Supporting Information

Nickel-Catalyzed Cross-Coupling of Epoxides with Aryltriflates: Rapid and Regioselective Construction of Aryl Ketones

Jinglin Qu,^{‡a} Zijuan Yan,^{‡a} Xuchao Wang,^a Jun Deng,^b Feipeng Liu^{*a} and Zi-Qiang Rong, *^a

^aFrontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), Xi'an 710072, People's Republic of China

^bChongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China

Table of Contents

1. General Information	S2
2. The screening of different reaction conditions.	S2
3. General procedure for substrates synthesis	S4
4. General procedures for the nickel-catalyzed cross-coupling reactions	S6
5. Characterization data for the products	S7
6. Unsuccessful examples	S14
7. DFT calculation for the mechanistic study	
8 . Supplementary References	S24
9. ¹ H NMR, ¹³ C NMR, and ¹⁹ F NMR spectra	

1. General Information

Unless noted otherwise, all solvents were dried by filtration through a Pure–Solv MD–5 Solvent Purification System (Innovative Technology). Reaction temperatures were reported as the temperatures of the bath surrounding the flasks or cylindrical pressure vessel. Sensitive reagents and solvents were transferred under nitrogen into a nitrogen–filled glovebox with standard techniques. Analytical thin–layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, Leyan chemical). Cylindrical pressure vessel (26 x 109 mm (15 mL) with PTFE lined cap attached) were purchased from Synthware. Nuclear magnetic resonance spectra (¹H NMR, ¹³C NMR and ¹⁹F NMR) were recorded with a Bruker Model DMX 500 (500 MHz, ¹H at 500 MHz, ¹³C at 126 MHz,). Chemical shifts were reported in parts per million (ppm, δ), downfield from tetramethylsilane (TMS, δ =0.00ppm) and were referenced to residual solvent (CDCl₃, δ =7.26 ppm (¹H) and 77.00 ppm (¹³C)). All the ¹⁹F chemical shifts were not referenced. Coupling constants were reported in Hertz (Hz). Data for ¹H NMR spectra were reported as follows: chemical shift (ppm, referenced to protium, s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet, coupling constant (Hz), and integration). All other materials were obtained from Rhawn Corporation, Aladdin Bio–Chem Technology or Energy chemical and were used as received.

2. The screening of different reaction conditions.

Me	Me O Me + OTf Ni(PPh ₃) ₄ 10 mol% <u>Triphos 12 mol%</u> DIPEA 2.5 equiv. benzene 0.5 mL Me 110°C, 24 h	Me Me Me
	0.1 mmol	
onter	maintion	yield
entry	variation	(%)
1	none	90
2	$Ni(cod)_2$ instead of $Ni(PPh_3)_4$	14
3	$Ni(OTf)_2$ instead of $Ni(PPh_3)_4$	29
4	Ni(acac)2 instead of Ni(PPh3)4	6
5	5 mol% Ni(PPh_3)_4 and 6 mol% Triphos instead of 10 mol%	12
5	$Ni(PPh_3)_4$ and 12 mol% Triphos	15
6	without nickel catalyst	trace

The screening of different nickel precursors.

The screening of different base.

1	none	90
2	TMP instead of DIPEA	92
3	Et₃N instead of DIPEA	89
4	dipropylamine instead of DIPEA	13
5	4-methyipiperdine instead of DIPEA	85
6	K ₂ CO ₃ instead of DIPEA	85
7	DBU instead of DIPEA	trace
8	Ag ₂ CO ₃ instead of DIPEA	trace
9	Cs ₂ CO ₃ instead of DIPEA	trace
10	DABCO instead of DIPEA	trace
11	Na ^t OBu instead of DIPEA	trace
12	1.0 equiv. TMP instead of 2.5 equiv. TMP	84
13	1.5 equiv. TMP instead of 2.5 equiv. TMP	85
14	2.0 equiv. TMP instead of 2.5 equiv. TMP	87
15	without base	7

The screening of different liagnds.

o h		yield	
entry	variation	(%)	
1	none	92	
r	Bis(2-diphenylphosphinoethyl)phenylphosphine instead of	11	
Z	Triphos	11	
3	Sphos instead of Triphos	trace	
4	Davephos instead of Triphos	trace	
5	dppp instead of Triphos	14	
6	IPr instead of Triphos	trace	
7	PCy ₃ instead of Triphos	trace	
8	Sphos instead of Triphos	trace	
9	IMes instead of Triphos	trace	
10	dppe instead of Triphos	6	
11	Amphos instead of Triphos	trace	
12	without ligand	trace	

The screening of other reaction conditions.

		yield
entry	variation	(%)
1	none	92
2	1.0 equiv. B instead of 2.0 equiv. B	43
3	toluene instead of benzene	84
4	1,3,5-trimethylbenzene instead of benzene	77
5	THF instead of benzene	61
6	DMA instead of benzene	trace
7	NMP instead of benzene	trace
8	DMF instead of benzene	21
9	r.t. instead of 110 °C	trace
10	70 °C instead of 110 °C	trace
11	100 °C instead of 110 °C	88
12	120 °C instead of 110 °C	84

3. General procedure for substrates synthesis

General procedure for triflate derivatives synthesis. Aryl triflates were prepared according to previous literature procedures. ¹

General procedure for epoxide derivatives synthesis.

Synthesis of compound 1a-10 (procedure A)

A solution of NaH (33 mol, 2.2 equiv.) and Me₃SI (33 mol, 2.2 equiv.) in DMSO (23 mL) and THF (17 mL) stirred for 30 min at room temperature in a 200mL flask under N₂ atmosphere. Then a solution of A (15 mmol, 1.0 equiv.) in THF was added dropwise at 0 $^{\circ}$ C. After complete addition, the mixture was warmed to room temperature and allowed to stir for 12 hours. The mixture was quenched with sat. NH₄Cl and diluted with EtOAc. Then the mixture was separated and the aqueous layer was back-extracted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography with Et₃N to give the desired epoxides.

Synthesis of compound 1p (procedure B)

1p was prepared according to previous literature procedures. ² Synthesis of compound 1q (procedure C)

Step 1: To a solution of methyltriphenylphosphonium bromide (30 mmol) in dry THF (25 mL) was added potassium tertiary-butoxide (20 mmol) at 0 °C under N₂ atmosphere. The reaction mixture was stirred for 30 min at room temperature, after which the solution was cooled to 0 °C and the aldehyde A(10 mmol) was added dropwise to it as a solution in dry THF (5 mL). The reaction mixture was further stirred at room temperature for overnight. Upon dilution with diethyl ether, the reaction mixture was poured into ice-water and extracted twice. The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography (eluent: Petroleum ether : EtOAc). Step 2: To a solution of S1(5 mmol, 1 equiv.) in DCM (15 mL) was added *m*-CPBA(10 mmol, 2 equiv.) in portions at 0 °C and the mixture was stirred for 12 hours until the starting materiel was fully consumed by TLC. The reaction was quenched with saturated aqueous NaHCO₃ and extracted three times with DCM. The combined organic layers were washed with water, saturated aqueous NaHCO₃, then brine, dried with MgSO₄, filtered, and concentrated under reduced pressure, then it was purified by column chromatography with Et₃N to give the desired epoxides.

Synthesis of compound 1r, 1t-1y (procedure D)

A solution of NaH (15 mol, 1.5 equiv.) and Me₃SOI (15 mol, 1.5 equiv.) in DMSO (15 mL) and THF (10 mL) stirred for 30 min at 60 °C in a 200mL flask under N₂ atmosphere. Then a solution of A (10 mmol, 1.0 equiv.) in THF was added dropwise at room temperature and allowed to stir for 12 hours. After complete addition, the mixture was quenched with sat. NH₄Cl and diluted with EtOAc. Then the mixture was separated and the aqueous layer was back-extracted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography with Et₃N to give the desired epoxides.

Synthesis of compound 1s (procedure E)

S1 was prepared according to previous literature procedures,³ and then 1s prepared according to procedure D.

4. General procedures for the nickel-catalyzed cross-coupling reactions

A flame-dried 15 mL cylindrical pressure vessel was charged with 2-mesityloxirane 1a (0.3 mmol, 1.0 equiv.) and phenyl trifluoromethanesulfonate 2a (0.6 mmol, 2.0 equiv.). The cylindrical pressure vessel was directly transferred into a nitrogen-filled glovebox without caps. Then, Ni(PPh₃)₄ (33.2 mg, 0.03 mmol, 10 mol%), Triphos (22.5 mg, 0.036 mmol, 12 mol%), TMP (105.9 mg, 0.75 mmol, 2.5 equiv.) and 1.5 mL dry benzene were added. Then the cylindrical pressure vessel was tightly sealed, transferred out of the glovebox and stirred at 110 °C or 130 °C with corresponding reaction time. After the completion of the reaction, the solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel to give the desired ketone product 3a.

5. Characterization data for the products

3a (CAS: 5350-76-5): ¹H NMR (500 MHz, CDCl₃) δ 8.12 – 8.02 (m, 2H), 7.63 – 7.53 (m, 1H), 7.47 – 7.51 (m, 2H), 6.89 (s, 2H), 4.33 (s, 2H), 2.28 (s, 3H), 2.18 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 197.2, 137.2, 136.9, 136.4, 133.2, 129.3, 128.9, 128.7, 128.1, 39.4, 21.0, 20.4. All spectral data was in accord with the

literature.⁷

3b (CAS: 6332-83-8): ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 8.03 (m, 2H), 7.64 – 7.58 (m, 1H), 7.54 – 7.59 (m, 2H), 7.30 – 7.22 (m, 2H), 7.21 – 7.13 (m, 2H), 4.34 (s, 2H), 2.30 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.5, 136.9, 133.5, 133.2, 130.4, 130.3, 128.7, 128.36, 127.3, 126.1, 43.5, 19.8. All spectral data was in accord with the

literature.9

3c (CAS: 133145-62-7): ¹H NMR (500 MHz, CDCl₃) δ 8.09-8.04 (m, 2H), 7.64 – 7.58 (m, 1H), 7.54 – 7.48 (m 2H), 7.31 – 7.25 (m, 2H), 7.24 – 7.17 (m, 1H), 7.15 (d, *J* = 7.4 Hz, 1H), 4.37 (s, 2H), 2.64 (q, *J* = 7.5 Hz, 2H), 1.24 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 142.6, 136.9, 133.2, 132.7, 130.6, 128.7, 128.5, 128.4,

127.4, 126.0, 42.9, 26.0, 14.8. All spectral data was in accord with the literature. $^{\rm 13}$

3d (CAS: 3826-47-9):¹H NMR (500 MHz, CDCl₃) δ 8.10 – 8.03 (m, 2H), 7.64 – 7.58 (m, 1H), 7.53 – 7.43 (m, 2H), 7.34 – 7.02 (m, 5H), 4.36 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.3, 161.0 (d, *J* = 246.1 Hz), 136.4, 133.3, 131.7 (d, *J* = 4.5 Hz), 128.9 (d, *J* = 8.3 Hz), 128.7, 128.4, 124.2 (d, *J* = 3.7 Hz), 121.9 (d, *J* = 16.2 Hz), 115.4 (d, *J* =

22.0 Hz), 38.6. 19 F NMR (471 MHz, CDCl₃) δ -117.14. All spectral data was in accord with the literature. 10

3e (CAS: 57479-60-4): ¹H NMR (500 MHz, CDCl₃) δ 8.09-8.03 (m, 2H), 7.64 – 7.60 (m, 1H), 7.54 – 7.49 (m, 2H), 7.50-7.43 (m, 1H), 7.28-7.24 (m, 3H), 4.47 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.4, 136.6, 134.5, 133.3, 133.2, 131.7, 129.5, 128.7, 128.6, 128.4, 126.9, 43.2. All spectral data was in accord with the literature.¹⁰

3f (CAS: 34403-03-7): ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 8.03 (m, 2H), 7.62 – 7.55 (m, 1H), 7.52 – 7.46 (m, 2H), 7.30 – 7.22 (m, 1H), 7.12 (dd, *J* = 9.3, 6.2 Hz, 3H), 4.28 (s, 2H), 2.37 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 138.3, 136.7, 134.5, 133.2, 130.2, 128.7, 128.6, 127.7, 126.5, 45.5, 21.4. All spectral data was in

accord with the literature.⁸

3g (CAS: 29955-26-8): ¹H NMR (500 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.60 – 7.56 (m, 1H), 7.50 – 7.45 (m, 2H), 7.29 – 7.25 (m, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 6.87 – 6.79 (m, 2H), 4.28 (s, 2H), 3.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.5, 159.8, 136.6, 136.0, 133.2, 129.7, 128.7, 121.8, 115.1, 112.4, 55.2, 45.6. All

spectral data was in accord with the literature.¹¹

3h (CAS: 27798-43-2): ¹H NMR (500 MHz, CDCl₃) δ 8.06 – 7.99 (m, 2H), 7.64 – 7.57 (m, 1H), 7.53 – 7.47 (m, 2H), 7.34 – 7.22 (m, 3H), 7.20-7.15 (m, 1H), 4.29 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.8, 136.4, 136.4, 134.4, 133.4, 129.9, 129.7, 128.8, 128.6, 127.8, 127.2, 44.9. All spectral data was in accord with the

literature.¹⁰

3i (CAS: 1914649-83-4): ¹H NMR (500 MHz, CDCl₃) δ 8.07 – 7.97 (m, 2H), 7.68 – 7.58 (m, 1H), 7.54 – 7.48(m, 2H), 7.33 (dd, *J* = 7.0, 2.0 Hz, 1H), 7.28 – 7.04 (m, 2H), 4.27 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.7, 157.3 (d, *J* = 248.2 Hz), 136.3, 133.5, 131.7, 131.4 (d, *J* = 3.9 Hz), 129.3 (d, *J* = 7.2 Hz), 128.8, 128.5,

116.7 (d, J = 21.2 Hz), 44.1. 19 F NMR (471 MHz, CDCl₃) δ -118.2. All spectral data was in accord with the literature.⁸

3j (CAS: 2430-99-1): ¹H NMR (500 MHz, CDCl₃) δ 8.10 – 8.00 (m, 2H), 7.62 – 7.54 (m, 1H), 7.51 – 7.46 (m, 2H), 7.31 – 7.15 (m, 4H), 4.28 (s, 2H), 2.36 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.9, 136.7, 136.5, 133.1, 131.5, 129.4, 129.3, 128.7, 45.2, 21.1. All spectral data was in accord with the literature.⁹

3k (CAS: 27644-00-4): ¹H NMR (500 MHz, CDCl₃) δ 8.11-8.07 (m, 2H), 7.59 – 7.50 (m, 5H), 7.47 – 7.40 (m, 4H), 7.38-7.30 (m, 3H), 4.31 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.6, 140.7, 139.9, 136.7, 133.6, 133.3, 130.0, 128.8, 128.7, 128.7, 127.5, 127.3, 127.1, 45.2. All spectral data was in accord with the literature.⁸

3I (CAS: 83015-77-4): ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 7.98 (m, 2H), 7.81-7.76(m, 3H), 7.70 (s, 1H), 7.55 – 7.49 (m, 1H), 7.47 – 7.39 (m, 4H), 7.46 – 7.28 (m, 1H), 4.42 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.7, 136.6, 133.6, 133.3, 132.4, 132.2, 128.7, 128.7, 128.4, 128.2, 127.7, 127.7, 127.6, 126.2, 125.8, 45.7. All spectral

data was in accord with the literature.⁹

3m (CAS: 347-91-1): ¹H NMR (500 MHz, CDCl₃) δ 8.05-8.01 (m, 2H), 7.64 – 7.56 (m, 1H), 7.52 – 7.47 (m, 2H), 7.29 – 7.25 (m, 1H), 7.25 – 7.23 (m, 1H), 7.10 – 7.01 (m, 2H), 4.29 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.4, 161.9 (d, *J* = 245.4 Hz), 136.5, 133.3, 131.1 (d, *J* = 8.0 Hz), 130.2 (d, *J* = 2.9 Hz), 128.7, 115.5 (d, *J* =

21.2 Hz), 115.4, 44.5. 19 F NMR (471 MHz, CDCl₃) δ -116.1. All spectral data was in accord with the literature. 8

3n (CAS: 6332-83-8): ¹H NMR (500 MHz, CDCl₃) δ 8.13 – 7.93 (m, 2H), 7.63 – 7.57 (m, 1H), 7.52 – 7.47(m, 2H), 7.36 – 7.30 (m, 2H), 7.26 – 7.16 (m, 2H), 4.29 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.1, 136.4, 133.4, 132.9, 132.9, 130.9, 128.8, 128.7,

128.5, 44.7. All spectral data was in accord with the literature.¹⁰

30 (CAS: 30934-68-0): ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 7.98 (m, 2H), 7.68 – 7.58 (m, 3H), 7.53 – 7.49 (m, 2H), 7.36 – 7.43 (m, 2H), 4.38 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.7, 138.5, 136.4, 130.0, 129.3 (q, *J* = 32.4 Hz), 128.8, 128.5, 125.6 (q, *J* = 3.7 Hz), 124.2 (q, *J* = 270.4 Hz), 45.1. ¹⁹F NMR (471 MHz, CDCl₃) δ

-62.5. All spectral data was in accord with the literature.⁸

3p (CAS: 59824-23-6): ¹H NMR (500 MHz, CDCl₃) δ 8.08 – 7.98 (m, 1H), 7.64 (t, *J* = 7.8 Hz, 2H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 4.39 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 196.14, 139.98, 136.22, 133.69, 132.34, 130.54, 128.87, 128.46, 118.80, 110.99, 45.22, 29.72. All spectral data was in accord with

the literature.¹¹

3q (CAS: 94161-45-2): ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 4H), 7.57 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 4.34 (s, 2H), 3.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.80, 166.90, 139.84, 136.41, 133.43, 129.93, 129.65, 128.87, 128.76, 128.55, 52.09, 45.38. All spectral data was in accord with the literature.⁸

3r ¹H NMR (500 MHz, CDCl₃) δ 8.05 – 7.95 (m, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.48 – 7.39 (m, 4H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.33 – 7.29 (m, 1H), 7.18 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 5.03 (s, 2H), 4.22 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.92, 157.83, 137.05, 136.65, 133.13, 130.53, 128.65, 128.62, 128.60, 127.97, 127.50, 126.82, 115.11, 70.05, 44.65. HRMS

(ESI): Calculated for $C_{21}H_{19}O_2$ (M + H⁺): 303.1380, found: 303.1385.

3s (CAS: 934236-52-9): ¹H NMR (500 MHz, CDCl₃) δ 8.06 – 7.99 (m, 2H), 7.58 – 7.53 (m, 1H), 7.48 – 7.42 (m, 2H), 7.20 (q, *J* = 8.3 Hz, 4H), 6.22 (t, *J* = 1.8 Hz, 1H), 4.26 (s, 2H), 1.89 (d, *J* = 1.4 Hz, 3H), 1.85 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.75, 137.35, 136.68,

135.54, 133.13, 131.88, 129.13, 129.03, 128.66, 124.73, 45.23, 26.92, 19.43. All spectral data was in accord with the literature.¹²

3t (CAS: 1083-30-3): ¹H NMR (500 MHz, CDCl₃) δ 8.07 – 7.96 (m, 2H), 7.64 – 7.57 (m, 1H), 7.51 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.40 – 7.32 (m, 4H), 7.30 – 7.26 (m, 1H), 3.35 (t, *J* = 7.7 Hz, 2H), 3.14 (t, *J* = 7.7 Hz, 2H).¹³C NMR (126 MHz, CDCl₃) δ 199.0, 141.2, 136.7, 132.9, 128.5, 128.4, 128.3, 128.3, 127.9, 126.0,

40.3, 30.0. All spectral data was in accord with the literature.¹⁴

3u (CAS: 15101-68-5): ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 7.0 Hz, 2H), 7.56 (d, J = 14.8 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.22 (t, J = 7.8 Hz, 1H), 6.85 (d, J = 7.5 Hz, 1H), 6.80 (s, 1H), 6.76 (dd, J = 8.2, 2.5 Hz, 1H), 3.80 (s, 3H), 3.30 (t, J = 7.7 Hz, 2H), 3.05 (t, J = 7.7 Hz, 2H). ¹³C

NMR (126 MHz, CDCl₃) δ 199.2, 159.7, 142.9, 136.8, 133.1, 129.5, 128.6, 128.0, 120.8, 114.2, 111.4, 55.2, 40.4, 30.2. All spectral data was in accord with the literature.¹⁴

 $3v (CAS: 1669-49-4): {}^{1}H NMR (500 MHz, CDCl_3) \delta 8.00 - 7.96 (m, 2H),$ $7.36 - 7.31 (m, 2H), 7.30-7.28 (m, 2H), 7.27 - 7.21 (m, 1H), 6.98 - 6.93 (m, 2H), 3.90 (s, 3H), 3.30 (t, 7.8Hz, 2H), 3.09(t, 7.8Hz, 2H). {}^{13}C NMR (126 MHz, CDCl_3) \delta 197.8, 163.4, 141.4, 130.3, 129.9, 128.5, 128.4, 126.0, \\$

113.7, 55.4, 40.1, 30.3. All spectral data was in accord with the literature.¹⁴

3w (CAS: 5739-39-9): ¹H NMR (500 MHz, CDCl₃) δ 7.95 – 7.89 (m, 2H), 7.51 – 7.42 (m, 2H), 7.36 – 7.29 (m, 2H), 7.29 – 7.22 (m, 3H), 3.30 (t, *J* = 7.7 Hz, 2H), 3.09 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 198.0, 141.0, 139.5, 135.1, 129.4, 128.9, 128.5, 128.4, 126.2, 40.4, 30.0. All spectral data was

in accord with the literature.¹⁴

3x (CAS: 5407-91-0): ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.86 (m, 2H), 7.57 – 7.51 (m, 1H), 7.43 (d, *J* = 7.7 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.25 – 7.15 (m, 3H), 2.97 (t, *J* = 7.3 Hz, 2H), 2.72 (t, *J* = 7.6 Hz, 2H), 2.11-2.05 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 200.1, 141.7, 137.0, 132.9, 128.5, 128.5, 128.4,

128.0, 125.9, 37.7, 35.2, 25.7. All spectral data was in accord with the literature.^{1c}

3y (CAS: 153389-13-0): ¹H NMR (500 MHz, CDCl₃) δ 7.95 (dd, J = 8.0, 1.5 Hz, 2H), 7.62 – 7.53 (m, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 3.82 (s, 3H), 2.99 (t, J = 7.3 Hz, 2H), 2.69 (t, J = 7.5 Hz, 2H), 2.10-2.04 (m, 2H). ¹³C NMR (126 MHz,

 $CDCl_3$) δ 200.2, 157.8, 137.0, 133.7, 132.9, 129.4, 128.5, 128.0, 113.8, 55.2, 37.6, 34.3, 25.9. All spectral data was in accord with the literature.^{1c}

3z (CAS: 942-92-7): ¹H NMR (500 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.58 – 7.50 (m, 1H), 7.47 – 7.43(m, 2H), 2.95 (t, *J* = 7.4 Hz, 2H), 1.79 – 1.69 (m, 2H), 1.39-1.33 (m, 4H), 0.99 – 0.82 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 200.6, 137.1, 132.9, 128.6, 128.1, 38.6, 31.6, 24.1, 22.6, 14.0. All spectral data was in accord with the

literature.15

4a (CAS: 33470-10-9): ¹H NMR (500 MHz, CDCl₃) δ 7.73 – 7.69 (m, 1H), 7.49 – 7.45 (m, 1H), 7.30 – 7.37 (m, 2H), 7.28 – 7.23 (m, 3H), 7.04 – 6.97 (m, 2H), 4.34 (s, 2H), 3.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 200.2, 158.4, 135.3, 133.5, 130.7, 129.7, 128.4, 128.3, 126.6, 120.7, 111.5, 55.5, 50.2. All spectral data was in accord with the

literature.18

4b (CAS: 62381-24-2): ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 7.6, 1H), 7.57 (t, *J* = 2.1 Hz, 1H), 7.41 – 7.34 (m, 3H), 7.32 – 7.26 (m, 3H), 7.13 (dd, *J* = 8.2, 2.7 Hz, 1H), 4.30 (s, 2H), 3.86 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.5, 159.9, 138.0, 134.6, 129.6, 129.5, 128.7, 126.9, 121.3, 119.7, 112.9, 55.4, 45.7. All

spectral data was in accord with the literature.⁸

4c (CAS: 1023-17-2): ¹H NMR (500 MHz, CDCl₃) δ 8.10 – 7.84 (m, 2H), 7.33-7.29 (m, 2H), 7.29 – 7.21 (m, 3H), 7.01 – 6.81 (m, 2H), 4.22 (s, 2H), 3.84 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.3, 163.6, 135.0, 131.0, 129.7, 129.4, 128.7, 126.8, 113.8, 55.5, 45.3. All spectral data was in accord with the literature.⁹

4d (CAS: 73242-07-6): ¹H NMR (500 MHz, CDCl₃) δ 7.98 – 7.84 (m, 2H), 7.33 – 7.29 (m, 2H), 7.27 – 7.23 (m, 5H), 4.23 (s, 2H), 2.50 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.7, 146.1, 134.7, 132.9, 129.4, 129.1, 128.7, 126.9, 125.0, 45.4, 14.8. All spectral data was in accord with the literature.¹⁶

4e (CAS: 2725744-92-1): ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.0 Hz, 1H), 7.35 - 7.30 (m, 2H), 7.28 - 7.22 (m, 3H), 6.99 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.90 (d, *J* = 1.5 Hz, 1H), 6.48 - 6.33 (m, 2H), 4.33 (s, 2H), 3.94 (s, 3H), 1.94 (d, *J* = 5.4 Hz,

3H). ¹³C NMR (126 MHz, CDCl₃) δ 199.1, 159.0, 143.6, 135.5, 131.3, 130.5, 129.7, 128.9, 128.3, 126.5, 126.2, 118.3, 108.9, 55.4, 50.1, 18.6.

4f (CAS: 52856-19-6): ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.25 (m, 2H), 7.25 – 7.17 (m, 4H), 6.51 (d, *J* = 8.4 Hz, 2H), 4.04 (s, 2H), 3.73 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 202.3, 156.7, 134.4, 130.8, 130.0, 128.2, 126.7, 120.0, 104.0, 55.8, 51.5. All spectral data was in accord with the literature.¹⁸

4g (CAS: 3141-93-3): ¹H NMR (500 MHz, CDCl₃) δ 7.66 (dd, J = 8.4, 2.1 Hz, 1H), 7.55 (d, J = 2.1 Hz, 1H), 7.42 – 7.13 (m, 5H), 6.87 (d, J = 8.4 Hz, 1H), 4.24 (s, 2H), 3.93 (s, 3H), 3.90 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.3, 153.4, 149.1, 135.1, 129.8, 129.3, 128.7, 126.8, 123.5, 110.7, 110.0, 56.1, 56.0, 45.2. All spectral

data was in accord with the literature.¹⁸

4h (CAS: 126266-77-1): ¹H NMR (500 MHz, CDCl₃) δ 7.65 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.50 (d, *J* = 1.8 Hz, 1H), 7.38 – 7.32 (m, 2H), 7.30 – 7.24 (m, 3H), 6.86 (d, *J* = 8.1 Hz, 1H), 6.05 (s, 2H), 4.23 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 195.8, 151.9, 148.3, 134.8, 131.4, 129.4, 128.7, 126.9, 125.0, 108.4, 107.9, 101.9, 45.4.

All spectral data was in accord with the literature.⁹

4i (CAS: 121149-70-0): ¹H NMR (500 MHz, CDCl₃) δ 8.02 – 7.98 (m, 2H), 7.52 – 7.49 (m, 2H), 7.38 – 7.34 (m, 2H), 7.32 – 7.28 (m, 3H), 4.30 (s, 2H), 1.37 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 197.3, 156.9, 134.8, 134.1, 129.5, 128.7, 128.7, 126.8, 125.6, 45.5, 35.1, 31.1. All spectral data was in accord with the literature.¹⁷

4j (CAS: 83882-93-3): ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.1 Hz, 2H),

7.37 - 7.32 (m, 2H), 7.31 - 7.22 (m, 5H), 4.27 (s, 2H). ¹³C NMR (126 MHz, CDCl₃)

with the literature.²⁰

 δ 196.0, 152.7, 134.8, 134.1, 130.7, 129.4, 128.8, 127.1, 120.4, 118.2 (q, *J* = 257.7 Hz), 45.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -57.6. All spectral data was in accord

4k (CAS:63596-28-1): ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 8.6 Hz, 2H), 7.64 – 7.52 (m, 3H), 7.31 (t, J = 7.5 Hz, 2H), 7.24 (m, J = 3.6 Hz, 2H), 4.25 (s, 2H), 2.19 (s, 3H), 1.64 (s, 1H). ¹³CNMR (126 MHz, CDCl₃) δ 196.6, 168.6, 142.4, 134.6, 132.2, 130.1, 129.4, 128.7, 126.9, 118.9, 45.4, 24.8. All spectral data was in

accord with the literature.¹⁹

4I (CAS: 347-84-2): ¹H NMR (500 MHz, CDCl₃) δ 8.15 – 7.91 (m, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.34 – 7.25 (m, 3H), 7.12 (t, *J* = 8.4 Hz, 2H), 4.25 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.1, 165.8, (d, *J* = 255.4 Hz), 134.4, 133.0 (d, *J* = 2.8 Hz), 131.3 (d, *J* = 9.3 Hz), 129.4, 128.8, 127.0, 115.8 (d, *J* = 21.4 Hz), 45.5. ¹⁹F NMR (471

MHz, CDCl₃) δ -105.0. All spectral data was in accord with the literature.⁸

4m (CAS: 1889-71-0): ¹H NMR (500 MHz, CDCl₃) δ 8.00 – 7.94 (m, 2H), 7.48 – 7.42 (m, 2H), 7.36 (dd, *J* = 8.6, 6.5 Hz, 2H), 7.30 – 7.27 (m, 3H), 4.28 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.4, 139.7, 134.9, 134.2, 130.1, 129.4, 129.0, 128.8, 127.1, 45.6. All spectral data was in accord with the literature.⁸

4n (CAS: 845781-19-3): ¹HNMR (500 MHz, CDCl₃) δ 8.07 (dd, J = 7.1, 2.2 Hz, 1H), 7.92 - 7.88 (m, 1H), 7.35-7.30 (m, 2H), 7.29 - 7.22 (m, 3H), 7.20 (t, J = 8.6 Hz, 1H), 4.23 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 195.0, 161.0 (d, J = 257.3 Hz), 133.8, 133.7 (d, J = 3.7 Hz), 131.6, 129.4, 129.0 (d, J = 8.3 Hz), 128.9, 127.2, 122.0 (d, J = 18.5 Hz), 116.9 (d, J = 21.3 Hz), 45.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -107.4.

4o (CAS: 61062-55-3): ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 8.1 Hz, 2H), 7.72 (d, J = 8.1 Hz, 2H), 7.36 – 7.31 (m, 2H), 7.29 – 7.23 (m, 3H), 4.31 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.6, 139.2, 134.5 (q, J = 33.0 Hz), 133.8, 129.4, 129.0, 128.9, 127.2, 125.7(q, J = 3.8 Hz), 123.6 (q, J = 272.9 Hz), 122.5, 120.3, 45.9. ¹⁹F NMR (471

MHz, CDCl₃) δ -63.2. All spectral data was in accord with the literature.¹⁷

4p (CAS: 6420-94-6): ¹H NMR (500 MHz, CDCl₃) δ 8.14 – 8.08 (m, 2H), 8.07 – 8.01 (m, 2H), 7.38 – 7.34 (m, 2H), 7.32 – 7.26 (m, 3H), 4.33 (s, 2H), 2.65 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.4, 197.1, 140.2, 139.7, 134.0, 129.4, 128.8, 128.5, 127.1, 45.9, 26.9. All spectral data was in accord with the literature.¹⁷

4q (CAS: 898776-56-2): ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, *J* = 8.0, 2H), 8.05 (d, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.30 – 7.24 (m, 3H), 4.40 (q, *J* = 7.1, 2H), 4.31 (s, 2H), 1.40 (t, *J* = 7.2, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.2, 165.7, 139.7, 134.3, 134.0, 129.8, 129.5, 128.8, 128.5, 127.1, 61.5, 45.9, 14.3. All

spectral data was in accord with the literature.¹⁸

4r : yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 5.0 Hz, 1H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.26 – 7.21 (m, 3H), 6.93 (d, *J* = 5.1 Hz, 1H), 4.19 (s, 2H), 3.90 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 199.7, 161.8, 147.6, 133.6, 131.4, 130.4, 129.8, 128.6, 128.0, 127.1, 52.7, 50.3. HRMS (ESI): Calculated for C₁₄H₁₃O₃S (M + H⁺):

261.0585, found: 261.0584.

4s (CAS: 1762-15-8): ¹H NMR (500 MHz, CDCl₃) δ 8.55 (s, 1H), 8.06 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.92 – 7.82 (m, 2H), 7.61 – 7.53 (m, 2H), 7.39 – 7.27 (m, 4H), 7.27 – 7.23 (m, 1H), 4.42 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.6, 135.6, 134.7, 134.0, 132.5, 130.4, 129.6, 129.5, 128.7, 128.6, 128.5, 127.8,

126.9, 126.8, 124.3, 45.6. All spectral data was in accord with the literature.⁸

4t (CAS: 6976-03-0): ¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.71 (m,2H), 7.71 (t, *J* = 2.0 Hz, 2H), 7.35 – 7.28 (m, 2H), 7.28 – 7.22 (m, 4H), 7.12 (d, *J* = 8.4 Hz, 1H), 4.24 (s, 2H), 2.84-2.75 (m, 4H), 1.84-1.78 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 197.6, 143.4, 137.6, 134.9, 134.1, 129.6, 129.5, 129.4, 128.6, 126.8, 125.8, 45.4, 29.7,

29.4, 23.0, 22.8. All spectral data was in accord with the literature.⁸

4u: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 2.7 Hz, 1H), 7.55 (d, J = 2.5 Hz, 1H), 7.36 (dd, J = 8.8, 2.7 Hz, 1H), 7.33 – 7.21 (m, 6H), 6.87 (d, J = 8.7 Hz, 1H), 6.67 (d, J = 8.8 Hz, 1H), 4.39 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.7, 153.7, 149.8, 134.0, 133.2, 130.9, 130.7, 130.6, 129.7, 129.2, 128.6, 128.5, 127.0, 127.0, 122.0, 118.3, 50.0. HRMS (ESI): Calculated for C₂₀H₁₄O₂Cl₃ (M + H⁺):

391.0059, found: 391.0060.

4v: White solid. Melting point: 164 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.68 (m, 2H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.29 – 7.19 (m, 3H), 4.25 (s, 2H), 2.99-2.92 (m, 2H), 2.51 (dd, *J* = 19.0, 8.8 Hz, 1H), 2.47 – 2.39 (m, 1H), 2.32 (td, *J* = 10.9, 4.0 Hz, 1H), 2.19-2.11 (m 1H), 2.09-2.02 (m, 2H), 2.01 – 1.93 (m, 1H), 1.69 – 1.58 (m, 2H), 1.58 – 1.42 (m, 4H), 0.91 (s, 3H). ¹³CNMR (126 MHz, CDCl₃) δ 220.5, 197.5, 145.6, 137.0, 134.8,

134.3, 129.5, 129.3, 128.7, 126.8, 126.2, 125.7, 50.5, 47.9, 45.4, 44.7, 37.8, 35.8, 31.6, 29.4, 26.3, 25.6, 21.6, 13.8. HRMS (ESI): Calculated for $C_{26}H_{29}O_2$ (M + H⁺): 373.2168, found: 373.2171.

6. Unsuccessful examples

7. DFT calculation for the mechanistic study

7.1 Computational details

All calculations were performed using Gaussian 16, Revision A.03 package.⁴ All of the reactants, intermediates, transition states, products were optimized by the DFT with the B3LYP-D3(BJ) functional.⁵ For geometry optimizations and frequency calculations, BS-I basis set system was employed. In BSI, we employed LANL2DZ basis set for Ni with effective core potentials, 6-31G(d) basis sets for H, C and O. All the stationary structures were characterized with no imaginary frequency and the transition state structures (TSs) were characterized with a single imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were performed on all the TSs. The solvent effect of benzene was evaluated through the SMD method,⁶ in which a better basis system BS-II was used. In BS-II, we employed SDD basis sets for Ni, 6-311++G(2d,2p) basis sets for the other atoms. All reported energies are free energies at a concentration of 1 M and a temperature of 298.15 K

7.2 Energy profiles of nickel insertion to epoxide

Figure S5.2.1 Nickel insertion to epoxide

The formation of intermediate 1 via TS1-2 is estimated to be exothermic about 17 kcal/mol by DFT calculations, and the needed free energy barrier is 21.2 kcal/mol, which is affordable under the current conditions

Cartesian coordinates of the optimized structures:

Intl E = -3282.346029 a.u. 0 1 Ni -0.84303400 1.96469300 0.01846500 O -2.44406000 1.48231900 1.51275800

С	0.54630700	2.87651800	-2.75488600
С	1.24362100	3.28072300	-4.07337700
Н	0.83695800	2.71647800	-4.92132500
Н	1.10488100	4.34868300	-4.28052100
Н	2.32129100	3.08427900	-4.02359500
С	1.28358100	3.63909200	-1.61855800
Н	2.28744800	3.21788800	-1.51270700
Н	1.42789800	4.68203900	-1.92302300
С	-0.93754900	3.31428800	-2.89665500
Н	-0.98377200	4.40783100	-2.91071900
Н	-1.31010000	2.98528600	-3.87280500
С	0.67824000	1.32749400	-2.64768900
Н	1.65565600	1.01194000	-3.02996700
Н	-0.05870500	0.87524800	-3.32004900
Р	0.37173200	0.51644600	-0.97532200
Р	0.53868500	3.59158100	0.11518400
Р	-2.11172500	2.73723600	-1.54893400
С	2.07035000	0.09099800	-0.39042800
С	2.16301900	-0.76528900	0.72016800
С	3.25318500	0.64246200	-0.89833600
С	3.39540000	-1.07714400	1.28499800
Н	1.25888800	-1.18405700	1.14912700
С	4.48946900	0.35317700	-0.31556000
Н	3.22694500	1.30997500	-1.75199200
С	4.56753400	-0.51181500	0.77343600
Н	3.44038100	-1.75628000	2.13063600
Н	5.39113600	0.80648000	-0.71839900
Н	5.52930700	-0.74038400	1.22413900
С	-0.20823300	-1.15325500	-1.54454400
С	0.62568800	-2.26304200	-1.74439000
С	-1.58365100	-1.29964000	-1.78500200
С	0.09372200	-3.48542700	-2.15939100
Н	1.69233800	-2.17503500	-1.56789400
С	-2.11461300	-2.51440000	-2.21751100
Н	-2.23745000	-0.44754400	-1.64296800
С	-1.27616600	-3.61640700	-2.39754500
Н	0.75385700	-4.33709500	-2.30302800
Н	-3.18103600	-2.59323500	-2.41080000
Н	-1.68548100	-4.56934700	-2.72185800
С	-3.39154900	1.78056700	-2.47423500
С	-4.66356700	1.64471600	-1.88664700
С	-3.11363700	1.02638000	-3.62378100
С	-5.61758500	0.78837400	-2.42993500
Н	-4.90304500	2.22429000	-0.99904200

С	-4.06955000	0.16761400	-4.17025700
Н	-2.13760000	1.08577900	-4.09437800
С	-5.32446100	0.04114600	-3.57557000
Н	-6.59540900	0.70588400	-1.96222400
Н	-3.82655700	-0.40732600	-5.05989900
Н	-6.06770300	-0.62853400	-3.99887900
С	-3.07284900	4.26658200	-1.17599200
С	-3.65045100	5.06791300	-2.17083800
С	-3.19462400	4.64891800	0.16538600
С	-4.32024900	6.24228700	-1.83033500
Н	-3.57973700	4.76840300	-3.21358200
С	-3.87365200	5.81837600	0.50811900
Н	-2.72871300	4.03137100	0.92662600
С	-4.43088800	6.61919000	-0.48884100
Н	-4.75937900	6.86197500	-2.60801800
Н	-3.94344900	6.11607500	1.55012700
Н	-4.94845000	7.53742400	-0.22419700
С	0.02116200	5.34072400	0.40524500
С	-0.14940800	5.75597100	1.73761800
С	-0.35563500	6.22434500	-0.61429700
С	-0.67121600	7.01152700	2.03646300
Н	0.13775800	5.08751100	2.54503100
С	-0.88588100	7.48080900	-0.31750400
Н	-0.25219100	5.93623900	-1.65417400
С	-1.04582100	7.88075300	1.00767300
Н	-0.78634000	7.31393600	3.07426900
Н	-1.18446900	8.14099200	-1.12700800
Н	-1.46270000	8.85685600	1.23930600
С	2.08683900	3.56001000	1.12448200
С	3.03458600	4.59418900	1.09707300
С	2.33399300	2.43225400	1.91302200
С	4.21147700	4.49189200	1.83747100
Н	2.84320300	5.48445900	0.50393700
С	3.51153700	2.32716700	2.65396300
Н	1.60370800	1.63294500	1.92835200
С	4.45290600	3.35552500	2.61605500
Н	4.94063200	5.29768400	1.81052000
Н	3.69362900	1.43512600	3.24581100
Н	5.37240000	3.27631000	3.19020800
С	-3.07587200	0.22873700	1.20885900
Н	-4.15694500	0.28180100	1.09103300
Н	-2.54916600	-0.36097300	0.46906700
С	-2.47397700	0.43949500	2.53165400
Н	-3.16141100	0.71126100	3.33581200

С	-1.17575200	-0.13245300	2.99212800
С	-0.87607600	-1.50088300	2.87111700
С	-0.28621400	0.73272300	3.66522600
С	0.30776700	-1.98359400	3.44595500
С	0.88790900	0.21322900	4.20834000
С	1.19739500	-1.14762600	4.12066200
Н	0.53562800	-3.04382300	3.36049300
Н	1.57432300	0.88701500	4.71540200
С	-1.77429900	-2.47107800	2.13631100
Н	-2.83401100	-2.30060700	2.34868600
Н	-1.63997300	-2.39428100	1.05005500
Н	-1.53678500	-3.50061700	2.42046900
С	-0.59387900	2.20465200	3.79440500
Н	-0.69600100	2.66512000	2.80643300
Н	-1.53707800	2.37367100	4.33062500
Н	0.20304300	2.72181500	4.33548000
С	2.45099700	-1.68951100	4.76267000
Н	3.32350000	-1.07573100	4.51160500
Н	2.36465400	-1.69609400	5.85680100
Н	2.65446800	-2.71610500	4.44145700

TS1-2

E = -3282.315591 a.u.

01			
Ni	-0.57296600	1.92223200	0.11623300
0	-2.35459900	0.96289500	0.96805600
С	0.88700800	2.94785600	-2.70138900
С	1.60312200	3.41501800	-3.98588000
Н	1.10581400	3.01593100	-4.87838600
Н	1.60391600	4.50927000	-4.05867100
Н	2.64552300	3.07459800	-4.00043600
С	1.74629900	3.43256500	-1.50368700
Н	2.61444700	2.77722000	-1.39548100
Н	2.14753600	4.42473700	-1.73262700
С	-0.51728400	3.62270500	-2.70326100
Н	-0.39172600	4.66656900	-2.39639300
Н	-0.91799100	3.64556800	-3.72281400
С	0.80388600	1.39599700	-2.77132100
Н	1.70598400	1.00373900	-3.25299600
Н	-0.02384200	1.10989400	-3.42449200
Р	0.50278600	0.46838000	-1.16453200
Р	0.93817000	3.47869200	0.19777000
Р	-1.73972600	2.87256600	-1.51796700
С	2.16423700	-0.26843500	-0.81153000

C	2.21598100	-1.26792100	0.17508700
С	3.37806800	0.18650900	-1.34689800
С	3.43045000	-1.77432100	0.62774000
Н	1.29005100	-1.64074900	0.59480700
С	4.60000900	-0.31515800	-0.89148000
Н	3.38907200	0.94942300	-2.11695700
С	4.63344000	-1.29170800	0.10259900
Н	3.43965000	-2.54258100	1.39613800
Н	5.52596800	0.06431100	-1.31511600
Н	5.58341000	-1.67832800	0.46085000
С	-0.36304400	-1.01834900	-1.82649900
С	0.26175400	-1.95524900	-2.66304200
С	-1.72025600	-1.17271300	-1.51832500
С	-0.46400200	-3.02162900	-3.19148300
Н	1.31865000	-1.85169800	-2.89295800
С	-2.44702600	-2.23792000	-2.05228500
Н	-2.19765700	-0.45173600	-0.86491400
С	-1.82185100	-3.16196500	-2.88941600
Н	0.02710500	-3.74325000	-3.83935600
Н	-3.50296000	-2.33693000	-1.81899400
Н	-2.38743000	-3.99176000	-3.30514800
С	-2.85274800	1.83369700	-2.56117900
С	-3.98781500	1.28666200	-1.93440100
С	-2.59074300	1.46847600	-3.88817000
С	-4.82907700	0.41210500	-2.61522700
Н	-4.19673400	1.53351700	-0.89919000
С	-3.42613800	0.57807500	-4.56612100
н	-1.73310900	1.87533100	-4.41267000
С	-4.54847500	0.04644300	-3.93478300
н	-5.70183600	0.00506000	-2.11103700
н	-3.19632800	0.30433100	-5.59238700
н	-5.19719800	-0.64720400	-4.46197300
С	-2.89885600	4.25813900	-1.14645300
С	-3.01973000	5.41719400	-1.92157900
С	-3.68440700	4.13473200	0.01062500
С	-3.89375700	6.43671800	-1.54158100
Н	-2.42965700	5.53417000	-2.82513900
С	-4.57471300	5.14150000	0.37868500
Н	-3.56880500	3.24782900	0.62737500
С	-4.67594200	6.30146400	-0.39373400
Н	-3.96709200	7.33646300	-2.14667100
Н	-5.17906300	5.02907400	1.27526300
Н	-5.35859600	7.09475000	-0.10181400
С	0.36911600	5.24257700	0.29546700

С	-0.83837300	5.49209500	0.95951300
С	1.04905100	6.33241400	-0.27177600
С	-1.36147700	6.78126200	1.05455300
Н	-1.39132000	4.65411500	1.36727300
С	0.52862800	7.62393500	-0.18629700
Н	2.00002700	6.18228700	-0.77351700
С	-0.68068700	7.85098900	0.47517100
Н	-2.31398500	6.93954100	1.54988000
Н	1.06803100	8.45363700	-0.63565200
Н	-1.09038000	8.85565000	0.53247200
С	2.48772900	3.51706900	1.21542300
С	2.99216900	4.65829300	1.85549700
С	3.16544700	2.29987500	1.38494200
С	4.15815200	4.58658000	2.62037100
Н	2.47296500	5.60613600	1.76459900
С	4.34640200	2.23462800	2.12108700
Н	2.75596200	1.39428100	0.95713400
С	4.84699700	3.37817900	2.74550000
Н	4.53283000	5.48073700	3.11216300
Н	4.85755900	1.28147300	2.22072100
Н	5.76046800	3.32803200	3.33213100
С	-1.44127900	1.57283700	2.40566000
Н	-1.41020200	2.65021100	2.34677900
С	-2.78522800	0.99938500	2.30332500
Н	-2.96290400	0.02016100	2.75518500
Н	-3.62542900	1.68096300	2.49631600
С	-0.23478500	0.91101000	2.90203500
С	0.69233100	1.73541800	3.59729500
С	0.01446600	-0.48467700	2.81492200
С	1.85582200	1.17487200	4.11841200
С	0.43480500	3.20402100	3.82942500
С	1.19994600	-0.98868500	3.34856800
С	-0.92312900	-1.45781800	2.13781600
С	2.14804600	-0.18180600	3.98063800
Н	2.56694300	1.82588400	4.61935600
Н	0.25914900	3.74375200	2.89358600
Н	-0.43961700	3.36800300	4.47224100
Н	1.29915300	3.67133200	4.30681000
Н	1.39747300	-2.05409400	3.24813900
Н	-1.73809600	-1.76315400	2.80736100
Н	-1.36909900	-1.02933900	1.24074700
Н	-0.38919500	-2.37262300	1.86225400
С	3.46340800	-0.75147000	4.44399500
Н	3.94726700	-0.10045000	5.17905700

Н	3.34051400	-1.74409200	4.89245700
Н	4.15305400	-0.86210400	3.59587500

Int2

E =	-3282.372951 a.u.		
01			
Ni	-0.93228500	2.07117400	0.28236800
0	-2.47436900	1.09177900	0.67732200
С	0.85397900	2.97166300	-2.85134200
С	1.60913700	3.53736100	-4.07202100
Н	1.13924700	3.20854300	-5.00670200
Н	1.61168100	4.63381700	-4.05992900
Н	2.65112100	3.19610400	-4.08093500
С	1.66973300	3.36098900	-1.59198400
Н	2.50960000	2.67333400	-1.47170100
Н	2.11473600	4.34800000	-1.74956800
С	-0.54397700	3.64846700	-2.83777000
Н	-0.42291000	4.67587500	-2.47776800
Н	-0.93556400	3.72235600	-3.85754100
С	0.77674200	1.42765400	-3.04000100
Н	1.67645600	1.09053400	-3.56500200
Н	-0.06324000	1.17732400	-3.69264700
Р	0.58051700	0.38572700	-1.48571900
Р	0.82083600	3.40550500	0.08261800
Р	-1.77061500	2.84431600	-1.70942100
С	2.21367300	-0.46816200	-1.37804000
С	2.27254100	-1.70204000	-0.70419400
С	3.42356200	0.12275000	-1.77311000
С	3.49349200	-2.30950800	-0.42340500
Н	1.35081300	-2.19031300	-0.40666600
С	4.64863900	-0.48498000	-1.49127000
Н	3.42645500	1.06695300	-2.30725200
С	4.69059200	-1.69986600	-0.80916900
Н	3.51048500	-3.26350800	0.09655800
Н	5.57026500	-0.00356300	-1.80689900
Н	5.64337500	-2.17099800	-0.58552000
С	-0.47691500	-0.99255300	-2.08137400
С	-0.10757900	-1.79788400	-3.17137000
С	-1.67877400	-1.24625400	-1.40866000
С	-0.93300200	-2.83849300	-3.58830700

Н	0.83422700	-1.61620400	-3.68214300
С	-2.49889900	-2.29748100	-1.82775400
Н	-1.97959500	-0.60714500	-0.58040200
С	-2.13177600	-3.09046200	-2.91288000
Н	-0.64252100	-3.45671700	-4.43367700
Н	-3.43380100	-2.48491600	-1.30714500
Н	-2.77504200	-3.90471200	-3.23607300
С	-2.80569300	1.74563200	-2.75307700
С	-3.82287900	1.03461500	-2.09331400
С	-2.63740100	1.57172800	-4.13205700
С	-4.65826100	0.18265000	-2.81050200
Н	-3.91082800	1.11469100	-1.01461900
С	-3.46504800	0.69966300	-4.84170400
Н	-1.86404500	2.10934100	-4.67029200
С	-4.48074200	0.00741600	-4.18431300
Н	-5.43739100	-0.36588200	-2.28841900
Н	-3.31549800	0.56757100	-5.90976500
Н	-5.12477100	-0.67038500	-4.73740800
С	-2.95805000	4.18233800	-1.29095900
С	-3.06286200	5.37622200	-2.01287500
С	-3.76959100	3.98491500	-0.16159500
C	-3.95027500	6.37180000	-1.60148900
Н	-2.45164500	5.54240600	-2.89430600
С	-4.66363700	4.97681600	0.23798000
Н	-3.66749300	3.05825000	0.39886100
C	-4.75047700	6.17560400	-0.47529900
Н	-4.01600000	7.30003300	-2.16244200
Н	-5.28625800	4.81795700	1.11436200
Н	-5.44048400	6.95190900	-0.15607500
С	0.34668000	5.17510000	0.26260100
С	-0.89157200	5.45791200	0.85550900
С	1.13535500	6.24482900	-0.19119400
C	-1.34200900	6.77191100	0.97993500
Н	-1.51290700	4.63755900	1.19119900
С	0.68841900	7.55954900	-0.06437700
Н	2.10886700	6.05964600	-0.63487900
С	-0.55424100	7.82499900	0.51685700
Н	-2.31685500	6.96315900	1.41664100
Н	1.30963800	8.37674500	-0.42048500
Н	-0.90514400	8.84942400	0.60451700
С	2.30214800	3.19090500	1.14405200
С	2.92730400	4.23998600	1.82757700
С	2.83919200	1.89777100	1.23267300
С	4.08497200	4.00051800	2.57038600

Н	2.50962700	5.24012900	1.79193700
С	4.00281200	1.66578800	1.95889800
Н	2.33660200	1.06906400	0.75225800
С	4.63069700	2.71806300	2.62793200
Н	4.56005800	4.82032600	3.10237600
Н	4.40139900	0.65804600	2.01567600
Н	5.53409000	2.53618600	3.20371000
С	-1.01236500	1.93045700	2.26612400
Н	-1.23587700	2.95572100	2.55157300
С	-2.31097000	1.14794600	2.08463000
Н	-2.28653100	0.14248700	2.52698000
Н	-3.15831400	1.67961800	2.55834500
С	0.13271600	1.40171200	3.03783900
С	0.81710300	2.27217400	3.93329100
С	0.60231600	0.06953500	2.92721300
С	1.90952500	1.81315000	4.66481400
С	0.38364400	3.70770600	4.12428400
С	1.70657100	-0.34663400	3.67864700
С	-0.02628200	-0.93644200	1.99339000
С	2.38026600	0.50268700	4.55296900
Н	2.42026200	2.50483500	5.33200300
Н	0.40464800	4.27721600	3.18866800
Н	-0.63855900	3.77877700	4.51781300
Н	1.04895000	4.21644000	4.82878900
Н	2.05699200	-1.37089800	3.55977900
Н	-0.86286600	-1.47049200	2.46104400
Н	-0.41662600	-0.45907400	1.09304900
Н	0.71142900	-1.68905900	1.69948100
С	3.59814100	0.04883000	5.31775600
Н	3.74985100	-1.03164800	5.22309000
Н	4.50614400	0.54539000	4.94864500
Н	3.51800900	0.28434900	6.38623400

8. Supplementary References

(1) (a) J. Roger, Hierso, J.-C. Eur. J. Org. Chem., 2018, 2018, 4953-4958; (b) O. Abidi, T. Boubaker, J.-C. Hierso and J. Roger, Org. Biomol. Chem., 2019, 17, 5916-5919. (c) X. Wang, F. Liu, Z. Yan, Q. Qiang, W. Huang and Z.-Q. Rong, ACS Catal., 2021, 11, 7319-7326.

(2) K. Huang, H. Wang, V. Stepanenko, M. De Jesús, C. Torruellas, W. Correa and M. Ortiz-Marciales, J. Org. Chem., 2011, 76, 1883-1886.

(3) H. Liu, L. Ge, D.-X. Wang, N. Chen and C. Feng, Angew. Chem. Int. Ed., 2019, 58, 3918-3922.

(4)Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

(5) S. Grimme, J. Comp. Chem., 2006, 27, 1787.

(6) A. V.Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem., 2009, 113, 6378-6396.

(7) S. A. Rzhevskiy, A. N. Philippova, G. A. Chesnokov, A. A. Ageshina, L. I. Minaeva, M. A. Topchiy, M. S. Nechaev and A. F. Asachenko, *Chem. Comm.*, 2021, 57, 5686-5689.

(8) B. Shu, X.-T. Wang, Z.-X. Shen, T. Che, M. Zhong, J.-L. Song, H.-J. Kang, H. Xie, L. Zhang and S.-S. Zhang, Org. Chem. Front., 2020, 7, 1802-1808.

(9) H. Huang, Q.-S. Dai, H.-J. Leng, Q.-Z. Li, S.-L. Yang, Y.-M. Tao, X. Zhang, T. Qi, J.-L. Li, *Chem. Sci.*, 2022, 13, 2584-2590.

(10) S. Yang, C. Dai, Y. Chen, Y. Jiang, S. Shu, Z. Huang and Y. Zhao, *Eur. J. Org. Chem.*, 2021, 2021, 2955-2961.

(11) X. Li, Y. Mao, P. Fan and C. Wang, Eur. J. Org. Chem., 2022, e202200214.

(12) A. B. Pierini, M. H. Galleg and K. F. C. Andrada, J. Org. Chem., 2007, 72, 3089-3092.

(13) M. Luo, Y. Zhang, P. Fang, Y. Li, C. Qi, Y. Li, R. Shen, K. Cheng and H. Wang, Org. Biomol. Chem., 2022, 20, 630-635.

(14) A. Singh, A. Maji, M. Joshi, A. R. Choudhury and K. Ghosh, Dalton Trans., 2021, 50, 8567-8587.

(15) N. Cui, T. Lin, Y.-E. Wang, J. Wu, Y. Han, X. Xu, F. Xue, D. Xiong, P. J. Walsh and J. Mao, *Org. Lett.*, 2022, 24, 3987-3992.

(16) F.Caturla, J.-M. Jiménez, N. r. Godessart, M. Amat and M. a. I., Crespo, J. Med. Chem., 2004, 47, 15, 3874–38865.

(17) Y. Kumar, Y. Jaiswal, R. Thakur and A. Kumar, ChemistrySelect., 2018, 3, 5614-5619.

(18) J. Templ, Schnu, M., J. Org. Chem., 2022, 87, 4305-4315.

(19) A. Rühling, H.-J. Galla and F. Glorius, Chem.Eur.J., 2015, 21, 12291-12294.

(20) A. Yu, J. Li, M. Cui and Y. Wu, Synlett 2007, 19, 3063-3067.

9. ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra

8.0733 8.0709 8.0507 8.0509 8.0568 8.0568 8.0568 8.0568 8.0568 7.55132 7.55172 7.55172 7.55172 7.55172 7.55172 7.55172 7.55172 7.55172 7.75175

8.0707 8.0658 8.0568 8.0568 8.0568 8.0568 8.0568 8.0546 8.0553 7.5294 7.75945 7.75945 7.75945 7.75945 7.74985 7.74985 7.727555 7.727555 7.727555 7.727555 7.727555 7.727555 7.7275555 7.7275557 7.72755557 7.7275557 7.727555757 7.7275575757

8.0840 8.0747 8.0800 8.080556 8.080556 8.06355 8.06355 8.06355 8.06355 8.06355 8.06355 8.06355 8.06355 7.552317 7.525317 7.52531 7.55117 7.551

S28

S33

-2.3081

8.0366 8.0346 8.0346 8.0320 8.0320 8.0324 8.0322 8.0322 8.0322 8.0172 8.

R:0098 7:5587 7:55827 7:55827 7:558240 7:55263 7:55263 7:5263 7:4239 7:4239 7:4239 7:4239 7:4239 7:4239 7:4239 7:4239 7:32568 7:32568 7:32568 7:32569 7:3569 7:3569 7:3569 7:3569 7:3569 7:3569 7:3569 7:3569 7:3569 7:3569 7:356

1.8872 1.8843 1.8476 1.8449

8.0381
 8.0320
 8.0320
 8.0320
 8.0320
 8.0220
 8.0220
 8.0220
 8.0220
 8.0250
 7.6505
 7.6616
 4.6201
 7.6616
 4.6203
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5505
 7.5506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506
 7.7506

7.2907 7.29672 7.29672 7.29613 7.29613 7.29613 7.29613 7.29167 7.23167 7.23167 7.23167 7.23167 7.2316 7.22316 7.22316 7.22316 7.22315 7.22316 7.22315 7.22316 7.22315 7.22316 7.22315 7.2235 7.2355 7.2355 7.2355 7.23557 7.23557 7.23557 7.23557 7.23557 7.235577

f1 (ppm)

7.9335 7.55335 7.55507 7.55507 7.55507 7.55338 7.55338 7.55233 7.55233 7.4367 7.4367 7.4367 7.4367 7.4367 7.4365 7.73009 7.23069 7.71995 7.11965 7.11965 7.7105 7.7

7,296597 7,296597 7,296536 7,296536 7,296536 7,296352 7,29635 7,25578 7,55578 7,55578 7,55578 7,55578 7,55578 7,55528 7,55528 7,55528 7,55528 7,55528 7,55528 7,55528 7,55528 7,55528 7,55528 7,55528 7,55558 7,55558 7,55558 7,55558 7,55558 7,55558 7,55558 7,74699 7,74699 7,74557 7,74699 7,74557 7,74699 7,74557 7,74699 7,74799 7,74799 7,74799 7,74799 7,74799 7,74799 7,74799 7,74799 7,74799 7,74799 7,74799 7,74799 7,74799 7,747999 7,747999 7,747999 7,747999 7,747999 7,747999 7,747999 7,747999

7.7084 7.7048 7.7048 7.768931 7.4610 7.44783 7.44783 7.44783 7.44643 7.44643 7.44643 7.44643 7.44643 7.44643 7.44643 7.44643 7.44643 7.42633 7.72673 7.72073

8.0037 7.9978 7.9844 7.9844 7.9845 7.2988 7.7.2088 7.7.2084 7.7.2088 7.7.2086 7.7.2088 7.7.2088 7.7.2086 7.7.2087 7.7.2087 7.7.2087 7.7.20

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Control (2000) Cont

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7.6668 7.5667 7.5659 7.55561 7.5519 7.5519 7.5519 7.53296 7.73283 7.73283 7.73283 7.73283 7.73283 7.73283 7.73283 7.73283 7.73283 7.73283 7.73283 7.73283 7.73283 7.72529 7.72

8.5469
 8.5469
 8.5436
 8.5436
 8.5436
 8.0675
 8.0675
 8.0655
 8.0655
 8.0655
 8.0655
 8.0655
 8.0655
 8.0555
 8.0555
 8.0555
 8.0555
 7.5535
 7.5535
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.5310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.55310
 7.53315
 7.53315
 7.53315
 7.53315
 7.53315
 7.53315
 7.53315
 7.53315
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316
 7.53316

7,77247 7,77133 7,773134 7,731324 7,731339 7,731339 7,72563 7,731339 7,72563 7,73339 7,7171 7,117171 7,11711 7,11711 7,11711 7,1171171171 7,11711717,

