Synthesis of Conjugated Dienes via Palladium-Catalysed Aerobic Dehydrogenation of Unsaturated Acids and Amides

Meledath Sudhakaran Keerthana and Masilamani Jeganmohan*

Department of Chemistry, Indian Institute of Technology, Madras-600036, India

E-Mail: mjeganmohan@iitm.ac.in

Electronic Supporting Information (ESI)

Table of Contents

Experimental Section

S2-S5 General procedure and Optimization Studies

S5-S8 Mechanistic studies

S9
References

S10-S21 Spectral data of all Compounds

S22-S55
Copies of NMR

Experimental Section

General information: All reactions were carried out under the air atmosphere in flame-dried glassware. Syringes which were used to transfer anhydrous solvents or reagents were purged with nitrogen prior to use (three times). Dry solvents were used for the reaction. Column chromatographical purifications were performed using SiO_{2} (120-200 mesh ASTM) from Avra Pvt. Ltd., India. Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q , quartet; m , multiplet. Commercially available metal salts and acids were purchased from Sigma-Aldrich and Spectrochem. Pvt. Ltd., India and used without further purification. Starting Materials: Starting materials 1a-1p, 3a-3f, 5a-5e and 7a-7f were prepared by known literature procedures. ${ }^{1-6}$

1. General Procedure for $\boldsymbol{\alpha} \boldsymbol{\beta}$-Dehydrogenation of $\boldsymbol{\beta}$-Substituted Amide 1.

$\operatorname{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%), \mathrm{L} 5(5 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$, and Amide $\mathbf{1}(50.0 \mathrm{mg}, 1$ equiv.) were taken in a 15 mL Schlenk tube. Acetonitrile (1.0 mL) was added to the reaction mixture via syringe. Then, pivalic acid ($50 \mathrm{~mol} \%$) was added to the solution, followed by the addition of Acetonitrile (2.0 mL). The tube was sealed using screw cap under air and the reaction mixture was allowed to stir at $100{ }^{\circ} \mathrm{C}$ for 24 h in an oil bath. After cooling to the ambient temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Celite, and the filtrate was concentrated. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent to give pure product 2 .

Optimization Studies:

The reaction was initially studied using various ligands and most of them inhibited the reaction (Scheme 1). However, N-Ac-glycine L1 gave the desired dehydrogenated product 2a in 32\% yield. When the ligand was switched from $\mathbf{L} 1$ to N -Ac-alanine $\mathbf{L} 2$ the reaction yield was reduced to 21%. Further, the reaction was probed using various phosphorous, sulphur and nitrogen-based ligands. When 1,10-phenanthroline $\mathbf{L} \mathbf{3}$ was used, the dehydrogenated product $\mathbf{2 a}$ was produced with a yield of 16%. A trace amount of product was observed when pyridin-2-ol L4 was used. 1,2-bis(diphenylphosphaneyl)ethane L6 and 1,3bis(diphenylphosphaneyl)propane L7 generated the product 2a with a yield of 48 and 27\% respectively. However, the best results were observed when 1,2-bis(phenylsulfinyl)ethane L5 was used. In this case, the yield of the product 2a was improved to 89%.

Scheme S1. Effect of ligands on $\alpha \boldsymbol{\beta}$-Dehydrogenation of $\boldsymbol{\beta}$-Substituted Amide 1a

The reaction was next screened with various additives such as AcOH , pivalic acid 1adamantane carboxylic acid, mesitylenic acid, and benzoic acid (entries 1-5). AcOH gave the desired product $\mathbf{2 a}$ in 58% yield (entry 1). In the case of pivalic acid, the expected product 2a was isolated in 89% yield (entry 2). Other additives were found to be ineffective for the reaction. The reaction was further examined using various oxidants ($20 \mathrm{~mol} \%$) such as $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{AgOAc}, \mathrm{Ag}_{2} \mathrm{O}$, benzoquinone, $\mathrm{PhI}(\mathrm{OAc})_{2}, \mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{Cu}(\mathrm{OAc})_{2}$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$ (entry $6-13$). Among them, $\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$ was very effective, giving the dehydrogenated product 2a in 89% yield (entry 2). AgOAc and $\mathrm{PhI}(\mathrm{OAc})_{2}$ gave the desired product in 20 and 35% respectively (entry 7 and 10$). \mathrm{Cu}(\mathrm{OAc})_{2}$ was partially effective, providing the desired product $\mathbf{2 a}$ in 58% yield (entry 13). Other oxidants were found to be ineffective. The reaction was further examined with various solvents such as 1,2dichloroethane, 1,2 -dichlorobenzene, $\quad N, N$-dimethylformamide (DMF), toluene, 1,2dimethoxyethane (DME), methanol, $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}, 1,4$-dioxane, DMSO, $\mathrm{CH}_{3} \mathrm{CN}$ and THF (entry 13-22). Among them, $\mathrm{CH}_{3} \mathrm{CN}$ was very effective, giving the expected product $\mathbf{2 a}$ in 89% yield (entry 2). DMF provided trace amount of product (entry 15). $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ gave the product $\mathbf{2 a}$ in 24% yield (entry 20). 1,4-Dioxane and DMSO and were partially effective, yielding the dehydrogenated product 2a in 58% and 43% yields, respectively (entry 21-22). Optimal yield of 89% for product $\mathbf{2 a}$ was obtained when the reaction was carried out under air in the presence of $20 \mathrm{~mol} \%$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$ along with $50 \mathrm{~mol} \%$ of pivalic acid in acetonitrile solvent. Control experiment revealed that the reaction does not proceed in absence of ligand and pivalic
acid (entry 23-24). The yield of product 2a was reduced to 20% in absence of $\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$ (entry 26). Trace amount of product was formed when O_{2} was used as the sole oxidant (entry 27).

Scheme S2. $\boldsymbol{\alpha} \boldsymbol{\beta}$-Dehydrogenation of $\boldsymbol{\beta}$-Substituted Amide 1a

Table 1. Optimization Table

Entry	Catalyst	L (mol \%)	Additive	Oxidant	Solvent	Yield
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	AcOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}$	58\%
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}$	89\%
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	Adm-1-COOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}$	NR
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	Mesitylene carboxylic acid	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}$	NR
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	Benzoic acid	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}$	NR
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{3} \mathrm{CN}$	NR
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	AgOAc	$\mathrm{CH}_{3} \mathrm{CN}$	20\%
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Ag}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}$	NR
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	Benzoquinone	$\mathrm{CH}_{3} \mathrm{CN}$	NR
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Phl}(\mathrm{OAc})_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	35\%
11	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{CH}_{3} \mathrm{CN}$	NR
12	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{CH}_{3} \mathrm{CN}$	NR
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	58\%
14	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$1,2-$ dichloroethane	NR
15	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$1,2-$ dichlorobenzene	NR
16	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	DMF	trace

17	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	toluene	NR
18	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	DME	NR
19	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{OH}$	NR
20	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	24\%
21	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-dioxane	58\%
22	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	DMSO	43\%
23	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	THF	NR
24	$\mathrm{Pd}(\mathrm{OAc})_{2}$	-	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}$	NR
25	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	-	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}$	NR
26	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	-	$\mathrm{CH}_{3} \mathrm{CN}$	20\%
27	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L5 (5 mol \%)	PivOH	O_{2}	$\mathrm{CH}_{3} \mathrm{CN}$	trace

2.General Procedure for $\boldsymbol{\alpha} \boldsymbol{\beta}$-Dehydrogenation of $\boldsymbol{\beta}$-Substituted Acid 7.

$\operatorname{Pd}(\mathrm{OAc})_{2}(10.0 \mathrm{~mol} \%), \mathrm{L} 5(10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$, and Acid $7(50.0 \mathrm{mg}, 1$ equiv.) were taken in a 15 mL Schlenk tube. Acetonitrile (1.0 mL) was added to the reaction mixture via syringe. Then, pivalic acid ($50 \mathrm{~mol} \%$) was added to the solution, followed by the addition of Acetonitrile (2.0 mL). The tube was sealed using screw cap under air and the reaction mixture was allowed to stir at $100^{\circ} \mathrm{C}$ for 24 h in oil bath. After cooling to the ambient temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Celite, and the filtrate was concentrated. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent to give pure product $\mathbf{8}$.

Mechanistic Investigation

$\mathrm{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$, and Amide 1a ($50.0 \mathrm{mg}, 1$ equiv.) were taken in a 15 mL Schlenk tube. Acetonitrile (1.0 mL) was added to the reaction mixture via syringe. Further, pivalic acid ($50 \mathrm{~mol} \%$) was added to the solution. Then, $\mathrm{D}_{2} \mathrm{O}$ (2 equiv.) was added followed by addition of acetonitrile (1 mL). The tube was sealed using screw cap under air and the reaction mixture was allowed to stir at $100^{\circ} \mathrm{C}$ for 24 h in oil bath. After cooling to the ambient temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Celite and the filtrate was concentrated. The crude residue was purified through a silica gel column
using hexane and ethyl acetate as eluent to give pure product D-2a in 56% yield.No deuterium incorporation was observed in the product. However, unreacted starting material D-1a was recovered in 38% yield with 45% deuterium incorporation at the α-carbon atom.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathrm{D}-1 \mathrm{a}$ in CDCl_{3} at 400 MHz :

$\stackrel{8}{i}$

[^0]COSY Spectra of D-1a: From COSY NMR, it can be observed that proton H_{a} at ($\delta=$ $2.33 \mathrm{ppm})$ is strongly correlated with alkene proton H_{b} at $(\delta=5.4 \mathrm{ppm})$. Similarily, the alkene proton H_{b} at $(\delta=5.4 \mathrm{ppm})$ shows a correlation with methyl proton at $(\delta=1.6$ ppm).

${ }^{1} \mathrm{HNMR}$ spectra of compound D-2a in CDCl_{3} at 400 MHz :

Reference:

1. M. Liu, P. Yang, M. K. Karunanda, Y. Wang P. Liu, K.M. Engle, J. Am. Chem. Soc., 2018, 17, 5805-5813.
2. C. Shen, X. Lu, J. Zhang, L. Ding, Y. Sun, G. Zhong, Chem. Commun., 2019, 55, 13582-13585.
3. J. Zhang, T.P. Loh, Chem. Commun., 2012, 48, 11232.
4. L. Ackermann, A.V. Lygin, N. Hofmann, Org. Lett., 2011, 13, 3278-3281.
5. B. Jiang, M. Zhao, S.S. Li, Y. H. Xu, T.P. Loh, Angew. Chem., Int. Ed. 2018, 57, 555559.
6. J. Derosa, V.A.V. Puyl, V. T. Tran, M. Liu, K. M. Engle, Chem. Sci., 2018, 9, 52785283.

Spectral Data of All Compounds:
 (2E,4E)-N-Benzylhexa-2,4-dienamide (2a):

Prepared according to General Procedure 1; white solid; eluent (20\% ethyl acetate :hexane); yield is $89 \% .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.35-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.45-5.96(\mathrm{~m}, 3 \mathrm{H}), 5.78$ (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(\mathbf{1 0 1}$ MHz, CDCl 3): $\delta 166.4,141.6,137.9,129.7,128.7,127.8,127.4,121.3,43.6,18.6$ HRMS (ESI/Q-TOF): $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NONa} 224.1051$; Found 224.1059.
(2E,4E)- N-(3,4-Dimethoxybenzyl)hexa-2,4-dienamide (2b):

Prepared according to General Procedure 1; half-white solid; eluent (25% ethyl acetate:hexane); yield is 85%. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.14(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 5 \mathrm{H}), 6.37$ - 5.87 (m, 2H), $5.75(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 166.28,141.46,137.83,137.14,135.36$, 129.71, 129.34, 129.25, 128.69, 127.88, 121.40, 43.43, 21.09, 18.57.HRMS (ESI/Q-TOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NONa}$ 238.1208; Found 238.1219.
(2E,4E)-N-(4-Methoxybenzyl)hexa-2,4-dienamide (2c):

Prepared according to General Procedure 1; white solid; eluent (20% ethyl acetate:hexane); yield is $88 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.07(\mathrm{~m}, ~ J=15.1,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{\mathbf{1 3}}{ }^{\mathbf{C}}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 166.4,158.9,141.3$,
137.8, 130.5, 129.7, 129.1, 121.5, 114.0, 114.0, 55.2, 43.1, 18.5. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}$ 254.1157; Found 254.1142
(2E,4E)-N-(4-Fluorobenzyl)hexa-2,4-dienamide (2d):

Prepared according to General Procedure 1; yellow-white solid; eluent (20% ethyl acetate:hexane); yield is 78%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.38-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{t}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.23-5.97(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.82$ (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 166.4,159.0,141.3,137.8,130.5$, 129.7, 129.1, 121.5, 114.0, 114.0, 55.2, 43.1, 18.5. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FNONa}$ 242.0957; Found 242.0968.
(2E,4E)-N-Butylhexa-2,4-dienamide (2e):

Prepared according to General Procedure 1; yellow-white solid; eluent (25\% ethyl acetate:hexane); yield is $75 \% .{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l}$): $\delta 7.16$ (dd, $J=15.1,10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.30-5.77(\mathrm{~m}, 3 \mathrm{H}), 3.31(\mathrm{~m}, J=7.2,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{dd}, J=6.8,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.52$ ($\mathrm{m}, J=6.9,6.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.46-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(\mathbf{1 0 1}$ MHz, $\mathbf{C D C l}_{3}$): $\delta 166.8,140.5,137.0,129.8,122.2,39.3,31.7,20.1,18.4,13.7$. HRMS (ESI/Q-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NONa}$ 190.1208; Found 190.1211
(2E,4E)-N-(Tert-butyl)hexa-2,4-dienamide (2f):

Prepared according to General Procedure 1; white solid; eluent (25% ethyl acetate in hexane); yield is 73%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.35-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.56-5.96(\mathrm{~m}, 3 \mathrm{H}), 5.82$ (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 9 \mathrm{H}) \cdot{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1}$
$\mathbf{M H z}, \mathbf{C D C l}_{3}$): $166.0,140.1,136.8,129.7$, 123.1, 51.1, 28.8, 28.8, 28.8, 18.4. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}$ 168.1388; Found 168.1396.
(2E,4E)-N-Isobutylhexa-2,4-dienamide (2g):

Prepared according to General Procedure 1; white solid; eluent (25% ethyl acetate:hexane); yield is 80%. $^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.37-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.30-5.60(\mathrm{~m}, 3 \mathrm{H}), 3.12$ ($\mathrm{m}, J=5.7,5.0 \mathrm{~Hz}, 3 \mathrm{H}$), $1.81(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.85(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl3 $_{3}$): $\delta 166.9,140.5,137.0,129.8,122.2,47.0,28.5,20.2,20.1,18.4$. HRMS (ESI/Q-TOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NONa} 190.1208$; Found 190.1211
(2E,4E)-N-Cyclohexylhexa-2,4-dienamide (2h):

Prepared according to general procedure 1; white solid; eluent (25% ethyl acetate in hexane); yield is $64 \% .^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $7.16(\mathrm{dd}, J=15.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-5.47$ (m, $3 \mathrm{H}), 3.84(\mathrm{dt}, J=7.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=12.8,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.77-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, J=12.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~m}, J=11.9,3.7$ $\mathrm{Hz}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 165.5,140.7,137.2,129.8,122.2,48.2,33.2$, 25.5, 24.9, 18.5. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NONa}$ 216.1364; Found 216.1358.
(2E,4E)-N-Phenylhexa-2,4-dienamide (2i):

Prepared according to General Procedure 1; white solid; eluent (20\% ethyl acetate:hexane); yield is $\mathbf{7 8 \%}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$): $\delta 8.39-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~m}, J=10.9,10.4,4.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.26-5.64(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.53(\mathrm{~d}, 3 \mathrm{H}){ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(\mathbf{1 0 1}$
$\mathbf{M H z}, \mathbf{C D C l}_{3}$): $166.5,163.3,141.7,138.1,134.3,129.6,129.4,121.2,115.5,115.3,42.9,18.6$. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NONa} 210.0895$; Found 210.0898. (2E,4E)-N-(p-Tolyl)hexa-2,4-dienamide (2j):

Prepared according to General Procedure 1; white solid; eluent (20% ethyl acetate:hexane); yield is 84%. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.81-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.68-6.03(\mathrm{~m}, 1 \mathrm{H}), 6.16$ $(\mathrm{m}, 2 \mathrm{H}), 6.12-5.72(\mathrm{~m}, 2 \mathrm{H}), 5.39-4.81(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.86(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 164.9,142.6,138.7,137.0,135.3,129.7,129.0$, 127.3, 124.2, 121.8, 120.0, 18.6, 14.0. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NONa}$ 224.1051; Found 224.1062.
(2E,4E)-N-(4-Chlorophenyl)hexa-2,4-dienamide (2 k):

Prepared according to General Procedure 1; white solid; eluent (20\% ethyl acetate:hexane); yield is $\mathbf{7 4 \%}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.97-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.09(\mathrm{dd}, J=9.1,5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.48-5.78(\mathrm{~m}, 1 \mathrm{H}), 6.31-5.72(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.54(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (101 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $166.5,141.7,138.1,134.3,134.2,129.6,129.4,129.4,121.2,115.5,115.3$, 42.8, 18.6.
(2E,4E)-N-(4-Bromophenyl)hexa-2,4-dienamide (2l):

Prepared according to General Procedure 1; white solid; eluent (20\% ethyl acetate : hexane); yield is 79%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{dd}$, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.37(\mathrm{~m}, 4 \mathrm{H}), 6.24-5.94(\mathrm{~m}, 2 \mathrm{H})$, $1.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 166.1,148.1,142.4,138.7$,
136.4, 131.3, 129.8, 127.5, 122.4, 121.8, 121.5, 116.8, 112.0. HRMS (ESI/Q-TOF) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrNO}$ 266.0181; Found 266.0188
(2E,4E)-N-(3,4-Dimethylphenyl)hexa-2,4-dienamide (2m):

Prepared according to General Procedure 1; white solid; eluent (25% ethyl acetate:hexane); yield is 70%. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.51(\mathrm{~d}, J=45.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.15(\mathrm{~m}, 1 \mathrm{H})$, $6.94(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.25-5.79(\mathrm{~m}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 3H). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 164.9,142.1,138.2,133.2,131.1,129.8,127.1$, 123.9, 121.9, 20.9, 18.6, 17.8. HRMS (ESI/Q-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NONa}$ 238.1208; Found 238.1211.
(2E,4E)-N-Methoxy- N-methylhexa-2,4-dienamide (2n):

Prepared according to General Procedure 1; white solid; eluent (4\% ethyl acetate in hexane); yield is 89%. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.44-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.08(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~m}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 166.4,141.3,121.5,114.0,114.0,55.2,43.1$, 18.5. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na}$ 178.0844; Found 178.0835.
(2E,4E)-N-(Thiophen-2-ylmethyl)hexa-2,4-dienamide (20):

Prepared according to General Procedure 1; white solid; eluent (18\% ethyl acetate:hexane); yield is 68%. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.41-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.23-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}$,

3H). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 166.5,141.7,138.1,134.2,129.6,129.4,121.2$, 115.5, 115.3, 42.8, 18.6.

(2E,4E)-N-(Naphthalen-2-yl)hexa-2,4-dienamide (2p):

Prepared according to general procedure 2; white solid; eluent (20% ethyl acetate:hexane); yield is $66 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 8.77-8.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.74-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 6 \mathrm{H}), 6.38-5.77(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 166.1, 148.1, 142.4, 138.7, 136.4, 129.8, 127.5, 123.1, 122.4, 121.8, 121.5, 116.7, 112.5, 111.99, 27.0. HRMS (ESI/Q-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO} 238.1232$; Found 238.1241.
(2E,4E)-N,5-Diphenylpenta-2,4-dienamide (4a):

Prepared according to general procedure 1; white solid; eluent (18% ethyl acetate:hexane); yield is 80%. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=42.3,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.9$ (dd, $J=15.7,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.00(\mathrm{~m}, 2 \mathrm{H})$, $6.94-6.51(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 164.8$, 148.1, 142.8, 140.7, 138.5, 136.6, 136.4, 134.7, 128.8, 128.0, 127.6, 127.5, 125.2, 121.6, 121.6, 120.8, 116.5. HRMS (ESI/Q-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NONa} 272.1051$; Found 272.1056.
(2E,4E)-5-(4-Methoxyphenyl)- N-phenylpenta-2,4-dienamide (4b):

Prepared according to General Procedure 1; white solid; eluent (18% ethyl acetate:hexane); yield is 84%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}: \delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=26.7,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.90$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.96-6.74(\mathrm{~m}, 4 \mathrm{H}), 6.27(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3H). ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 165.4,147.4,144.0,143.9,141.3,138.4,136.0$,
133.4, 130.9, 128.9, 127.9, 127.4, 121.3, 116.0, 110.1, 52.3. HRMS (ESI/Q-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}$ 280.1338; Found 280.1332.
(2E,4E)-N-Phenyl-5-(p-tolyl)penta-2,4-dienamide (4c):

Prepared according to general procedure 1; yellow solid; eluent (18% ethyl acetate:hexane); yield is 79%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=39.9,5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.95(\mathrm{dd}, J=15.6,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.80-6.64(\mathrm{~m}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl3): $\delta 164.9,148.1,143.1,140.8,139.0,138.9,136.4,133.9,129.4,128.6,128.0,127.5$, 124.3, 121.6, 121.5, 120.2, 116.5, 21.4. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NONa}$ 286.1208; Found 286.1213.
(2E,4E)-5-(4-Bromophenyl)- N-phenylpenta-2,4-dienamide (4d):

Prepared according to general procedure 1; white solid; eluent (22% ethyl acetate:hexane); yield is 73%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $10.64(\mathrm{~s}, 1 \mathrm{H}), 8.2(\mathrm{~m}, 3 \mathrm{H}), 8.0(\mathrm{dd}, J=8.3,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dt}, J=15.3,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.43$ $-7.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 164.8,152.1,148.1,142.8,140.7,138.5$, $136.6,136.4,134.7,128.7,128.0,127.6,127.5,125.2,121.6,120.8,116.5$.
(2E,4E)-5-(4-Fluorophenyl)- N-phenylpenta-2,4-dienamide (4e):

Prepared according to general procedure 1; white solid; eluent (18\% ethyl acetate:hexane); yield is 68%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 9.93(\mathrm{~s}, 1 \mathrm{H}), 8.90-8.74(\mathrm{~m}, 2 \mathrm{H}), 7.9(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.22(\mathrm{~m}, 9 \mathrm{H}), 6.73(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (101 MHz, CDCl3): $\delta 164.2,148.2,142.1,138.5,137.3,136.5,134.8,134.6,130.9$, 128.9, 128.7, 128.1, 127.5, 126.8, 126.5, 121.6, 116.9. HRMS (ESI/Q-TOF) m/z: [M + Na] ${ }^{+}$ Calcd $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FNONa} 290.0957$; Found 290.0964

(2E,4E)-5-(3,4-Dimethylphenyl)- N-phenylpenta-2,4-dienamide (4f):

Prepared according to general procedure 1; white solid; eluent (20% ethyl acetate:hexane); yield is 75%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 8.79-8.18(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.15(\mathrm{~m}, 8 \mathrm{H}), 6.29(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) . \mathbf{1 3 C}\{\mathbf{1 H}\}$ NMR (101 MHz, CDC13): $\delta 167.8,148.1,139.8,138.5,138.1,136.4,134.7,134.1,131.8$, 129.4, 128.4, 127.9, 127.4, 126.4, 121.6, 121.2, 116.8, 45.1, 21.2. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NONa} 300.1364$; Found 300.1364.
(\boldsymbol{E})- N -Benzylpenta-2,4-dienamide (6a):

Prepared according to general procedure 1; white solid; eluent (25% ethyl acetate:hexane); yield is 75%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 7.16(\mathrm{dd}, J=15.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28-5.64(\mathrm{~m}$, $4 \mathrm{H}), 3.85(\mathrm{~m}, J=7.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{dt}, J=13.3,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.62$ (dt, $J=12.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~m}, J=11.8,6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 165.5, 140.7, 137.2, 129.8, 122.2, 48.2, 33.2, 25.5, 24.9, 18.5. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}$ 180.1388; Found 180.1395 .
(E)-N-Isobutylpenta-2,4-dienamide (6b):

Prepared according to general procedure 1; white solid; eluent (18% ethyl acetate:hexane); yield is $80 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $3 \mathrm{H}), 6.07(\mathrm{~m}, J=15.1,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (s, 3H). ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 166.4,158.9,141.3,137.8,130.5,129.7,129.1$, 121.5, 114.0, 114.0, 55.2, 43.1 .

(E)-N-(4-Bromophenyl)penta-2,4-dienamide (6c):

Prepared according to general procedure 1; white solid; eluent (20% ethyl acetate:hexane); yield is $72 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.65-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 3 \mathrm{H})$, $7.28(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}) \cdot{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 171.5, 146.9, 142.4, 136.2, 130.2, 129.2, 128.8, 127.7, 126.9, 124.9, 116.7. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}$ 174.0919; Found 174.0928.
(\boldsymbol{E})- N -(\boldsymbol{p}-Tolyl)penta -2,4-dienamide ($\mathbf{6 d}$):

Prepared according to general procedure 1; white solid; eluent (20\% ethyl acetate:hexane); yield is $73 \%{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=26.7,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.10$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=15.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, 1 H), 3.77 (s, 3 H). $\left.{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{C}{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 170.6,159.5,143.0,134.0,130.4$, 128.6, 127.7, 126.3, 125.0, 122.6, 120.9, 37.8.
(\boldsymbol{E})- N -(4-Chlorophenyl)penta-2,4-dienamide (6e):

Prepared according to general procedure 1; white solid; eluent (24% ethyl acetate:hexane); yield is $68 \% .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.76-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 171.8,142.1,137.6,134.9,131.8,130.8,127.7$, 123.6, 123.1, 122.6, 122.0. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNONa}$ 230.0349; Found 230.0354.
(2E,4E)-5-Phenylpenta-2,4-dienoic acid (8a):

Prepared according to General Procedure 2; half white solid; eluent (28% ethyl acetate:hexane); yield is $86 \% .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.54(\mathrm{dd}, J=25.8,10.0 \mathrm{~Hz}$, $3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.97(\mathrm{t}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}) \cdot{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (101 MHz, CDCl3): $\delta 171.5,146.9,142.9,142.3,141.7,136.2,136.0,128.8,127.7$, 124.9, 116.7. HRMS (ESI/Q-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Na}$ 197.0578; Found 197.0576.
(2E,4E)-5-(p-Tolyl)penta-2,4-dienoic acid (8b):

Prepared according to General Procedure 2; half white solid; eluent (30% ethyl acetate:hexane); yield is $84 \% .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.45(\mathrm{dd}, J=15.1,10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=20.7,12.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.90$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 170.6,159.5,143.0$, 133.9, 132.1, 130.9, 128.6, 127.4, 127.1, 126.3, 120.9, 37.9. HRMS (ESI/Q-TOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na} 211.0735$; Found 211.0744.
(2E,4E)-5-(4-Chlorophenyl)penta-2,4-dienoic acid (8c):

Prepared according to general procedure 2; Half white solid; eluent (28% ethyl acetate:hexane); yield is 77%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.82-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, 1H). ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 171.5,148.6,146.9,142.4,136.2,129.2,128.8$, 127.7, 126.9, 124.9, 116.7.
(2E,4E)-5-(4-Bromophenyl)penta-2,4-dienoic acid (8d):

Prepared according to general procedure 2; Half white solid; eluent (25\% ethyl acetate:hexane); yield is $79 \%{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.76-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 171.8,142.1,137.6,134.9,131.8,130.8,127.7$, 123.6, 123.1, 122.6, 122.0. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrO}_{2} \mathrm{Na}$ 274.9684; Found 274.9690.

Methyl (2E,4E)-hexa-2,4-dienoate (8e):

Prepared according to general procedure 2; Yellow solid; eluent (15\% ethyl acetate:hexane); yield is 38%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.51-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.44-6.04(\mathrm{~m}, 2 \mathrm{H}), 5.78$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.73(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 167.7,145.2,139.4,129.7,118.5,51.4,18.6,18.6$.
(2E,4E)-5-(Benzo[d][1,3]dioxol-5-yl)-1-(piperidin-1-yl)penta-2,4-dien-1-one (10)

Prepared according to general procedure 1; white solid; eluent (20\% ethyl acetate:hexane); yield is 69%. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.16(\mathrm{dd}, J=15.1,10.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.30-5.81(\mathrm{~m}$, $4 \mathrm{H}), 3.31(\mathrm{~m}, J=7.2,5.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{dd}, J=6.8,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.46-$ $1.28(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 166.8,140.5$, 137.0, 129.8, 122.2, 39.3, 31.7, 20.1, 18.4, 13.7. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na} 308.1263$; Found 308.1269.
(2E,4E)-hexa-2,4-dienoic acid (12)

Prepared according to general procedure 2; Half white solid; eluent (25% ethyl acetate:hexane); yield is $82 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.43-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.33-6.09(\mathrm{~m}, 2 \mathrm{H}), 5.78$ $(\mathrm{d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 172.9$,
147.4, 140.8, 129.7, 118.2, 18.7. HRMS (ESI/Q-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Na}$ 135.0422; Found 135.0429.

Copies of NMR Spectra

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2a:

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 b :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 c :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 d :

180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0
									f1 (ppm)									

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 e :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 f :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 g :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 h :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 i :

$\stackrel{\stackrel{+}{\infty}}{\underset{\sim}{j}}$
$\stackrel{\infty}{\infty}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 j :

∞	
+	
\|	$\xrightarrow{\sim} \mid 1 / 7 /$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 k :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 21 :

\section*{mumumadild 1

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 m :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 n :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 o :

$\stackrel{\sim}{\infty} \stackrel{-\infty}{\infty}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2 p :

(

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 4 a :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 4 b :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 4 c :

$$
\underbrace{\infty}
$$

\square

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 4 d :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 4 e :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 4 f :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 6a:

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 6 b :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 6 c :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 6 d :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 6 e :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 8a:

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 8 b ：

ヘヘヘヘヘヘNへN

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 8 c :

N

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 8 d :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 8 e :

 $\stackrel{\stackrel{i}{4}}{\stackrel{i}{4}}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 10 :

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 12 :

Coss)

[^0]: $\left.\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1 & (\mathrm{ppm})\end{array}\right)$

