Supporting information

Visible-light-driven PhSSPh-catalysed regioselective hydroborylation of α,β-unsaturated carbonyl compounds with NHC-boranes

Xinghua Liu,^a† Yujing Shen,^a† Cheng Lu,^a Yongchan Jian,^a Shuangshuang Xia,^a

Zhaoliang Gao,^a Yihan Zheng,^a Yuanyuan An*,^a and Yubin Wang*,^a

^aSchool of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China

Table of contents

1.	General information	S2
2.	Optimization of reaction conditions	S3
3.	Experimental section	S4
4.	Analytical data for products	S11
5.	References	S26
6.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	S27

1. General Information

Unless otherwise declared, all the reagents were bought from commercial suppliers and used without additional purification. A glass tube (35 mL) with a rubber plug was used in hydroboration reactions unless otherwise noted. NHC-boranes reagent was prepared according to a previously reported procedure¹. Thin layer chromatography (TLC) was performed on commercial silica gel plates and flash column chromatography was performed with 300-400 mesh silica gel cartridge. Visualization of TLC achieved using ultraviolet light (254 nm) or staining with Iodine. NMR spectra were recorded on a BRUKER AVANCE III 400 spectrometer (400 MHz for ¹H; 376 MHz for ¹⁹F; 100 MHz for ¹³C) instruments and are referenced relative to CDCl₃ (δ 7.26 ppm for ¹H, 77.16 ppm for ¹³C) using TMS as internal standard. Resonances of hydrogen or carbon atoms bonded to the boron atom are weak (sometimes absent) in both ¹H or ¹³C NMR spectra. Note: The protons on boron atom in the ¹H-NMR spectrum and the carbene carbon atom attached to the boron atom in the ¹³C NMR spectrum are not detected owing to quadrupole broadening and spin-spin coupling with boron. Data are recorded as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet), coupling constant (J) in Hertz (Hz), and integration. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer with electro spray ionization (ESI) as the ion source.

2. Optimization of reaction conditions

Table S1. Optimization of reaction conditions.^a

	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	
Entry	Variation of standard conditions	Yield [%] ^b
1	none	95
2	MeOH instead of MeCN	91
3	DCE instead of MeCN	20
4	THF instead of MeCN	24
5	toluene instead of MeCN	66
6	1,4-dioxane instead of MeCN	27
7	DMF instead of MeCN	48
8	DCM instead of MeCN	26
9	BnSSBn instead of PhSSPh	NR
10	1.0 equiv of 2	79
11	30 W CFL	21
12	5 mol% of PhSSPh	34
13	without PhSSPh	NR
14	no light irradiation	NR
15	without N ₂	trace

^{*a*} Standard reaction conditions: ethyl cinnamate **1a** (0.3 mmol), 1,3-dimethylimidazol-2-ylidene borane **2** (0.45 mmol), PhSSPh (10 mol%), blue LEDs (30 W), and solvent (2 mL), at room temperature for 8 h under N₂ atmosphere. The reaction was conducted at room temperature, but the solution temperature was increased to 30°C upon the irradiation by blue LEDs. ^{*b*} Isolated yield. NR = no reaction.

3. Experimental section

(1) Starting substrates were commercially available as below:

(2) Synthesis of Substrates.

Synthesis of Substrate 1o:

To a stirred slurry of LiCl (0.67 g, 14.2 mmol) in MeCN (80 mL) was added triethyl phosphonoacetate (2.9 mL, 12.8 mmol) and 2-naphthaldehyde (2.0 g, 12.8 mmol) at 0°C. After stirring for 5 minutes at 0°C, DBU (1.9 mL, 12.8 mmol) was added and then the reaction mixture was stirred at room temperature overnight. The resulting

slurry was diluted with diethyl ether (200 mL), washed with sat. NH_4Cl (100 mL), brine (100 mL), dried over anhydrous MgSO₄, filtered through celite (diethyl ether) and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc – 20/1) to yield the corresponding compound **10**. The spectral data are in good agreement with previous reports.²

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.87-7.81 (m, 4H), 7.66 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.53-7.48 (m, 2H), 6.55 (d, *J* = 16.0 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 166.0, 143.6, 133.2, 132.2, 130.9, 128.9, 127.6, 127.5, 126.7, 126.2, 125.7, 122.5, 117.4, 59.5, 13.3 ppm.

Synthesis of Substrate 1am³:

To a 50 mL round bottom flask, cinnamic acid (6.75 mmol, 1.0 g), nerol (8.10 mmol, 1.3 g) and DCM (15 mL) was added under N₂ atmosphere. After the solution was stirred at 0 °C for 5 min, EDCI (8.10 mmol, 1.6 g) and DMAP (0.675 mmol, 82.0 mg) were added, then the reaction mixture was stirred at room temperature. After completion of the reaction as indicated by TLC, anhydrous Na₂SO₄ was added. After filtration, the filtrate was concentrated in vacuo to afford crude product which was further purified by column chromatography (SiO₂, PE: EA = 100:1) to afford the desired product **1am**.

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, *J* = 16.0 Hz, 1H), 7.52-7.50 (m, 2H), 7.38-7.36 (m, 3H), 6.45 (d, *J* = 16.0 Hz, 1H), 5.44 (t, *J* = 7.2 Hz, 1H), 5.12 (t, *J* = 7.0 Hz, 1H), 4.70 (d, *J* = 7.2 Hz, 2H), 2.18-2.10 (m, 4H), 1.79 (d, *J* = 0.9 Hz, 3H), 1.69 (s, 3H), 1.61 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 167.0, 144.6, 142.7, 134.4, 132.1, 130.2, 128.8, 128.0, 123.5, 119.2, 118.2, 61.1, 32.2, 26.6, 25.7, 23.5, 17.6 ppm.

Synthesis of Substrate 1an³:

To a 50 mL round bottom flask, cinnamic acid (6.75 mmol, 1.0 g), estrone (8.10 mmol, 2.2 g) and DCM (15 mL) was added under N₂ atmosphere. After the solution was stirred at 0 °C for 5 min, EDCI (8.10 mmol, 1.6 g) and DMAP (0.675 mmol, 82.0 mg) were added, then the reaction mixture was stirred at room temperature. After completion of the reaction as indicated by TLC, anhydrous Na₂SO₄ was added. After filtration, the filtrate was concentrated in vacuo to afford crude product which was further purified by column chromatography (SiO₂, PE: EA = 8:1) to afford the desired product **1am**.

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, *J* = 16.0 Hz, 1H), 7.57 (s, 2H), 7.41 (s, 3H), 7.30 (d, *J* = 8.4 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.90 (s, 1H), 6.62 (d, *J* = 16.0 Hz, 1H), 2.93-2.91 (m, 2H), 2.53-2.47 (m, 1H), 2.42-2.39 (m, 1H), 2.31-2.27 (m, 1H), 2.16-1.95 (m, 4H), 1.62-1.45 (m, 6H), 0.91 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 165.7, 148.6, 146.4, 138.0, 137.3, 134.2, 130.7, 129.0, 128.3, 126.4, 121.6, 118.8, 117.3, 50.4, 47.9, 44.1, 38.0, 35.9, 31.5, 29.4, 26.3, 25.7, 21.6, 13.8 ppm.

(3) General procedure for this regioselective hydroborylation of α,β-unsaturated carbonyl compounds with NHC-BH₃.

A dry glass tube (35 mL, 18 x 180 mm) equipped with a rubber plug and magnetic stir bar was charged with the electron-deficient alkenes 1 (0.30 mmol), NHC-BH₃ 2 (0.45 mmol), PhSSPh (6.6 mg, 10 mol%), and CH₃CN (2 mL). The tube was evacuated and backfilled with N_2 for three times, then was tied up nitrogen balloons and placed approximately 5 cm from a 30 W blue LEDs light. The mixture was stirred at around 30 °C for 8 hours. The resulting mixture was then concentrated in vacuo to afford crude product which was further purified by column chromatography (SiO₂) to afford the desired product.

(4) Gram Scale Reaction

Add **1a** (1.00 g, 5.7 mmol), NHC-BH₃ (937 mg, 8.5 mmol), PhSSPh (124 mg, 10 mol%), and CH₃CN (50 mL) to an eggplant flask (250 mL), then pump nitrogen three times, and finally tie up nitrogen ballon and placed approximately 3 cm from a 30 W blue LEDs light. The mixture was stirred at around 30 °C for 8 hours. The resulting mixture was then concentrated in vacuo to afford crude product which was further purified by column chromatography (SiO₂) to afford the desired product **3a** as pale-yellow oil; yield: 58% (0.94 g, 3.3 mmol).

(5) Control Experiments

Three dry glass tubes (35 mL, 18 x 180 mm) equipped with rubber plugs and magneticstir bar was charged with the cinnamate 1a (0.30 mmol), NHC-borane 2 (0.45 mmol), PhSSPh (6.6 mg, 10 mol%), and MeCN (2 mL), respectively. Under the standard conditions, (a) adding 4.0 equiv. of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) into the reaction system; (b) adding 4.0 equiv. of BHT (2,6-di-tert-butyl-4-methylphenol) into the reaction system; (c) adding 4.0 equiv. of radical scavenger 1,1-diphenylethylene into the reaction system. After the reactions were completed, the desired product 3a could not be observed in reaction (a) and (b). While, product 3a could be isolated in 22% yield in reaction (c). Additionally, adducts 4 and 5 was detected in reaction (c) by HRMS.

Fig. S1 HRMS spectrum of compound 4.

Fig. S2 HRMS spectrum of compound 5.

(6) Determination of Quantum yield

According to previous reported procedures,⁴⁻⁶ the actinometry measurements were determined by standard ferrioxalate actinometry.

Preparation of potassium ferrioxalate solution (0.15 M): Potassium ferrioxalate trihydrate (0.737 g) and 95~98% H₂SO₄ (27 μ L) were added to a 10 mL volumetric flask and filled to the mark with distilled water. The solution was stored in the dark.

Preparation of buffer solution: Dissolving 5.0 mg of phenanthroline and 1.13 g of sodium acetate in 5.0 mL of 0.5 M H_2SO_4 solution. The solution was stored in the dark.

The actinometry measurements: To determine the photon flux of the spectrophotometer, 2.0 mL of the ferrioxalate solution was placed in a cuvette and irradiated with 30W blue LEDs ($\lambda \approx 440$ nm) for 90.0 seconds. After irradiation, 0.35 mL of buffer solution was added to the cuvette. The solution was then stored in the dark for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. In a similar method, a blank solution (a non-irradiated sample) was also prepared. The absorbance of irradiated and non-irradiated samples at $\lambda = 510$ nm was measured by UV-Vis spectrophotometry. Conversion was calculated using Eq 1,

mol of
$$Fe^{2+} = \frac{V^*\Delta A}{l^*\varepsilon} = \frac{(0.00235 \text{ L})^* 2.532}{1 \text{ cm}^* 11100 \frac{\text{L}}{\text{mol}} \text{ cm}^{-1}} = 5.361^* 10^{-7} \text{ mol}$$
 (1)

Where:

V = the total volume () of the solution after addition of phenanthroline;

 ΔA = the difference in absorbance at 510 nm between the irradiated and nonirradiated solutions;

 \mathbf{l} = the path length (\mathbf{l} = 1 cm);

 ε = the molar absorptivity at 510 nm (ε = 11100 L*mol⁻¹*cm⁻¹).

Then, the photon flux can be calculated using Eq 2,

Photon
$$flux = \frac{\text{mol of Fe}^{2+}}{\Phi^* t^* f} = \frac{\text{mol of Fe}^{2+}}{\Phi^* t^* (1-10^{-A})} = \frac{5.361^* 10^{-7} \text{ mol}}{1.01^* 908^* 0.999} = 5.904^* 10^{-9} \text{ einstein/s}$$
 (2)

Where:

 Φ = the quantum yield for the ferrioxalate actinometer (Φ = 1.01 at λ = 436 nm);

 \mathbf{t} = irradiation time (\mathbf{t} = 90 s);

A = the measured absorbance of the ferrioxalate actinometer solution at 440 nm (A = 3.000).

Reaction quantum yield: A dry glass tube equipped with a rubber plug and magnetic stir bar was charged with the ethyl cinnamate **1a** (0.20 mmol), NHC-BH₃ **2** (0.30 mmol), PhSSPh (4.4 mg, 10 mol%), and CH₃CN (2 mL). The tube was evacuated and backfilled with N₂ for three times, then was tied up nitrogen balloons. The reaction mixture was stirred at room temperature (around 30 °C) for 60 min under 30W blue LEDs irradiation ($\lambda \approx 440$ nm). The solvent was removed in vacuo and the yield of product **3a** was determined by ¹H NMR based on 1,3,5-trimethoxybenzene as internal standard to be 17% (0.034 mmol). The quantum yield was determined using **Eq 3**,

$$\Phi = \frac{\text{mol of product}}{\text{flux}^* t^* f} = \frac{\text{mol of product}}{\text{flux}^* t^* (1-10^{-A})} = \frac{0.034^* 10^{-3}}{5.904^* 10^{-9} * 3600^* 0.332} = 4.8$$
(3)

Where:

A = the measured absorbance of the reaction solution at 440 nm (A = 0.175).

The quantum yield (Φ) of this photoreaction was determined to be 4.8, which suggesting the reaction is proceed in a radical-chain mechanism.

4. Analytical Data for Products

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-1-oxo-3-phenylpropan-2-yl)dihy droborate⁷ (3a)

Yellow oil (95%, 81.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.17 (m, 4H), 7.12-7.06 (m, 1H), 6.79 (s, 2H), 3.84-3.79 (m, 2H), 3.71 (s, 6H), 3.12 (dd, *J* = 14.3, 10.2 Hz, 1H), 2.71 (dd, *J* = 14.3, 4.2 Hz, 1H), 2.18 (brs, 1H), 0.98 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.6 (CO₂Et), 143.8, 127.5, 126.8, 124.0, 119.4, 57.5 (*CH*₂CH₃), 38.1 (N*CH*₃), 34.9 (Ar*CH*₂-), 13.3 (CH₂*CH*₃) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-1-oxo-3-(*p*-tolyl)propan-2-yl)dih ydroborate⁷ (3b)

Yellow oil (96%, 86.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 7.8 Hz, 2H), 6.80 (s, 2H), 3.84-3.75 (m, 2H), 3.73 (s, 6H), 3.08 (dd, J =14.3, 10.3 Hz, 1H), 2.67 (dd, J = 14.3, 4.1 Hz, 1H), 2.27 (s, 3H), 2.17 (brs, 1H), 0.97 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.7 (CO₂Et), 140.7, 133.2, 127.5, 127.3, 119.3, 57.5 (CH₂CH₃), 37.6 (NCH₃), 35.0 (ArCH₂-), 20.3 (Ph-CH₃), 13.3 (CH₂CH₃) ppm.

(3-(4-(*tert*-Butyl)phenyl)-1-ethoxy-1-oxopropan-2-yl)(1,3-dimethyl-1*H*-imidazol-3 -ium-2-yl)dihydroborate (3c)

Yellow oil (93%, 94.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 6.79 (s, 2H), 3.87-3.77 (m, 2H), 3.72 (s, 6H), 3.11 (dd, J =14.3, 10.2 Hz, 1H), 2.68 (dd, J = 14.3, 4.4 Hz, 1H), 2.19 (brs, 1H), 1.27 (s, 9H), 0.98 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.7 (CO₂Et), 146.5, 140.7, 127.0, 123.7, 119.3, 57.5 (CH₂CH₃), 37.5 (NCH₃), 35.0 (ArCH₂-), 33.2 (C(CH₃)₃), 30.4 (C(CH₃)₃), 13.3 (CH₂CH₃) ppm. HRMS (ESI) (m/z): calculated for C₂₀H₃₁BN₂NaO₂⁺ [M + Na]⁺ 365.2376; found, 365.2379.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-3-(4-methoxyphenyl)-1-oxoprop an-2-yl)dihydroborate⁷ (3d)

Yellow oil (92%, 87.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.14-7.12 (m, 2H), 6.81 (s, 2H), 6.77-6.73 (m, 2H), 3.85-3.78 (m, 2H), 3.75 (s, 3H), 3.74 (s, 6H), 3.05 (dd, J = 14.3, 10.2 Hz, 1H), 2.66 (dd, J = 14.3, 4.2 Hz, 1H), 2.15 (brs, 1H), 0.98 (t, J = 8.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.7 (CO₂Et), 156.1, 136.1, 128.3, 119.3, 112.2, 57.5 (*CH*₂CH₃), 54.2 (O*CH*₃), 37.7 (*NCH*₃), 35.0 (Ar*CH*₂-), 13.3 (CH₂*CH*₃) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-3-(4-hydroxyphenyl)-1-oxoprop an-2-yl)dihydroborate (3e)

Yellow oil (45%, 40.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, J = 8.4 Hz, 2H), 6.77 (s, 2H), 6.59 (d, J = 8.4 Hz, 2H), 3.84 (q, J = 7.1 Hz, 2H), 3.7 (s, 6H), 3.03-2.96 (m, 1H), 2.65-2.61 (m, 1H), 2.20 (brs, 1H), 1.01 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 181.6 (CO₂Et), 152.7, 135.2, 128.3, 119.4, 113.8, 57.9 (CH₂CH₃), 37.1 (NCH₃), 35.0 (ArCH₂-), 13.3 (CH₂CH₃) ppm. HRMS (ESI) (m/z): calculated for C₁₆H₂₃BN₂NaO₃⁺ [M + Na]⁺ 325.1708; found, 325.1702. (1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-3-(4-fluorophenyl)-1-oxopropan -2-yl)dihydroborate⁸ (3f)

Yellow oil (92%, 86.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.13 (m, 2H), 6.90-6.85 (m, 2H), 6.82 (s, 2H), 3.84-3.76 (m, 2H), 3.74 (s, 6H), 3.07 (dd, *J* = 14.3, 10.3 Hz, 1H), 2.69 (dd, *J* = 14.3, 4.3 Hz, 1H), 2.14 (brs, 1H), 0.97 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.4 (CO₂Et), 159.8 (d, *J*_{CF} = 240.0 Hz), 139.5, 128.8 (d, *J*_{CF} = 8.0 Hz), 119.4, 113.4 (d, *J*_{CF} = 21.0 Hz), 57.5 (*CH*₂CH₃), 37.3 (N*CH*₃), 35.9 (Ar*CH*₂-), 13.3 (CH₂*CH*₃) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -119.2 (s, 1F) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-3-(2-fluorophenyl)-1-oxopropan -2-yl)dihydroborate (3g)

Yellow oil (91%, 82.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.27 (m, 4H), 6.82 (s, 2H), 3.86-3.77 (m, 2H), 3.74 (s, 6H), 3.16 (dd, J = 14.3 Hz, 10.2 Hz, 1H), 2.78 (dd, J = 14.3, 4.4 Hz, 1H), 2.18 (brs, 1H), 0.98 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.2 (CO₂Et), 160.2 (d, $J_{CF} = 242.1$ Hz), 130.0 (d, $J_{CF} = 5.6$ Hz), 125.5 (d, $J_{CF} = 8.1$ Hz), 122.3 (d, $J_{CF} = 3.4$ Hz), 119.4, 113.4 (d, $J_{CF} = 22.5$ Hz), 57.7 (CH₂CH₃), 37.9 (NCH₃), 35.0 (ArCH₂-), 13.2 (CH₂CH₃) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ - 118.7 (s, 1F) ppm. HRMS (ESI) (m/z): calculated for C₁₆H₂₂BFKN₂O₂⁺ [M + K]⁺ 343.1395; found, 343.1356.

(3-(4-Chlorophenyl)-1-ethoxy-1-oxopropan-2-yl)(1,3-dimethyl-1*H*-imidazol-3-iu m-2-yl)dihydroborate⁷ (3h)

Yellow oil (92%, 88.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.13 (m, 4H), 6.82 (s, 2H), 3.84-3.76 (m, 2H), 3.74 (s, 6H), 3.06 (dd, *J* = 14.3, 10.3 Hz, 1H), 2.69 (dd, *J* = 14.3, 4.3 Hz, 1H), 2.14 (brs, 1H), 0.97 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.3 (*C*O₂Et), 142.3, 129.5, 128.9, 126.8, 119.3, 57.6 (*CH*₂CH₃), 37.8 (*NCH*₃), 35.0 (Ar*CH*₂-), 13.3 (CH₂*CH*₃) ppm.

(3-(2-Chlorophenyl)-1-ethoxy-1-oxopropan-2-yl)(1,3-dimethyl-1H-imidazol-3-iu m-2-yl)dihydroborate (3i)

Yellow oil (90%, 86.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (dd, J = 7.5, 1.8 Hz, 1H), 7.27-7.24 (m, 1H), 7.12-7.02 (m, 2H), 6.83 (s, 2H), 3.85 (q, J = 7.1 Hz, 2H), 3.78 (s, 6H), 3.13 (dd, J = 14.3, 10.6 Hz, 1H), 2.84 (dd, J = 14.3, 3.5 Hz, 1H), 1.01 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.3 (CO₂Et), 141.0, 132.9, 129.9, 128.0, 125.5, 125.2, 119.3, 57.6 (*CH*₂CH₃), 35.6 (*NCH*₃), 35.0 (Ar*CH*₂-), 13.3 (CH₂*CH*₃) ppm. HRMS (ESI) (m/z): calculated for C₁₆H₂₂BClN₂NaO₂⁺ [M + Na]⁺ 343.1361; found, 343.1367.

(3-(4-Bromophenyl)-1-ethoxy-1-oxopropan-2-yl)(1,3-dimethyl-1H-imidazol-3-iu m-2-yl)dihydroborate (3j)

Yellow oil (76%, 83.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.3 Hz, 2H), 7.09 (d, *J* = 8.3 Hz, 2H), 6.82 (s, 2H), 3.85-3.76 (m, 2H), 3.74 (s, 6H), 3.05 (dd, *J* = 14.3, 10.3 Hz, 1H), 2.67 (dd, *J* = 14.3, 4.3 Hz, 1H), 2.13 (brs, 1H), 0.97 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (100MHz, CDCl₃) δ 180.8 (CO₂Et), 142.9, 129.8, 129.4, 119.4, 117.6, 58.0 (*CH*₂CH₃), 37.5 (N*CH*₃), 35.0 (Ar*CH*₂-), 13.3 (CH₂*CH*₃) ppm. HRMS (ESI) (m/z): calculated for C₁₆H₂₂BBrN₂NaO₂⁺ [M + Na] ⁺ 387.0855; found, 387.0844. (3-(4-Cyanophenyl)-1-ethoxy-1-oxopropan-2-yl)(1,3-dimethyl-1*H*-imidazol-3-ium -2-yl)dihydroborate⁷ (3k)

Yellow oil (68%, 63.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 6.84 (s, 2H), 3.82-3.72 (m, 2H), 3.75 (s, 6H), 3.15 (dd, J =14.4, 10.3 Hz, 1H), 2.78 (dd, J = 14.4, 4.3 Hz, 1H), 2.16 (brs, 1H), 0.95 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 179.9 (CO₂Et), 149.8, 130.7, 128.4, 119.4, 118.6, 107.7, 56.9 (*CH*₂CH₃), 37.9 (*NCH*₃), 35.0 (Ar*CH*₂-), 13.3 (*CH*₂*CH*₃) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-1-oxo-3-(3-(trifluoromethyl)phe nyl)propan-2-yl)dihydroborate (3l)

Yellow oil (65%, 69.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.27 (m, 4H), 6.82 (s, 2H), 3.86-3.77 (m, 2H), 3.74 (s, 6H), 3.16 (dd, J = 14.3, 10.2 Hz, 1H), 2.78 (dd, J = 14.3, 4.4 Hz, 1H), 2.18 (brs, 1H), 0.98 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 181.1 (CO₂Et), 145.6, 132.1, 129.9 (q, $J_{CF} = 31.5$ Hz), 128.1, 125.1 (q, $J_{CF} = 3.7$ Hz), 124.5 (q, $J_{CF} = 270.5$ Hz, CF_3), 121.8 (q, $J_{CF} = 3.8$ Hz), 120.4, 58.6 (CH_2 CH₃), 38.9 (NCH₃), 36.0 (ArCH₂-), 14.2 (CH₂CH₃) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4 (s, 3F) ppm. HRMS (ESI) (m/z): calculated for C₁₇H₂₂BF₃N₂NaO₂⁺ [M + Na]⁺ 377.1624; found, 377.1623.

(3-(4-(Benzyloxy)-3-methoxyphenyl)-1-ethoxy-1-oxopropan-2-yl)(1,3-dimethyl-1 *H*-imidazol-3-ium-2-yl)dihydroborate⁷ (3m)

Yellow oil (89%, 117.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.5 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 2H), 7.27 (t, *J* = 7.0 Hz, 1H), 6.80 (s, 1H), 6.78 (s, 2H), 6.73 (d, *J* = 8.2 Hz, 1H), 6.67 (d, *J* = 8.2 Hz, 1H), 5.09 (s, 2H), 3.88-3.76 (m, 5H), 3.72 (s, 6H), 3.05 (dd, *J* = 14.4, 10.2 Hz, 1H), 2.65 (dd, *J* = 14.4, 4.3 Hz, 1H), 2.15 (brs, 1H), 0.98 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.7 (CO₂Et), 148.1, 144.7, 137.5, 136.7, 127.4, 126.6, 126.3, 119.3, 119.2, 113.0, 111.6, 69.8 (O*CH*₂Ph), 57.5 (*CH*₂CH₃), 54.1 (O*CH*₃), 37.7 (N*CH*₃), 35.4 (Ar*CH*₂-), 13.4 (CH₂*CH*₃) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-3-(4-hydroxy-3-methoxyphenyl) -1-oxopropan-2-yl)dihydroborate (3n)

Yellow oil (68%, 71.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 6.80 (s, 2H), 6.76-6.66 (m, 3H), 3.86-3.76 (m, 5H), 3.73 (s, 6H), 3.04 (dd, J = 14.4, 10.3 Hz, 1H), 2.64 (dd, J = 14.3, 4.1 Hz, 1H), 2.15 (brs, 1H), 0.98 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100MHz, CDCl₃) δ 180.7 (CO₂Et), 144.9, 142.0, 136.0, 119.8, 119.3, 112.7, 110.4, 57.5 (CH₂CH₃), 54.8 (OCH₃), 37.8 (NCH₃), 35.0 (ArCH₂-), 13.3 (CH₂CH₃) ppm. HRMS (ESI) (m/z): calculated for C₁₇H₂₅BN₂NaO₄⁺ [M + Na] ⁺ 355.1805; found, 355.1800.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(1-ethoxy-3-(naphthalen-2-yl)-1-oxopropa n-2-yl)dihydroborate⁸ (30)

White solid (96%, 96.9 mg).¹H NMR (400 MHz, CDCl₃) δ 7.74 (t, *J* = 7.0 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.64 (s, 1H), 7.40-7.33 (m, 3H), 6.74 (s, 2H), 3.83-3.74 (m, 2H), 3.72 (s, 6H), 3.27 (dd, *J* = 14.3, 10.2 Hz, 1H), 2.88 (dd, *J* = 14.4, 4.2 Hz, 1H), 2.29 (brs, 1H), 0.95 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.5 (CO₂Et), 141.4, 132.6, 130.7, 127.0, 126.4, 126.4, 126.2, 125.2, 124.4, 123.5, 119.3, 57.5 (*CH*₂CH₃), 38.3 (N*CH*₃), 35.0 (Ar*CH*₂-), 13.3 (CH₂*CH*₃) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-1-oxo-3-(pyridin-3-yl)propan-2-yl)dihydroborate⁷ (3p)

Yellow oil (63%, 54.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 45.6 Hz, 2H), 7.55 (d, *J* = 7.8 Hz, 1H), 7.14 (dd, *J* = 7.8, 4.7 Hz, 1H), 6.84 (s, 2H), 3.84-3.76 (m, 2H), 3.74 (s, 6H), 3.12-3.06 (m, 1H), 2.75-2.70 (m, 1H), 2.15 (s, 1H), 0.97 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.1 (*C*O₂Et), 149.1, 145.5, 138.9, 135.1, 121.9, 119.5, 57.6 (*CH*₂CH₃), 35.2, 35.0, 13.3 (CH₂*CH*₃) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-methoxy-1-oxo-3-(thiophen-2-yl)propa n-2-yl)dihydroborate⁷ (3q)

Yellow oil (36%, 30.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, J = 5.1 Hz, 1H), 6.84 (dd, J = 5.1, 3.4 Hz, 1H), 6.82 (s, 2H), 6.75 (d, J = 3.4 Hz, 1H), 3.75 (s, 6H), 3.43 (s, 3H), 3.31 (dd, J = 15.3, 11.1 Hz, 1H), 2.90 (dd, J = 15.3, 3.9 Hz, 1H), 2.20 (brs, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 181.5 (CO₂Me), 148.0, 126.3, 123.5, 122.2, 120.4, 50.5 (CO₂Me), 36.0 (NCH₃), 33.3 (ArCH₂-) ppm. HRMS (ESI) (m/z): calculated for C₁₃H₁₉BN₂NaO₂S⁺ [M + Na]⁺ 301.1153; found, 301.1122.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-methoxy-1-oxo-3-phenylpropan-2-yl)di hydroborate⁷ (3r)

Yellow oil (93%, 76.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.19 (m, 4H), 7.12-7.05 (m, 1H), 6.80 (s, 2H), 3.72 (s, 6H), 3.37 (s, 3H), 3.11 (dd, *J* = 14.3, 10.1 Hz, 1H), 2.71 (dd, J = 14.3, 4.3 Hz, 1H), 2.20 (brs, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.9 (CO₂Me), 143.7, 127.4, 126.9, 124.0, 119.4, 49.3 (CO₂Me), 38.1 (NCH₃), 35.0 (ArCH₂-) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-methoxy-1-oxo-3-(*p*-tolyl)propan-2-yl)d ihydroborate⁷ (3s)

Yellow oil (91%, 78.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, J = 7.9 Hz, 2H), 7.00 (d, J = 7.8 Hz, 2H), 6.80 (s, 2H), 3.73 (s, 6H), 3.37 (s, 3H), 3.07 (dd, J = 14.3, 10.3 Hz, 1H), 2.66 (dd, J = 14.3, 4.2 Hz, 1H), 2.27 (s, 3H), 2.18 (brs, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.9 (CO₂Me), 140.6, 133.2, 127.6, 127.3, 119.4, 49.3 (CO₂Me), 37.6 (NCH₃), 35.0 (ArCH₂-), 20.0 (Ph-CH₃) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-oxo-3-phenyl-1-propoxypropan-2-yl)di hydroborate⁷ (3t)

Yellow oil (90%, 81.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.19 (m, 4H), 7.10-7.06 (m, 1H), 6.79 (s, 2H), 3.80-3.76 (m, 1H), 3.73 (s, 6H), 3.69-3.63 (m, 1H), 3.12 (dd, *J* = 14.3, 10.2 Hz, 1H), 2.72 (dd, *J* = 14.3, 4.3 Hz, 1H), 2.20 (brs, 1H), 1.41-1.36 (m, 2H), 0.76 (t, *J* = 7.4 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.6 (*C*O₂^{*n*}Pr), 143.8, 127.5, 126.8, 123.9, 119.3, 63.4 (CO₂*CH*₂CH₂CH₃), 38.1 (N*CH*₃), 35.0 (Ph*CH*₂-), 21.1 (CO₂CH₂*CH*₂CH₃), 9.4 (CO₂CH₂CH₂CH₃) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-isopropoxy-1-oxo-3-phenylpropan-2-yl) dihydroborate⁷ (3u)

Yellow oil (79%, 71.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.19 (m, 4H), 7.10-7.05 (m, 1H), 6.79 (s, 2H), 4.75-4.65 (m, 1H), 3.74 (s, 6H), 3.14-3.08 (m, 1H), 2.74-2.69 (m, 1H), 2.18 (brs, 1H), 1.01 (d, *J* = 6.2 Hz, 3H), 0.87 (d, *J* = 6.3 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.2 (*C*O₂^{*i*}Pr), 143.9, 127.5, 126.7, 123.9, 119.3, 64.0 (CO₂*CH*(CH₃)₂), 38.2 (N*CH*₃), 35.0 (Ph*CH*₂-), 21.1 (CO₂CH(*CH*₃)₂), 20.7 (CO₂CH(*CH*₃)₂) ppm.

(1-Butoxy-1-oxo-3-phenylpropan-2-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dih ydroborate⁷ (3v)

Yellow oil (96%, 89.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.19 (m, 4H), 7.12-7.06 (m, 1H), 6.80 (s, 2H), 3.85-3.79 (m, 1H), 3.73 (s, 6H), 3.72-3.69 (m, 1H), 3.11 (dd, *J* = 14.4, 10.2 Hz, 1H), 2.72 (dd, *J* = 14.4, 4.3 Hz, 1H), 2.20 (brs, 1H), 1.37-1.33 (m, 2H), 1.23-1.13 (m, 2H), 0.82 (t, *J* = 7.3 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.7 (*C*O₂*n*Bu), 143.8, 127.5, 126.8, 123.9, 119.3, 61.6 (CO₂*CH*₂CH₂CH₂CH₃), 38.1 (N*CH*₃), 35.0 (Ph*CH*₂-), 30.3 (CO₂CH₂*CH*₂CH₂CH₃), 18.7 (CO₂CH₂CH₂CH₂CH₃), 12.8 (CO₂CH₂CH₂CH₂CH₃) ppm.

(1-(Benzyloxy)-1-oxo-3-phenylpropan-2-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)d ihydroborat⁷ (3w)

Yellow oil (35%, 36.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.18 (m, 7H), 7.14-7.07 (m, 3H), 6.67 (s, 2H), 4.9-4.8 (m, 2H), 3.62 (s, 6H), 3.15-3.08 (m, 1H), 2.76 (m, 1H), 2.28 (brs, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.3 (*C*O₂CH₂Ph), 143.7, 136.3, 127.5, 127.2, 126.9, 126.9, 126.4, 124.0, 119.2, 63.5 (CO₂CH₂Ph), 38.2 (NCH₃), 34.9 (Ph*CH*₂-) ppm. (1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-oxo-1-phenethoxy-3-phenylpropan-2-yl)d ihydroborate (3x)

White solid (92%, 100.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.17 (m, 7H), 7.12 -7.07 (m, 3H), 6.73 (s, 2H), 4.11-4.05 (m, 1H), 3.88-3.82 (m, 1H), 3.66 (s, 6H), 3.15-3.08 (m, 1H), 2.75-2.64 (m, 3H), 2.20 (brs, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.5 (*C*O₂CH₂CH₂Ph), 143.7, 137.6, 127.9, 127.5, 127.3, 126.8, 125.2, 124.0, 119.3, 62.6 (CO₂*CH*₂CH₂Ph), 38.1 (N*CH*₃), 34.9, 34.3 ppm. HRMS (ESI) (m/z): calculated for C₂₂H₂₇BN₂NaO₂⁺ [M + Na]⁺ 385.2058; found, 385.2062.

(1-(Cinnamyloxy)-1-oxo-3-phenylpropan-2-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate⁷ (3y)

Yellow oil (69%, 77.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.27 (m, 5H), 7.24-7.17 (m, 5H), 7.10-7.07 (m, 1H), 6.69 (s, 2H), 6.41 (d, *J* = 15.9 Hz, 1H), 6.04-5.97 (m, 1H), 4.46-4.40 (m, 2H), 3.69 (s, 6H), 3.15 (m, 1H), 2.75 (m, 1H), 2.26 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.2 (*C*O₂R), 143.7, 135.5, 131.5, 127.5, 126.9, 126.7, 125.4, 124.0, 123.7, 119.3, 62.2 (CO₂*CH*₂-), 38.1 (N*CH*₃), 35.0 (Ph*CH*₂-) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(2-oxochroman-3-yl)dihydroborate⁷ (3z)

White solid (96%, 73.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.12 (m, 2H), 7.0 (t, *J* = 7.4 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.79 (s, 2H), 3.69 (s, 6H), 3.25 (s, 1H), 2.76-2.73(m, 1H), 2.38 (brs, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 177.0 (*C*O₂R), 151.3, 127.4, 125.8, 123.5, 122.3, 119.0, 114.1, 35.6 (N*CH*₃), 29.6 (Ph*CH*₂-) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(6-methyl-2-oxochroman-3-yl)dihydrobor ate⁷ (3aa)

White solid (96%, 77.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 6.97-6.93 (m, 2H), 6.82 (s, 1H), 6.79 (s, 2H), 3.69 (s, 6H), 3.23-3.21 (m, 1H), 2.72-2.68 (m, 1H), 2.36 (brs, 1H), 2.30 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 177.5 (*C*O₂R), 149.2, 131.6, 128.0, 126.2, 122.6, 119.6, 114.1, 35.0 (N*CH*₃), 29.6 (Ph*CH*₂-), 19.8 (Ph*CH*₃) ppm.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-ethoxy-1-oxo-3-phenylbutan-2-yl)dihyd roborate (3ab)

Yellow oil (79%, 71.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.17 (m, 4H), 7.08-7.04 (m, 1H), 6.80 (s, 2H), 3.76 (s, 6H), 3.55-3.50 (m, 2H), 3.13-3.08 (dd, *J* = 10.5, 7.0 Hz, 1H), 2.15 (brs, 1H), 1.33 (d, *J* = 7.0 Hz, 3H), 0.74 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.9 (*C*O₂Et), 150.6, 127.7, 127.0, 124.9, 120.3, 58.1 (*CH*₂CH₃), 43.2, 35.9, 22.1, 14.0 (CH₂CH₃) ppm. HRMS (ESI) (m/z): calculated for C₁₇H₂₅BN₂O₂Na⁺ [M + Na]⁺ 323.1901; found, 323.1907.

(2-Cyano-3-ethoxy-3-oxo-1,1-diphenylpropyl)(1,3-dimethyl-1H-imidazol-3-ium-2 -yl)dihydroborate⁷ (3ac)

Yellow oil (96%, 111.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.3 Hz, 2H), 7.50 (d, *J* = 7.1 Hz, 2H), 7.28-7.09 (m, 6H), 6.81 (s, 2H), 4.70 (s, 1H), 3.93-3.77 (m, 2H), 3.64 (s, 6H), 0.89 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 174.3 (CO₂Et), 144.5, 141.9, 130.6, 128.2, 127.9, 127.6, 126.4, 126.0, 125.3, 121.4, 60.6 (CHCO₂Et), 55.7 (CH₂CH₃), 36.7 (NCH₃), 13.8 (CH₂CH₃) ppm.

(1,4-Diethoxy-1,4-dioxobutan-2-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydro borate (3ad)

Yellow oil (36%, 30.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 6.85 (s, 2H), 4.08 (q, *J* = 7.2 Hz, 2H), 3.95-3.83 (m, 2H), 3.76 (m, 6H), 2.85-2.78 (dd, *J* = 17.0, 10.2 Hz, 1H), 2.39 (dd, *J* = 17.0, 4.7 Hz, 1H), 2.24 (brs, 1H), 1.22 (t, *J* = 7.1 Hz, 3H), 1.05 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 181.2 (*C*O₂Et), 175.1 (*C*O₂Et), 120.3, 59.8 (*CH*₂CH₃), 58.7 (*CH*₂CH₃), 37.5 (N*CH*₃), 35.9 (N*CH*₃), 14.3 (CH₂*CH*₃), 14.2 (CH₂*CH*₃) ppm. HRMS (ESI) (m/z): calculated for C₁₃H₂₃BN₂O₄Na⁺ [M + Na]⁺ 305.1643; found, 305.1647.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(3-oxo-1-phenylbutan-2-yl)dihydroborate⁷ (3ae)

Yellow oil (44%, 33.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, J = 7.5 Hz, 2H), 7.13-7.07 (m, 3H), 6.79 (s, 2H), 3.71 (s, 6H), 3.10 (dd, J = 14.5, 9.7 Hz, 1H), 2.65 (dd, J = 14.4, 4.6 Hz, 1H), 2.58 (brs, 1H), 2.00 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 217.4 (COMe), 144.3, 128.2, 127.9, 125.0, 120.6, 38.2, 36.1, 28.2 (COMe) ppm. HRMS (ESI) (m/z): calculated for C₁₅H₂₁BN₂ONa⁺ [M + Na]⁺ 279.1639; found, 279.1621.

(1-(4-Bromophenyl)-3-oxobutan-2-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihy droborate (3af)

Yellow oil (61%, 61.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.82 (s, 2H), 3.71 (s, 6H), 3.02 (dd, *J* = 14.6, 9.9 Hz, 1H), 2.60-2.55 (m, 1H), 2.53 (brs, 1H), 1.97 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 217.0 (*C*OMe), 143.4, 130.8, 130.1, 120.6, 118.6, 37.6, 36.1, 28.4 (*C*OMe) ppm. HRMS (ESI) (m/z): calculated for C₁₅H₂₁BBrN₂O⁺ [M + H]⁺ 335.0925; found, 335.0927. (1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-(4-methoxyphenyl)-3-oxobutan-2-yl)di

hydroborate (3ag)

Yellow oil (82%, 70.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 8.6 Hz, 2H), 6.81 (s, 2H), 6.73 (d, J = 8.6 Hz, 2H), 3.74 (s, 3H), 3.71 (s, 6H), 3.02 (dd, J = 14.7, 10.0 Hz, 1H), 2.61-2.56 (m, 1H), 2.54 (brs, 1H), 2.00 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 217.6 (COMe), 157.1, 136.5, 129.0, 120.5, 113.3, 55.1 (OCH₃), 37.3, 36.0, 28.2 (COMe) ppm. HRMS (ESI) (m/z): calculated for C₁₆H₂₄BN₂O₂⁺ [M + H]⁺ 287.1925; found, 287.1940.

(3-(4-Chlorophenyl)-1-oxo-1-phenylpropan-2-yl)(1,3-dimethyl-1*H*-imidazol-3ium-2-yl)dihydroborate (3ah)

Yellow oil (30%, 31.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.6 Hz, 2H), 7.35 (t, *J* = 7.3 Hz, 1H), 7.26-7.24 (m, 2H), 7.14-7.12 (m, 4H), 6.63 (s, 2H), 3.56 (s, 6H), 3.47 (brs, 1H), 3.32 (dd, *J* = 14.0, 9.4 Hz, 1H), 2.79 (dd, *J* = 13.9, 3.5 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 131.1, 130.5, 130.0, 128.6, 127.9, 127.8, 127.4, 120.4, 38.0, 36.1 ppm. (1-Carboxy-2-phenylethyl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate⁸ (3ai)

Yellow oil (91%, 70.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.19 (m, 4H), 7.13-7.09 (m, 1H), 6.68 (s, 2H), 3.63 (s, 6H), 3.07-3.01 (m, 1H), 2.75-2.70 (m, 1H), 2.17 (brs, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 187.2 (COOH), 143.7, 127.6, 126.8, 124.0, 119.4, 37.6 (N*CH*₃), 34.8 (Ph*CH*₂-) ppm.

(1-Amino-1-oxo-3-phenylpropan-2-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihy droborate⁷ (3aj)

Yellow oil (46%, 35.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.20 (m, 4H), 7.13-7.08 (m, 1H), 6.78 (s, 2H), 5.24 (s, 2H), 3.74 (s, 6H), 2.97 (dd, *J* = 14.3, 10.1 Hz, 1H), 2.76 (dd, *J* = 14.4, 4.9 Hz, 1H), 2.12 (brs, 1H) ppm. ¹³C NMR (100MHz, CDCl₃) δ 184.3 (CONH₂), 142.7, 127.3, 127.0, 124.2, 119.5, 39.1 (NCH₃), 35.2 (PhCH₂-) ppm.

(1-Cyano-2-phenylethyl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate⁷ (3ak)

Yellow oil (75%, 53.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.28 (m, 4H), 7.21-7.16 (m, 1H), 6.86 (s, 2H), 3.84 (s, 6H), 2.90-2.78 (m, 2H), 1.87 (brs, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 128.0, 127.5, 127.2, 124.9, 119.9, 39.0 (N*CH*₃), 35.4 (Ph*CH*₂-) ppm.

(1-Cyano-2-(4-fluorophenyl)ethyl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydro borate⁷ (3al)

Yellow oil (87%, 67.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, J = 8.6, 5.5 Hz, 2H), 6.96 (t, J = 8.8 Hz, 2H), 6.87 (s, 2H), 3.84 (s, 6H), 2.86-2.74 (m, 2H), 1.83 (brs, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 161.3 (d, $J_{CF} = 241.4$ Hz), 138.1, 129.8 (d, $J_{CF} = 7.6$ Hz), 128.8, 120.8, 114.8 (d, $J_{CF} = 20.8$ Hz), 39.1 (NCH₃), 36.3 (PhCH₂-) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -117.8 (s, 1F) ppm.

(Z)-(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-((3,7-dimethylocta-2,6-dien-1-yl)ox y)-1-oxo-3-phenylpropan-2-yl)dihydroborate (3am)

Yellow oil (76%, 89.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.16 (m, 4H), 7.09-7.06 (m, 1H), 6.77 (s, 2H), 5.04-5.00 (m, 2H), 4.30-4.28 (d, *J* = 6.8 Hz, 2H), 3.71 (s, 6H), 3.12 (dd, *J* = 14.2, 10.1 Hz, 1H), 2.72 (dd, *J* = 14.3, 4.2 Hz, 1H), 2.19 (brs, 1H), 2.00 (s, 4H), 1.68 (s, 3H), 1.66 (s, 3H), 1.57 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 181.4, 144.7, 140.4, 131.8, 128.5, 127.7, 124.9, 123.7, 120.5, 120.2, 59.4, 39.1, 35.9, 32.0, 26.6, 25.6, 23.4, 17.6 ppm. HRMS (ESI) (m/z): calculated for C₂₄H₃₅BN₂O₂Na⁺ [M + Na]⁺ 417.2684; found, 417.2698.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(1-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9 ,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-3-yl)oxy)-1-oxo-3 -phenylpropan-2-yl)dihydroborate (3an)

Yellow oil (85%, 129.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.25 (m, 2H), 7.24-7.20 (m, 2H), 7.15-7.10 (m, 2H), 6.82 (s, 2H), 6.47-6.44 (m, 2H), 3.76 (s, 6H), 3.21 (dd, *J* = 14.3, 10.6 Hz, 1H), 2.83-2.80 (m, 3H), 2.52-2.33 (m, 3H), 2.14-1.91 (m, 5H), 1.60-1.39 (m, 7H), 0.88 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 180.1, 149.4, 144.4, 137.3, 136.0, 128.5, 127.8, 125.8, 125.1, 121.7, 120.4, 118.7, 50.3, 47.8, 44.0, 39.2, 37.9, 36.1, 35.8, 31.5, 29.3, 26.3, 25.6, 21.5, 13.7 ppm. HRMS (ESI) (m/z): calculated for C₃₂H₄₀BN₂O₃⁺ [M + H]⁺ 511.3127; found, 511.3142.

5. Reference

[1] S. Gardner, T. Kawammoto and D. P. Curran, J. Org. Chem., 2015, 80, 9794–9797.

- [2] J. Teske and B. Plietker, ACS Catal., 2016, 6, 7148-7151.
- [3] Y.-S. Huang, J. Wang, W.-X. Zheng, F.-L. Zhang, Y.-J. Yu, M. Zheng, X. Zhou,
 Y.-F. Wang, *Chem. Commun.*, 2019, 55, 11904–11907.
- [4] M. A. Cismesia and T. P. Yoon, Chem. Sci., 2015, 6, 5426-5434.
- [5] J.-Y. Tao, Y.-X. Wang, Q.-H. Zhang, K. Ni, T.-H. Zhu and K. Zhao, *Green Chem.*, 2022, 24, 4004–4011.
- [6] D. Wang, C. Muck-Lichtenfeld and A. Studer, J. Am. Chem. Soc., 2019, 141, 14126–14130.
- [7] G. S. Li, G. W. Huang, R. X. Sun, D. P. Curran and W. Dai, Org. Lett., 2021, 23, 4353–4357.
- [8] S. C. Ren, F. L. Zhang, A. Q. Xu, Y. N. Yang, M. Zheng, X. G. Zhou, Y. Fu and Y.
- F. Wang, Nat. Commun., 2019, 10, 1934.

6. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

Fig. S3 ¹H NMR (400 MHz, CDCl₃) spectrum for 3a.

Fig. S4 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3a.

Fig. S5 ¹H NMR (400 MHz, CDCl₃) spectrum for 3b.

Fig. S6 13 C NMR (100 MHz, CDCl₃) spectrum for **3b**.

Fig. S7 ¹H NMR (400 MHz, CDCl₃) spectrum for 3c.

Fig. S8 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3c.

Fig. S9 ¹H NMR (400 MHz, CDCl₃) spectrum for 3d.

Fig. S10 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3d.

Fig. S11 ¹H NMR (400 MHz, CDCl₃) spectrum for **3e**.

Fig. S12 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3e.

Fig. S13 ¹H NMR (400 MHz, CDCl₃) spectrum for 3f.

Fig. S14 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3f.

Fig. S16 1 H NMR (400 MHz, CDCl₃) spectrum for 3g.

Fig. S17¹³C NMR (100 MHz, CDCl₃) spectrum for 3g.

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

Fig. S18¹⁹F NMR (376 MHz, CDCl₃) spectrum for 3g.

Fig. S19 ¹H NMR (400 MHz, CDCl₃) spectrum for 3h.

Fig. S20 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3h.

Fig. S21 ¹H NMR (400 MHz, CDCl₃) spectrum for 3i.

Fig. S22 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3i.

Fig. S23 1 H NMR (400 MHz, CDCl₃) spectrum for 3j.

Fig. S24 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3j.

Fig. S25 ¹H NMR (400 MHz, CDCl₃) spectrum for 3k.

Fig. S26 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3k.

Fig. S27 ¹H NMR (400 MHz, CDCl₃) spectrum for 3l.

Fig. S28 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3l.

Fig. S29 19 F NMR (376 MHz, CDCl₃) spectrum for 31.

--62.38

Fig. S30 ¹H NMR (400 MHz, CDCl₃) spectrum for 3m.

Fig. S32 ¹H NMR (400 MHz, CDCl₃) spectrum for 3n.

Fig. S34 ¹H NMR (400 MHz, CDCl₃) spectrum for 30.

Fig. S36 ¹H NMR (400 MHz, CDCl₃) spectrum for 3p.

Fig. S38 ¹H NMR (400 MHz, CDCl₃) spectrum for 3q.

Fig. S40 ¹H NMR (400 MHz, CDCl₃) spectrum for 3r.

Fig. S41 13 C NMR (100 MHz, CDCl₃) spectrum for 3r.

Fig. S42 ¹H NMR (400 MHz, CDCl₃) spectrum for 3s.

Fig. S44 ¹H NMR (400 MHz, CDCl₃) spectrum for 3t.

Fig. S46 ¹H NMR (400 MHz, CDCl₃) spectrum for 3u.

Fig. S47 ¹³C NMR (100 MHz, CDCl₃) spectrum for **3u**.

Construction of the second second

Fig. S48 ¹H NMR (400 MHz, CDCl₃) spectrum for 3v.

Fig. S50 ¹H NMR (400 MHz, CDCl₃) spectrum for 3w.

Fig. S51 13 C NMR (100 MHz, CDCl₃) spectrum for **3w**.

Fig. S52 ¹H NMR (400 MHz, CDCl₃) spectrum for 3x.

Fig. S53 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3x.

Fig. S54 ¹H NMR (400 MHz, CDCl₃) spectrum for 3y.

Fig. S55 13 C NMR (100 MHz, CDCl₃) spectrum for 3y.

Fig. S56 ¹H NMR (400 MHz, CDCl₃) spectrum for 3z.

Fig. S57 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3z.

Fig. S58 ¹H NMR (400 MHz, CDCl₃) spectrum for 3aa.

Fig. S60 ¹H NMR (400 MHz, CDCl₃) spectrum for **3ab**.

Fig. S62 ¹H NMR (400 MHz, CDCl₃) spectrum for 3ac.

Fig. S63 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3ac.

Fig. S64 ¹H NMR (400 MHz, CDCl₃) spectrum for 3ad.

Fig. S66 ¹H NMR (400 MHz, CDCl₃) spectrum for 3ae.

Fig. S67 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3ae.

Fig. S68 ¹H NMR (400 MHz, CDCl₃) spectrum for 3af.

Fig. S70 ¹H NMR (400 MHz, CDCl₃) spectrum for 3ag.

Fig. S72 ¹H NMR (400 MHz, CDCl₃) spectrum for 3ah.

Fig. S73 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3ah.

Fig. S74 ¹H NMR (400 MHz, CDCl₃) spectrum for 3ai.

Fig. S76 ¹H NMR (400 MHz, CDCl₃) spectrum for 3aj.

Fig. S77 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3aj.

Fig. S78 ¹H NMR (400 MHz, CDCl₃) spectrum for 3ak.

Fig. S80 ¹H NMR (400 MHz, CDCl₃) spectrum for 3al.

Fig. S82 ¹⁹F NMR (376 MHz, CDCl₃) spectrum for 3al.

Fig. S83 ¹H NMR (400 MHz, CDCl₃) spectrum for 3am.

Fig. S84 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3am.

Fig. S85 ¹H NMR (400 MHz, CDCl₃) spectrum for 3an.

Fig. S86 ¹³C NMR (100 MHz, CDCl₃) spectrum for 3an.

Fig. S87 ¹H NMR (400 MHz, CDCl₃) spectrum for 10.

Fig. S88 ¹³C NMR (100 MHz, CDCl₃) spectrum for 10.

Fig. S89 ¹H NMR (400 MHz, CDCl₃) spectrum for 1am.

Fig. S90 ¹³C NMR (100 MHz, CDCl₃) spectrum for 1am.

______7.87 2.87 -___7.87 -__7.25 -__6.90 6.60 6.60 (6.60 (-...60 (-...60)____6.06 (-...60)____6.06 (-...60)____2.93 (-...61)___2.93 (-...61)___2.93 (-...61)___2.93 (-...61)___2.93 (-...61)___2.93 (-...61)___2.93 (-...61)___2.93 (-...61)__2.93 (-...61)__2.93 (-...61)__2.93 (-...61)</

Fig. S91 ¹H NMR (400 MHz, CDCl₃) spectrum for 1an.

-165.7 146.4 146.4 137.3 137.3 137.3 137.3 137.3 137.3 137.3 137.3 137.3 137.3 137.3 1128.8 1128.8 117.3 117

Fig. S92 ¹³C NMR (100 MHz, CDCl₃) spectrum for 1an.