## **Supporting Information**

Lithiophilic Sn-Co nano-seeds sealed in hollow carbon shell to stabilize lithium metal anodes

Qiuping Li‡<sup>a</sup>, Jiaming Zhang‡<sup>a</sup>, Yaping Zeng<sup>a</sup>, Zheng Tang<sup>a</sup>, Dan Sun<sup>a</sup>, Zhiguang Peng\*<sup>a</sup>, Yougen Tang<sup>a,b</sup>, Huanhuan Li,<sup>c</sup> Haiyan Wang\*<sup>a,b</sup>

- \*Corresponding author.
- a. Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R China. E-mail: wanghy419@csu.edu.cn; zhgpeng@csu.edu.cn.
- b. Shenzhen Research Institute of Central South University, Shenzhen, 518057, P.R China.
- c. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China.
- ‡ These authors contributed equally to this work.

Preparation of CoSn(OH)<sub>6</sub> nanocubes: 1 mmol of stannic chloride hydrated (SnCl<sub>4</sub> • 5H<sub>2</sub>O) was dissolved in 5 mL of ethanol (EA) (named as solution A). Besides, 1 mmol cobalt chloride hexahydrate (CoCl<sub>2</sub>·6H<sub>2</sub>O) and 0.294 g sodium citrate dihydrate (C<sub>6</sub>H<sub>5</sub>Na<sub>3</sub>O<sub>7</sub> • 2H<sub>2</sub>O) were dissolved in 20 mL deionized water (DIW) to obtain a homogeneous solution (named as solution B). 1.60 g sodium hydroxide (NaOH) was dissolved in 20 mL DIW to obtain a aqueous solution (named as solution C). Afterward, solution A was injected into solution B, forming a light pink turbid liquid, then followed by dropwise addition of solution C. After stirring for 1 h, 20 mL of NaOH solution with a high concentration of 8 mol L<sup>-1</sup> was dropped in the above suspension liquid with successive stirring for 20 min. Finally, CoSn(OH)<sub>6</sub> precipitates were then separated by centrifugation, washed with DIW/EA several times and dried at 80 °C for 12 h.

Preparation of CoSn(OH)<sub>6</sub>@polydopamine (PDA) nanocubes: 150 mg of the obtained CoSn(OH)<sub>6</sub> powerd was added in a Tris-buffer(1.2114g in 50mL DIW + 50mL EA) under ultrasonic dispersion for 20 min. Then, 200 mg dopamine hydrochloride power was mixed, and the solution was kept stirring for 24h. Finally, the black CoSn(OH)<sub>6</sub>@PDA powder was obtained after washing and drying in oven at 80 °C for 12 h.

**Preparation of Sn-Co@C nanocubes:** The as-prepared CoSn(OH)<sub>6</sub>@PDA powder was annealed at 650 °C (heating rate: 2 °C min<sup>-1</sup>) under H<sub>2</sub>(5%)/Ar(95%) atmosphere for 5 h. Then, the black Sn-Co@C powder was obtained.

**Preparation of Sn-Co@C nanocubes:** The Sn-Co sample preparation process is similar to Sn-Co@C, including CoSn(OH)<sub>6</sub> nanocubes preparation. The as-prepared CoSn(OH)<sub>6</sub> powder was annealed at 650 °C (heating rate: 2 °C min<sup>-1</sup>) under H2(5%)/Ar(95%) atmosphere for 5 h. Then, the blue Sn-Co powder was obtained.

**Preparation of Sn-Co@C** and **Sn-Co on the Cu current collector:** Commercial Cu foil was used as substrate to prepare the Sn-Co@C current collectors. The obtained Sn-Co@C powder was mixed with PVDF (mass ratio: 9:1) in N-Methyl pyrrolidone (NMP) solvent. Afterwards, the slurry was coated on 2D Cu foil via doctor blade and dried at 80 °C for 12 h. The mass loading of Sn-Co@C is about 1 mg cm<sup>-2</sup>.

Material characterization: The morphologies and structures of materials were detected via scanning electron microscope (SEM, JEOL JSM-7610FPlus) and transmission elactron microscopy (TEM, JEOL JEM-F200). Crystalline structures of samples were measured by X-ray diffraction (XRD, Rigaku-TTR III) with Cu-K α radiation. The superficial elemental analyses of CoSn(OH)<sub>6</sub> and Sn-Co@C nanoparticles were performed by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha). The appropriate calcination temperature of Sn-Co@C nanoparticles was determined via thermogravimetric analysis under air atmosphere (TGA, SDT-Q600). Raman spectra were acquired utilizing LabRAM HR800 (HORIBA Jobin Yvon). And pore structure information was collected via nitrogen adsorption/desorption using a JWGB volumetric gas adsorption apparatus at 77 K. Electrochemical measurement: CR2016 coin cells were assembled with Li foils, Celgard separator and the above-mentioned Sn-Co@C disks or commercial Cu foil in Ar-filled glovebox (water and oxygen content: <0.1 ppm). 1 M bis(trifluoromethane) sulfonamide lithium salt (LiTFSI) and solvent of 1, 3-dioxolane (DOL) and 1, 2-dimethoxyethane (DME) (v/v, 1:1) with 2wt% LiNO<sub>3</sub> additive as electrolyte were added to test cells. To evaluate the CE, metallic Li (1 mAh cm<sup>-2</sup>) was plated on different current collectors at 1 mA cm<sup>-2</sup> and stripped away for charging to 1 V. To investigate the symmetric cells, working electrodes were prepared by first electroplating 5 mA h cm<sup>-2</sup> Li metal at 0.5 mA cm<sup>-2</sup>, and then cycling at different current density and capacity. For testing the performance of full cells, 5 mAh cm<sup>-2</sup> of Li was pre-deposited on the disks as the anode, which paired with LiFePO<sub>4</sub> (LFP) cathode (loading of the active material was about 8~9 mg cm<sup>-2</sup>). The cathode was prepared by mixing LFP powder (80 wt %), polyvinylidene fluoride binder (PVDF) (10 wt %) and super P (10 wt %) with mass ratio of 8:1:1. These full cells were galvanostatically cycled between 2.5 and 4 V  $(1C=170 \text{ mA g}^{-1}).$ 

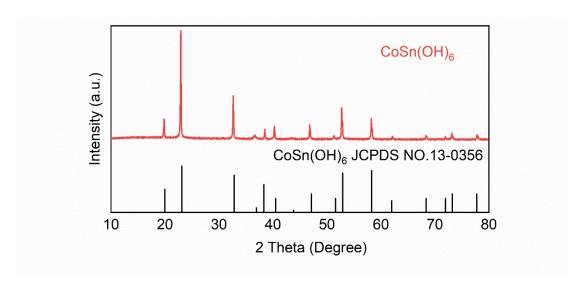



Fig. S1. The XRD pattern of CoSn(OH)<sub>6</sub> precursor.

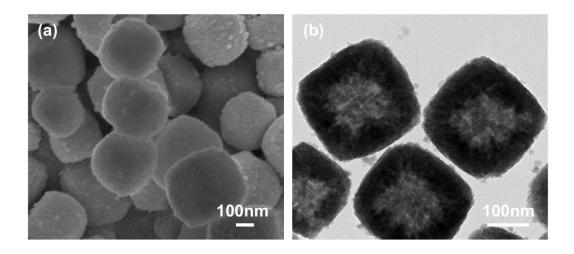



Fig. S2. (a) SEM and (b)TEM images of hollow CoSn(OH)<sub>6</sub> nanocubes.

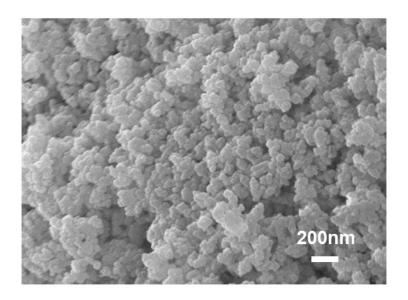



Fig. S3. SEM image of bare Sn-Co alloy.

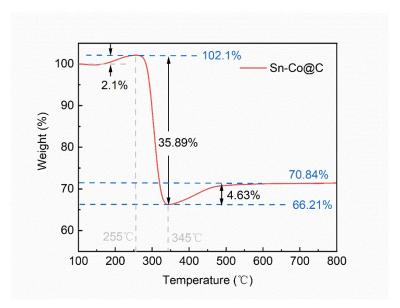



Fig. S4. TGA curves of Sn-Co@C sample.

According to the principle of mass conservation, the Sn-Co alloy component is eventually oxidized to  $SnO_2$  and  $Co_3O_4$  in air. The Sn-Co content can be roughly calculated as 51.82% according to the following equation, so the material carbon content is 48.18%.

Sn - Co wt% = 
$$\frac{m_1}{M_{\left(\text{SnO}_2\right)} + \frac{1}{3}M_{\left(\text{Co}_3\text{O}_4\right)}} \times \frac{M_{\left(\text{Sn - Co}\right)}}{m_0}$$

m<sub>0</sub>=3.6983mg (mass weight of sample at 160°C after water removal)

m<sub>1</sub>=2.6461mg (mass sample weight after TGA analysis)

 $M(SnO_2) = 150.7g \text{ mol}^{-1} \text{ (molecular weight of } SnO_2)$ 

 $M(Co_3O_4) = 284 \text{ g mol}^{-1}$  (molecular weight of  $Co_3O_4$ )

 $M(Sn-Co) = 177.7 \text{ g mol}^{-1} \text{ (molecular weight of Sn-Co)}$ 

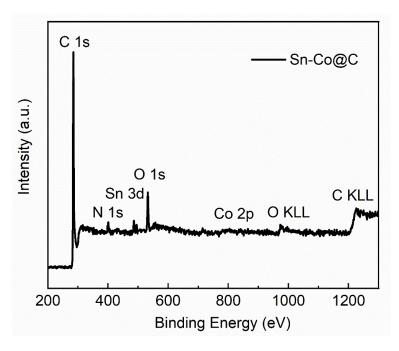



Fig. S5. Survey XPS spectra of Sn-Co@C sample.

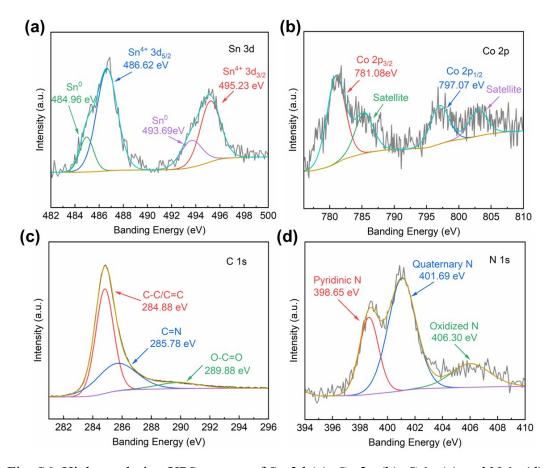



Fig. S6. High-resolution XPS spectra of Sn 3d (a), Co 2p (b), C 1s (c) and N 1s (d) of Sn-Co@C.

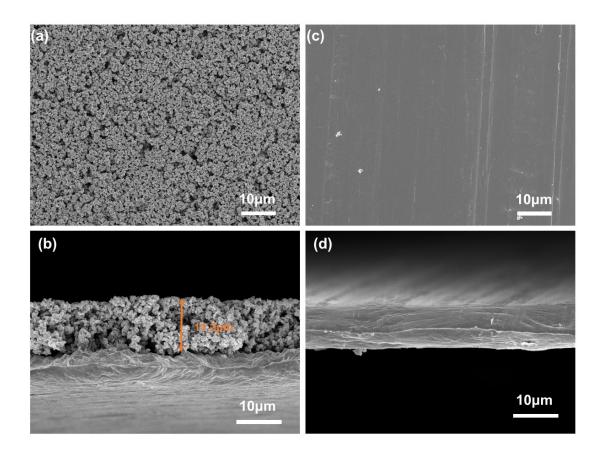



Fig. S7. (a, b) The SEM images of surface and cross-sectional morphologies Sn-Co@C current collector. (c, d) The SEM images of surface and cross-sectional morphologies bare Cu current collector.

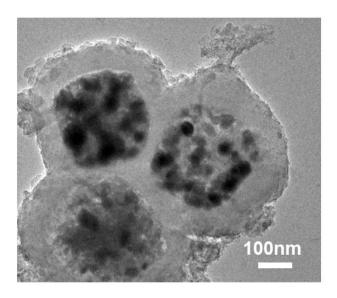



Fig. S8. TEM image of Sn-Co@C nanoparticles after 10 cycles at 1 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>.

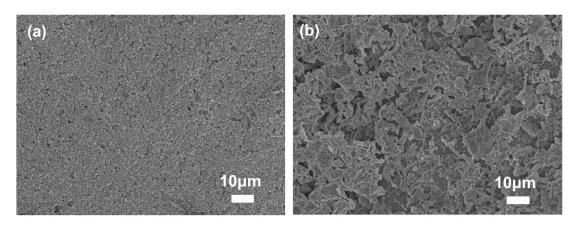



Fig. S9. The SEM images of stripping-state Sn-Co@C (a) and bare Cu (b) current after 10 cycles at 1 mA cm<sup>-2</sup>, 1 mAh cm<sup>-2</sup>.



Fig. S10. The enlarged voltage profiles of Sn-Co@C (a,b), bare Cu (c, d) and bare Sn-Co (e, f) during Li cycling at the condition of 1 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>.

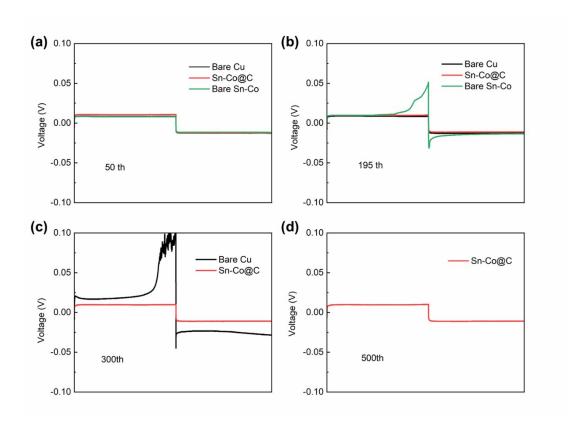



Fig. S11. The enlarged voltage profiles of bare Cu, bare Sn-Co and Sn-Co@C-based symmetrical cells at 1 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup> for 50th (a), 195th (b), 300th (c), 500th (d).



Fig. S12. The voltage hysteresis comparison of bare Cu, bare Sn-Co and Sn-Co@C-based symmetric cells under the conditions of 1 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>.

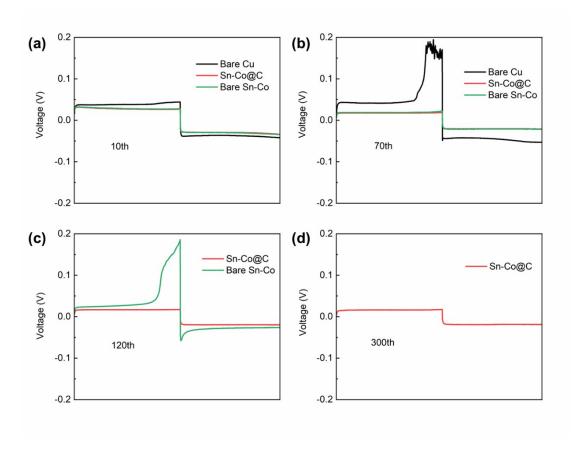



Fig. S13. The enlarged voltage profiles of bare Cu, bare Sn-Co and Sn-Co@C-based symmetrical cells at 5 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup> for 10th (a), 70th (b), 120th (c), 300th (d).

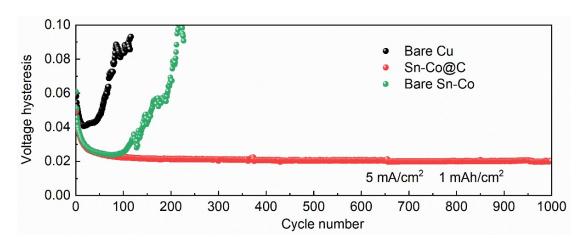



Fig. S14. The voltage hysteresis comparison of bare Cu, bare Sn-Co and Sn-Co@C-based symmetric cells under the conditions of 5 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>.

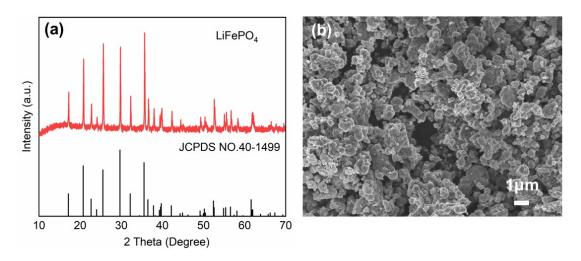



Fig. S15. The XRD pattern (a) and SEM image (b) of LiFePO<sub>4</sub>.

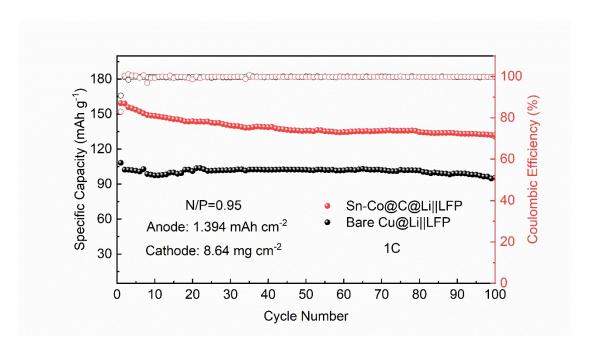



Fig. S16. Cycling performance of bare Cu@Li||LFP and Sn-Co@C@Li||LFP full cells at 1C.

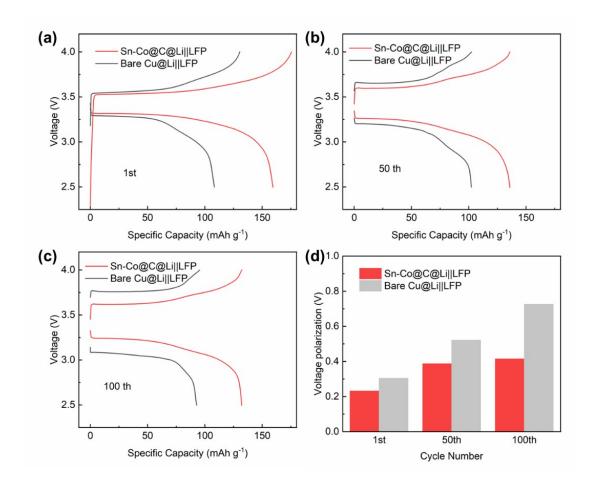



Fig. S17 Specific capacity-voltage profiles for 1st (a), 50th (b), 100th (c), and voltage polarization comparison (d) at 1C rate of bare Cu@Li||LFP and Sn-Co@C@Li||LFP full cells.

Table S1. Comparison of long-term cycling in symmetrical cells of different electrodes.

| Materials                  | Test condition                                      | Time (h) | Ref.      |
|----------------------------|-----------------------------------------------------|----------|-----------|
| CNT@SiOx-C.                | 1 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup>      | 950h     | [1]       |
| CuS/Cu <sub>2</sub> S@Cu   | 1 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup> 880h |          | [2]       |
| Dual-gradient Cu-Au-ZnO-   | 1 m A am <sup>-2</sup> 1 m A b am <sup>-2</sup>     | 600h     | [3]       |
| PAN-ZnO                    | 1 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup>      |          |           |
| 3D Cu current collectors   | 1 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup>      | 400h     | [4]       |
| Ni-Co hollow               | 1 m A am=2 1 m A h am=2                             | 1200h    | [5]       |
| prisms@carbon fibers       | 1 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup>      |          |           |
| Co nanoparticles in N-     | 1 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup>      | 1000h    | [6]       |
| graphene                   | T IIIA CIII -, T IIIAII CIII -                      |          |           |
| Zn@N-doped built on carbon | 1 m A am <sup>-2</sup> 1 m A b am <sup>-2</sup>     | 1200h    | [7]       |
| cloth                      | 1 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup>      |          |           |
| N-doped CNTs/Ni foam       | 1 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup>      | 1000h    | [8]       |
| Au carbon fabric           | 1 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup> 630h |          | [9]       |
| Carbon cloth with SiC      | 1 42 1 412                                          | 1,0001   | [10]      |
| whiskers                   | 1 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup>      | 1000h    | [10]      |
| Sn-Co@C                    | 1 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup>      | 1350h    | This work |
|                            | 5 mA cm <sup>-2</sup> , 1 mAh cm <sup>-2</sup>      | 400h     | This work |

Table S2. Comparison of long-term cycling in full cells of different anodes.

| Modified anode materials          | Test condition        | N/P  | Cycles | Ref. |
|-----------------------------------|-----------------------|------|--------|------|
| CuS/Cu <sub>2</sub> S@Cu          | 1C                    | 5.2  | 200    | [2]  |
| Ag-N-doped carbon nanoflake       | 1C                    | /    | 70     | [11] |
| 3D porous nitrogen doped carbon   | $50 \text{ mAg}^{-1}$ | /    | 50     | [12] |
| Ni-Co hollow prisms@carbon fibers | 1C                    | 6    | 150    | [5]  |
| Co nanoparticles in N-graphene    | 1C                    | /    | 100    | [6]  |
| Zn@N-doped built on carbon cloth  | 1C                    | 5.2  | 160    | [7]  |
| Au carbon fabric                  | 0.5C                  | /    | 145    | [9]  |
| carbon cloth with SiC whiskers    | 0.5C                  | 4.4  | 120    | [10] |
| Sn-Co@C                           | 1C                    | 2.12 | 250    | This |
| SH-COWC                           |                       |      |        | work |

## References

- [1] Z. Lu, S. Liu, C. Li, J. Huang, D. Wu, R. Fu, Chem. Commun. 2019, 55, 6034.
- [2] K. Lin, T. Li, S.-W. Chiang, M. Liu, X. Qin, X. Xu, L. Zhang, F. Kang, G. Chen, B. Li, *Small* **2020**, 16, 2001784.
- [3] H. Zheng, Q. Zhang, Q. Chen, W. Xu, Q. Xie, Y. Cai, Y. Ma, Z. Qiao, Q. Luo, J. Lin, L. Wang, B. Qu, B. Sa, D.-L. Peng, *J. Mater. Chem. A* **2020**, 8, 313.
- [4] H. Zhao, D. Lei, Y.-B. He, Y. Yuan, Q. Yun, B. Ni, W. Lv, B. Li, Q.-H. Yang, F. Kang, J. Lu, *Adv. Energy Mater.* **2018**, 8, 1800266.
- [5] C. Chen, J. Guan, N. W. Li, Y. Lu, D. Luan, C. H. Zhang, G. Cheng, L. Yu, X. W. Lou, *Adv. Mater.* **2021**, 33, 2100608.
- [6] T.-S. Wang, X. Liu, X. Zhao, P. He, C.-W. Nan, L.-Z. Fan, *Adv. Funct. Mater.* **2020**, 30, 2000786.
- [7] L. You, S. Ju, J. Liu, G. Xia, Z. Guo, X. Yu, J. Energy Chem. 2022, 65, 439.
- [8] Z. Zhang, J. Wang, X. Yan, S. Zhang, W. Yang, Z. Zhuang, W.-Q. Han, *Energy Storage Mater.* **2020**, 29, 332.
- [9] D. Li, Y. Gao, C. Xie, Z. Zheng, Appl. Phys. Rev. 2022, 9, 011424.
- [10] B. Sun, Q. Zhang, W. Xu, R. Zhao, H. Zhu, W. Lv, X. Li, N. Yang, *Nano Energy* 2022, 94, 106937.
- [11] Q. Sun, W. Zhai, G. Hou, J. Feng, L. Zhang, P. Si, S. Guo, L. Ci, *ACS Sustain. Chem. Eng.* **2018**, 6, 15219.
- [12] A. Patrike, K. Suresh, M. Wahid, V. Chaturvedi, M. V. Shelke, *Carbon* **2021**, 179, 256.