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Methods

Experimental methods. The 1064 nm fundamental of a Nd:YAG laser (Continuum, 

Minilite II, 10 Hz repetition rate and 6 ns pulse width) was used to ablate a rotating 

bulk beryllium target to produce beryllium atoms. The laser-evaporated beryllium 

atoms were co-deposited with HNCO in excess neon onto a cryogenic CsI window, 

which was maintained at 4 K by means of a closed-cycle helium refrigerator. The 

HNCO/Ne mixtures were prepared in a stainless-steel vacuum line using a standard 

manometric technique. After 30 min of sample deposition at 4 K, IR absorption spectra 

in the mid-infrared region (4000–450 cm‒1) were recorded with a Bruker Vertex 80V 

spectrometer at a 0.5 cm−1 resolution using a liquid nitrogen cooled broad band HgCdTe 

(MCT) detector. Bare mirror backgrounds, recorded prior to sample deposition were 

used as references in processing the sample spectra. The spectra were subjected to 

baseline correction to compensate for infrared light scattering and interference patterns. 

Samples were annealed to the desired temperatures and cooled back to 4 K for spectral 

acquisition. For selected samples, photo-excitations were performed through a quartz 

window mounted on the assembly.

Isocyanic acid HNCO was prepared according to literature1 by heating a mixture of 

stearic acid (0.57 g, 2 mmol) and sodium cyanate (0.13 g, 2 mmol) at 90 °C in a glass 

vessel (25 ml), which was connected to the dynamic vacuum line (0.1 pa) through a 

poly(tetrafluoroethylene) Young-valve. All the volatile products were condensed in a 

liquid nitrogen trap and then purified by fractional distillation through three successive 

cold U-traps at −80, −135, and −196 °C. Pure isocyanic acid was retained in the middle 

trap, and its quality was checked by gas-phase IR spectroscopy (Bruker, Tensor 27). 

Isotopically-labeled samples HN13CO and H15NCO were prepared using the 13C and 
15N-labeled potassium cyanates.2 For the synthesis of 15N-labeled sodium cyanate, a 

25-mL flame-dried round bottom flask containing 1.32 g (10 mmol) of potassium 

phenoxide was added with 2 mL of 4-methyl-2-pentanol, which has been dried over 3Å 

molecular sieves. Then 0.62 g (10 mmol) of 15N-labeled urea was added as a solid, and 

the reaction was heated and stirred at 135 °C under nitrogen for 2 hours. As the reaction 
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proceeds, an off-white precipitate begins to form. The reaction was then cooled to 

ambient temperature, and the precipitate was filtered and washed with three portions of 

cold ethanol (2 mL). The solid was then dried under high vacuum, affording 0.62 g (7.6 

mmol) 15N-labeled potassium cyanate. The 13C-labeled potassium cyanate was prepared 

using the 13C-labeled urea with the same method.

Theoretical Methods. The geometry optimization and vibrational spectra elucidation 

of HNBeCO and the fragments were calculated at the CCSD(T)-Full3,4/def2-TZVPP 

and M06-2X-D35/def2-TZVPP levels of theory. The partial charges following the 

original Hirshfeld suggestion26 were calculated using the CCSD(T)-Full/def2-TZVPP 

optimized geometry. The calculated vibrational frequencies at CCSD(T)-Full/def2-

TZVPP are scaled by 0.956 as suggested in the literature.6 Time-dependent TD-DFT7,8 

B3LYP/6-311+G(3df) calculations were performed for the calculation of UV-Vis 

transitions. All these calculations were carried out with Gaussian 16.9 The NBO 

calculations were carried out with the version 6.0.10

The bonding situation in HNBeCO complex was further analyzed by means of an 

energy decomposition analysis (EDA)11 together with the natural orbitals for chemical 

valence (NOCV)12,13 method by using the ADF 2018.105 program package.14,15 The 

EDA-NOCV calculations16,17 were carried out at the M06-2X/TZ2P level using the 

M06-2X-D3/def2-TZVPP optimized geometry. TZ2P is a triple-ζ quality basis set 

augmented by two sets of polarization functions.18 In this analysis, the intrinsic 

interaction energy (ΔΕint) between two fragments can be divided into three energy 

components as follows:  

ΔΕint = ΔEelstat + ΔEPauli + ΔEorb (1)

The electrostatic ΔEelstat term represents the quasiclassical electrostatic interaction 

between the unperturbed charge distributions of the prepared fragments, the Pauli 

repulsion ΔEPauli corresponds to the energy change associated with the transformation 

from the superposition of the unperturbed electron densities of the isolated fragments 

to the wavefunction, which properly obeys the Pauli principle through explicit 

antisymmetrization and renormalization of the production wavefunction. The orbital 
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term ΔEorb is originated from the mixing of orbitals, charge transfer and polarization 

between the isolated fragments, which can be further decomposed into contributions 

from each irreducible representation of the point group of the interacting system as 

follows: 

 
r

rorb EE           (2)

The combination of the EDA with NOCV enables the partition of the total orbital 

interactions into pairwise contributions of the orbital interactions which is very vital to 

get a complete picture of the bonding. The charge deformation Δρk(r), resulting from 

the mixing of the orbital pairs 𝜓k(r) and 𝜓-k(r) of the interacting fragments presents the 

amount and the shape of the charge flow due to the orbital interactions (Equation 3), 

and the associated energy term ΔEorb provides with the size of stabilizing orbital energy 

originated from such interaction (Equation 4).  
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More details about the EDA-NOCV method and its application are given in recent review 

articles.19-25
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Figure S1. Infrared (IR) spectra in the 3900−3400, 2500−2000 and 1600−500 cm−1 

regions from co-deposition of laser-ablated beryllium atoms with 0.025% HNCO in 

neon. (a) 30 min of sample deposition at 4 K, (b) 10 K annealing, (c) 12 K annealing, 

(d) 5 min of blue light (440 nm) irradiation, and (e) 5 min of 280 nm light irradiation. 

A: HNBeCO, B: BeOCNH+, C: HOBeCN, D: BeNCO, and E: HNCO.
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Figure S2. IR difference spectra in the 3630−3585 cm‒1 region from co-deposition of 

laser-ablated beryllium atoms with 0.05% HNCO in neon. (Spectra taken after 5 min 

of 280 nm light irradiation minus the spectrum taken after 5 min of blue light (440 nm) 

irradiation). (a) 0.05% H14N12CO, (b) 0.05% H14N13CO, (c) 0.05% H14N12CO + 0.05% 

H14N13CO, (d) 0.05% H15N12CO, and (e) 0.05% H14N12CO + 0.05% H15N12CO.
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Figure S3. IR difference spectra in the 2130−2040 cm‒1 region from co-deposition of 

laser-ablated beryllium atoms with 0.05% HNCO in neon. (Spectra taken after 5 min 

of 280 nm light irradiation minus the spectrum taken after 5 min of blue light (440 nm) 

irradiation). (a) 0.05% H14N12CO, (b) 0.05% H14N13CO, (c) 0.05% H14N12CO + 0.05% 

H14N13CO, (d) 0.05% H15N12CO, and (e) 0.05% H14N12CO + 0.05% H15N12CO. The 

band labeled with * is due to a site absorption.
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Figure S4. IR difference spectra in the 560−510 cm‒1 region from co-deposition of 

laser-ablated beryllium atoms with 0.05% HNCO in neon. (Spectra taken after 5 min 

of 280 nm light irradiation minus the spectrum taken after 5 min of blue light (440 nm) 

irradiation). (a) 0.05% H14N12CO, (b) 0.05% H14N13CO, (c) 0.05% H14N12CO + 0.05% 

H14N13CO, (d) 0.05% H15N12CO, and (e) 0.05% H14N12CO + 0.05% H15N12CO.
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Figure S5. Computed ultraviolet-visible (UV/Vis) absorption spectrum of HNBeCO at 

the TD-B3LYP/6-311+G(3df) level. The calculated strong absorption band (λmax = 291 

nm) corresponds to the HOMO→LUMO transition.
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Table S1. The EDA-NOCV results using NH and BeCO with different charges and 

electronic states as interacting fragments at the M06-2X/TZ2P//M06-2X-D3/def2-

TZVPP level. 

Energy

HN (X3Σ-, 

3212) + BeCO 

(3Σ-, 6232)

HN (3Π, 3113) 

+ BeCO (X3Π, 

7131)

HN (1Σ+, 

2214) + BeCO 

(1Σ+, 7230)

HN- (X2Π, 

3114) + BeCO+ 

(X2Σ+, 7130)

HN2- (X1Σ+, 3214) 

+ BeCO2+ (X1Σ+, 

7030)

∆Eint −176.4 −221.0 −383.3 −386.3 −851.3

∆EPauli 49.0 183.0 218.4 157.6 120.1

∆EMetahybrid 16.5 19.1 17.2 17.3 10.6

∆Eelstat −41.1 −98.8 −84.7 −254.8 −752.1 

∆Eorb −200.8 −324.3 −534.3 −306.4 −230.0
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Table S2.  Calculated vibrational frequencies (cm-1)  and  IR intensities (km mol-1) 
of OCBeNH  at the M06-2X-D3/def2-TZVPP and CCSD(T)-Full/def2-TZVPP levels. 

Mode (M06-2X) (CCSD(T)) I(M06-2X)
C-Be-N bending 44.4 33.9 13

44.4 33.9 13

Be-C-O bending 427.0 422.6 5
427.0 422.6 5

Be-C stretching 473.5 490.4 29

Be-N-B bending 596.2 560.1 66
596.2 560.1 66

Be-N stretching 1606.1 1483.1 0
C-O stretching 2315.1 2155.3 760
N-N stretching 3788.4 3749.9 84
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Table S3. The Cartesian coordinates of HNBeCO, HN and BeCO at the CCSD(T)-

Full/def2-TZVPP level.

HNBeCO
E = −183.1661742 au
0 1
O        0.000000000      0.000000000      2.031858000
C        0.000000000      0.000000000      0.900847000
Be       0.000000000      0.000000000     −0.793976000
N        0.000000000      0.000000000     −2.185604000
H        0.000000000      0.000000000     −3.184810000
HN
E = −55.1609161 au
0 3
N        0.000000000      0.000000000      0.129708000
H        0.000000000      0.000000000     −0.907953000
BeCO
E = −127.8121737 au
0 3
O        0.000000000      0.000000000      1.015372000
C        0.000000000      0.000000000     −0.143808000
Be       0.000000000      0.000000000     −1.815032000


