Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

# **Supporting Information for**

# Bridged eosin Y: A visible and near-infrared photoredox catalyst

Masaru Tanioka,\*<sup>a</sup> Ayako Kuromiya,<sup>a</sup> Rina Ueda,<sup>a</sup> Tohru Obata,<sup>a</sup> Atsuya Muranaka,<sup>b</sup> Masanobu Uchiyama,<sup>cd</sup> and Shinichiro Kamino\*<sup>a</sup>

<sup>*a*</sup> School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100, Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan

<sup>b</sup> Center for Sustainable Resource Science (CSRS), Molecular Structure Characterization Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

<sup>c</sup> Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

<sup>d</sup> Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda, 386-8567, Japan

**Table of Contents** 

- 1. Instrumentation and Materials
- 2. Experimental Procedure
- 3. Single X-ray Structure Analysis
- 4. Optical Properties of BEY
- 5. Computational Details
- 6. Photoredox catalysis of BEY
- 7. Electrochemical Properties
- 8. Optical Properties of arylated fluorescent dyes
- 9. NMR Spectra of Compounds
- 10. Cartesian Coordinates (in Å) and Energies
- 11. References

#### 1. Instrumentation and Materials

#### Instruments

<sup>1</sup>H- and <sup>13</sup>C-NMR spectra were recorded on a JEOL ECZ-400S spectrometer (400 MHz for <sup>1</sup>H-NMR and 100 MHz for <sup>13</sup>C-NMR). <sup>1</sup>H- and <sup>13</sup>C- spectra were referenced to CHCl<sub>3</sub> ( $\delta$ : 7.26 and 77.16 ppm for <sup>1</sup>H- and <sup>13</sup>C-NMR, respectively), trifluoroacetic acid ( $\delta$ : 11.50 and 164.2 ppm for <sup>1</sup>H- and <sup>13</sup>C-NMR, respectively), MeOH ( $\delta$ : 3.31 and 49.0 ppm for <sup>1</sup>H- and <sup>13</sup>C-NMR, respectively) and DMSO ( $\delta$ : 2.50 and 39.52 ppm for <sup>1</sup>H- and <sup>13</sup>C-NMR, respectively) as an internal standard. The following abbreviations are used: s = singlet, d = doublet, m = multiplet. HRMS (ESI) spectra were recorded on Agilent 6230 Accurate-Mass TOF LC/MS system using electrospray ionization. UV/Vis spectra were recorded on a HITACHI UH-5700 spectrophotometer and fluorescence spectra on a HITACHI F-7100 spectrophotometer. Crystal structures were determined by the single-crystal X-ray diffraction method at T = 103 K. These diffraction data were collected using Rigaku XtaLAB Synergy-i diffractometer (Cu-K $\alpha$  radiation). Cyclic voltammetry measurements were carried out with a Hokuto Denko HZ-7000 voltammetric analyzer.

#### Photoreactions

Photoreactions were performed in a Schlenck tube using a LED light (Techno Sigma PER-AMP series for 521 nm and 631 nm, ASAHI SPECTRA CL series for 730 nm, 830 nm and 940 nm). See experimental procedure for details of the photoreaction.

#### Materials

Reagents were purchased from Wako Pure Chemical Industries, Kanto Chemical Co., Inc., and Tokyo Chemical Industry Co., Ltd. All solvents were used without further purification.

#### 2. Experimental Procedure

#### 2-1. Synthesis of BEY (2)

| Br Br Br Coor | _он<br><sup>`Br</sup><br>он <b>Acid</b> , 2<br>3 h, ur | <b>X</b> °C<br>nder Ar | Br Br O<br>Br O<br>BEY (2) |
|---------------|--------------------------------------------------------|------------------------|----------------------------|
| Entry         | Acid                                                   | X (°C)                 | Yield (%)                  |
| 1             | $H_2SO_4$                                              | 120                    | <1                         |
| 2             | $H_2SO_4$                                              | 140                    | 7                          |
| 3             | $H_2SO_4$                                              | 160                    | 57                         |
| 4             | $H_2SO_4$                                              | 180                    | 95                         |
| 5             | H <sub>3</sub> PO <sub>4</sub>                         | 160                    | -                          |
| 6             | $CH_3SO_3H$                                            | 160                    | _                          |

Scheme S1. Examination of reaction condition of 2.

Synthesis of 2: 1 (200 mg, 0.308 mmol) was dissolved in concentrated H<sub>2</sub>SO<sub>4</sub> (10 ml). The resulting mixture was stirred for 3 h at 180°C. The reaction mixture was allowed to cool and slowly added to ice. The precipitated solid was collected with a Büchner funnel under reduced pressure, and washed 3 times with 50 ml of water. The collected solid was dried under reduced pressure. CH<sub>2</sub>Cl<sub>2</sub> was added to silica gel (50 g) to form a slurry, and the collected dried solid was added and stirred for 10 min. This silica gel mixture was filled in a chromatographic column and **2** was isolated using CH<sub>2</sub>Cl<sub>2</sub>/MeOH (10:1  $\rightarrow$  4:1 (with 0.5% methanesulfonic acid)). The solution containing **2** was washed with water to remove methanesulfonic acid, and then hexane was added. The precipitated **2** crystals were collected with a Kiriyama funnel and dried under reduced pressure. **2** was obtained as reddish brown needle-like crystalline powder (167 mg, 95%).

**2**: <sup>1</sup>**H-NMR** (400 MHz, trifluoroacetic acid-d): δ 9.25-9.10 (m, 1H), 8.95-8.65 (m, 2H), 8.30-8.05 (m, 2H); <sup>13</sup>**C-NMR** (100 MHz, trifluoroacetic acid-d): δ 182.5, 158.0, 155.9, 147.5, 138.8, 138.1, 135.6, 134.4, 133.6, 133.3, 131.8; **HRMS** (ESI, positive) *m/z* calcd. for C<sub>20</sub>H<sub>8</sub>O<sub>5</sub>Br<sub>3</sub> (M+H<sup>+</sup>): 564.7922, found: 568.7896.



Synthesis of 2 (gram scale): 1 (5.0 g, 7.72 mmol) was dissolved in concentrated H<sub>2</sub>SO<sub>4</sub> (100 ml). The resulting mixture was stirred for 4 h at 180°C. The reaction mixture was allowed to cool and slowly added to ice. The precipitated solid was collected with a Büchner funnel under reduced pressure, and washed 3 times with 50 ml of water. The collected solid was suspended in methanol (100 ml) and collected with a Kiriyama funnel. CH<sub>2</sub>Cl<sub>2</sub> was added to silica gel (300 g) to form a slurry, and the collected solid was added and stirred for 1 h. This silica gel mixture was filled in a chromatographic column and 2 was isolated using CH<sub>2</sub>Cl<sub>2</sub>/MeOH (10:1  $\rightarrow$  4:1 (with 0.5% methanesulfonic acid)). The solution containing 2 was washed with water to remove methanesulfonic acid, and then hexane was added. The precipitated 2 crystals were collected with a Kiriyama funnel and dried under reduced pressure. 2 was obtained as reddish brown needle-like crystalline powder (3.7 g, 85%).

### 2-2. Preparation of aryl diazonium tetrafluoroborate<sup>1</sup>

Aryldiazonium tetrafluoroborates were synthesized from the corresponding anilines according to the reported procedure<sup>1</sup>. The aniline derivatives (4.5 mmol) were dissolved in glacial acetic acid (3 mL) at room temperature. Then, 48 % aqueous tetrafluoroboric acid (1.3 mL) and a solution of iso-amylnitrite (1 mL) in glacial acetic acid (2 mL) were slowly added at room temperature. After 5 minutes, diethylether (15 mL) was added and the reaction mixture was cooled down to  $-30 \,^{\circ}$ C (dry ice/EtOH). The precipitated crystals were filtered off in vacuo, washed with diethylether (2 x 10 mL) and dried under reduced pressure.





# 2-3. Photoredox catalysis

## 2-3-1 LED light source in this work

521 nm: PER-521 (Techno Sigma), output power 226 mW/cm<sup>2</sup>
631 nm: PER-631(Techno Sigma), output power 249 mW/cm<sup>2</sup>
730 nm: CL-H1-730-9-1 (ASAHI SPECTRA), output power 148 mW/cm<sup>2</sup> (WD = 20mm)
830 nm: CL-H1-830-9-1(ASAHI SPECTRA), output power 158 mW/cm<sup>2</sup> (WD = 20mm)
940 nm: CL-H1-940-9-1(ASAHI SPECTRA), output power 281 mW/cm<sup>2</sup> (WD = 20mm)

# 2-3-2 Set up

#### Photoreaction using PER-521 and PER-631

The reactions were carried in a Schlenk tube equipped with a magnetic stirrer. The LEDs were plugged directly into the Schlenk tube. The Schlenk tube was fully covered by alminium foil to remove the external visible light. All reactions were performed under argon atmosphere in the darkroom.



## Photoreaction using CL series

The reactions were carried in a round bottom flask equipped with a magnetic stirrer. One near-infrared LED was placed at about 3 cm away from the light source. The Schlenk tube was fully covered by alminium foil to remove the external visible light. All reactions were performed under argon atmosphere in the darkroom.



General procedure for the reaction of aryl diazonium tetrafluoroborates with furan<sup>2</sup> The photoreactions were performed with reference to the condition of König *et al.*<sup>2</sup> In a 20 mL dried Schlenk tube equipped with magnetic stirring bar, the **2** (0.01 eq.), aryl diazonium tetrafluoroborate (1 eq.) and furan (10 eq.) were dissolved in dehydrated DMSO (0.23 mmol/mL). Then, LED was attached to the Schlenk tube. After 2 h of irradiation the reaction mixture was transferred to separating funnel, diluted with ethyl acetate and washed twice with 100 mL of water. The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated in vacuum. Purification of the crude product was achieved by flash column chromatography using hexane/ethyl acetate (100:0 to 10:1) as eluent.

#### 2-(4-chlorophenyl)-furan (3a)



**3a** was obtained as a white powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3a** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 7.60 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 1.6 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 6.65 (d, *J* = 3.2 Hz, 1H), 6.48 (dd,

*J* = 3.2 Hz, 1.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ ppm 153.1, 142.5, 133.1, 129.5, 129.0, 125.1, 111.9, 105.6.

## 2-(4-bromophenyl)-furan (3b)



**3b** was obtained as a white powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3b** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 7.57-7.51 (m, 4H), 7.50-7.48 (m, 1H), 6.66 (d, *J* = 2.8 Hz, 1H), 6.49 (dd, *J* = 3.2 Hz, 1.6 Hz, 1H); <sup>13</sup>**C NMR** 

(100 MHz, CDCl<sub>3</sub>): δ ppm 153.0, 142.5, 131.9, 129.8, 125.4, 121.1, 111.9, 105.6.

## 2-(4-fluorophenyl)-furan (3c)



**3c** was obtained as a colorless powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3c** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 7.66-7.62 (m, 2H), 7.46 (d, *J* = 1.6 Hz, 1H), 7.10-7.05 (m, 2H), 6.58 (d, *J* = 3.2 Hz, 1H), 6.47 (dd, *J* = 3.6 Hz,

2.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ ppm 161.0, 153.3, 142.2, 127.4, 125.6, 115.8, 111.8, 104.8.

## 2-(4-trifluoromethyl-phenyl)-furan (3d)



**3d** was obtained as a white powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3d** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 7.76 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.52 (d, *J* = 1.2 Hz, 1H), 6.77 (d, *J* = 3.2 Hz, 1H), 6.52

(dd, *J* = 3.2 Hz, 1.6 Hz, 1H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): δ ppm 152.6, 143.2, 134.1, 129.0, 125.8, 123.9, 123.0, 112.1, 107.1.

## 2-(4-cyanophenyl)-furan (3e)



**3e** was obtained as a white powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3e** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 7.72 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 2.8 Hz, 1H), 6.80 (d, *J* = 3.6 Hz, 1H), 6.52 (dd,

*J* = 3.2 Hz, 2.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ ppm 152.0, 143.2, 134.7, 132.6, 124.0, 119.1, 112.3, 110.3, 108.3.

## 2-(4-nitrophenyl)-furan (3f)



**3f** was obtained as a yellow powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3f** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 8.27-8.23 (m, 2H), 7.81-7.78 (m, 2H), 7.57 (d, *J* = 1.6 Hz, 1H), 7.38 (d, *J* = 3.2 Hz, 1H), 6.56 (dd, *J* = 3.2

Hz, 2.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ ppm 151.9, 146.5, 144.3, 136.6, 124.5, 124.1, 112.6, 109.1.

# 2-(3-nitrophenyl)-furan (3g)



3g

**3g** was obtained as a yellow powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3g** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 8.50-8.49 (m, 1H), 8.10-8.07 (m, 1H), 7.97-7.95 (m, 1H), 7.57-7.53 (m, 2H), 6.81 (d, *J* = 2.8 Hz, 1H), 6.53

(dd, *J* = 3.2 Hz, 1.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ ppm 151.6, 148.8, 143.4, 132.5, 129.8, 129.4, 121.8, 118.6, 112.2, 107.4.

# 2-(4-methylphenyl)-furan (3h)



**3h** was obtained as a pale brown liquid. <sup>1</sup>H and <sup>13</sup>C NMR of **3h** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 7.59 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 1.2 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 2H), 6.61 (d, *J* = 4.0 Hz, 1H), 6.47

(dd, *J* = 3.2 Hz, 1.6 Hz, 1H), 2.38 (s, 3H); <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>): δ ppm 154.3, 141.8, 137.3, 129.5, 128.3, 123.9, 111.7, 104.3, 21.4.

# 2-phenyl-furan (3i)

**3i** was obtained as a pale brown liquid. <sup>1</sup>H and <sup>13</sup>C NMR of **3i** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ ppm 7.68 (d, J = 7.6 Hz, 2H), 7.47 (d, J = 1.6 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.28-7.24 (m, 1H), 6.66 (d, J = 3.2 Hz, 1H), 6.48 (dd, J = 2.8 Hz, 2.2 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ ppm 154.1, 142.2,

131.0, 128.8, 127.4, 123.9, 111.8, 105.1.

## 2-(4-methoxyphenyl)-furan (3j)



**3j** was obtained as a white powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3j** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 7.61 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 2.0 Hz, 1H), 6.92 (d, *J* = 9.2 Hz, 2H), 6.52 (d, *J* = 3.2 Hz, 1H), 6.46-

6.44 (m, 1H), 3.82 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ ppm 159.1, 154.1, 141.5, 128.9, 124.7, 112.9, 111.7, 103.5, 55.4.

# 2-(4-nitrophenyl)-thiophene (3k)



**3k** was obtained as a yellow powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3k** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 8.24 (d, *J* = 9.2 Hz, 2H) , 7.74 (d, *J* = 7.2 Hz, 2H), 7.48 (dd, *J* = 3.6 Hz, 1H), 7.50-7.40 (m, 1H), 7.16 (dd,

*J* = 5.2 Hz, 3.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ ppm 141.6, 141.7, 140.7, 128.8, 127.6, 126.1, 125.9, 124.5.

#### 2-(4-nitrophenyl)-pyrrole-1-carboxylic acid tert-butyl ester (31)

**3** was obtained as a yellow powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3** were in agreement with the literature<sup>2</sup>.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  ppm 8.21 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 6.8 Hz, 2H), 7.41 (dd, J = 3.2 Hz, 1.6 Hz, 1H), 6.33 (dd, J = 3.6 Hz,

1.6 Hz, 1H), 6.27 (t, *J* = 4.0 Hz, 1H) 1.44 (s, 9H); <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>): δ ppm 149.0, 146.6, 140.8, 132.9, 129.6, 124.4, 123.0, 116.7, 111.3, 84.6, 27.9.

# Procedure for the reaction of 4-nitrophenyl diazonium tetrafluoroborates with PAHs

In a 20 mL dried Schlenk tube equipped with magnetic stirring bar, the **2** (0.01 eq.), 4nitrophenyl diazonium tetrafluoroborate (1 eq.) and PAHs (2 eq.) were suspended in dehydrated DMSO (0.23 mmol/mL). Then, LEDs was attached to the Schlenk tube. After 2 h of irradiation the reaction mixture was transferred to separating funnel, diluted with CHCl<sub>3</sub> and washed twice with 100 mL of water. The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated in vacuum. Purification of the crude product was achieved by flash column chromatography using hexane/ CHCl<sub>3</sub> (100:1 to 10:1) as eluent.

#### 4-nitrophenyl-pyrene (3m)

31



**3m** was obtained as an orange powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3m** were in agreement with the literature<sup>3</sup>. There were two isomers (**3mA** and **3mB**) in **3m**. **3mA** and **3mB** could not be separated by silica gel column chromatography.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ ppm 8.43-8.40 (m, 2H), 8.23 (dd, *J* = 8.4 Hz, 2H), 8.21 (d, *J* = 6.4 Hz, 1H), 8.16-7.98 (m, 5H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.85-7.77 (m, 2H).
<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ ppm 148.2, 147.1, 131.5, 131.0, 128.5, 128.3, 127.4, 127.3, 126.4, 125.8, 125.4, 124.8, 124.3, 123.7; HRMS (APCI, positive) *m/z* calcd. for C<sub>22</sub>H<sub>13</sub>NO<sub>2</sub> (M+H<sup>+</sup>): 324.1024, found: 324.1017.

# 9-(4-nitrophenyl)-anthracene (3n)



**3n** was obtained as a yellow powder. <sup>1</sup>H and <sup>13</sup>C NMR of **3n** were in agreement with the literature<sup>4</sup>.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 8.57 (s, 1H), 8.47 (d, J = 8.4 Hz, 2H), 8.09 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.54-7.46 (m, 4H), 7.40 (t, J = 8.0 Hz, 2H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): δ ppm 147.6, 146.4, 134.1, 132.5, 131.2, 129.8, 128.3, 127.9, 126.3, 125.9, 125.5, 123.8; **HRMS** (APCI, positive) m/z calcd. for C<sub>20</sub>H<sub>13</sub>NO<sub>2</sub> (M+H<sup>+</sup>): 300.1024, found: 300.1013.

# 4-nitrophenyl-perylene (30)



**30** (**30A** +**30B**) was obtained as a red powder.

# 1-(4-nitrophenyl)-perylene (3oA)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 8.29 (d, *J* = 8.4 Hz, 2H), 8.23 (t, *J* = 6.8 Hz, 2H), 7.77-7.70 (m, 3H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.60-7.52 (m, 3H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.02 (t, *J* = 8.0 Hz, 1H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): δ ppm 152.2, 146.9, 131.7, 130.9, 130.7, 130.4, 129.7, 128.1, 128.0, 127.7, 127.6, 127.2, 126.7, 125.6, 125.1, 121.5, 120.7; **HRMS** (APCI, positive) *m/z* calcd. for C<sub>26</sub>H<sub>15</sub>NO<sub>2</sub> (M+H<sup>+</sup>): 374.1181, found: 374.1178.

# 3-(4-nitrophenyl)-perylene (3oA)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 8.42-8.35 (m, 2H), 8.29-8.20 (m, 4H), 7.78-7.68 (m, 4H), 7.65 (dd, *J* = 8.6 Hz, 2.4 Hz, 2H), 7.57-7.40 (m, 4H), 7.29-7.24 (m, 1H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): δ ppm 147.9, 147.3, 137.4, 134.8, 132.5, 131.2, 131.0, 128.5, 128.3, 128.1, 127.3, 126.9, 126.8, 125.2, 123.9, 120.9, 120.8, 119.9; **HRMS** (APCI, positive)

m/z calcd. for C<sub>26</sub>H<sub>15</sub>NO<sub>2</sub> (M+H<sup>+</sup>): 374.1181, found: 374.1178.

# Procedure for the reaction of 4-nitrophenyl diazonium tetrafluoroborates with xanthene dyes

In a dried round-bottom flask equipped with magnetic stirring bar, the xanthene dyes, **2** (0.02 eq.), 4-nitrophenyl diazonium tetrafluoroborate (2 eq.) were dissolved in dehydrated DMSO (4 mL). After irradiation the reaction mixture was transferred to separating funnel, diluted with  $CH_2Cl_2$  and washed twice with 100 mL of water. The organic layers were dried over  $Na_2SO_4$ , filtered, and concentrated in vacuum. Purification of the crude product was achieved by preparative layer chromatography using  $CHCl_3 / MeOH$  (10:1).

#### 4-nitrophenyl-fluorescein (4)



4 (4A+4B) was obtained as a red foam solid.

#### 2-(4-nitrophenyl)-fluorescein (4A)

<sup>1</sup>**H NMR** (400 MHz, DMSO-d6) δ ppm 8.12 (d, J = 8.4 Hz, 2H), 8.00 (dd, J = 7.2 Hz, 1.2 Hz, 1H), 7.70-7.60 (m, 4H), 7.29 (d, J = 6.8 Hz, 1H), 6.74 (s, 1H), 6.67 (s, 1H), 6.59 (d, J = 8.8 Hz, 1H), 6.56 (s, 1H), 8.00 (dd, J = 9.0 Hz, 2.2 Hz, 1H); <sup>13</sup>**C NMR** (100 MHz, DMSO-d6) δ ppm 169.1, 154.0, 153.6, 145.6, 145.1,132.3, 129.7, 129.5, 129.4, 126.5, 125.9, 123.1, 122.9, 110.1, 103.5, 102.5; **HRMS** (ESI, positive) *m/z* calcd. for C<sub>26</sub>H<sub>15</sub>NO<sub>7</sub> (M+H<sup>+</sup>): 454.0926, found: 454.0919.

#### 4-(4-nitrophenyl)-fluorescein (4B)

<sup>1</sup>**H NMR** (400 MHz, DMSO-d6) δ ppm 8.32 (d, J = 8.8 Hz, 2H), 8.02 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.8 Hz, 2H), 7.75 (d, J = 8.0 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 6.80-6.63 (m, 2H), 6.63-6.50 (m, 2H), 6.43 (d, J = 1.6 Hz, 1H); <sup>13</sup>**C NMR** (100 MHz, DMSO-d6) δ ppm 168.9, 167.8, 161.4, 159.8, 152.3, 151.9, 149.7, 147.4, 146.2, 143.2, 140.9, 134.7, 132.5, 130.0, 129.2, 125.6, 125.0, 123.0, 122.8, 113.8, 113.7, 110.3, 109.9, 109.4, 102.3; **HRMS** (ESI, positive) *m*/*z* calcd. for C<sub>26</sub>H<sub>15</sub>NO<sub>7</sub> (M+H<sup>+</sup>): 454.0926, found: 454.0916.

4-nitrophenyl-rhodamine B (5)



5 (5A+5B) was obtained as a purple foam solid.

## 2-(4-nitrophenyl)-rhodamine B (5A)

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ ppm 8.13 (d, J = 8.8 Hz, 2H), 7.99 (d, J = 7.6 Hz, 1H), 7.65 (td, J = 7.4 Hz, 1.2 Hz, 1H), 7.59 (td, J = 7.2 Hz, 1.0 Hz, 1H), 7.99 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 7.6 Hz, 1H), 6.94 (s, 1H), 6.57 (d, J = 8.8 Hz, 1H), 6.53 (s, 1H), 6.48 (s, 1H), 6.38 (d, J = 7.2 Hz, 1H), 3.37 (q, J = 7.2 Hz, 4H), 2.90 (q, J = 7.2 Hz, 4H), 1.18 (t, J = 7.2 Hz, 6H), 0.95 (t, J = 7.2 Hz, 6H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>): δ ppm 169.7, 153.1, 152.6, 151.2, 149.9, 147.8, 145.5, 134.9, 130.8, 129.7, 129.5, 129.1, 127.5, 125.2, 124.3, 123.7, 113.1, 108.9, 108.7, 97.6, 46.1, 44.7, 12.6, 11.8; **HRMS** (ESI, positive) m/zcalcd. for C<sub>34</sub>H<sub>34</sub>N<sub>3</sub>O<sub>5</sub> (M+H<sup>+</sup>): 564.2498, found: 564.2493.

## 4-(4-nitrophenyl)-rhodamine B (5B)

<sup>1</sup>**H NMR** (400 MHz, DMSO-d<sub>6</sub>): δ ppm 8.37 (d, J = 8.8 Hz, 2H), 8.01 (d, J = 7.6 Hz, 1H), 7.90-7.65 (m, 4H), 7.39 (d, J = 8.0 Hz, 1H), 6.95 (d, J = 8.8 Hz, 1H), 6.69 (d, J = 8.4 Hz, 1H), 6.55-6.35 (m, 2H), 6.08 (d, J = 2.0 Hz, 1H), 3.30-3.32 (m, 4H), 2.78 (q, J = 7.0 Hz, 4H), 1.03 (t, J = 6.8 Hz, 6H), 0.79 (t, J = 7.0 Hz, 6H); <sup>13</sup>**C NMR** (100 MHz, DMSO-d<sub>6</sub>): δ ppm 168.7, 152.3, 152.0, 151.1, 149.3, 148.8, 146.3, 142.9, 135.5, 132.4, 130.1, 128.5, 127.8, 126.6, 124.6, 124.3, 123.2, 121.6, 117.1, 113.4, 108.8, 104.6, 96.8, 83.9, 45.8, 43.5, 12.3, 12.0; **HRMS** (ESI, positive) m/z calcd. for C<sub>34</sub>H<sub>34</sub>N<sub>3</sub>O<sub>5</sub> (M+H<sup>+</sup>): 564.2498, found: 564.2493.

#### 3. Single X-ray Structure Analysis

Single crystals of **2** were obtained by slow diffusion of  $Et_2O$  into a CHCl<sub>3</sub> solution of **2** at 10°C. Single crystals of **3mA**, **3n**, and **3oA** were obtained by slow diffusion of hexane into a CHCl<sub>3</sub> solution of **3mA**, **3n**, and **3oA** at 10°C. These crystal structures were determined by the single-crystal X-ray diffraction method at T = 103 K. The diffraction data were collected using Rigaku XtaLAB Synergy-i diffractometer (Cu-K $\alpha$  radiation). The structure was solved using the SHELXT<sup>5</sup> and refined with SHELXL-2018/3<sup>6</sup> via OLEX2<sup>7</sup>. All non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were put on calculated geometrically, and were refined by applying riding models. Crystal data and structure refinement were summarized in **Table S1-S4**. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre: Deposition code CCDC 2165148 (**2**); 2165150 (**3mA**); 2165151 (**3n**); and 2165152 (**3oA**).

| Table | <b>S1.</b> | Crystal | data a | nd | structure | refinemen | t for | 2. |
|-------|------------|---------|--------|----|-----------|-----------|-------|----|
|       |            |         |        |    |           |           |       |    |

|                                             | 2                                     |
|---------------------------------------------|---------------------------------------|
| Chemical formula                            | $C_{20}H_7O_5Br_3$                    |
| Recrystallization solvent                   | CHCl <sub>3</sub> / Et <sub>2</sub> O |
| Included solvent                            | -                                     |
| Crystal system                              | Triclinic                             |
| Space group [No.]                           | <i>P</i> -1 [2]                       |
| Crystal color, habit                        | Metallic black, plate                 |
| Crystal size, mm                            | 0.129 × 0.099 × 0.033                 |
| <i>a,</i> Å                                 | 7.9825(4)                             |
| <i>b</i> , Å                                | 9.6307(5)                             |
| <i>c</i> , Å                                | 12.1546(6)                            |
| <i>a</i> , °                                | 68.286(5)                             |
| <i>β</i> , °                                | 76.020(4)                             |
| γ, °                                        | 83.671(4)                             |
| Volume, Å <sup>3</sup>                      | 842.17(8)                             |
| Ζ                                           | 2                                     |
| <i>D<sub>calcd</sub>,</i> g/cm <sup>3</sup> | 2.236                                 |
| <i>Т</i> , К                                | 103.15                                |
| Radiation                                   | Cu Ka                                 |
| <i>M</i> , mm <sup>-1</sup>                 | 9.196                                 |
| $2	heta_{max}$ °                            | 68.0090                               |
| <i>F</i> (000)                              | 544                                   |
| Refins collected                            | 3051                                  |
| Unique reflns                               | 2788                                  |
| No. of parameters                           | 255                                   |
| <i>R1</i> ( <i>I</i> > 2.00σ(i))            | 0.0376                                |
| R (all reflection)                          | 0.0401                                |
| GOF                                         | 1.105                                 |

 Table S2. Crystal data and structure refinement for 3mA

|                                              | 3mA                                             |
|----------------------------------------------|-------------------------------------------------|
| Chemical formula                             | C <sub>22</sub> H <sub>13</sub> NO <sub>2</sub> |
| Recrystallization solvent                    | CHCl <sub>3</sub> / Hexane                      |
| Included solvent                             | -                                               |
| Crystal system                               | Monoclinic                                      |
| Space group [No.]                            | <i>P</i> 2 <sub>1</sub> / <i>c</i> [14]         |
| Crystal color, habit                         | Clear yellow, block                             |
| Crystal size, mm                             | 0.216 × 0.099 × 0.071                           |
| <i>a,</i> Å                                  | 9.6037(4)                                       |
| <i>b</i> , Å                                 | 11.9960(5)                                      |
| <i>c</i> , Å                                 | 13.4769(5)                                      |
| <i>a</i> , °                                 | 90                                              |
| <i>β</i> , °                                 | 97.696(4)                                       |
| γ, °                                         | 90                                              |
| Volume, Å <sup>3</sup>                       | 1538.63(11)                                     |
| Ζ                                            | 4                                               |
| <i>D<sub>calcd</sub></i> , g/cm <sup>3</sup> | 1.396                                           |
| <i>Т</i> , К                                 | 103.15                                          |
| Radiation                                    | Cu Ka                                           |
| <i>M</i> , mm⁻¹                              | 0.719                                           |
| <i>2θ<sub>max</sub></i> °                    | 68.2740                                         |
| <i>F</i> (000)                               | 672                                             |
| Refins collected                             | 2792                                            |
| Unique reflns                                | 2356                                            |
| No. of parameters                            | 226                                             |
| <i>R</i> 1 ( <i>I</i> > 2.00σ(i))            | 0.0499                                          |
| R (all reflection)                           | 0.0566                                          |
| GOF                                          | 1.068                                           |

 Table S3. Crystal data and structure refinement for 3n.

|                                             | 3n                                              |
|---------------------------------------------|-------------------------------------------------|
| Chemical formula                            | C <sub>20</sub> H <sub>13</sub> NO <sub>2</sub> |
| Recrystallization solvent                   | CHCl <sub>3</sub> / Hexane                      |
| Included solvent                            | -                                               |
| Crystal system                              | Monoclinic                                      |
| Space group [No.]                           | C 2/c [15]                                      |
| Crystal color, habit                        | Clear yellow, block                             |
| Crystal size, mm                            | 0.886 × 0.383 × 0.351                           |
| <i>a,</i> Å                                 | 16.1681(5)                                      |
| <i>b</i> , Å                                | 8.0980(2)                                       |
| <i>c</i> , Å                                | 22.3810(7)                                      |
| <i>a</i> , °                                | 90                                              |
| <i>β</i> , °                                | 98.728(3)                                       |
| γ, °                                        | 90                                              |
| Volume, Å <sup>3</sup>                      | 2896.39(15)                                     |
| Ζ                                           | 8                                               |
| <i>D<sub>calcd</sub>,</i> g/cm <sup>3</sup> | 1.373                                           |
| <i>Т</i> , К                                | 103.15                                          |
| Radiation                                   | Cu Ka                                           |
| <i>M</i> , mm <sup>-1</sup>                 | 0.715                                           |
| $2	heta_{max}$ °                            | 68.0800                                         |
| <i>F</i> (000)                              | 1248                                            |
| Refins collected                            | 2635                                            |
| Unique reflns                               | 2515                                            |
| No. of parameters                           | 209                                             |
| <i>R1</i> ( <i>I</i> > 2.00σ(i))            | 0.0332                                          |
| R (all reflection)                          | 0.0347                                          |
| GOF                                         | 1.068                                           |

| Table S4. C | rystal data | and st | tructure | refinement | for | 30A. |
|-------------|-------------|--------|----------|------------|-----|------|
|             |             |        |          |            |     |      |

|                                             | 30A                                             |
|---------------------------------------------|-------------------------------------------------|
| Chemical formula                            | C <sub>26</sub> H <sub>15</sub> NO <sub>2</sub> |
| Recrystallization solvent                   | CHCl <sub>3</sub> / Hexane                      |
| Included solvent                            | -                                               |
| Crystal system                              | Orthorhombic                                    |
| Space group [no.]                           | <i>P b c a</i> [61]                             |
| Crystal color, habit                        | Clear orange, block                             |
| Crystal size, mm                            | 0.275 × 0.189 × 0.041                           |
| <i>a,</i> Å                                 | 12.1091(2)                                      |
| <i>b</i> , Å                                | 13.4501(2)                                      |
| <i>c</i> , Å                                | 43.2055(9)                                      |
| <i>a</i> , °                                | 90                                              |
| <i>β</i> , °                                | 90                                              |
| γ, °                                        | 90                                              |
| Volume, Å <sup>3</sup>                      | 7036.8(2)                                       |
| Ζ                                           | 8                                               |
| <i>D<sub>calcd</sub>,</i> g/cm <sup>3</sup> | 1.410                                           |
| <i>Т</i> , К                                | 103.15                                          |
| Radiation                                   | Cu Ka                                           |
| <i>M</i> , mm <sup>-1</sup>                 | 0.711                                           |
| 2θ <sub>max</sub> °                         | 67.8910                                         |
| <i>F</i> (000)                              | 3104                                            |
| Refins collected                            | 6425                                            |
| Unique reflns                               | 5840                                            |
| No. of parameters                           | 524                                             |
| <i>R1</i> ( <i>I</i> > 2.00σ(i))            | 0.0583                                          |
| R (all reflection)                          | 0.0639                                          |
| GOF                                         | 1.156                                           |



**Fig. S1** Top and side views of the X-ray crystal structure for **2**. The thermal ellipsoids are scaled to the 50% probability level.



Fig. S2 Bond length (Å) obtained from X-ray crystallographic analysis of 2.



Fig. S3 Intramolecular and intermolecular hydrogen bonding of 2.



**Fig. S4** Short contact of **2** in the X-ray structure. Intermolecular distances less than the van der Waals distance (3.4 Å) are shown in Å.



Fig. S5 Top and side views of the X-ray crystal structure for **3mA**. The thermal ellipsoids are scaled to the 50% probability level.



Fig. S6 Bond length (Å) obtained from X-ray crystallographic analysis of 3mA.



**Fig. S7** Top and side views of the X-ray crystal structure for **3n**. The thermal ellipsoids are scaled to the 50% probability level.



Fig. S8 Bond length (Å) obtained from X-ray crystallographic analysis of 3n.



**Fig. S9** Top and side views of the X-ray crystal structure for **30A**. The thermal ellipsoids are scaled to the 50% probability level.



Fig. S10 Bond length (Å) obtained from X-ray crystallographic analysis of 30A.

# 4. Optical Properties of BEY



Fig. S11 Absorption spectra of 2 in various organic solvent.



Fig. S12 Emission spectra of 2 in various organic solvent.



Scheme S2. Molecular species formed by 1 in organic solvents.



Fig. S13 Emission spectra of 2 in  $CH_2Cl_2$  containing DBU. Concentration of 2 was 50  $\mu$ M.

|                         | λ <sub>abs</sub><br>(nm) | λ <sub>fl</sub><br>(nm) | ε<br>(cm <sup>−1</sup> M <sup>−1)</sup> | Φ <sup>*1</sup><br>(%) |
|-------------------------|--------------------------|-------------------------|-----------------------------------------|------------------------|
| 2                       | 529                      | 644                     | 13000                                   | 6                      |
| 2-                      | 678                      | 763                     | 21000                                   | _*2                    |
| <b>2</b> <sup>2</sup> – | 603                      | 690                     | 28000                                   | 19                     |

Table S5. Optical properties of each molecular species of BEY in CH<sub>2</sub>Cl<sub>2</sub>.

<sup>\*1</sup>Relative fluorescence quantum yields ( $\Phi$ ) were calculated by using rhodamine 101 ( $\Phi = 91.3\%$  in ethanol) as the standard. <sup>\*2</sup>Difficult to generate a single molecular species.

#### **5.** Computational Details

All calculations were performed at the Density Functional Theory (DFT), by means of B3LYP functional level as implemented in Gaussian  $09^8$ . The 6-31+G(d,p) basis set was used for all atoms. Excitation wavelengths and oscillator strengths were obtained at the density functional level using time-dependent perturbation theory (TDDFT) approach. Vibrational frequency computations verified the nature of the stationary points.



Fig. S14 Calculated optimized structures of 2,  $2^-$  and  $2^{2-}$ .

| Br2<br>C6<br>C6<br>C7<br>C7<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1 | Br3<br>C 9 03<br>7 C8 C10<br>C1 C12<br>C11<br>C11<br>C12<br>C14<br>C19<br>C20<br>C10<br>C10<br>C10<br>C10<br>C10<br>C10<br>C10<br>C1 | Br1 C6<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1 | Br3<br>C2<br>C3<br>C10<br>C12<br>C11<br>C12<br>C11<br>C12<br>C11<br>C12<br>C11<br>C12<br>C11<br>C12<br>C11<br>C12<br>C11<br>C12<br>C10<br>C10<br>C10<br>C10<br>C10<br>C10<br>C10<br>C10 | Br2<br>C4<br>C5<br>C4<br>C3<br>C2<br>C1<br>C16 | Br3<br>02 C9 03<br>7 C8 C10<br>C1 C12 C11<br>4 C19 C20<br>C15 C17 C18<br>05 |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------|--|
| :                                                                                                         | 2                                                                                                                                    | 2-                                         |                                                                                                                                                                                         | <b>2</b> <sup>2–</sup>                         |                                                                             |  |
| Atom                                                                                                      | Length [Å]                                                                                                                           | Atom                                       | Length [Å]                                                                                                                                                                              | Atom                                           | Length [Å]                                                                  |  |
| C1-C2                                                                                                     | 1.446                                                                                                                                | C1-C2                                      | 1.428                                                                                                                                                                                   | C1-C2                                          | 1.451                                                                       |  |
| C1-C13                                                                                                    | 1.394                                                                                                                                | C1-C13                                     | 1.408                                                                                                                                                                                   | C1-C13                                         | 1.409                                                                       |  |
| C1-C14                                                                                                    | 1.458                                                                                                                                | C1-C14                                     | 1.477                                                                                                                                                                                   | C1-C14                                         | 1.459                                                                       |  |
| C2-C3                                                                                                     | 1.408                                                                                                                                | C2-C3                                      | 1.426                                                                                                                                                                                   | C2-C3                                          | 1.418                                                                       |  |
| C2-C7                                                                                                     | 1.411                                                                                                                                | C2-C7                                      | 1.433                                                                                                                                                                                   | C2-C7                                          | 1.415                                                                       |  |
| C3-C4                                                                                                     | 1.384                                                                                                                                | C3-C4                                      | 1.366                                                                                                                                                                                   | C3-C4                                          | 1.376                                                                       |  |
| C4-C5                                                                                                     | 1.406                                                                                                                                | C4-C5                                      | 1.466                                                                                                                                                                                   | C4-C5                                          | 1.453                                                                       |  |
| C5-C6                                                                                                     | 1.399                                                                                                                                | C5-C6                                      | 1.454                                                                                                                                                                                   | C5-C6                                          | 1.447                                                                       |  |
| C6-C7                                                                                                     | 1.398                                                                                                                                | C6-C7                                      | 1.379                                                                                                                                                                                   | C6-C7                                          | 1.390                                                                       |  |
| C8-C9                                                                                                     | 1.371                                                                                                                                | C8-C9                                      | 1.385                                                                                                                                                                                   | C8-C9                                          | 1.377                                                                       |  |
| C8-C13                                                                                                    | 1.450                                                                                                                                | C8-C13                                     | 1.424                                                                                                                                                                                   | C8-C13                                         | 1.449                                                                       |  |
| C9-C10                                                                                                    | 1.455                                                                                                                                | C9-C10                                     | 1.444                                                                                                                                                                                   | C9-C10                                         | 1.441                                                                       |  |
| C10-C11                                                                                                   | 1.537                                                                                                                                | C10-C11                                    | 1.488                                                                                                                                                                                   | C10-C11                                        | 1.556                                                                       |  |
| C11-C12                                                                                                   | 1.453                                                                                                                                | C11-C12                                    | 1.401                                                                                                                                                                                   | C11-C12                                        | 1.456                                                                       |  |
| C12-C13                                                                                                   | 1.431                                                                                                                                | C12-C13                                    | 1.438                                                                                                                                                                                   | C12-C13                                        | 1.441                                                                       |  |
| C12-C20                                                                                                   | 1.399                                                                                                                                | C12-C20                                    | 1.445                                                                                                                                                                                   | C12-C20                                        | 1.451                                                                       |  |
| C14-C15                                                                                                   | 1.417                                                                                                                                | C14-C15                                    | 1.412                                                                                                                                                                                   | C14-C15                                        | 1.420                                                                       |  |
| C14-C19                                                                                                   | 1.430                                                                                                                                | C14-C19                                    | 1.421                                                                                                                                                                                   | C14-C19                                        | 1.420                                                                       |  |
| C15-C16                                                                                                   | 1.386                                                                                                                                | C15-C16                                    | 1.392                                                                                                                                                                                   | C15-C16                                        | 1.388                                                                       |  |
| C16-C17                                                                                                   | 1.406                                                                                                                                | C16-C17                                    | 1.400                                                                                                                                                                                   | C16-C17                                        | 1.406                                                                       |  |
| C17-C18                                                                                                   | 1.383                                                                                                                                | C17-C18                                    | 1.389                                                                                                                                                                                   | C17-C18                                        | 1.388                                                                       |  |
| C18-C19                                                                                                   | 1.411                                                                                                                                | C18-C19                                    | 1.403                                                                                                                                                                                   | C18-C19                                        | 1.406                                                                       |  |
| C19-C20                                                                                                   | 1.440                                                                                                                                | C19-C20                                    | 1.478                                                                                                                                                                                   | C19-C20                                        | 1.498                                                                       |  |
| C4-Br1                                                                                                    | 1.907                                                                                                                                | C4-Br1                                     | 1.907                                                                                                                                                                                   | C4-Br1                                         | 1.924                                                                       |  |
| C5-O1                                                                                                     | 1.347                                                                                                                                | C5-O1                                      | 1.242                                                                                                                                                                                   | C5-O1                                          | 1.255                                                                       |  |
| C6-Br2                                                                                                    | 1.882                                                                                                                                | C6-Br2                                     | 1.893                                                                                                                                                                                   | C6-Br2                                         | 1.903                                                                       |  |
| C7-O2                                                                                                     | 1.360                                                                                                                                | C7-O2                                      | 1.368                                                                                                                                                                                   | C7-O2                                          | 1.370                                                                       |  |
| C8-O2                                                                                                     | 1.357                                                                                                                                | C8-O2                                      | 1.357                                                                                                                                                                                   | C8-O2                                          | 1.357                                                                       |  |
| C9-Br3                                                                                                    | 1.883                                                                                                                                | C9-Br3                                     | 1.890                                                                                                                                                                                   | C9-Br3                                         | 1.911                                                                       |  |
| C10-O3                                                                                                    | 1.222                                                                                                                                | C10-O3                                     | 1.240                                                                                                                                                                                   | C10-O3                                         | 1.235                                                                       |  |
| C11-O4                                                                                                    | 1.242                                                                                                                                | C11-O4                                     | 1.324                                                                                                                                                                                   | C11-O4                                         | 1.235                                                                       |  |
| C20-O5                                                                                                    | 1.325                                                                                                                                | C20-O5                                     | 1.261                                                                                                                                                                                   | C20-O5                                         | 1.248                                                                       |  |

Table S6. Selected bond length of optimized structures of  $2, 2^-$ , and  $2^{2-}$ .



Fig. S15 Calculated absorption spectra of 2,  $2^-$ , and  $2^{2-}$ . Calculations were performed at TDB3LYP/6-31+G(d,p) level.

Table S7. Energy differences between  $2^-$  isomers (A~E).  $2^-$  has 5 isomers (A~E) depending on the position and orientation of the hydroxyl group. The structure of **D** showed the lowest energy in all calculations.

|                     | Α            | В            | С            | D            | E            |
|---------------------|--------------|--------------|--------------|--------------|--------------|
| Computational level | Α            | В            | С            | D            | E            |
|                     | [hartree]    | [hartree]    | [hartree]    | [hartree]    | [hartree]    |
| B3LYP/6-31+G(d,p)   | -8857.190941 | -8857.206145 | -8857.211425 | -8857.213850 | -8857.210809 |
| ωB97XD/6-31+G(d,p)  | -8856.880502 | -8856.892474 | -8856.897980 | -8856.898956 | -8856.896724 |
| M06-2X/6-31+G(d,p)  | -8856.982844 | -8856.992165 | -8856.998379 | -8856.998858 | -8856.996852 |



**Fig. S16** Energy differences between **2**<sup>-</sup> isomers. The energy of the most stable isomer **D** was set to 0 kcal/mol.



Fig. S17 Relationship between intramolecular bridged structures and molecular orbitals.



**Fig. S18** (a) Frontier molecular orbitals of **2** (isovalue = 0.04). (b) Calculated absorption wavelength, oscillator strength (*f*), and major contribution for **2**. Absorption wavelength of more than 400 nm are shown.



**Fig. S19** (a) Frontier molecular orbitals of  $2^-$  (isovalue = 0.04). (b) Calculated absorption wavelength, oscillator strength (*f*), and major contribution for  $2^-$ . Absorption wavelength of more than 400 nm are shown.



Fig. S20 (a) Frontier molecular orbitals of  $2^{2-}$  (isovalue = 0.04). (b) Calculated absorption wavelength, oscillator strength (*f*), and major contribution for  $2^{2-}$ . Absorption wavelength of more than 400 nm are shown.

# 6. Photoredox catalysis of BEY



Fig. S21 Absorption spectrum of 2 in DMSO containing TFA.

Scheme S3. Estimated mechanism for photocatalytic direct C–H arylation of heteroarenes.<sup>2</sup>


## 7. Electrochemical Properties

Cyclic voltammetry measurements were carried out with a Hokuto Denko HZ-7000 voltammetric analyzer. The cell contained inlets for a glassy carbon disk working electrode of 3.0 mm diameter and a platinum-wire counter electrode. The reference electrode was Ag/AgNO<sub>3</sub> (0.1 M in MeCN). The scan rate was 100 mV/s. Ferrocene (Fc) was used as an internal standard and potentials were referenced to Fc/Fc<sup>+</sup>. The referenced value was converted to SCE by adding 0.40 V. The redox potentials of **BEY** in the ground state ( $E_{ox}^{1/2}$ ,  $E_{red}^{1/2}$ ) and the singlet excited states ( $E_{ox}^{S1}$ ,  $E_{red}^{S1}$ ) are collected in **Table S9**. The excited state redox potentials were calculated using equations 1 and 2.

$$E_{\text{ox}}^{\text{S1}} = E_{\text{ox}}^{1/2} - E_{0,0}^{\text{S1}}$$
 eq. 1  
 $E_{\text{red}}^{\text{S1}} = E_{\text{red}}^{1/2} + E_{0,0}^{\text{S1}}$  eq. 2

 $E_{0,0}^{S1}$  is the excited state energy of **BEY**, which is determined by using maximum wavelength of emission.



**Fig. S22** Cyclic voltammogram of **BEY** in (a) 0.1 M n-Bu<sub>4</sub>NClO<sub>4</sub>/CH<sub>2</sub>Cl<sub>2</sub>, and (b) 0.1 M n-Bu<sub>4</sub>NClO<sub>4</sub>/NMP solution under Ar. The right panels showed the absorption spectra of the measured solutions. From these absorption spectra, it is estimated that **BEY** exists as **2** in (a) and  $2^-$  in (b).

|                        | ground state<br>(V vs | redox potentials<br>s Fc/Fc <sup>+</sup> ) | measurement conditions                                                     |
|------------------------|-----------------------|--------------------------------------------|----------------------------------------------------------------------------|
|                        | $E_{\rm ox}^{1/2}$    | $E_{\rm red}^{1/2}$                        |                                                                            |
| <b>2</b> <sup>*1</sup> | 0.76                  | -0.74, -1.17                               | 0.1 M n-Bu <sub>4</sub> NClO <sub>4</sub> /CH <sub>2</sub> Cl <sub>2</sub> |
| <b>2</b> - *1          | 0.11                  | -1.09                                      | 0.1 M n-Bu₄NClO₄ /NMP                                                      |

Table S8. Ground state redox potentials of 2 and 2<sup>-</sup> estimated from Fig. S21

\*1The molecular species of **BEY** were estimated from the absorption spectra of the measurement solutions.

|            | excited state energies <sup>*1</sup><br>(eV) | ground state redox potentials<br>(V vs SCE) |                     | excited state redox potentials*2<br>(V vs SCE) |                        |
|------------|----------------------------------------------|---------------------------------------------|---------------------|------------------------------------------------|------------------------|
|            | $E_{0,0}^{S1}$                               | $E_{\rm ox}^{1/2}$                          | $E_{\rm red}^{1/2}$ | $E_{\rm ox}^{\rm S1}$                          | $E_{\rm red}^{\rm S1}$ |
| 2          | 1.97                                         | 1.16                                        | -0.34               | -0.81                                          | +1.63                  |
| <b>2</b> - | 1.71                                         | 0.51                                        | -0.69               | -1.20                                          | +1.02                  |

| Table 3 | <b>S9</b> . | Electroc | hemical | pro | perties | of $2$ | and $2^-$ |
|---------|-------------|----------|---------|-----|---------|--------|-----------|
| I abit  | 57.         | LICCHOC  | nonnear | pro | pernes  | 01 4   | anu 🛓     |

 $^{*1}$ Determined by using the maximum wavelength of emission.  $^{*2}$ Calculated using the excited state energies and ground state redox potentials.

## 8. Optical Properties of arylated fluorescent dyes



Fig. S23 Solid state fluorescence of 3m, 3n and 3o.



Fig. S24 Absorption and emission spectra of (a) 4A and (b) 4B in DMSO.



**Fig. S25** Absorption and emission spectra of (a) **5A** and (b) **5B** in DMSO containing 1% TFA.





 $^1\mathrm{H}$  (top) and  $^{13}\mathrm{C}$  (bottom) NMR spectra of **2** at 25°C in trifluoroacetic acid-d.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3a** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3b** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3c** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3d** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3e** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3f** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3g** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3h** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3i** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3j** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3k** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3l** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3m** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3n** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3oA** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **3oB** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **4A** at 25°C in CD<sub>3</sub>OD.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **4B** at 25°C in DMSO-d6.



 $^{1}$ H (top) and  $^{13}$ C (bottom) NMR spectra of **5A** at 25°C in CDCl<sub>3</sub>.



<sup>1</sup>H (top) and <sup>13</sup>C (bottom) NMR spectra of **5B** at 25°C in DMSO-d6.

## 10. Cartesian Coordinates (in Å) and Energies

| <b>2</b> (S | 0)         |           |           | Br                      | 1.904478         | -3.347635 | 0.303821  |
|-------------|------------|-----------|-----------|-------------------------|------------------|-----------|-----------|
| B3L         | LYP/6-31+G | (d,p)     |           | Br                      | -2.468669        | -3.463163 | 0.082322  |
| E =         | -8857.7173 | 34 A. U.  |           | Br                      | 4.961178         | 1.372218  | -0.490391 |
| С           | 3.248341   | -0.859686 | -0.013659 | 0                       | -5.174927        | 0.995793  | -0.585565 |
| С           | 2.000973   | -1.47593  | 0.134845  | 0                       | 4.353334         | -1.629566 | 0.000306  |
| С           | 0.837419   | -0.701805 | 0.142412  | Н                       | 5.136775         | -1.075329 | -0.155265 |
| С           | 0.860177   | 0.705271  | 0.044674  | 0                       | -4.119734        | 3.277564  | -0.468006 |
| С           | 2.117587   | 1.295139  | -0.186194 | Н                       | -4.806839        | 2.547414  | -0.585337 |
| С           | 3.273632   | 0.53409   | -0.194972 |                         |                  |           |           |
| С           | -0.419268  | 1.418294  | 0.116622  | <b>2</b> <sup>-</sup> ( | $(\mathbf{S}_0)$ |           |           |
| С           | -1.584837  | 0.664334  | -0.014003 | B3                      | LYP/6-31+G       | (d,p)     |           |
| С           | -1.52996   | -0.783726 | 0.034163  | E =                     | -8857.2138       | 50 A. U.  |           |
| С           | -2.634388  | -1.591944 | -0.051618 | С                       | 3.299535         | -1.069898 | 0.001886  |
| С           | -3.971346  | -1.052509 | -0.251331 | С                       | 1.946345         | -1.590016 | 0.11054   |
| С           | -4.068827  | 0.477137  | -0.360046 | С                       | 0.828424         | -0.782759 | 0.099975  |
| С           | -2.867791  | 1.275325  | -0.186281 | С                       | 0.907617         | 0.645498  | 0.020904  |
| Н           | 2.197165   | 2.349873  | -0.399002 | С                       | 2.213997         | 1.178948  | -0.187271 |
| С           | -0.554229  | 2.858799  | 0.30066   | С                       | 3.324138         | 0.383599  | -0.187317 |
| С           | -1.81572   | 3.485541  | 0.056447  | С                       | -0.303704        | 1.397039  | 0.098815  |
| С           | 0.480887   | 3.689823  | 0.797762  | С                       | -1.528895        | 0.71025   | -0.005488 |
| С           | -1.964116  | 4.884327  | 0.173147  | С                       | -1.548887        | -0.713288 | 0.034891  |
| С           | 0.311387   | 5.059036  | 0.934373  | С                       | -2.724645        | -1.441715 | -0.029019 |
| Н           | 1.409862   | 3.252389  | 1.134287  | С                       | -4.018904        | -0.823378 | -0.199686 |
| С           | -0.905566  | 5.671456  | 0.588716  | С                       | -3.97571         | 0.66018   | -0.312516 |
| Н           | -2.933173  | 5.319792  | -0.041583 | С                       | -2.785315        | 1.38653   | -0.182805 |
| Н           | 1.126028   | 5.657695  | 1.330902  | Н                       | 2.334776         | 2.230284  | -0.401377 |
| Н           | -1.025318  | 6.745998  | 0.683064  | С                       | -0.365418        | 2.860402  | 0.290882  |
| С           | -2.966592  | 2.669916  | -0.230957 | С                       | -1.573123        | 3.55844   | 0.019186  |
| 0           | -4.987125  | -1.725628 | -0.33954  | С                       | 0.699407         | 3.61442   | 0.831853  |
| 0           | -0.332253  | -1.391268 | 0.226936  | С                       | -1.641262        | 4.954376  | 0.146322  |

| С                 | 0.614877         | 4.996455  | 0.973019  | С  | -2.819906 | 1.485826  | -0.290634 |
|-------------------|------------------|-----------|-----------|----|-----------|-----------|-----------|
| Н                 | 1.589315         | 3.112508  | 1.18412   | Н  | 2.342921  | 2.204458  | -0.357101 |
| С                 | -0.547478        | 5.681574  | 0.598719  | С  | -0.354207 | 2.864992  | 0.31432   |
| Н                 | -2.584142        | 5.436222  | -0.089532 | С  | -1.531717 | 3.595295  | 0.003897  |
| Н                 | 1.457801         | 5.538525  | 1.392786  | С  | 0.711719  | 3.575215  | 0.927466  |
| Н                 | -0.607108        | 6.761654  | 0.697165  | С  | -1.562256 | 4.989614  | 0.183565  |
| С                 | -2.820484        | 2.826996  | -0.286081 | С  | 0.652795  | 4.947874  | 1.126171  |
| 0                 | -0.389229        | -1.401841 | 0.181793  | Н  | 1.575363  | 3.033911  | 1.290742  |
| Br                | 1.759601         | -3.467457 | 0.261     | С  | -0.482748 | 5.673346  | 0.725896  |
| Br                | -2.676664        | -3.327187 | 0.092427  | Н  | -2.48091  | 5.495007  | -0.098952 |
| Br                | 5.036645         | 1.172486  | -0.469781 | Н  | 1.486648  | 5.453653  | 1.608613  |
| 0                 | 4.322699         | -1.773245 | 0.035431  | Н  | -0.525929 | 6.75144   | 0.867655  |
| 0                 | -3.882653        | 3.453574  | -0.54761  | С  | -2.794007 | 2.927483  | -0.448665 |
| 0                 | -5.098132        | -1.429908 | -0.266458 | 0  | -5.113253 | -1.414389 | -0.165664 |
| 0                 | -5.134101        | 1.258185  | -0.543581 | 0  | -0.439417 | -1.360379 | 0.162074  |
| Н                 | -4.927745        | 2.240296  | -0.608221 | Br | 1.672117  | -3.485415 | 0.195937  |
|                   |                  |           |           | Br | -2.691859 | -3.291452 | 0.184443  |
| 2 <sup>2-</sup> ( | $(\mathbf{S}_0)$ |           |           | Br | 5.033086  | 1.115893  | -0.442712 |
| B3L               | YP/6-31+G        | (d,p)     |           | 0  | -5.186828 | 1.265908  | -0.588031 |
| E =               | -8856.5914       | 47 A. U.  |           | 0  | -3.732856 | 3.6412    | -0.856978 |

| С | 3.266124  | -1.119944 | -0.034445 |
|---|-----------|-----------|-----------|
| С | 1.905282  | -1.60052  | 0.07321   |
| С | 0.792736  | -0.767274 | 0.084528  |
| С | 0.887589  | 0.642654  | 0.019816  |
| С | 2.197587  | 1.149756  | -0.173999 |
| С | 3.298109  | 0.32464   | -0.18767  |
| С | -0.333484 | 1.424107  | 0.083074  |
| С | -1.579417 | 0.785363  | -0.076023 |
| С | -1.591083 | -0.660902 | 0.003909  |
| С | -2.757846 | -1.391303 | -0.010889 |
| С | -4.053315 | -0.780417 | -0.171922 |
| С | -4.07967  | 0.761428  | -0.378527 |

| A (Table S8)           |                   |            |            |  |  |  |  |
|------------------------|-------------------|------------|------------|--|--|--|--|
| B31                    | B3LYP/6-31+G(d,p) |            |            |  |  |  |  |
| E = -8857.190941 A. U. |                   |            |            |  |  |  |  |
| С                      | 3.1823062         | -0.9892883 | -0.0590447 |  |  |  |  |
| С                      | 1.9085687         | -1.5507931 | 0.0678006  |  |  |  |  |
| С                      | 0.7740257         | -0.7341997 | 0.0991351  |  |  |  |  |
| С                      | 0.846984          | 0.6741289  | 0.0432281  |  |  |  |  |
| С                      | 2.1343226         | 1.2160858  | -0.1579243 |  |  |  |  |
| С                      | 3.2563415         | 0.4043186  | -0.1877962 |  |  |  |  |
| С                      | -0.3912309        | 1.4369618  | 0.1136556  |  |  |  |  |

-1.853313

-0.022381

0

4.284995

| С           | -1.6159349  | 0.763152   | -0.0687939 | С  | 1.9131222  | -1.5306464 | 0.0756623  |
|-------------|-------------|------------|------------|----|------------|------------|------------|
| С           | -1.5998219  | -0.6954585 | 0.0160121  | С  | 0.7796392  | -0.7210899 | 0.1076678  |
| С           | -2.7306201  | -1.4583296 | 0.0002708  | С  | 0.843496   | 0.6802365  | 0.0447876  |
| С           | -4.0459955  | -0.8642809 | -0.1765333 | С  | 2.120712   | 1.227139   | -0.1631519 |
| С           | -4.1011443  | 0.6787189  | -0.3957927 | С  | 3.247569   | 0.4235502  | -0.1847992 |
| С           | -2.8526897  | 1.4279962  | -0.3032439 | С  | -0.4037663 | 1.4306643  | 0.1096958  |
| Н           | 2.2549142   | 2.2757236  | -0.3248093 | С  | -1.6132733 | 0.7530133  | -0.0661939 |
| С           | -0.435677   | 2.8749734  | 0.3352013  | С  | -1.5810546 | -0.7107609 | 0.0175199  |
| С           | -1.6225158  | 3.5784288  | 0.0039558  | С  | -2.6931935 | -1.484178  | -0.0050983 |
| С           | 0.6101195   | 3.613625   | 0.950142   | С  | -4.020083  | -0.9012294 | -0.1825385 |
| С           | -1.6905458  | 4.9712241  | 0.1757627  | С  | -4.0947648 | 0.6394771  | -0.3846821 |
| С           | 0.5149829   | 4.9852609  | 1.1391626  | С  | -2.8571062 | 1.3986165  | -0.2859466 |
| Н           | 1.4817413   | 3.0995747  | 1.3353316  | Н  | 2.2366283  | 2.2867254  | -0.3425093 |
| С           | -0.6325443  | 5.6816314  | 0.7249698  | С  | -0.4581369 | 2.8686994  | 0.3164307  |
| Н           | -2.6152896  | 5.4566118  | -0.1200632 | С  | -1.6491816 | 3.5557503  | -0.0009503 |
| Н           | 1.3296322   | 5.5142093  | 1.6279378  | С  | 0.5858329  | 3.6160702  | 0.9149829  |
| Н           | -0.7017661  | 6.7577178  | 0.8613163  | С  | -1.7300272 | 4.9459791  | 0.1591593  |
| С           | -2.8537465  | 2.8773273  | -0.475277  | С  | 0.4824709  | 4.9845178  | 1.0897945  |
| 0           | -5.0816636  | -1.5188578 | -0.1705571 | Н  | 1.4617154  | 3.1090816  | 1.3015783  |
| 0           | -0.4222338  | -1.3642649 | 0.1837374  | С  | -0.6722199 | 5.6679124  | 0.6821667  |
| Br          | 1.7321705   | -3.4275798 | 0.1854175  | Н  | -2.6658868 | 5.4179043  | -0.1244979 |
| Br          | -2.6282946  | -3.345096  | 0.2052958  | Н  | 1.2968791  | 5.5234678  | 1.5663708  |
| Br          | 4.9874373   | 1.1927082  | -0.4344958 | Н  | -0.7467612 | 6.7440118  | 0.8088948  |
| 0           | -5.2100957  | 1.1568932  | -0.6127495 | С  | -2.8881771 | 2.8432799  | -0.4415728 |
| 0           | 4.268573    | -1.8065564 | -0.0669919 | 0  | -5.0363251 | -1.5656227 | -0.1847824 |
| Н           | 5.0613601   | -1.2619467 | -0.2001564 | 0  | -0.4046867 | -1.3612258 | 0.193493   |
| 0           | -3.7967874  | 3.5462957  | -0.9230031 | Br | 1.7369666  | -3.3889745 | 0.1854039  |
|             |             |            |            | Br | -2.5686892 | -3.3465622 | 0.1929372  |
| <b>A</b> (7 | Fable S8)   |            |            | Br | 4.9544446  | 1.2126755  | -0.4287449 |
| M0          | 6-2X/6-31+0 | G(d,p)     |            | 0  | -5.2029394 | 1.0985417  | -0.594141  |
| E =         | -8856.9828  | 44 A. U.   |            | 0  | 4.2600201  | -1.7794305 | -0.0502673 |
| С           | 3.1802082   | -0.965522  | -0.0490203 | Н  | 5.0567027  | -1.2463518 | -0.1816371 |

| 0   | -3.851937  | 3.499791   | -0.8377458 | Br         | 1.7326915    | -3.39847   | 0.2021026  |
|-----|------------|------------|------------|------------|--------------|------------|------------|
|     |            |            |            | Br         | -2.5847014   | -3.3394356 | 0.1966639  |
| A ( | Table S8)  |            |            | Br         | 4.9491329    | 1.2073525  | -0.4508697 |
| wB  | 97XD/6-31+ | G(d,p)     |            | 0          | -5.1967643   | 1.1206983  | -0.6097019 |
| E = | -8856.8805 | 02 A. U.   |            | 0          | 4.2550309    | -1.7825487 | -0.065725  |
| С   | 3.1734264  | -0.972619  | -0.0569953 | Н          | 5.0448678    | -1.2443375 | -0.2064255 |
| С   | 1.9082643  | -1.5385229 | 0.0782873  | 0          | -3.8013685   | 3.5179014  | -0.9126956 |
| С   | 0.7757162  | -0.7267575 | 0.1113057  |            |              |            |            |
| С   | 0.842819   | 0.6717526  | 0.0466745  | <b>B</b> ( | (Table S8)   |            |            |
| С   | 2.1166667  | 1.2181742  | -0.1665368 | B3         | LYP/6-31+G   | (d,p)      |            |
| С   | 3.2427319  | 0.4161488  | -0.1950869 | E =        | = -8857.2061 | 45 A. U.   |            |
| С   | -0.4015056 | 1.427539   | 0.1165     | С          | 1.8634307    | -1.6664071 | 0.0834773  |
| С   | -1.6092551 | 0.756195   | -0.0679305 | С          | 0.7828156    | -0.8094992 | 0.0738541  |
| С   | -1.5829892 | -0.7062977 | 0.0170123  | С          | 0.9201866    | 0.617595   | 0.0082919  |
| С   | -2.6992575 | -1.4736778 | -0.0071153 | С          | 2.2547523    | 1.1005643  | -0.1873574 |
| С   | -4.0198061 | -0.8837641 | -0.1907687 | С          | 3.3236385    | 0.2572111  | -0.1963674 |
| С   | -4.087976  | 0.6578726  | -0.398483  | С          | -0.2400134   | 1.4209665  | 0.0949417  |
| С   | -2.8491254 | 1.4110031  | -0.3015858 | С          | -1.5271666   | 0.8029269  | -0.0412724 |
| Н   | 2.2295984  | 2.2783344  | -0.3417429 | С          | -1.574796    | -0.6043036 | 0.0288099  |
| С   | -0.450036  | 2.8635332  | 0.3372287  | С          | -2.7954507   | -1.3120974 | -0.0075538 |
| С   | -1.6311791 | 3.5579568  | 0.0054068  | С          | -3.958214    | -0.6038635 | -0.1728119 |
| С   | 0.5890672  | 3.5981843  | 0.9576394  | С          | -3.9862505   | 0.8725081  | -0.3338323 |
| С   | -1.7074628 | 4.9465491  | 0.1823308  | С          | -2.7358284   | 1.5575135  | -0.2517236 |
| С   | 0.4890914  | 4.9639694  | 1.1479998  | Н          | 2.414171     | 2.1503825  | -0.3843915 |
| Н   | 1.4596959  | 3.0847711  | 1.3475554  | С          | -0.2152034   | 2.872665   | 0.3246361  |
| С   | -0.6568542 | 5.655878   | 0.7336278  | С          | -1.3614297   | 3.6365879  | -0.0009291 |
| Η   | -2.6339687 | 5.4291077  | -0.1122401 | С          | 0.8684252    | 3.5388498  | 0.9431938  |
| Н   | 1.2999383  | 5.4940109  | 1.6405359  | С          | -1.3452095   | 5.0297053  | 0.1549755  |
| Н   | -0.7316084 | 6.7301103  | 0.8752634  | С          | 0.860114     | 4.9179754  | 1.1191362  |
| С   | -2.85954   | 2.853472   | -0.472639  | Н          | 1.7039661    | 2.970126   | 1.3292892  |
| 0   | -5.0412361 | -1.5440107 | -0.1940811 | С          | -0.2392762   | 5.6759557  | 0.6947901  |
| 0   | -0.4112376 | -1.3598116 | 0.2021334  | Н          | -2.2409589   | 5.5705542  | -0.1324361 |

| Н  | 1.7053672  | 5.3996686  | 1.602971   |
|----|------------|------------|------------|
| Η  | -0.2418959 | 6.7554714  | 0.8198973  |
| С  | -2.6569395 | 3.0002497  | -0.4209972 |
| 0  | -0.4594825 | -1.3554138 | 0.1625476  |
| Br | 1.5935406  | -3.5333337 | 0.2305526  |
| Br | -2.8182891 | -3.2007125 | 0.1506912  |
| Br | 5.0701374  | 0.9638898  | -0.4697659 |
| 0  | -5.1459482 | 1.3362699  | -0.5115965 |
| 0  | 4.2281698  | -1.9433292 | 0.0050514  |
| 0  | -3.5829665 | 3.7199043  | -0.8137007 |
| 0  | -5.1677856 | -1.1535357 | -0.2309537 |
| Η  | -5.7330225 | -0.3384816 | -0.3791053 |

**B** (Table S8)

M06-2X/6-31+G(d,p)

| E = -8856.992165 A. U. |            |            |            |  |  |  |
|------------------------|------------|------------|------------|--|--|--|
| С                      | 3.2192611  | -1.2107344 | -0.0152004 |  |  |  |
| С                      | 1.8501992  | -1.670236  | 0.0782794  |  |  |  |
| С                      | 0.779698   | -0.8097339 | 0.0685999  |  |  |  |
| С                      | 0.9204674  | 0.61511    | 0.00411    |  |  |  |
| С                      | 2.2575564  | 1.0962259  | -0.1901522 |  |  |  |
| С                      | 3.3170713  | 0.2525431  | -0.1899044 |  |  |  |
| С                      | -0.2306913 | 1.4113301  | 0.0886944  |  |  |  |
| С                      | -1.5171262 | 0.7992567  | -0.0369696 |  |  |  |
| С                      | -1.5611342 | -0.5978574 | 0.0311221  |  |  |  |
| С                      | -2.7849965 | -1.3037076 | -0.0000663 |  |  |  |
| С                      | -3.9421553 | -0.5971813 | -0.1567339 |  |  |  |
| С                      | -3.9733639 | 0.8813769  | -0.3174334 |  |  |  |
| С                      | -2.7234939 | 1.5530918  | -0.239705  |  |  |  |
| Н                      | 2.4205491  | 2.1451871  | -0.3963962 |  |  |  |
| С                      | -0.200873  | 2.8665592  | 0.3076319  |  |  |  |
| С                      | -1.3394421 | 3.6267473  | -0.0200705 |  |  |  |

| С  | 0.8812562  | 3.5238362  | 0.9253976  |
|----|------------|------------|------------|
| С  | -1.3224629 | 5.0159885  | 0.1261521  |
| С  | 0.8781248  | 4.9014774  | 1.0900293  |
| Н  | 1.7095838  | 2.9497742  | 1.3217098  |
| С  | -0.2140736 | 5.6588504  | 0.6579253  |
| Н  | -2.2189863 | 5.5567329  | -0.1601068 |
| Н  | 1.7224522  | 5.3836131  | 1.5732397  |
| Н  | -0.2116155 | 6.7383854  | 0.7763143  |
| С  | -2.6463028 | 2.9908723  | -0.4163585 |
| 0  | -0.4531723 | -1.3488531 | 0.1557758  |
| Br | 1.5565516  | -3.5146321 | 0.209168   |
| Br | -2.8084108 | -3.1715883 | 0.1509258  |
| Br | 5.0536829  | 0.9346208  | -0.4452877 |
| 0  | -5.121647  | 1.3468997  | -0.4910625 |
| 0  | 4.2052914  | -1.9447555 | 0.0135682  |
| 0  | -3.5684843 | 3.7088149  | -0.7886738 |
| 0  | -5.1427972 | -1.1533061 | -0.2086872 |
| Η  | -5.7244504 | -0.3609968 | -0.3524245 |

**B** (Table S8)

wB97XD/6-31+G(d,p)

E = -8856.892474 A. U.

| С | 3.2137789  | -1.2070063 | -0.0180701 |
|---|------------|------------|------------|
| С | 1.8469939  | -1.6690479 | 0.0807362  |
| С | 0.7748915  | -0.8094201 | 0.0680333  |
| С | 0.9162376  | 0.6128265  | 0.0013918  |
| С | 2.2513684  | 1.09445    | -0.1959356 |
| С | 3.3115706  | 0.2534094  | -0.1988337 |
| С | -0.2337128 | 1.4100156  | 0.0907704  |
| С | -1.5174135 | 0.7994542  | -0.0385836 |
| С | -1.5636997 | -0.595631  | 0.0298243  |
| С | -2.786414  | -1.3039761 | -0.0039396 |

| С                 | -3.9407505 | -0.5964419 | -0.1667976 | С          | 2.2405125  | 1.1233578  | -0.1809668 |
|-------------------|------------|------------|------------|------------|------------|------------|------------|
| С                 | -3.9690058 | 0.8814106  | -0.3303361 | С          | 3.3250072  | 0.2968649  | -0.1927447 |
| С                 | -2.7239099 | 1.5570782  | -0.2488866 | С          | -0.2647226 | 1.4067835  | 0.092735   |
| Н                 | 2.4111553  | 2.1437258  | -0.4009718 | С          | -1.522271  | 0.7680745  | -0.0326251 |
| С                 | -0.2032145 | 2.8625901  | 0.3225158  | С          | -1.5739883 | -0.6519026 | 0.0276496  |
| С                 | -1.3370963 | 3.6253176  | -0.0100302 | С          | -2.7699639 | -1.3592225 | -0.0062815 |
| С                 | 0.8748722  | 3.5119398  | 0.9531102  | С          | -4.0077677 | -0.6826828 | -0.1661819 |
| С                 | -1.3182169 | 5.0126334  | 0.1501755  | С          | -3.9396851 | 0.7881874  | -0.3122121 |
| С                 | 0.8726742  | 4.8870136  | 1.1312846  | С          | -2.752516  | 1.4989072  | -0.2353829 |
| Н                 | 1.7017641  | 2.9352079  | 1.3474523  | Н          | 2.3873012  | 2.175477   | -0.3755139 |
| С                 | -0.2155878 | 5.6483553  | 0.6998971  | С          | -0.2638411 | 2.8668462  | 0.3157461  |
| Н                 | -2.2095358 | 5.5590564  | -0.1405018 | С          | -1.4201296 | 3.6178056  | -0.0050262 |
| Н                 | 1.71563    | 5.3632289  | 1.6226892  | С          | 0.8084167  | 3.5518237  | 0.9281216  |
| Н                 | -0.2142723 | 6.7265506  | 0.8298762  | С          | -1.4291569 | 5.0104061  | 0.1494154  |
| С                 | -2.6374622 | 2.9926012  | -0.4305139 | С          | 0.779144   | 4.9329624  | 1.1016307  |
| 0                 | -0.4579615 | -1.3453945 | 0.1581781  | Н          | 1.6560369  | 2.998408   | 1.3087337  |
| Br                | 1.5625152  | -3.5171098 | 0.2265306  | С          | -0.3305135 | 5.6759307  | 0.6829243  |
| Br                | -2.8043359 | -3.1746357 | 0.1531775  | Н          | -2.334038  | 5.5390269  | -0.1319992 |
| Br                | 5.046861   | 0.9424356  | -0.4678165 | Н          | 1.621309   | 5.4268495  | 1.5785228  |
| 0                 | -5.1219343 | 1.3417274  | -0.5079121 | Н          | -0.3485838 | 6.7552078  | 0.8062275  |
| 0                 | 4.202205   | -1.9420821 | 0.0127935  | С          | -2.7013999 | 2.957377   | -0.411661  |
| 0                 | -3.5489309 | 3.7145251  | -0.8280352 | 0          | -0.4376003 | -1.3792154 | 0.1685437  |
| 0                 | -5.1445203 | -1.1406139 | -0.2246451 | Br         | 1.650838   | -3.5158805 | 0.2236233  |
| Н                 | -5.7074348 | -0.3326508 | -0.372654  | Br         | -2.7815195 | -3.2433059 | 0.1452843  |
|                   |            |            |            | Br         | 5.0606526  | 1.0357668  | -0.4612744 |
| <b>C</b> (7       | Table S8)  |            |            | 0          | 4.2593827  | -1.8913126 | 0.0008833  |
| B3LYP/6-31+G(d,p) |            |            | 0          | -3.6508351 | 3.6371521  | -0.8060956 |            |
| E =               | -8857.2114 | 25 A. U.   |            | 0          | -5.157088  | -1.1951848 | -0.2207826 |
| С                 | 3.2567506  | -1.1603027 | -0.0221905 | 0          | -5.1419507 | 1.3299472  | -0.5108183 |
| С                 | 1.8903194  | -1.6443382 | 0.0834985  | Н          | -5.7343751 | 0.532721   | -0.4825858 |
| С                 | 0.7970569  | -0.8049834 | 0.0803691  |            |            |            |            |
| С                 | 0.9167644  | 0.6215895  | 0.0157842  | С (        | Table S8)  |            |            |

M06-2X/6-31+G(d,p)

| E = -8856.998379 A. U. |            |            | 0          | -5.1251005 | -1.2131715   | -0.1878813 |            |
|------------------------|------------|------------|------------|------------|--------------|------------|------------|
| С                      | 3.2479211  | -1.1541722 | -0.0158416 | 0          | -5.1222787   | 1.3256792  | -0.488978  |
| С                      | 1.8842217  | -1.6377885 | 0.0785767  | Н          | -5.7324891   | 0.5536431  | -0.4607443 |
| С                      | 0.7982624  | -0.7982462 | 0.0785946  |            |              |            |            |
| С                      | 0.9152874  | 0.6248118  | 0.0171943  | С          | (Table S8)   |            |            |
| С                      | 2.2380728  | 1.1292364  | -0.176206  | W          | B97XD/6-31-  | +G(d,p)    |            |
| С                      | 3.3174235  | 0.3057415  | -0.1818308 | E          | = -8856.8979 | 98 A. U.   |            |
| С                      | -0.265374  | 1.3973832  | 0.0867655  | C          | 1.8784166    | -1.6407015 | 0.0802423  |
| С                      | -1.5138387 | 0.7595288  | -0.0287902 | C          | 0.792008     | -0.8000844 | 0.0745386  |
| С                      | -1.5592905 | -0.6566232 | 0.0304955  | C          | 0.912118     | 0.620251   | 0.0094461  |
| С                      | -2.7485863 | -1.3654812 | 0.0048283  | C          | 2.2338704    | 1.1230378  | -0.1871709 |
| С                      | -3.9912096 | -0.695798  | -0.1439741 | C          | 3.3122234    | 0.3003269  | -0.1934795 |
| С                      | -3.9275736 | 0.7781644  | -0.2931157 | C          | -0.2643514   | 1.3964989  | 0.0856785  |
| С                      | -2.7481673 | 1.4803045  | -0.2250381 | C          | -1.5131563   | 0.7630313  | -0.0336154 |
| Н                      | 2.3861868  | 2.1817436  | -0.3761522 | C          | -1.5623048   | -0.6505162 | 0.0261847  |
| С                      | -0.2676824 | 2.8618859  | 0.2985962  | C          | -2.7541104   | -1.3597611 | -0.0017215 |
| С                      | -1.4181468 | 3.6047658  | -0.0281562 | C          | -3.9881377   | -0.6859121 | -0.1568969 |
| С                      | 0.7975506  | 3.5435668  | 0.9131003  | C          | -3.9222141   | 0.7879571  | -0.3083008 |
| С                      | -1.4349306 | 4.9929189  | 0.116679   | C          | -2.743747    | 1.4914272  | -0.2359542 |
| С                      | 0.7655013  | 4.923317   | 1.0753877  | Н          | 2.3802896    | 2.1753324  | -0.3873441 |
| Н                      | 1.6401319  | 2.9889259  | 1.3056121  | C          | -0.2631758   | 2.858067   | 0.3115625  |
| С                      | -0.3389025 | 5.660647   | 0.6458028  | C          | -1.4087604   | 3.6060915  | -0.0171078 |
| Н                      | -2.3422859 | 5.5167809  | -0.1669497 | C          | 0.8005443    | 3.5286298  | 0.9386288  |
| Н                      | 1.6029044  | 5.4216008  | 1.5543364  | C          | -1.4200218   | 4.9924271  | 0.1438853  |
| Н                      | -0.3576552 | 6.7398913  | 0.762405   | C          | 0.772638     | 4.9054366  | 1.1165868  |
| С                      | -2.7039686 | 2.9379205  | -0.4165687 | Н          | 1.6408737    | 2.9689965  | 1.3277684  |
| 0                      | -0.4260518 | -1.3743669 | 0.1624013  | C          | -0.3272226   | 5.6495876  | 0.6902211  |
| Br                     | 1.6276516  | -3.4893719 | 0.1936238  | Н          | -2.3215188   | 5.5249819  | -0.1407811 |
| Br                     | -2.7501594 | -3.230735  | 0.148863   | Н          | 1.6102016    | 5.3953662  | 1.6037181  |
| Br                     | 5.0415134  | 1.0258573  | -0.4333507 | Н          | -0.3450022   | 6.7273005  | 0.8204462  |
| 0                      | 4.2443133  | -1.8764447 | 0.0083966  | С          | -2.6904492   | 2.9456223  | -0.4261007 |

O -3.651058 3.6062598 -0.8010969

| 0  | -0.4336853 | -1.3693533 | 0.1615332  |
|----|------------|------------|------------|
| Br | 1.6277256  | -3.4948394 | 0.2163947  |
| Br | -2.7536053 | -3.2282469 | 0.1499607  |
| Br | 5.0353072  | 1.0265413  | -0.4566984 |
| 0  | 4.2385806  | -1.8808385 | 0.0080014  |
| 0  | -3.6293794 | 3.6203445  | -0.827817  |
| 0  | -5.1309099 | -1.1912018 | -0.2057014 |
| 0  | -5.1187945 | 1.3222331  | -0.5072647 |
| Н  | -5.707835  | 0.5300174  | -0.474384  |

-1.059172

0.004621

**D** (Table S8)

С

M06-2X/6-31+G(d,p)

3.290191

E = -8856.998858 A. U.

Н -2.594788 5.413415 -0.129411 Η 1.429413 5.529655 1.38708 Η -0.623811 6.7448080.664275  $\mathbf{C}$ -2.826204 2.811235 -0.302663 -0.377999 -1.394161 0.176247 0 Br 1.741345 -3.438484 0.228897 Br -2.63772 -3.318329 0.099277 5.01637 1.165703 -0.442381 Br 0 4.307421 -1.754149 0.036997 0 -3.874448 3.430345 -0.56865 -5.065938 -0.224801 0 -1.441484 0 -5.12844 1.218833 -0.524992

3.100586

5.665125

1.195817

0.570393

Η

С

1.564486

-0.562568

| С | 1.940741  | -1.579407 | 0.10379   | Н -4.953527 2.195222 -0.608443  |
|---|-----------|-----------|-----------|---------------------------------|
| С | 0.829165  | -0.772282 | 0.098085  |                                 |
| С | 0.904023  | 0.651238  | 0.023018  | D (Table S8)                    |
| С | 2.208218  | 1.188427  | -0.181911 | wB97XD/6-31+G(d,p)              |
| С | 3.314171  | 0.396604  | -0.178157 | E = -8856.898956 A. U.          |
| С | -0.308997 | 1.388779  | 0.094583  | C 3.28274 -1.067179 0.002983    |
| С | -1.523379 | 0.704549  | -0.000679 | C 1.934532 -1.587084 0.107517   |
| С | -1.53441  | -0.718    | 0.039366  | C 0.822878 -0.77814 0.096007    |
| С | -2.699668 | -1.452122 | -0.014103 | C 0.902095 0.642103 0.016254    |
| С | -3.996593 | -0.840277 | -0.171799 | C 2.204791 1.176531 -0.193465   |
| С | -3.963266 | 0.647647  | -0.294216 | C 3.309706 0.385306 -0.189692   |
| С | -2.785751 | 1.370821  | -0.175308 | C -0.305819 1.386006 0.093017   |
| Н | 2.330001  | 2.240615  | -0.399391 | C -1.520731 0.708169 -0.006173  |
| С | -0.374893 | 2.855857  | 0.277777  | C -1.538015 -0.712951 0.033611  |
| С | -1.57361  | 3.546459  | -0.005913 | C -2.707413 -1.442693 -0.022613 |
| С | 0.681074  | 3.604611  | 0.827533  | C -3.997207 -0.824755 -0.188693 |
| С | -1.650608 | 4.936833  | 0.113917  | C -3.956537 0.663745 -0.313172  |
| С | 0.592968  | 4.984652  | 0.959818  | C -2.777842 1.384056 -0.18651   |

| Н    | 2.325177   | 2.228134   | -0.412566  | С   | -1.5387542   | 0.6964553  | -0.0102932 |
|------|------------|------------|------------|-----|--------------|------------|------------|
| С    | -0.364539  | 2.851236   | 0.289674   | С   | -1.5391592   | -0.7329267 | 0.0280864  |
| С    | -1.557612  | 3.549814   | 0.005376   | С   | -2.6982461   | -1.4926059 | -0.0430973 |
| С    | 0.692832   | 3.586725   | 0.85276    | С   | -4.0062899   | -0.9141624 | -0.2117306 |
| С    | -1.624719  | 4.939367   | 0.141345   | С   | -4.0367147   | 0.6080087  | -0.3210658 |
| С    | 0.612705   | 4.964337   | 1.001184   | С   | -2.8013502   | 1.3577937  | -0.1733577 |
| Н    | 1.572813   | 3.075443   | 1.218101   | Н   | 2.3163542    | 2.2609735  | -0.413108  |
| С    | -0.536379  | 5.654815   | 0.614028   | С   | -0.4228992   | 2.8581044  | 0.2770881  |
| Н    | -2.562327  | 5.427852   | -0.101403  | С   | -1.6625137   | 3.5265345  | 0.0373481  |
| Н    | 1.450511   | 5.498723   | 1.438525   | С   | 0.6371547    | 3.6518588  | 0.7770307  |
| Н    | -0.594014  | 6.73323    | 0.722706   | С   | -1.760358    | 4.9293376  | 0.1513007  |
| С    | -2.80873   | 2.822326   | -0.30733   | С   | 0.5203987    | 5.028847   | 0.9084537  |
| 0    | -0.387121  | -1.392115  | 0.176517   | Н   | 1.5494881    | 3.1767463  | 1.1071619  |
| Br   | 1.73708    | -3.447825  | 0.252091   | С   | -0.6732409   | 5.6823979  | 0.5616988  |
| Br   | -2.650252  | -3.312347  | 0.101293   | Н   | -2.7156304   | 5.3959596  | -0.0613569 |
| Br   | 5.009282   | 1.163135   | -0.468029  | Н   | 1.359274     | 5.597366   | 1.3000345  |
| 0    | 4.301623   | -1.764326  | 0.03874    | Н   | -0.7558202   | 6.7616835  | 0.6511266  |
| 0    | -3.854458  | 3.448239   | -0.580695  | С   | -2.8497153   | 2.7501299  | -0.2310066 |
| 0    | -5.072308  | -1.419585  | -0.2462    | 0   | -5.0648982   | -1.5446751 | -0.2795161 |
| 0    | -5.115818  | 1.24126    | -0.550765  | 0   | -0.3724639   | -1.3945048 | 0.1791413  |
| Н    | -4.931754  | 2.214728   | -0.630222  | Br  | 1.7999511    | -3.4353715 | 0.2740532  |
|      |            |            |            | Br  | -2.593358    | -3.3790132 | 0.0718964  |
| E (1 | Table S8)  |            |            | Br  | 5.0271876    | 1.2365792  | -0.465094  |
| B3L  | 2YP/6-31+G | (d,p)      |            | 0   | -5.1271585   | 1.1883339  | -0.5321416 |
| E =  | -8857.2108 | 09 A. U.   |            | 0   | 4.3480643    | -1.7188135 | 0.0552508  |
| С    | 3.3176572  | -1.023682  | 0.0157606  | 0   | -3.98952     | 3.3983707  | -0.4563515 |
| С    | 1.9686695  | -1.5551961 | 0.1214364  | Н   | -4.6938334   | 2.666101   | -0.5489826 |
| С    | 0.8433695  | -0.7565562 | 0.1065677  |     |              |            |            |
| С    | 0.9038606  | 0.6672487  | 0.0185415  | E   | (Table S8)   |            |            |
| С    | 2.2021141  | 1.2107699  | -0.1900833 | M   | 06-2X/6-31+0 | G(d,p)     |            |
| С    | 3.3229607  | 0.4255354  | -0.181103  | E = | =8856.9968   | 52 A. U.   |            |
|      |            |            |            |     |              |            |            |

C -0.3260011 1.4045529 0.0924439

C 3.3139044 -0.9927313 0.0222674

| С  | 1.9715628  | -1.5296751 | 0.1201021  | Н   | -4.7221317   | 2.6413613  | -0.5321659 |
|----|------------|------------|------------|-----|--------------|------------|------------|
| С  | 0.8484588  | -0.7356416 | 0.1086452  |     |              |            |            |
| С  | 0.8967482  | 0.6807728  | 0.0215416  | E   | (Table S8)   |            |            |
| С  | 2.1883797  | 1.2326332  | -0.1866605 | wł  | 397XD/6-31+  | -G(d,p)    |            |
| С  | 3.3102504  | 0.4562086  | -0.1721277 | E = | = -8856.8967 | 24 A. U.   |            |
| С  | -0.3430365 | 1.3998862  | 0.0870281  | С   | 3.3052936    | -1.007759  | 0.018557   |
| С  | -1.5390192 | 0.6878083  | -0.0094724 | С   | 1.9631375    | -1.5422505 | 0.1252775  |
| С  | -1.5209788 | -0.7458413 | 0.0302031  | С   | 0.8415343    | -0.7445859 | 0.1092411  |
| С  | -2.6591936 | -1.5227632 | -0.0340643 | С   | 0.8963466    | 0.6680312  | 0.0155372  |
| С  | -3.9773626 | -0.9624068 | -0.1867729 | С   | 2.1865281    | 1.2150819  | -0.200187  |
| С  | -4.036214  | 0.5650685  | -0.2999274 | С   | 3.3065597    | 0.4376346  | -0.1869997 |
| С  | -2.8095192 | 1.3326787  | -0.1657506 | С   | -0.3376039   | 1.3967475  | 0.0855437  |
| Н  | 2.2994016  | 2.2832771  | -0.4164991 | С   | -1.535498    | 0.694499   | -0.0178233 |
| С  | -0.4562622 | 2.851728   | 0.2606193  | С   | -1.5253678   | -0.7392445 | 0.0236162  |
| С  | -1.6949795 | 3.5016032  | 0.0187303  | С   | -2.66897     | -1.5080297 | -0.0438185 |
| С  | 0.5952309  | 3.6524861  | 0.7580507  | С   | -3.9782094   | -0.9373148 | -0.2147822 |
| С  | -1.8107197 | 4.9004961  | 0.1208532  | С   | -4.0270558   | 0.5910793  | -0.3328617 |
| С  | 0.4646844  | 5.0244414  | 0.8769926  | С   | -2.8003229   | 1.350888   | -0.1815488 |
| Н  | 1.5073917  | 3.1838319  | 1.100527   | Н   | 2.2969358    | 2.2648671  | -0.4325984 |
| С  | -0.7326961 | 5.6631259  | 0.5223136  | С   | -0.4379363   | 2.8467234  | 0.2759012  |
| Н  | -2.7726508 | 5.3532812  | -0.0937455 | С   | -1.6687796   | 3.5088135  | 0.0359635  |
| Н  | 1.2954822  | 5.6045038  | 1.267153   | С   | 0.6187627    | 3.6301448  | 0.7892985  |
| Н  | -0.8242891 | 6.7417002  | 0.6035745  | С   | -1.7713597   | 4.9068564  | 0.1625447  |
| С  | -2.8782066 | 2.7130817  | -0.2340115 | С   | 0.4995071    | 4.9992372  | 0.9326629  |
| 0  | -5.019876  | -1.5958418 | -0.2413266 | Н   | 1.5272809    | 3.1495505  | 1.1236192  |
| 0  | -0.3548079 | -1.3844782 | 0.1760703  | С   | -0.6909854   | 5.6524516  | 0.5854251  |
| Br | 1.8020551  | -3.3925317 | 0.2519105  | Н   | -2.7256385   | 5.3754603  | -0.0493006 |
| Br | -2.5198076 | -3.3873026 | 0.0661642  | Н   | 1.333549     | 5.5649641  | 1.336183   |
| Br | 4.9998352  | 1.2561072  | -0.4401767 | Н   | -0.7767986   | 6.7294592  | 0.6889775  |
| 0  | -5.1289559 | 1.1107962  | -0.4989213 | С   | -2.8537119   | 2.7323682  | -0.2404085 |
| 0  | 4.341784   | -1.676145  | 0.0632401  | 0   | -5.0263836   | -1.5645409 | -0.2790927 |
| 0  | -4.0184302 | 3.3562611  | -0.4498915 | 0   | -0.3659845   | -1.3832874 | 0.1816788  |
| Br | 1.7902727  | -3.405998  | 0.2772405  |
|----|------------|------------|------------|
| Br | -2.5449247 | -3.3759909 | 0.0784957  |
| Br | 4.9935112  | 1.2446346  | -0.4735886 |
| 0  | -5.1151052 | 1.143378   | -0.5485504 |
| 0  | 4.3335983  | -1.6950644 | 0.0614091  |
| 0  | -3.9832536 | 3.3902781  | -0.4679677 |
| Η  | -4.68958   | 2.6887606  | -0.5686983 |
|    |            |            |            |

## 11. Reference

- 1. M. Majek, F. Filace and A. Jacobi von Wangelin Chem. Eur. J. 2015, 21, 4518-4522.
- 2. D. P. Hari, P. Schroll and B. König, J. Am. Chem. Soc. 2012, 134, 2958-2961.
- 3. K. Kubota, Y. Pang, A. Miura and H. Ito, Science 2019, 366, 1500-1504.
- 4. F. P. Crisostomo, T. Martin and R. Carrillo, Angew. Chem., Int. Ed. 2014, 53, 2181–2185.
- 5. G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
- 6. G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea and J. A. K. Howard, Puschmann. H. J. Appl. Cryst. 2009, 42, 339–341.
- Gaussian 09, Revision E. 01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.