133.41

(d, J = 2.9 Hz), 128.32 (d, J = 2.5 Hz), 128.22 (d, J = 2.8 Hz), 126.80 (d, J = 4.9 Hz), 125.14, 120.43, 119.35, 112.51, 71.51 (d, J = 145.2 Hz), 64.62 (d, J = 7.7 Hz), 64.38 (d, J = 7.4 Hz), 16.25 (d, J = 5.7 Hz), 16.18 (d, J = 5.7 Hz). ³¹**P NMR** (202 MHz, Chloroform-*d*) δ 15.83. **HRMS** (ESI) m/z calcd for C₁₈H₂₁NO₄P [M+H]⁺: 346.1203, found: 346.1203.

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-(4-methoxyphenyl)indolin-3-one

(3t). Yellow solid, 35.1 mg, 61% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 (t, J = 9.4 Hz, 2H), 7.96 (dd, J = 10.8, 8.1 Hz, 2H), 7.87 (s, J = 8.8 Hz, 1H), 7.74 – 7.69 (m, 4H), 7.47 (dd, J = 15.5, 8.3 Hz, 3H), 7.36 – 7.28 (m, 1H), 6.86 (d, J = 8.3 Hz, 1H), 6.71 (t, J = 7.5 Hz, 3H), 3.74 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.83(d, J = 1.3 Hz), 160.07 (d, J = 4.4 Hz), 159.76 (d, J = 2.0 Hz), 138.01, 134.71 – 131.88 (m), 133.66 (d, J = 5.0 Hz)

94.3 Hz), 133.53 (d, J = 9.6 Hz), 132.71 (d, J = 96.3 Hz), 132.59 (d, J = 9.4 Hz), 128.76 (d, J = 4.1 Hz), 125.19 – 124.84 (m), 124.70, 124.11 (d, J = 1.3 Hz), 123.38 (qd, J = 273.4 Hz, 29.0 Hz), 120.97, 119.45, 113.76 (d, J = 1.4 Hz), 112.28, 74.45 (d, J = 66.1 Hz), 55.19. ³¹P NMR (202 MHz, Chloroform-*d*) δ 27.63. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -63.31, -63.53. HRMS (ESI) m/z calcd for C₂₉H₂₁F₆NO₃P [M+H]⁺: 576.1158, found: 576.1156.

2-(bis(4-(trifluoromethyl)phosphoryl)-2-(3-methoxyphenyl)indolin-3-one

(3u). Yellow solid, 23.6 mg, 41% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.23 (dd, J = 11.0, 8.0 Hz, 2H), 8.07 (s, 1H), 7.99 (dd, J = 10.9, 8.1 Hz, 2H), 7.78 – 7.69 (m, 2H), 7.54 – 7.39 (m, 3H), 7.32 (q, J = 8.4 Hz, 3H), 7.08 (t, J = 8.0 Hz, 1H), 6.83 (d, J = 8.3 Hz, 1H), 6.78 (d, J = 8.3 Hz, 1H), 6.69 (t, J = 7.4 Hz, 1H), 3.54 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.49 (d, J = 1.3 Hz), 160.30 (d, J = 4.3 Hz), 159.37 (d, J = 1.9 Hz), 138.01, 134.84 – 132.35 (m), 133.73 (d, J = 97.3 Hz), 133.62 (d, J

= 9.6 Hz), 133.20 (d, *J* = 2.0 Hz), 132.65 (d, *J* = 9.4 Hz), 132.51 (d, *J* = 94.9 Hz), 129.31, 125.23 - 124.88 (m), 124.68, 123.79 (qd, *J* = 272.2 Hz, 26.5 Hz), 120.76, 119.84 (d, *J*

= 4.3 Hz), 119.37, 114.44 (d, J = 2.5 Hz), 112.97 (d, J = 4.1 Hz), 112.30, 74.91 (d, J = 65.6 Hz), 54.94. ³¹P NMR (202 MHz, Chloroform-*d*) δ 27.33. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -63.34, -63.54. HRMS (ESI) m/z calcd for C₂₉H₂₁F₆NO₃P [M+H]⁺: 576.1158, found: 576.1154.

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-(p-tolyl)indolin-3-one (3v).

Yellow solid, 31.9 mg, 57% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 8.73 (s, 1H), 8.03 (dd, J = 10.2, 8.2 Hz, 2H), 7.87 – 7.78 (m, 6H), 7.66 (dd, J = 8.4, 2.0 Hz, 2H), 7.42 – 7.39 (m, 1H), 7.27 – 7.22 (m, 1H), 7.17 (d, J = 8.1 Hz, 2H), 6.96 (d, J = 8.3 Hz, 1H), 6.65 (t, J = 7.4 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 195.25, 160.86 (d, J = 5.3 Hz), 138.21 (d, J = 2.3 Hz), 138.15, 134.78 (d, J = 95.2 Hz), 134.02 (d, J = 8.7 Hz), 133.70(d, J = 96.4 Hz), 133.14 (d, J = 9.1 Hz), 132.96 – 131.81 (m),

130.02, 129.27, 126.98 (d, J = 3.7 Hz), 125.66 (dq, J = 11.5, 3.7 Hz), 125.44 (dq, J = 11.0, 3.8 Hz), 124.44, 124.02 (qd, J = 272.5, 3.6 Hz), 119.68, 119.14, 112.98, 73.91 (d, J = 71.3 Hz), 21.05. ³¹P NMR (202 MHz, DMSO- d_6) δ 23.81. ¹⁹F NMR (471 MHz, Chloroform-d) δ -63.31, -63.53. HRMS (ESI) m/z calcd for C₂₉H₂₁F₆NO₂P [M+H]⁺: 560.1209, found: 560.1200.

2-(bis(4-(trifluoromethyl)phosphoryl)-2-(4-fluorophenyl)indolin-3-one

(3w). Yellow solid, 42.2 mg, 75% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.18 (dd, J = 10.9, 8.1 Hz, 2H), 8.03 (s, 1H), 7.97 (dd, J = 10.9, 8.1 Hz, 2H), 7.77 – 7.73 (m, 4H), 7.50 – 7.45 (m, 3H), 7.35 – 7.32 (m, 1H), 6.91 – 6.80 (m, 3H), 6.72 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.45, 162.79 (dd, J = 249.3, 2.3 Hz), 160.12 (d, J = 3.9 Hz), 138.26, 135.03 – 133.90 (m), 133.49 (d, J = 9.5 Hz), 132.55 (d, J = 95.2 Hz), 132.52 (d, J = 9.4 Hz), 132.35 (d, J = 96.1 Hz), 129.37 (dd, J = 8.1,

3.8 Hz), 127.99 (d, J = 2.5 Hz), 125.32 – 124.95 (m), 124.78, 123.26 (qd, J = 273.1, 30.0 Hz), 120.8, 119.65, 115.26 (d, J = 22.7 Hz), 112.20, 74.28 (d, J = 64.6 Hz). ³¹**P NMR** (202 MHz, DMSO-*d*₆) δ 23.90. ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -63.34, -63.59, -112.57. **HRMS** (ESI) m/z calcd for C₂₈H₁₈F₇NO₂P [M+H]⁺: 564.0958, found: 564.0952.

2-(bis(4-(trifluoromethyl)phosphoryl)-2-(3-fluorophenyl)indolin-3-one

(3x). Yellow solid, 33.8 mg, 60% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 8.81 (s, 1H), 8.02 (t, J = 9.2 Hz, 2H), 7.85 (d, J = 6.7 Hz, 4H), 7.83 – 7.78 (m, 2H), 7.68 – 7.61 (m, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.48 – 7.39 (m, 2H), 7.26 (d, J = 7.8 Hz, 1H), 7.24 – 7.18 (m, 1H), 6.98 (d, J = 8.3 Hz, 1H), 6.68 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 194.35, 162.20 (dd, J = 244.0 Hz), 160.82 (d, J = 5.0 Hz), 138.43, 135.60 (d, J = 7.8 Hz), 134.30 (d, J = 5.0 Hz), 138.43

96.6 Hz), 134.07 (d, J = 8.6 Hz), 133.11 (d, J = 9.1 Hz), 133.88 – 131.72 (m), 132.95 (d, J = 95.2 Hz), 130.64 (d, J = 8.6 Hz), 125.84 (dq, J = 12.0, 4.5 Hz), 125.52 (dq, J = 10.1, 3.5, 2.9 Hz), 124.56, 123.45 (qd, J = 273.2 Hz, 2.5 Hz), 122.94 (d, J = 2.5 Hz), 119.46, 119.42, 115.77 (d, J = 21.2 Hz), 114.17 (dd, J = 24.4, 3.4 Hz), 113.04, 73.60 (d, J = 70.6 Hz). ³¹P NMR (202 MHz, Chloroform-*d*) δ 27.64. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -61.91, -61.93, -112.39. **HRMS**(ESI) m/z calcd for C₂₈H₁₈F₇NO₂P [M+H]⁺: 564.0958, found: 564.0953.

2-(bis(4-(trifluoromethyl)phosphoryl)-2-(4-chlorophenyl)indolin-3-one

(3y). Yellow oil, 33.6 mg, 58% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 8.82 (s, 1H), 8.02 (dd, J = 10.3, 8.1 Hz, 2H), 7.87 – 7.78 (m, 8H), 7.50 – 7.45 (m, 2H), 7.46 – 7.39 (m, 1H), 7.25 (d, J = 7.9 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H), 6.67 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 194.57, 160.81 (d, J = 5.0 Hz), 138.38, 134.75, 134.05 (d, J = 8.7 Hz), 133.88 (d, J = 2.7 Hz), 134.90 – 132.60 (m), 134.37 (d, J = 95.8 Hz), 133.60 (d, J = 97.0 Hz), 133.11 (d, J = 9.3 Hz), 132.00, 128.82 (d, J

= 3.6 Hz), 128.73 (d, J = 1.3 Hz), 125.82 (dq, J = 11.6, 3.4 Hz), 125.51 (dq, J = 11.3, 3.6 Hz), 124.53, 123.99 (qd, J = 273.3, 2.5 Hz), 119.45, 119.40, 113.02, 73.54 (d, J = 70.2 Hz). ³¹**P** NMR (202 MHz, DMSO- d_6) δ 23.88. ¹⁹**F** NMR (471 MHz, DMSO- d_6) δ -61.92, -61.93. **HRMS** (ESI) m/z calcd for C₂₈H₁₇ClF₆NO₂PNa [M+Na]⁺: 602.0482, found: 602.0485.

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-(4-bromophenyl)indolin-3-one

(3z). Yellow solid, 46.2 mg, 74% yield. ¹H NMR (500 MHz, DMSO-d6) δ 8.81 (s, 1H), 8.02 (dd, J = 10.3, 8.1 Hz, 2H), 7.88 – 7.82 (m, 4H), 7.80 (dd, J = 8.4, 2.4 Hz, 2H), 7.75 (dd, J = 8.7, 1.9 Hz, 2H), 7.65 – 7.56 (m, 2H), 7.44 – 7.41 (m, 1H), 7.28 – 7.22 (m, 1H), 7.00 – 6.93 (m, 1H), 6.68 – 6.65 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 194.51, 160.81 (d, *J* = 5.1 Hz), 138.37, 134.37 (d, *J* = 98.3 Hz), 134.05 (d, *J* = 8.8 Hz), 133.83 (d, *J* = 94.5 Hz), 133.10 (d, *J* = 9.2 Hz), 133.60 – 132.11 (m),

132.69(d, J = 2.5 Hz), 132.48, 131.65, 129.11 (d, J = 3.8 Hz), 125.83 (dq, J = 11.1, 3.2 Hz), 125.52 (dq, J = 11.4, 3.6 Hz), 125.07 (qd, J =273.4, 1.3), 124.53, 122.60 (d, J = 2.8 Hz), 119.42 (d, J = 4.8 Hz), 113.03, 73.60 (d, J = 70.2 Hz). ³¹P NMR (202 MHz, DMSO- d_6) δ 23.76. ¹⁹F NMR (471 MHz, Chloroform-d) δ -63.35, -63.59. HRMS (ESI) m/z calcd for C₂₈H₁₇BrF₆NO₂PNa [M+Na]⁺: 645.9977, found: 645.9974.

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-6-chloro-2-phenylindolin-3-one

(3aa). Yellow solid, 34.7 mg, 60% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 9.05 (s, 1H), 8.02 (dd, J =10.4, 8.1 Hz, 2H), 7.84 (t, J = 6.2 Hz, 6H), 7.78 – 7.69 (m, 2H), 7.43 – 7.33 (m, 3H), 7.28 (d, J = 8.3Hz, 1H), 6.95 (d, J = 1.7 Hz, 1H), 6.68 (dd, J = 8.3, 1.7 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 193.79, 160.98 (d, J = 4.9 Hz), 143.09, 134.25 (d, J =96.0 Hz), 134.05 (d, J = 8.8 Hz), 133.17 (d, J = 94.4

Hz), 133.16 (d, J = 9.2 Hz), 133.79 – 132.02 (m), 132.59, 129.02, 128.78, 126.96 (d, J = 3.7 Hz), 126.21, 125.83 – 125.50 (m), 123.99 (qd, J = 272.8, 7.1 Hz), 119.64, 118.48, 112.26, 74.70 (d, J = 69.1 Hz). ³¹**P** NMR (202 MHz, DMSO- d_6) δ 24.07. ¹⁹**F** NMR (471 MHz, DMSO- d_6) δ -61.88, -61.90. HRMS (ESI) m/z calcd for C₂₈H₁₈ClF₆NO₂P [M+H]⁺: 580.0662, found:580.0656.

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-5-chloro-2-phenylindolin-3-one

(3bb). Yellow oil, 29.0 mg, 50% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 9.05 (s, 1H), 8.02 (dd, J =10.4, 8.1 Hz, 2H), 7.84 (t, J = 6.2 Hz, 6H), 7.78 – 7.69 (m, 2H), 7.43 – 7.33 (m, 3H), 7.28 (d, J = 8.3Hz, 1H), 6.95 (d, J = 1.7 Hz, 1H), 6.68 (dd, J = 8.3, 1.7 Hz, 1H). ¹³C NMR (126 MHz, Methanol- d_4) δ 194.17, 158.93 (d, J = 5.2 Hz), 137.55, 135.60 – 132.88 (m), 133.59 (d, J = 8.9 Hz), 132.76 (d, J =

96.1 Hz), 132.74 (d, J = 9.3 Hz), 131.73 (d, J = 97.7 Hz), 131.71 (d, J = 2.5 Hz), 128.59 (d, J = 2.4 Hz), 128.22 (d, J = 2.1 Hz), 126.50 (d, J = 4.0 Hz), 125.12 – 124.75 (m), 124.30, 126.94 – 119.98 (m), 122.99, 120.93, 113.75, 74.53 (d, J = 71.7 Hz). ³¹P NMR (202 MHz, DMSO- d_6) δ 24.07. ¹⁹F NMR (471 MHz, DMSO- d_6) δ -61.88, -61.90. HRMS (ESI) m/z calcd for C₂₈H₁₈ClF₆NO₂P [M+H]⁺: 580.0662, found:580.0654.

2-(bis(4-(trifluoromethyl)phosphoryl)-6-methyl-2-phenylindolin-3-one

(3cc). Yellow solid, 40.2 mg, 72% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 8.69 (s, 1H), 8.01 (dd, J =10.3, 8.1 Hz, 2H), 7.82 (q, J = 3.8 Hz, 6H), 7.75 (dt, J = 7.4, 1.9 Hz, 2H), 7.35 (dd, J = 5.6, 1.9 Hz, 3H), 7.15 (d, J = 8.0 Hz, 1H), 6.74 (dt, J = 1.5, 0.9 Hz, 1H), 6.50 (dd, J = 8.0, 1.3 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 194.17, 161.29 (d, J =5.3 Hz), 149.48, 134.71 (d, J = 95.7 Hz), 134.07,

133.98 (d, J = 8.7 Hz), 133.71 (d, J = 95.8 Hz), 133.12 (d, J = 9.7 Hz), 135.66 – 130.04 (m), 128.79 (d, J = 2.5 Hz), 128.59 (d, J = 1.3 Hz), 127.07 (d, J = 3.8 Hz), 125.75 – 124.36 (m), 125.12 (qd, J = 273.4 Hz, 6.3 Hz), 124.26, 121.06, 117.62, 112.62, 74.28 (d, J = 71.2 Hz), 22.41. ³¹**P NMR** (202 MHz, DMSO-*d*₆) δ 24.16. ¹⁹**F NMR** (471 MHz, DMSO-*d*₆) δ -61.83, -61.84. **HRMS** (ESI) m/z calcd for C₂₉H₂₁F₆NO₂P [M+H]⁺: 560.1209, found:560.1206.

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-(tert-butyl)indolin-3-one (3dd).

Yellow solid, 26.3 mg, 50% yield. ¹H NMR (500 MHz, Methanol- d_4) δ 8.38 (dd, J = 10.4, 8.2 Hz, 2H), 8.22 (dd, J = 10.5, 8.2 Hz, 2H), 7.74 (dd, J = 8.5, 2.5 Hz, 2H), 7.67 (dd, J = 8.5, 2.5 Hz, 2H), 7.38 – 7.31 (m, 1H), 7.22 (d, J = 7.8 Hz, 1H), 6.92 (d, J = 8.3 Hz, 1H), 6.63 (t, J = 7.4 Hz, 1H), 1.12 (s, 9H). ¹³C NMR (126 MHz, Methanol- d_4) δ 199.10 (d, J = 2.5 Hz), 161.42 (d, J = 5.3 Hz), 137.36, 135.87 (d, J = 90.6 Hz), 135.05 (d, J = 5.3 Hz), 137.36, 135.87 (d, J = 90.6 Hz), 135.05 (d, J = 5.3 Hz), 137.36, 135.87 (d, J = 90.6 Hz), 135.05 (d, J = 5.3 Hz), 137.36, 135.87 (d, J = 90.6 Hz), 135.05 (d, J = 5.3 Hz), 137.36, 135.87 (d, J = 90.6 Hz), 135.05 (d, J = 5.3 Hz), 135.05 (d, J = 5.3

95.5 Hz), 133.96 – 132.98 (m), 133.29 (d, J = 8.9 Hz), 132.77 (d, J = 8.8 Hz), 124.81 – 124.49 (m), 123.55 (qd, J = 272.0, 7.2 Hz), 123.20, 122.36, 118.70, 112.10, 78.06 (d, J = 71.4 Hz), 40.08 (d, J = 1.1 Hz), 25.79 (d, J = 4.8 Hz). ³¹P NMR (202 MHz, Methanol- d_4) δ 21.13. ¹⁹F NMR (471 MHz, Methanol- d_4) δ -64.81, -64.86. HRMS (ESI) m/z calcd for C₂₆H₂₃F₆NO₂P [M+H]⁺: 526.1365, found: 526.1361.

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-cyclopropylindolin-3-one (3ee).

Yellow solid, 18.3 mg, 36% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.65 (dd, J = 11.1, 8.1 Hz, 2H), 7.89 (dd, J = 8.4, 2.5 Hz, 2H), 7.83 (dd, J = 10.9, 8.1 Hz, 2H), 7.44 (dd, J = 8.4, 2.5 Hz, 2H), 7.35 – 7.32 (m, 2H), 6.90 – 6.84 (m, 1H), 6.77 (s, 1H), 6.68 (dd, J = 7.9, 6.9 Hz, 1H), 1.50 – 1.46 (m, 1H), 0.82 – 0.74 (m, 1H), 0.51 (dd, J = 9.9, 4.7 Hz, 1H), 0.47 – 0.40 (m, 1H), 0.36 – 0.27 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 199.42 (d, J = 2.5 Hz),

161.04 (d, J = 3.8 Hz), 137.88, 135.40 – 133.27 (m), 133.60 (d, J = 92.5 Hz), 133.43 (d, J = 10.1 Hz), 133.26 (d, J = 94.2 Hz), 131.97 (d, J = 9.6 Hz), 125.56 (dq, J = 11.9, 3.5 Hz), 124.93 (dq, J = 11.5, 3.6 Hz), 124.62 , 123.04 (qd, J = 272.2, 41.6 Hz), 120.95 (d, J = 1.2 Hz), 119.49, 112.31, 72.19 (d, J = 67.7 Hz), 13.43 (d, J = 2.9 Hz), 1.49 (d, J = 3.3 Hz), -0.85 (d, J = 7.5 Hz). ³¹**P** NMR (202 MHz, Chloroform-*d*) δ 26.41. ¹⁹**F** NMR (471 MHz, Chloroform-*d*) δ -63.29, -63.58. **HRMS** (ESI) m/z calcd for C₂₅H₁₉F₆NO₂P [M+H]⁺: 510.1052, found: 510.1049.

7. Single Crystal X-ray Structure Determinations of Compounds

Single crystal X-ray structure determinations of compound 3s (CCDC: 2160338)

S = 1.063 Npar = 233

8. Copies of NMR Spectra

¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR spectra for compounds

henylphosphoryl)-2-phenylindolin-3-one (3a)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1 1 1																				
50	130	110	90	70	50	30	10	-10	-30	$^{-50}$	-70	-90	-110	-130	-150	-170	-190	-210	-230	$^{-2}$
fl (ppm)																				

2-(bis(4-methoxyphenyl)phosphoryl)-2-phenylindolin-3-one (3b)

— 29.43

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

2-(di-p-tolylphosphoryl)-2-phenylindolin-3-one (3c)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2-(di-m-tolylphosphoryl)-2-phenylindolin-3-one (3d)

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

2-(bis(3,5-dimethylphenyl)phosphoryl)-2-phenylindolin-3-one (3e)

2-(bis(4-(tert-butyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3f)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2{ f1 (ppm)

2-(bis(4-fluorophenyl)phosphoryl)-2-phenylindolin-3-one (3g)

-28.40

2-(bis(3-fluoro-4-methylphenyl)phosphoryl)-2-phenylindolin-3-one (3h).

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0

- 27.61

2-(bis(4-chlorophenyl)phosphoryl)-2-phenylindolin-3-one (3i)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2-(bis(3-chlorophenyl)phosphoryl)-2-phenylindolin-3-one (3j)

-27.36

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

2-(bis(4-bromophenyl)phosphoryl)-2-phenylindolin-3-one (3k)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3l)

- 28.90

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

2-(bis(3-(trifluoromethyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3m)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

2-(bis(3-(trifluoromethyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3n).

- 25.84

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

2-(bis(benzo[d][1,3]dioxol-4-yl)phosphoryl)-2-phenylindolin-3-one (30)

-30.07

-10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm) 50 130 110 90

2-(butyl(phenyl)phosphoryl)-2-phenylindolin-3-one (3P)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2-(dimethylphosphoryl)-2-phenylindolin-3-one (3q).

42.55
41.68

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

diethyl-(3-oxo-2-phenylindolin-2-yl)phosphonate (3s)

- 36.21 - 30.45

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-(4-methoxyphenyl)indolin-3one(3t)

196.84 196.83 196.83 196.83 196.83 196.83 196.83 196.83 196.83 196.83 195.77 195.84 194.66 134.61 134.61 134.64 134.64 134.64 134.64 134.64 134.64 134.64 134.64 134.64 134.64 134.64 134.64 134.64 134.64 133.56 133.56 133.56 133.56 133.56 133.56 133.58 133.56 133.56 133.56 133.56 133.56 133.56 133.56 133.56 133.56 133.56 133.56 13

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 27.63

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-(3-methoxyphenyl)indolin-3one(3u)

196.49 196.49 196.48 195.37 193.37 193.37 193.37 133.01 133.01 134.73 133.37 134.47 133.37 134.47 134.47 134.43 134.23 134.23 134.23 134.23 134.25 134.26 134.26 134.26 132.26 133.26 13

f1 (ppm)

 $< \frac{-63.34}{-63.54}$

-100 f1 (ppm)

2-(bis(4-(trifluoromethyl)phosphoryl)-2-(p-tolyl)indolin-3-one (3v).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

 $< \frac{-63.31}{-63.53}$

<u> </u>												
20	0	-20	-40	-60	$^{-80}$	-100	-120	-140	-160	-180	-200	-2
						fl (ppm)						

- 23.81

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-(4-fluorophenyl)indolin-3-one (3w)

196.45 161.79 163.77 163.77 163.77 163.77 163.77 163.77 163.77 163.77 163.77 163.77 163.74 161.79 163.74 163.74 134.67 134.45 134.45 134.45 134.45 134.45 134.45 134.45 134.45 134.45 134.45 134.45 134.45 134.45 134.45 134.45 134.45 134.45 135.45 132.45 132.45 132.45 132.45 132.45 132.45 132.59 125.30 125.30 125.45 125.45 125.50 12

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 27.64

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-(3-fluorophenyl)indolin-3-one (3x).

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

- 23.90

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

 $<^{-61.92}_{-61.93}$

- 23.88

2-(bis(4-(trifluoromethyl)phosphoryl)-2-(4-bromophenyl)indolin-3-one (**3**z)

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-6-chloro-2-phenylindolin-3-one **(3aa)**

 $<^{-61.88}_{-61.90}$

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-5-chloro-2-phenylindolin-3-one (3bb).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

 $<^{-64.91}_{-64.92}$

- 26.50

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-6-methyl-2-phenylindolin-3-one (3cc)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 $<_{-61.84}^{-61.83}$

66

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 $<^{-64.81}_{-64.86}$

- 21.13

2-(bis(4-(trifluoromethyl)phosphoryl)-2-cyclopropylindolin-3-one (3ee)

863 863 863 863 863 864 865 866 866 866 867 738 866 738 867 738 738 866 738 867 738 738 866 738 867 738 738 867 738 738 868 738 738 868 738 738 738 868 738 738 738 738 738 738 738 738 738 738 739 739 739 739 739 739 739 739 739 739 739 739 739 739 739 739 </

199.45 199.45 197.85 197.85 197.86 197.86 197.87 19

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3-oxo-2-phenyl-3*H*-indole 1-oxide (4)

