Access to high value $\mathbf{s p}^{3}$-rich frameworks using photocatalyzed [2+2]cycloadditions of γ-alkylidene- $\boldsymbol{\gamma}$-lactams

AUTHORS: Dimitris Kalaitzakis, Ioannis Kampouropoulos, Manolis Sofiadis, Tamsyn Montagnon and Georgios Vassilikogiannakis*
Department of Chemistry, University of Crete Vasilika Vouton, 71003, Iraklion, Crete (Greece)
E-mail: vasil@uoc.gr

Table of contentsPart A: Experimental proceduresS2 - S27
Electrochemical data and Stern Volmer experiments S27-S31
Part B: Copies of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ S32-S108

Part A: Experimental procedures

General methods

NMR data were obtained for ${ }^{1} \mathrm{H}$ at 500 MHz and for ${ }^{13} \mathrm{C}$ at 125 MHz . HRMS data was recorded on the Orbitrap analyzer of an LTQ Orbitrap XL and on a Q-Exactive Plus Orbitrap MS, using ESI ionization source.

Furan substrates

3a

3b

3c

3d

Compounds $\mathbf{3 b}$ and $\mathbf{3 c}$ are commercially available. The following compounds were prepared as previously reported: $\mathbf{3 a},{ }^{1} \mathbf{3 d},{ }^{2} \mathbf{3 e},{ }^{2} \mathbf{3 g}$ and $\mathbf{3 h},{ }^{3} \mathbf{3 i},{ }^{2} \mathbf{3 j}$. ${ }^{4}$

[^0]
Experimental procedure for the synthesis of 2-(hex-5-en-1-yl)furan (3f)

To a solution of alcohol $13(240 \mu \mathrm{~L}, 2.0 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, under anargon atmosphere at $0{ }^{\circ} \mathrm{C}, \mathrm{PPh}_{3}(630 \mathrm{mg}, 2.4 \mathrm{mmol})$ and $\mathrm{I}_{2}(610 \mathrm{mg}, 2.4 \mathrm{mmol})$ were added. The mixture was stirred for 5 min . Imidazole ($340 \mathrm{mg}, 5 \mathrm{mmol}$) was added at the same temperature. The resulting mixture was warmed to room temperature and stirred for a further 1.5 h . After completion of the reaction, as indicated by tlc analysis, a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ was added and the solution stirred for 30 min . The layers were separated and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, petroleum ether) to afford the iodide $\mathbf{1 4}$ as a slightly yellow oil. Yield 327.6 mg (78%).

6-iodohex-1-ene (14)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.79 (ddt, $J_{l}=17.0 \mathrm{~Hz}, J_{2}=10.3 \mathrm{~Hz}, J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.02 (dq, $\left.J_{l}=17.0 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.97(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H})$, $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 138.1, 115.0, 32.9, 32.6, 29.7, 6.8 ppm.

To a solution of furan ($342 \mu \mathrm{~L}, 4.7 \mathrm{mmol}$) in anhydrous THF (4.5 mL), under an argon atmosphere and at $0^{\circ} \mathrm{C}$, was added dropwise a solution of $n-\mathrm{BuLi}(2.44 \mathrm{~mL}, 1.6$ m in hexane, 3.9 mmol). The solution was stirred for a further 30 min at the same temperature. Afterwards, a solution of the iodide $\mathbf{1 4}$ ($327.6 \mathrm{~g}, 1.56 \mathrm{mmol}$) in anhydrous THF (1.5 mL) was added slowly. The resulting solution was then warmed to room temperature and stirred for 1 h . After completion of the reaction, as indicated by tlc analysis, the reaction was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(4 \mathrm{~mL})$ and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were separated and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo. The product was purified by flash column chromatography (silica gel, petroleum ether) to afford $\mathbf{3 f}$ as a slightly yellow oil. Yield $163.8 \mathrm{mg}(70 \%)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.29 (dd, $J_{I}=1.8 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.27 (dd, $J_{I}=3.0$ $\mathrm{Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.97 (dd, $J_{l}=3.0 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.80 (ddt, $J_{l}=17.0 \mathrm{~Hz}$, $\left.J_{2}=10.3 \mathrm{~Hz}, J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.00\left(\mathrm{dq}, J_{l}=17.0 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.95(\mathrm{~m}, 1 \mathrm{H}), 2.63$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 156.3,140.7,138.7,114.5,110.0,104.6,33.5,28.4,27.8,27.5 \mathrm{ppm}$.

General experimental for the synthesis of substrates of type $1,4,6$ and 8.

The corresponding substituted furan of type $\mathbf{3}$ ($2 \mathrm{mmol}, 304 \mathrm{mg}$ for $\mathbf{3 a}, 180 \mu \mathrm{~L}$ for $\mathbf{3 b}$, $210 \mu \mathrm{~L}$ for $\mathbf{3 c}, 272 \mathrm{mg}$ for $\mathbf{3 d}$, 500 mg for $\mathbf{3 e}, 300 \mathrm{mg}$ for $\mathbf{3 f}, 384 \mathrm{mg}$ for $\mathbf{3 g}, 416 \mathrm{mg}$ for $\mathbf{3 h}$, and 280 mg for $\mathbf{3 i}, 304 \mathrm{mg}$ for $\mathbf{3 j}$) was dissolved in methanol ($25 \mathrm{~mL}, 80 \mathrm{mM}$) containing catalytic amounts of methylene blue as photosensitizer $(1.3 \mathrm{mg}, 0.004$ $\mathrm{mmol})$. The solution was then cooled using an ice bath. Oxygen was gently bubbled through the solution while it was irradiated by a xenon Variac Eimac Cermax 300 W lamp. The reaction was monitored by tlc. After completion of the reaction (10 min), the solution was warmed to room temperature and $\mathrm{Et}_{3} \mathrm{~N}(16.7 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ was added followed by $\mathrm{Me}_{2} \mathrm{~S}(580 \mu \mathrm{~L}, 8 \mathrm{mmol})$. After completion of the reduction (40 min), an additional amount of methylene blue was added ($12.8 \mathrm{mg}, 0.04 \mathrm{mmol}$) followed by the corresponding amine ($2.2 \mathrm{mmol}, 240 \mu \mathrm{~L}$ of benzylamine towards $\mathbf{1 a}$, $\mathbf{6 a - 6 c}$ and 8a, $330 \mu \mathrm{~L}$ of 3,4-dimethoxybenzylamine towards $\mathbf{1 b}, 164 \mu \mathrm{~L}$ of allylamine towards $\mathbf{4 a}-\mathbf{4 e}, \quad 460 \mathrm{mg}$ of (6-bromobenzo[d][1,3]dioxol-5yl)methanamine towards $\mathbf{8 b}, 337 \mu \mathrm{~L}$ of 3,4-dimethoxyphenethylamine towards $\mathbf{8 c}$ and $\mathbf{8 f}, 277 \mu \mathrm{~L}$ of phenethylamine towards $\mathbf{8 d}$ and $\mathbf{8 e}, 260 \mu \mathrm{~L}$ of a 11.6 M aqueous
solution of methylamine towards $\mathbf{8 g}, \mathbf{8} \mathbf{h}, \mathbf{8 j}, 138 \mu \mathrm{~L}$ of cyclopropylamine towards $\mathbf{8 k}$). The reaction was then stirred at the same temperature for 3 h . After completion of the reaction (tlc analysis and ${ }^{1} \mathrm{H}-\mathrm{NMR}$), the solvent was removed under reduced pressure and DCM (8 mL) was added followed by PTSA. $\mathrm{H}_{2} \mathrm{O}(114 \mathrm{mg}, 0.6 \mathrm{mmol})$. Only in case of the reaction towards $\mathbf{8 h}, \mathrm{HCOOH}$ was added (2 mL) instead of PTSA. The reaction was stirred at rt until full consumption of the starting material was indicated by tlc analysis (1 h or 2 h in case of product $\mathbf{8 h}$). Then the solution was concentrated under reduced pressure and the products were purified by flash column chromatography (silica gel, petroleum ether : EtOAc).

(E)-1-benzyl-5-hexylidene-1,5-dihydro-2H-pyrrol-2-one (1a)

$\xrightarrow{3 \mathrm{nc}_{5} \mathrm{H}_{11}}$Product 1a was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=5: 1$) to furnish 1a as a yellow oil (yield $=331.5 \mathrm{mg}, 65 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.25\left(\mathrm{dd}, J_{l}=5.9 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.32\left(\mathrm{td}, J_{l}=8.2 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.84(\mathrm{~s}$, 2 H), 2.25 (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.36 (quin, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.26(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H})$, $0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0,139.1,137.3$, 132.5, 128.4 (2C), 127.0, 126.6 (2C), 123.8, 116.7, 42.4, 30.9, 29.6, 27.4, 22.2, 13.8 ppm.
(E)-1-(3,4-dimethoxybenzyl)-5-hexylidene-1,5-dihydro-2H-pyrrol-2-one (1b)

Product 1b was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=5: 1$) to furnish $\mathbf{1 b}$ as a brown oil (yield $=378 \mathrm{mg}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22\left(\mathrm{dd}, J_{I}=5.8 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.37\left(\mathrm{td}, J_{l}=8.2 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.75(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.25$ (q, J=7.6 Hz, 2H), 1.37 (quin, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.27-1.17(\mathrm{~m}, 4 \mathrm{H}), 0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1,149.2,148.2,139.3,132.6,130.1$, $123.9,119.1,116.7,111.0,110.2,55.8$ (2C), 42.3, 31.1, 29.7, 27.5, 22.3, 13.9 ppm .
Representative NOE of compound $\mathbf{1 b}$

(E)-1-allyl-5-hexylidene-1,5-dihydro-2H-pyrrol-2-one (4a)

Product 4a was synthesized according to the general experimental procedure described above. The crude product was purified by flash
column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=5: 1 \rightarrow 3: 1$) to furnish $4 \mathbf{a}$ as a brown oil (yield $=258.3 \mathrm{mg}, 63 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18\left(\mathrm{dd}, J_{l}=6.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.77\left(\mathrm{ddt}, J_{l}=17.1 \mathrm{~Hz}, J_{2}=10.4 \mathrm{~Hz}, J_{3}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.40\left(\mathrm{td}, J_{l}=8.2 \mathrm{~Hz}, J_{2}=1.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 4.24\left(\mathrm{dt}, J_{l}=5.0 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.31(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,139.3,133.1,132.4,123.9,116.3,116.1,41.1$, 31.2, 29.8, 27.5, 22.4, 14.0 ppm .

1-allyl-5-methylene-1,5-dihydro-2H-pyrrol-2-one (4b)
Product 4b was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=3: 1$) to furnish $\mathbf{4 b}$ as a yellow oil (yield $=135 \mathrm{mg}, 50 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.98(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21\left(\mathrm{dd}, J_{l}=5.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.78\left(\mathrm{ddt}, J_{l}=17.2 \mathrm{~Hz}, J_{2}=10.4 \mathrm{~Hz}, J_{3}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.14(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H})$, $4.89(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24\left(\mathrm{dt}, J_{l}=5.1 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,145.2,137.2,132.7,124.9,116.4,97.2,41.2 \mathrm{ppm}$.

(E)-1-allyl-5-ethylidene-1,5-dihydro-2H-pyrrol-2-one (4c)

Product 4c was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=3: 1$) to furnish a $17: 1$ mixture of E / Z isomers of $\mathbf{4 c}$ as a yellow oil (yield $=158$ $\mathrm{mg}, 53 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29\left(\mathrm{dd}, J_{l}=5.9 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.19$ (dd, $J_{l}=5.9$ $\mathrm{Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.77 (ddt, $\left.J_{1}=17.2 \mathrm{~Hz}, J_{2}=10.4 \mathrm{~Hz}, J_{3}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.45$ (qd, $\left.J_{l}=7.5 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.12\left(\mathrm{dq}, J_{l}=10.4 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.05\left(\mathrm{dq}, J_{l}=17.2\right.$ $\left.\mathrm{Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.24\left(\mathrm{dt}, J_{l}=5.1 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,140.0,133.2,132.1,123.9,116.1,110.5,41.2$, 13.1 ppm .
(E)-1-allyl-5-(pent-4-en-1-ylidene)-1,5-dihydro-2H-pyrrol-2-one (4d)

Product 4d was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=5: 1 \rightarrow 3: 1$) to furnish 4d as a brown oil (yield $=223 \mathrm{mg}, 59 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.20\left(\mathrm{dd}, J_{l}=5.9\right.$
$\left.\mathrm{Hz}, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.78(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (dd, $J_{l}=10.2 \mathrm{~Hz}$, $\left.J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.03(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,139.6,136.9,133.0,132.4$, 124.2, 116.2, 115.9, 114.9, 41.2, 34.2, 27.1 ppm .

((E)-1-allyl-5-(4-iodobutylidene)-1,5-dihydro-2H-pyrrol-2-one (4e)

Product $4 \mathbf{e}$ was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=5: 1$) to furnish $\mathbf{4 e}$ as a brown oil (yield $=351.5 \mathrm{mg}, 58 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33\left(\mathrm{dd}, J_{l}=5.9 \mathrm{~Hz}, J_{2}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.21$ (dd, $\left.J_{l}=5.8 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.75$ (ddt, $J_{l}=17.1 \mathrm{~Hz}, J_{2}=10.3 \mathrm{~Hz}, J_{3}=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.29\left(\mathrm{td}, J_{l}=8.2 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.12\left(\mathrm{dq}, J_{l}=10.3 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.02(\mathrm{dq}$, $\left.J_{l}=17.1 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.23\left(\mathrm{dt}, J_{l}=5.0 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.16(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 2 H), 2.45 ($\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.96 (quin, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) δ 169.6, 140.4, 133.0, 132.6, 124.4, 116.1, 112.8, 41.2, 33.0, 28.0, 5.7 ppm .

(E)-1-benzyl-5-(hex-5-en-1-ylidene)-1,5-dihydro-2H-pyrrol-2-one (6a)

Product 6a was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : EtOAc $=5: 1$) to furnish 6a as a brown oil (yield $=313.7 \mathrm{mg}, 62 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.25\left(\mathrm{dd}, J_{I}=5.9 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{td}$, $\left.J_{l}=8.2 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.96-4.92(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.96(\mathrm{~m}, 2 \mathrm{H}), 1.46$ (quin, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1$, $139.5,137.9,137.4,132.6,128.5$ (2C), 127.1, 126.7 (2C), 124.0, 116.1, 115.1, 42.5, 32.8, 29.1, 26.8 ppm .
(E)-1-benzyl-5-((E)-7-oxooct-5-en-1-ylidene)-1,5-dihydro-2H-pyrrol-2-one (6b)

Product 6b was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=5: 1$) to furnish $\mathbf{6 b}$ as a brown oil (yield $=324.5 \mathrm{mg}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{~m}, 1 \mathrm{H}), 6.23\left(\mathrm{dd}, J_{l}=5.8 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.96(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.18$ (s, 3 H), 2.07 (m, 2H), 1.51 (quin, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.3, 170.0, 147.0, 139.7, 137.2, 132.5, 131.6, 128.6 (2C), 127.2, 126.7 (2C), 124.3, 115.1, 42.5, 31.4, 28.3, 27.0, 26.8 ppm .
methyl (2E,7E)-7-(1-benzyl-5-oxo-1,5-dihydro-2H-pyrrol-2-ylidene)hept-2-enoate (6c)

Product 6c was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : EtOAc $=5: 1 \rightarrow$ 3:1) to furnish $\mathbf{6 c}$ as a brown oil (yield $=367 \mathrm{mg}, 59 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}$,
$J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85\left(\mathrm{dt}, J_{l}=15.7 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.24\left(\mathrm{dd}, J_{l}=5.9 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.73\left(\mathrm{dt}, J_{l}=15.7 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.24\left(\mathrm{td}, J_{l}=8.2 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.82$ $(\mathrm{s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.51$ (quin, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,166.8,148.2,139.6,137.2,132.5,128.5$ (2C), 127.2, 126.6 (2C), 124.2, 121.5, 115.0, 51.4, 42.5, 31.1, 28.2, 26.7 ppm .

1-benzyl-5-methylene-1,5-dihydro-2H-pyrrol-2-one (8a)

$\xrightarrow{3}$
Product 8a was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=8: 1$) to furnish 8a as a yellow oil (yield $=185 \mathrm{mg}, 50 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.99(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26\left(\mathrm{dd}, J_{l}=5.8 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3$, 145.1, 137.4, 137.0, 128.5 (2C), 127.2, 126.9 (2C), 124.8, 97.6, 42.5 ppm.

1-((6-bromobenzo[d][1,3]dioxol-5-yl)methyl)-5-methylene-1,5-dihydro-2H-pyrrol-2-one (8b)

Product 8b was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether: $\mathrm{EtOAc}=8: 1$) to furnish $\mathbf{8 b}$ as a yellow oil (yield $=325.4 \mathrm{mg}, 53 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.30$ $\left(\mathrm{dd}, J_{l}=5.8 \mathrm{~Hz}, J_{2}=0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.93(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 170.3,147.8,147.5,144.8,137.6,129.1,124.9,112.5$, 112.4, 107.7, 101.7, 98.0, 42.5 ppm .

1-(3,4-dimethoxyphenethyl)-5-methylene-1,5-dihydro-2H-pyrrol-2-one (8c)

Product $8 \mathbf{c}$ was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : EtOAc $=4: 1$) to furnish 8 c as a white solid (yield $=290 \mathrm{mg}, 56 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (s, 1H), 4.77 (s, 1H), $3.83(\mathrm{~s}, 6 \mathrm{H}), 3.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.1,148.8,147.6,145.3,137.1,131.0,125.0,120.6,112.0,111.2,96.4$, 55.8 (2C), 40.7, 34.3 ppm.

(E)-5-ethylidene-1-phenethyl-1,5-dihydro-2H-pyrrol-2-one (8d)

Product 8d was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=6: 1$) to furnish a $20: 1$ mixture of E / Z isomers of $\mathbf{8 d}$ as a yellow oil (yield $=260$ $\mathrm{mg}, 61 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ $(\mathrm{m}, 3 \mathrm{H}), 6.16\left(\mathrm{dd}, J_{I}=5.8 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.34\left(\mathrm{qd}, J_{I}=7.5 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $169.8,139.9,138.6,131.8,128.7$ (2C), 128.4 (2C), 126.4, 124.0, 109.6, 40.4, 35.1, 13.0 ppm .
(E)-5-(4-iodobutylidene)-1-phenethyl-1,5-dihydro-2H-pyrrol-2-one (8e)

Abstract

Product 8e was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=5: 1$) to furnish 8e as a brown oil (yield $=425.7 \mathrm{mg}, 58 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H})$, $6.18\left(\mathrm{dd}, J_{l}=5.9 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.07\left(\mathrm{td}, J_{I}=8.3 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 1.84 (quin, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,140.5,138.7$, 132.3, 128.8 (2C), 128.4 (2C), 126.4, 124.4, 112.1, 40.6, 35.1, 33.0, 27.9, 5.8 ppm .

(E)-1-(3,4-dimethoxyphenethyl)-3-methyl-5-pentylidene-1,5-dihydro-2H-pyrrol-2-one (8f)

Product $8 \mathbf{f}$ was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=5: 1$) to furnish $\mathbf{8 f}$ as a brown oil (yield $=362 \mathrm{mg}, 55 \%)$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73\left(\mathrm{dd}, J_{l}=8.1\right.$ $\left.\mathrm{Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.69(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.78$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.40-$ $1.28(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3$, $148.9,147.6,138.3,133.4,131.5,126.5,120.7,112.6,112.1,111.2,55.9,55.8,40.9$, $34.8,32.5,27.1,22.2,13.8,11.0 \mathrm{ppm}$.

(E)-1-methyl-5-(pent-4-en-1-ylidene)-1,5-dihydro-2H-pyrrol-2-one (8g)

Product 8 g was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=7: 1$) to furnish 8 g as a brown oil (yield $=169.5 \mathrm{mg}, 52 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19\left(\mathrm{dd}, J_{l}=5.9 \mathrm{~Hz}, J_{2}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.14$ (dd, $\left.J_{l}=5.9 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.77$ (ddt, $\left.J_{l}=17.1 \mathrm{~Hz}, J_{2}=10.3, J_{3}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.36$ $\left(\mathrm{td}, J_{l}=8.2 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.03\left(\mathrm{dq}, J_{I}=17.1 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.99(\mathrm{~m}, 1 \mathrm{H})$, $3.06(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,140.8,136.9,132.0,124.5,115.7,113.8,34.1,26.9,25.2 \mathrm{ppm}$.

(E)-4-(1-methyl-5-oxo-1,5-dihydro-2H-pyrrol-2-ylidene)butyl formate (8 h)

Product $\mathbf{8 h}$ was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=3: 1$) to furnish $\mathbf{8 h}$ as a brown oil (yield $=218.4 \mathrm{mg}, 56 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.22\left(\mathrm{dd}, J_{l}=5.9 \mathrm{~Hz}, J_{2}=0.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.20\left(\mathrm{dd}, J_{l}=5.9 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.36\left(\mathrm{td}, J_{l}=8.2 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 4.21 (td, $\left.J_{l}=6.4 \mathrm{~Hz}, J_{2}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.86$ (quin, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,160.9,141.5,131.8,125.0$, 112.5, 62.7, 29.0, 25.3, 23.9 ppm .

(E)-5-(4-hydroxybutylidene)-1-methyl-1,5-dihydro-2H-pyrrol-2-one (8i)

Compound 8h ($218.4 \mathrm{mg}, 1.12 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(5.6 \mathrm{~mL}) . \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(119 \mathrm{mg}, 1.12 \mathrm{mmol})$ dissolved in water $(1 \mathrm{~mL})$ was added and the solution was stirred at rt until full consumption of the starting material was indicated by tlc analysis. After completion of the reaction (1 h), water was added (4 mL) and the solution was extracted with DCM ($2 \times 6 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Product $8 \mathbf{i}$ was utilized without further purification (yield $=159 \mathrm{mg}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27\left(\mathrm{dd}, J_{l}=5.9 \mathrm{~Hz}, J_{2}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.17\left(\mathrm{dd}, J_{l}=5.9\right.$ $\left.\mathrm{Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.41\left(\mathrm{td}, J_{I}=8.3 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.69(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ $(\mathrm{s}, 3 \mathrm{H}), 2.47(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.1,141.1,132.1,124.6,113.9,61.6,32.8,25.3,23.8 \mathrm{ppm}$.

1-methyl-5-methylene-1,5-dihydro-2H-pyrrol-2-one (8j)

Product $\mathbf{8 j}$ was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=3: 1 \rightarrow 1: 1$) to furnish $\mathbf{8 j}$ as a white solid (yield $=104.6 \mathrm{mg}, 48 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.97(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4$, 146.4, 136.7, 125.4, 96.1, 25.2.

1-cyclopropyl-5-methylene-1,5-dihydro-2H-pyrrol-2-one (8k)

Product $8 \mathbf{k}$ was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=3: 1 \rightarrow 1: 1$) to furnish $\mathbf{8 k}$ as a yellow oil (yield $=135 \mathrm{mg}, 50 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07\left(\mathrm{ddd}, J_{l}=5.8, J_{2}=1.6\right.$, $\left.J_{3}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.20(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,146.6,136.7,124.7,97.5,20.9,5.7$ (2C).

Synthesis of substrates 1a' and 4a'

2-Substituted furan 3a ($76 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(6.3 \mathrm{~mL}, 80 \mathrm{mM}$) containing catalytic amounts $(0.1 \mathrm{mM})$ of rose Bengal as photosensitizer. The solution was cooled using an ice bath. Oxygen was gently bubbled through the solutions while they were irradiated with a xenon Variac Eimac Cermax 300 W lamp. After completion of the reactions (4 min) they were warmed to rt and $\mathrm{Me}_{2} \mathrm{~S}(146 \mu \mathrm{~L}, 2.0$ $\mathrm{mmol})$ was added. The solution was stirred at the same temperature. After completion of the reduction, as indicated by tlc analysis (45 min), the corresponding amine (0.55 $\mathrm{mmol}, 60 \mu \mathrm{~L}$ for benzylamine, or $41 \mu \mathrm{~L}$ for allylamine) was added and the reactions were stirred at the same temperature. After the formation of 2-pyrrolidinone of type $\mathbf{3 i}$ (45 min , tlc analysis), the MeOH was replaced with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}$) and TFA ($38 \mu \mathrm{~L}$, 0.5 mmol) was added. The reaction was stirred at the same temperature for 0.5 h . After completion of the reactions, the solvent was removed under reduced pressure and the residues were purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=4: 1$) to afford the corresponding pyrrolidin-2-ones $\mathbf{1 a} \mathbf{a}^{\prime}$ and $\mathbf{4 a ^ { \prime }}$.

(E)-1-benzyl-5-hexylidenepyrrolidin-2-one (1a')

$\xrightarrow{\text { Bn. }}$Product 1a' was synthesized according to the general experimental procedure described above. Yield of 1a' (yellow oil) $=83,5 \mathrm{mg}, 65 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 3 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.59$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-$ $1.20(\mathrm{~m}, 4 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, CDCl_{3}): $\delta=175.4,138.4,136.2,128.3$ (2C), 127.0 (3C), 102.1, 43.4, 31.1, 29.5, 28.8, 26.4, 22.3, 21.1, 13.9 ppm .

(E)-1-allyl-5-hexylidenepyrrolidin-2-one (4a')

Product 4a' was synthesized according to the general experimental procedure described. Yield 4a' $($ yellow oil $)=64,2 \mathrm{mg}, 62 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{q}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.0,138.4,131.3,117.1,102.6,42.4,31.4,29.7,28.8,26.7,22.5,21.3$, 14.0 ppm .

Representative NOE of compound $\mathbf{4 a}^{\prime}$

General procedure for the photocatalytic $\mathbf{E} \rightarrow \mathbf{Z}$ isomerization of compounds of type 1.

1a
1b

To a solution of compounds of type $\mathbf{1}(0.1 \mathrm{mmol}, 25.5 \mathrm{mg}$ for $\mathbf{1 a}, 31.5 \mathrm{mg}$ for $\mathbf{1 b})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL}, 100 \mathrm{mM})$ at rt , the photocatalyst $\left.\mathrm{Ru}(\mathrm{bpy})\right)_{3} \mathrm{Cl}_{2}(0.5 \%, 0.3 \mathrm{mg}$, 0.0005 mmol) was added and argon (balloon) was gently bubbled through the solution for 10 min . Afterwards, the solution was irradiated using blue LED light strips (60 LEDs $/ \mathrm{m}, 10.8 \mathrm{w} / \mathrm{m}, 1000 \mathrm{~lm} / \mathrm{m}, \lambda_{\max }=420 \mathrm{~nm}$) at rt for 4 h . Another time, the reaction was left for 24 h , but the isomerization results were identical. The reaction was monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The solution was concentrated in vacuo. The Z / E ratio was calculated by ${ }^{1} \mathrm{H}$-NMR without further purification. For 2a: $\mathrm{Z} / \mathrm{E}=5.5 / 1$, for $\mathbf{2 b}$: $\mathrm{Z} / \mathrm{E}=6.5 / 1$.
The same experiment for $\mathbf{1 a}$ and $\mathbf{1 b}$ was performed this time using $\operatorname{Ir}(\mathrm{ppy})_{3}$ instead of the ruthenium catalyst and the Z / E ratio after 1 h irradiation was calculated as being 1.1/1 for $\mathbf{2 a}$ and $\mathbf{2 b}$, respectively The reaction was also left for 24 h , but the isomerization results were identical.
(Z)-1-benzyl-5-hexylidene-1,5-dihydro-2H-pyrrol-2-one (2a)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.92\left(\mathrm{~d}, J_{l}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.19\left(\mathrm{~d}, J_{l}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.13(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.24-1.04(\mathrm{~m}, 6 \mathrm{H})$, $0.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1,139.3,137.4$, 132.6, 128.5 (2C), 127.1, 126.8 (2C), 124.0, 116.7, 42.5, 31.1, 29.7, 27.5, 22.3, 13.9 ppm.

(Z)-1-(3,4-dimethoxybenzyl)-5-hexylidene-1,5-dihydro-2H-pyrrol-2-one (2b)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.91(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 2.21(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.27-1.09(\mathrm{~m}, 6 \mathrm{H}), 0.81(\mathrm{t}, J=7.1 \mathrm{~Hz}$,

3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,149.2,148.0,140.5,138.6,130.6$, $121.3,119.6,117.8,111.3,109.1,55.9,55.8,43.9,31.3,29.5,27.0,22.2,13.8 \mathrm{ppm}$.
Representative NOE of compound $\mathbf{2 b}$

General procedure for the photocatalytic transformation of compounds of type 4 and 6 into compounds of type 5 and 7, respectively. Intramolecular [2+2] cycloaddition.

To a solution of compounds of type $\mathbf{4}$ or $\mathbf{6}(0.1 \mathrm{mmol}, 20.5 \mathrm{mg}$ for $\mathbf{4 a}, 13.5 \mathrm{mg}$ for $\mathbf{4 b}$, 14.9 mg for $\mathbf{4 c}, 18.9 \mathrm{mg}$ for $\mathbf{4 d}, 30.3 \mathrm{mg}$ for $\mathbf{4 e}, 25.3 \mathrm{mg}$ for $\mathbf{6 a}, 29.5 \mathrm{mg}$ for $\mathbf{6 b}, 31.1$ mg for $\mathbf{6 c}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL}, 100 \mathrm{mM})$ at rt , the photocatalyst $\operatorname{Ir}(\mathrm{ppy})_{3}(0.5 \%, 0.3$ $\mathrm{mg}, 0.0005 \mathrm{mmol}$) was added and argon (balloon) was gently bubbled through the solution for 10 min . Afterwards, the solution was irradiated using blue LED light strips ($60 \mathrm{LEDs} / \mathrm{m}, 10.8 \mathrm{w} / \mathrm{m}, 1000 \mathrm{~lm} / \mathrm{m}, \lambda_{\max }=420 \mathrm{~nm}$) at the same temperature. After completion of the reaction, as indicated by tlc analysis (8 h towards 5 or 4 h towards 7), the solution was concentrated in vacuo and the product of type $\mathbf{5}$ or $\mathbf{7}$ was purified by flash column chromatography. Use of white LED light results to higher reaction times.

1-pentyl-2,3-dihydro-1H,5H-2,7a-methanopyrrolizin-5-one (5a)

Product 5a was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=1: 1 \rightarrow 1: 5$) to afford
a $1.6 / 1$ mixture of diastereoisomers of $\mathbf{5 a}$ as a yellow solid (yield $=19.3 \mathrm{mg}, 94 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90$ ($\mathrm{d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 6.88 (d, $J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}$ for minor isomer), 6.32 (dd, $J_{l}=5.8 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 6.29 (dd, $J_{l}=5.8 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), $3.50(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 3.46 (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), $3.38(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), 3.33 ($\mathrm{d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), $2.90(\mathrm{~m}, 1 \mathrm{H}$ for minor isomer), 2.81 ($\mathrm{m}, 1 \mathrm{H}$ for major isomer), 2.77 (ddd, $J_{l}=7.5 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, J_{3}=0.6 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 2.31 (td, $J_{l}=6.9 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), 2.07 (ddd, $J_{l}=6.9 \mathrm{~Hz}$, $J_{2}=3.0 \mathrm{~Hz}, J_{3}=0.8 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), $1.99(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 1.70 ($\mathrm{m}, 2 \mathrm{H}$ for major isomer), $1.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 1.49 (d, $J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}$ for minor isomer), 1.33-1.08 ($\mathrm{m}, 6 \mathrm{H}$ for major plus 6 H for minor isomer), $0.94(\mathrm{~m}, 2 \mathrm{H}$ for minor isomer), $0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$ for major isomer), $0.83(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$ for minor isomer); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6$ (minor), 163.8 (major), 140.7 (major), 140.6 (minor), 135.8 (minor), 135.6 (major), 80.5 (minor), 80.3 (major), 59.8 (major), 54.1 (minor), 46.4 (major), 42.9 (major), 42.8 (minor), 41.9 (minor), 41.8 (minor plus major), 31.7 (major), 31.6 (minor), 28.5 (major), 26.9 (minor), 26.7 (major), 24.1 (minor), 22.5 (major), 22.4 (minor), 14.0 (major), 13.9 (minor); HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}$, 206.1539; found, 206.1541.

2,3-dihydro-1H,5H-2,7a-methanopyrrolizin-5-one (5b)

Product 5b was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, EtOAc) to afford $\mathbf{5 b}$ as a yellow oil (yield $=12.8$ $\mathrm{mg}, 95 \%)$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.32\left(\mathrm{dd}, J_{l}=5.8 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, CDCl_{3}) $\delta 164.0,141.2,135.6,79.0,45.1,44.9$ (2C), 39.8 ; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}, 136.0757$; found, 136.0755.

1-methyl-2,3-dihydro-1H,5H-2,7a-methanopyrrolizin-5-one (5c)

Product 5c was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, EtOAc) to afford a $2 / 1$ mixture of diastereoisomers of $\mathbf{5 c}$ as a yellow solid (yield $=13.7 \mathrm{mg}, 92 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88$ (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 6.83 (d, $J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}$ for minor isomer), 6.31 (dd, $J_{l}=5.8 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 6.30 (dd, $J_{l}=5.8 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), $3.48(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 3.45 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 3.37 (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), 3.33 ($\mathrm{d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), 2.85 ($\mathrm{m}, 1 \mathrm{H}$ for minor isomer), 2.80 (ddd, $J_{1}=7.6 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, J_{3}=0.7 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), $2.75(\mathrm{~m}, 1 \mathrm{H}$ for major isomer), $2.43\left(\mathrm{qd}, J_{I}=6.4 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for minor isomer), $2.08(\mathrm{~m}, 1 \mathrm{H}$ for major plus 1 H for minor isomer), $1.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 1.52 (d, $J=7.0 \mathrm{~Hz}$, 1 H for minor isomer), 1.33 ($\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$ for major isomer), 0.58 ($\mathrm{d}, J=6.4 \mathrm{~Hz}$,

3H for minor isomer); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6$ (minor), 163.8 (major), 140.2 (major), 140.0 (minor), 136.2 (minor), 135.9 (major), 80.6 (minor plus major), 53.5 (major), 48.2 (minor), 46.4 (major), 44.1 (major), 42.7 (minor), 42.6 (minor), 41.5 (minor), 41.3 (major), 11.8 (major), 8.7 (minor); HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}, 150.0913$; found, 150.0915.
Representative NOE of compound 5c

1-(but-3-en-1-yl)-2,3-dihydro-1H,5H-2,7a-methanopyrrolizin-5-one (5d)

Product 5d was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=1: 1 \rightarrow 1: 5$) to afford a $1.7 / 1$ mixture of diastereoisomers of $\mathbf{5 d}$ as a yellow solid (yield $=16 \mathrm{mg}$, $85 \%)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.92(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 6.88 (d, $J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}$ for minor isomer), 6.33 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), $6.30(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, 1 H for minor isomer), $5.78(\mathrm{~m}, 1 \mathrm{H}$ for major isomer), $5.68(\mathrm{~m}, 1 \mathrm{H}$ for minor isomer), 5.03-4.93 (m, 2H for major plus 2 H for minor isomer), $3.51(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 3.47 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 3.39 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), 3.35 ($\mathrm{d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), $2.92(\mathrm{~m}, 1 \mathrm{H}$ for minor isomer), $2.85\left(\mathrm{~m}, 1 \mathrm{H}\right.$ for major isomer), $2.79\left(\mathrm{dd}, J_{l}=7.5, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for major isomer), 2.34 (td, $J_{l}=6.9 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), $2.09(\mathrm{~m}, 2 \mathrm{H}$ for major plus 1 H for minor isomer), $2.03(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 1.90 (q, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$ for major isomer), $1.83(\mathrm{~m}, 1 \mathrm{H}$ for major plus 2 H for minor isomer), $1.63(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), $1.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), 1.07 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$ for minor isomer); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6$ (minor), 163.8 (major), 140.5 (minor plus major), 137.7 (minor), 137.4 (major), 135.9 (minor), 135.8 (major), 115.5 (major), 115.2 (minor), 80.4 (minor), 80.2 (major), 59.3 (major), 53.3 (minor), 46.4 (major), 42.9 (major), 42.8 (minor), 42.0 (minor), 41.9 (minor plus major), 32.8 (major), 31.3 (minor), 26.1 (major), 23.3 (minor); HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}, 190.1226$; found, 190.1228.

1-(3-iodopropyl)-2,3-dihydro-1H,5H-2,7a-methanopyrrolizin-5-one (5e)

Product 5e was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=1: 1 \rightarrow 1: 5$) to afford a $1.7 / 1$ mixture of diastereoisomers of $\mathbf{5 e}$ as a yellow solid (yield $=28.5 \mathrm{mg}$, 94\%).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90$ (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 6.87 (d, $J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}$ for minor isomer), 6.31 (dd, $J_{l}=5.8 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 6.29
(dd, $J_{l}=5.8 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), $3.49\left(\mathrm{dd}, J_{l}=9.5 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for major isomer), $3.45\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for major isomer), 3.38 ($\mathrm{dd}, J_{l}=9.9 \mathrm{~Hz}$, $J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), 3.34 (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), 3.18 (m , 2 H for major isomer), 3.06 ($\mathrm{m}, 2 \mathrm{H}$ for minor isomer), 2.92 ($\mathrm{m}, 1 \mathrm{H}$ for minor isomer), $2.84\left(\mathrm{~m}, 1 \mathrm{H}\right.$ for major isomer), 2.78 (ddd, $J_{1}=7.8 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, J_{3}=1.0 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), 2.31 (td, $J_{l}=6.9 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), 2.08 (ddd, $J_{l}=7.0 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, J_{3}=1.0 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), $2.00(\mathrm{~m}, 1 \mathrm{H}$ for major isomer), 1.87-1.78 (m, 3 H for major plus 2 H for minor isomer), $1.64(\mathrm{~m}, 1 \mathrm{H}$ for major isomer), $1.63(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$ for major isomer), $1.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$ for minor isomer), 1.07 ($\mathrm{m}, 2 \mathrm{H}$ for minor isomer); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4$ (minor), 163.6 (major), 140.3 (minor), 140.2 (major), 136.1 (minor), 136.0 (major), 80.2 (minor), 80.1 (major), 58.6 (major), 52.6 (minor), 46.3 (major), 42.9 (major), 42.8 (minor), 41.9 (minor plus major), 41.8 (manor), 32.4 (major), 31.1 (minor), 27.7 (major), 25.2 (minor), 6.0 (major), 5.7 (minor); HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{15}$ INO, 304.0193; found, 304.0193.

1'-benzylspiro[bicyclo[3.2.0]heptane-6,2'-pyrrol]-5'(1'H)-one (7a)

 Product 7a was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=3: 1 \rightarrow 1: 1$) to afford 7a as a yellow oil (yield $=24.3 \mathrm{mg}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ $(\mathrm{m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86\left(\mathrm{td}, J_{l}=8.3 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.25$ (ddd, $\left.J_{l}=14.0 \mathrm{~Hz}, J_{2}=9.7 \mathrm{~Hz}, J_{3}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.91-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.71\left(\mathrm{dd}, J_{l}=14.0 \mathrm{~Hz}\right.$, $\left.J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.59\left(\mathrm{dd}, J_{l}=13.0 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.47(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,148.3,139.1,128.6$ (2C), 127.3 (2C), 127.1, 125.4, 69.0, 46.2, $42.9,32.6,32.3,31.6,30.2,25.6$; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}$, 254.1539; found, 254.1536 .

Representative NOEs

7-acetyl-1'-benzylspiro[bicyclo[3.2.0]heptane-6,2'-pyrrol]-5'(1'H)-one (7b)

Product 7b was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=3: 1 \rightarrow 1: 1$) to afford 7 b as a yellow oil (yield $=27.1 \mathrm{mg}, 92 \%, \mathrm{dr}=20: 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 4 \mathrm{H}), 6.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.60$
$(\mathrm{m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.5,170.5,147.9,138.0$, 128.6 (2C), 127.1, 126.9, 126.8 (2C), 72.0, 55.2, 43.9, 43.0, 34.9, 31.7, 29.4, 29.0, 25.9; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}$, 296.1645; found, 296.1642.
methyl 1'-benzyl-5'-oxo-1',5'-dihydrospiro[bicyclo[3.2.0]heptane-6,2'-pyrrole]-7carboxylate (7c)

+

Product 7c was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : EtOAc $=3: 1 \rightarrow$ $1: 1$) to afford 7 c as a yellow oil (yield $=27.1 \mathrm{mg}, 95 \%, \mathrm{dr}=20: 1$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9$, 170.7, 147.1, 138.3, 128.5 (2C), 127.0, 126.8 (2C), 126.5, 71.3, 52.2, 47.3, 43.7, 43.2, 36.6, 31.7, 29.2, 25.7; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3}, 312.1594$; found, 312.1594 .
Representative NOEs

General procedure for the photocatalytic transformation of compounds of type 8 into compounds of type 9 . Intermolecular [2+2] cycloaddition.

8a

8c

8b

9a

9d

9 e

9c

To a solution of compounds of type $\mathbf{8}(0.1 \mathrm{mmol}, 18.5 \mathrm{mg}$ for $\mathbf{8 a}, 30.7 \mathrm{mg}$ for $\mathbf{8 b}$, 25.9 mg for $\mathbf{8 c}, 21.3 \mathrm{mg}$ for $\mathbf{8 d}, 36.7 \mathrm{mg}$ for $\mathbf{8 e})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL}, 100 \mathrm{mM})$ at rt , the photocatalyst $\operatorname{Ir}(\mathrm{ppy})_{3}(0.5 \%, 0.3 \mathrm{mg}, 0.0005 \mathrm{mmol})$ was added and argon (balloon) was gently bubbled through the solution for 10 min . Afterwards, the corresponding α, β-unsaturated carbonyl compound ($1 \mathrm{mmol}, 90.6 \mu \mathrm{~L}$ for methyl acrylate, $66.8 \mu \mathrm{~L}$ for acrolein, $83.3 \mu \mathrm{~L}$ for methyl vinyl ketone) was added and the solution was irradiated using blue LED light strips (60 LEDs/m, $10.8 \mathrm{w} / \mathrm{m}, 1000$ $1 \mathrm{~m} / \mathrm{m}, \lambda_{\max }=420 \mathrm{~nm}$) at the same temperature. After completion of the reaction, as indicated by tlc analysis (20 h), the solution was concentrated in vacuo and the product of type 9 was purified by flash column chromatography. Use of white LED light results to higher reaction times.

5-benzyl-6-oxo-5-azaspiro[3.4]oct-7-ene-1-carbaldehyde (9a)

$\mathrm{Bn}_{\sim}{ }^{\circ}$ Product 9a was synthesized according to the general experimental procedure described above. The reaction afforded a $1.6 / 1$ mixture of diastereoisomers of $\mathbf{9 a}$. The crude product was purified by flash column chromatography (silica gel, petroleum ether : EtOAc $=2: 1$) to afford a single diastereoisomer (the major isomer of the reaction) of $\mathbf{9 a}$ as a yellow oil. The isolation of a single diastereoisomer of $\mathbf{9 a}$ was the outcome of an epimerization that occurred on silica. Yield $=19.8 \mathrm{mg}, 82 \%$. The reaction was tested also with PC4 (0.5%) and the result was exactly the same.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.25(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.46(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46\left(\mathrm{td}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=9.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.93$ $(\mathrm{m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5,170.5,147.5,137.7$, 128.9 (2C), 127.6, 126.9 (2C), 125.7, 70.1, 52.0, 42.4, 26.4, 13.9; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}$, 242.1176; found, 242.1172 .
Representative NOE

1-acetyl-5-benzyl-5-azaspiro[3.4]oct-7-en-6-one (9b)

Product 9b was synthesized according to the general experimental procedure described above. The reaction afforded a $1.6 / 1$ mixture of diastereoisomers of $\mathbf{9 b}$. The crude product was purified by flash column chromatography (silica gel, petroleum ether : EtOAc $=4: 1$) to afford a single diastereoisomer (the major isomer of the reaction) of $\mathbf{9 b}$ as a yellow oil. The isolation of a single diastereoisomer of $\mathbf{9 b}$ was the outcome of an epimerization that occured on silica. Yield $=19.1 \mathrm{mg}, 75 \%$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H})$, $7.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{q}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.89$ $(\mathrm{m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.4,170.6$, 148.0, 137.9, 128.8 (2C), 128.0 (2C), 127.7, 125.6, 70.6, 52.5, 42.7, 28.7, 25.4, 14.2; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}, 256.1332$; found, 256.1330 .

Representative NOE

1-acetyl-5-((6-bromobenzo[d][1,3]dioxol-5-yl)methyl)-5-azaspiro[3.4]oct-7-en-6one (9c)

Product 9c was synthesized according to the general experimental procedure described above. The reaction afforded a $1.6 / 1$ mixture of diastereoisomers of $\mathbf{9 c}$. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=3: 1$) to afford a single diastereoisomer (the major isomer of the reaction) of $\mathbf{9 c}$ as a yellow oil. The isolation of a single diastereoisomer of $9 \mathbf{c}$ was the outcome of an epimerization that occured on silica. Yield $=30.9 \mathrm{mg}, 82 \%$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.21$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.95 (m, 2H), 4.88 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.76 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.62(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{q}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}$,

1 H), $1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.3,170.6,148.3,148.1,148.0$, 130.3, 125.5, 113.2, 112.4, 109.6, 101.9, 70.5, 52.6, 41.9, 28.8, 25.6, 14.3; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrNO}_{4}, 378.0336$; found, 378.0338.

methyl 5-benzyl-6-oxo-5-azaspiro[3.4]oct-7-ene-1-carboxylate (9d)

Product 9d was synthesized according to the general experimental procedure described above. The reaction afforded a $1 / 1$ mixture of diastereoisomers of $\mathbf{9 d}$. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=4: 1$) to afford a $1 / 1$ mixture of diastereoisomers of 9d as a yellow oil (yield $=19 \mathrm{mg}, 70 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$ for one isomer), 7.32-7.19 (m, 5 H for both isomers), $7.17(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$ for one isomer), $6.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$ for one isomer), 6.19 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$ for one isomer), 5.09 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$ for one isomer), $4.75(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}$ for one isomer), $4.70(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}$ for one isomer), 4.24 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$ for one isomer), 3.58 ($\mathrm{s}, 3 \mathrm{H}$ for one isomer), 3.53 (s, 3 H for one isomer), $3.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ for one isomer), $3.42(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$ for one isomer), 2.46 ($\mathrm{m}, 1 \mathrm{H}$ for one isomer), 2.37-2.19 ($\mathrm{m}, 2 \mathrm{H}$ for both isomers), 2.04 ($\mathrm{m}, 1 \mathrm{H}$ for one isomer), $1.90\left(\mathrm{~m}, 1 \mathrm{H}\right.$ for both isomers); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6$ (one isomer), 171.2 (one isomer), 170.8 (both isomers), 151.0 (one isomer), 148.0 (one isomer), 138.1 (one isomer), 137.5 (one isomer), 128.6 (2C for one isomer), 128.5 (2 C for one isomer), 127.3 (one isomer), 127.1 (2 C for one isomer), 127.1 (one isomer), 126.8 (2 C for one isomer), 125.4 (one isomer), 124.9 (one isomer), 70.0 (both isomers), 52.1 (one isomer), 51.7 (one isomer), 45.9 (one isomer), 44.6 (one isomer), 43.3 (one isomer), 42.5 (one isomer), 27.3 (one isomer), 26.4 (one isomer), 17.6 (one isomer), 16.0 (one isomer); HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{3}, 272.1281$; found, 272.1280.

3-methyl-6-oxo-5-phenethyl-5-azaspiro[3.4]oct-7-ene-1-carbaldehyde (9e)

Product 9 e was synthesized according to the general experimental procedure described above. The reaction afforded a $1.6 / 1$ mixture of diastereoisomers of $\mathbf{9 e}$. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=2: 1$) to afford a single diastereoisomer (the major isomer of the reaction) of $\mathbf{9 e}$ as a yellow oil. The isolation of a single diastereoisomer of $\mathbf{9 e}$ was the outcome of an epimerization on silica. Yield $=19.8 \mathrm{mg}, 68 \%$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.97(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.07$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (ddd, $\left.J_{l}=13.9 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, J_{3}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.59\left(\mathrm{dt}, J_{l}=13.9 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 3.19 (dt, $\left.J_{l}=13.6 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.95(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.01\left(\mathrm{dt}, J_{l}=11.5\right.$ $\left.\mathrm{Hz}, J_{2}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.86(\mathrm{q}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}) 0.78(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.7,170.8,144.7,139.2,129.1$ (2C), 128.7 (2C), 127.6, 126.7, $73.5,50.1,41.9,35.2,34.4,22.2,15.4$; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}, 270.1489$; found, 270.1491.

Representative NOE

3-(3-iodopropyl)-6-oxo-5-phenethyl-5-azaspiro[3.4]oct-7-ene-1-carbaldehyde (9f)

Product 9 f was synthesized according to the general experimental procedure described above. The reaction afforded a $1.6 / 1$ mixture of diastereoisomers of $9 \mathbf{9 f}$. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=2: 1$) to afford a single diastereoisomer (the major isomer of the reaction) of $\mathbf{9 f}$ as a yellow oil. The isolation of a single diastereoisomer The isolation of a single diastereoisomer of $9 \mathbf{a}$ was the outcome of an epimerization on silica. Yield $=25.4 \mathrm{mg}$, 60\%.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.93(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}$, $3 \mathrm{H}), 7.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74\left(\mathrm{ddd}, J_{l}=13.9 \mathrm{~Hz}, J_{2}=7.4\right.$ $\left.\mathrm{Hz}, J_{3}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.57\left(\mathrm{dt}, J_{l}=13.9 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.20\left(\mathrm{dt}, J_{l}=13.6 \mathrm{~Hz}\right.$, $\left.J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.02(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 1.99\left(\mathrm{dt}, J_{l}=11.5\right.$ $\left.\mathrm{Hz}, J_{2}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.89(\mathrm{q}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}$, $1 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.5, 170.7, 144.5, 139.2, 129.1 (2C), 128.7 (2C), 127.8, 126.7, 73.2, 49.7, 42.1, 39.2, 34.3, 32.2, 30.6, 20.7, 5.7; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{INO}_{2}, 424.0768$; found, 424.0771.

5-(3,4-dimethoxyphenethyl)-6-oxo-5-azaspiro[3.4]oct-7-ene-1-carbaldehyde (9g)
 Product 9g was synthesized according to the general experimental procedure described above. The reaction afforded a $1.6 / 1$ mixture of diastereoisomers of $\mathbf{9 g}$. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=2: 1$) to afford a single diastereoisomer (the major isomer of the reaction) of 9 g as a yellow oil. The isolation of a single diastereoisomer was the outcome of an epimerization on silica. Yield $=22 \mathrm{mg}, 70 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.70\left(\mathrm{ddd}, J_{l}=13.9 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, J_{3}=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.58\left(\mathrm{dt}, J_{I}=13.9 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.18(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08\left(\mathrm{dt}, J_{I}=13.7 \mathrm{~Hz}\right.$, $\left.J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.96\left(\mathrm{ddd}, J_{I}=13.7 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, J_{3}=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.22(\mathrm{~m}, 2 \mathrm{H}), 1.85$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.4,170.7,149.1,147.9,147.0,131.8$, 126.1, 120.9, 112.4, 111.5, 70.0, 56.0 (2C), 52.1, 42.1, 33.9, 26.4, 14.0; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}, 316.1543$; found, 316.1547.

The purified compound $\mathbf{9 g}(20 \mathrm{mg}, 0.063 \mathrm{mmol})$ was dissolved in $\mathrm{HCOOH}(300 \mu \mathrm{~L})$ at rt and the solution was stirred for 3 h . After completion of the reaction, as indicated by tlc analysis, the solution was concentrated in vacuo and the crude product 10a was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=1: 2$). Yield $=18.4 \mathrm{mg}, 92 \%$.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.72(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (s, 1H), $6.60(\mathrm{~s}, 1 \mathrm{H}), 6.16$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.43 (dd, $\left.J_{l}=13.3 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 3.16 (ddd, $J_{l}=13.3 \mathrm{~Hz}, J_{2}=11.8 \mathrm{~Hz}, J_{3}=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.93 (ddd, $\left.J_{l}=16.1 \mathrm{~Hz}, J_{2}=11.8 \mathrm{~Hz}, J_{3}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.66\left(\mathrm{dd}, J_{l}=16.1 \mathrm{~Hz}\right.$, $\left.J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.43(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 201.4,170.8,151.5,148.3,147.7,129.2,126.5,125.3,112.2,109.2,68.2$, 56.2, 55.9, 43.3, 37.9, 34.8, 28.9, 15.9; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}, 316.1543$; found, 316.1548.

General procedure for the photocatalytic transformation of compounds of type 8 into compounds of type $\mathbf{1 0 - 1 2}$

To a solution of compounds of type $\mathbf{8}(0.1 \mathrm{mmol}, 18.5 \mathrm{mg}$ for $\mathbf{8 a}, 25.9 \mathrm{mg}$ for $\mathbf{8 c}, 32.9$ mg for $\mathbf{8 f}, 16.3 \mathrm{mg}$ for $\mathbf{8 g}, 16.7 \mathrm{mg}$ for $\mathbf{8 i}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL}, 100 \mathrm{~mm})$ at rt , the photocatalyst $\operatorname{Ir}(\mathrm{ppy})_{3}(0.5 \%, 0.3 \mathrm{mg}, 0.0005 \mathrm{mmol})$ was added and argon (balloon) was gently bubbled through the solution for 10 min . Afterwards, the corresponding α, β-unsaturated carbonyl compound ($1 \mathrm{mmol}, 66.8 \mu \mathrm{~L}$ for acrolein, $83.3 \mu \mathrm{~L}$ for methyl vinyl ketone, $83.3 \mu \mathrm{~L}$ for crotonaldehyde) was added and the solution was irradiated using blue LED light strips (60 LEDs $/ \mathrm{m}, 10.8 \mathrm{w} / \mathrm{m}, 1000 \mathrm{~lm} / \mathrm{m}, \lambda_{\max }=420$ nm) at the same temperature. After completion of the reaction as indicated by tlc analysis (20 h), the solution was concentrated in vacuo and HCOOH was added (0.5 mL). Only in the case of the reaction towards $\mathbf{1 1 b}$ was the crude mixture dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and PTSA. $\mathrm{H}_{2} \mathrm{O}(38 \mathrm{mg}, 0.2 \mathrm{mmol})$ added. After completion of the reaction as indicated by tlc analysis (3 h), the solution was concentrated in vacuo and the final products of type $\mathbf{1 0 - 1 2}$ were purified by flash column chromatography. In case of the reaction towards $\mathbf{1 1 b}$, after completion of the reaction (3 h), a saturated aqueous solution of $\mathrm{NaHCO}_{3}(0.8 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

4-(8,9-dimethoxy-3-oxo-5,6-dihydropyrrolo[2,1-a]isoquinolin-10b(3H)-yl)butanal (10a)

The data of 10a were reported above. Yield $=19.5 \mathrm{mg}, 62 \%$.

8,9-dimethoxy-10b-(4-oxopentyl)-6,10b-dihydropyrrolo[2,1-a]isoquinolin-3(5H)one (10b)

Product 10b was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=1: 2$) to afford $\mathbf{1 0 b}$ as a yellow oil (yield $=22.7$ $\mathrm{mg}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.15$ (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42\left(\mathrm{dd}, J_{l}=13.4 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 3.17 (ddd, $\left.J_{l}=13.4 \mathrm{~Hz}, J_{2}=11.9 \mathrm{~Hz}, J_{3}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.93$ (ddd, $J_{l}=16.2 \mathrm{~Hz}, J_{2}=11.9$ $\left.\mathrm{Hz}, J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.65\left(\mathrm{dd}, J_{I}=16.2 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.39(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$, 1.99 (ddd, $\left.J_{l}=14.2 \mathrm{~Hz}, J_{2}=11.2 \mathrm{~Hz}, J_{3}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.90\left(\mathrm{ddd}, J_{l}=14.2 \mathrm{~Hz}, J_{2}=11.4\right.$ $\left.\mathrm{Hz}, J_{3}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.0,170.8$, $151.6,148.2,147.6,129.3,126.4,125.2,112.1,109.1,68.3,56.2,55.9,42.8,37.9$, 34.7, 30.0, 29.0, 17.4; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}, 330.1700$; found, 330.1698 .

4-(8,9-dimethoxy-2-methyl-3-oxo-3,5,6,10b-tetrahydropyrrolo[2,1-a]isoquinolin-10b-yl)octanal (10c)

Product 10c was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=1: 1$) to afford a $1 / 1$ mixture of diastereoisomers of 10 c as a yellow oil (yield $=23.3 \mathrm{mg}, 60 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66$ ($\mathrm{s}, 1 \mathrm{H}$ for one isomer), 9.58 ($\mathrm{s}, 1 \mathrm{H}$ for one isomer), $6.87(\mathrm{~m}, 1 \mathrm{H}$ for one isomer), $6.85(\mathrm{~m}, 1 \mathrm{H}$ for one isomer), $6.69(\mathrm{~s}, 1 \mathrm{H}$ for one isomer), 6.67 ($\mathrm{s}, 1 \mathrm{H}$ for one isomer), $6.62(\mathrm{~s}, 1 \mathrm{H}$ for both isomers), $4.34(\mathrm{~m}, 1 \mathrm{H}$ for both isomers), 3.89 ($\mathrm{s}, 3 \mathrm{H}$ for one isomer), 3.87 ($\mathrm{s}, 3 \mathrm{H}$ for one isomer), 3.85 ($\mathrm{s}, 3 \mathrm{H}$ for both isomers), 3.32 ($\mathrm{m}, 1 \mathrm{H}$ for both isomers), $2.89(\mathrm{~m}, 1 \mathrm{H}$ for both isomers), $2.75(\mathrm{~m}$, 1 H for both isomers), 2.41 ($\mathrm{m}, 1 \mathrm{H}$ for both isomers), 2.29 ($\mathrm{m}, 1 \mathrm{H}$ for both isomers), $1.89(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}$ for both isomers), $1.87(\mathrm{~m}, 1 \mathrm{H}$ for one isomer), $1.77(\mathrm{~m}, 1 \mathrm{H}$ for one isomer), $1.63(\mathrm{~m}, 1 \mathrm{H}$ for one isomer), $1.55(\mathrm{~m}, 1 \mathrm{H}$ for one isomer), $1.40(\mathrm{~m}, 1 \mathrm{H}$ for both isomers), $1.28-1.02$ ($\mathrm{m}, 6 \mathrm{H}$ for both isomers), $0.83(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$ for one isomer), $0.77\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$ for one isomer); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.8$ (one isomer), 201.7 (one isomer), 172.9 (one isomer), 172.8 (one isomer), 148.2 (one isomer), 148.1 (one isomer), 147.5 (both isomers), 145.2 (one isomer), 145.0 (one isomer), 134.1 (both isomers), 128.7 (both isomers), 126.3 (one isomer), 126.2 (one isomer), 112.0 (both isomers), 109.8 (one isomer), 109.5 (one isomer), 69.4 (both isomers), 56.2 (both isomers), 55.8 (both isomers), 45.2 (one isomer), 45.0 (one isomer), 43.1 (both isomers), 37.2 (one isomer), 37.1 (one isomer), 31.7 (one isomer), 31.6 (one isomer), 30.5 (one isomer), 29.4 (one isomer), 28.3 (both isomers), 23.6 (one isomer), 23.0 (one isomer), 22.6 (one isomer), 21.9 (one isomer), 13.9 (one isomer), 13.8 (one isomer), 11.1 (one isomer), 10.9 (one isomer); HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{4}, 386.2326$; found, 386.2324.

1-methyl-2-oxo-10-(3-oxobutyl)-1-azaspiro[4.5]dec-3-en-7-yl formate (11a)

Product 11a was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=1: 2$) to afford a single diastereoisomer of 11a as a yellow oil (yield $=18.1 \mathrm{mg}, 65 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.7,169.9,160.1,147.2,128.5,70.2,69.8$, $40.3,39.2,39.1,31.0,29.9,25.8,23.8,22.4$; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4}, 280.1543$; found, 280.1543.

Representative NOEs

1-methyl-10-(3-oxobutyl)-6-oxa-1-azaspiro[4.5]dec-3-en-2-one (11b)

Product 11b was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=1: 1$) to afford a single diastereoisomer of $\mathbf{1 1 b}$ as a yellow oil (yield $=17.8 \mathrm{mg}$, $75 \%)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ $(\mathrm{m}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.7$, 169.4, 142.9, 129.6, 95.0, 65.7, 40.2, 38.0, 29.9, 26.5, 25.6, 23.7, 23.5; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{3}, 238.1438$; found, 238.1437.

Representative NOE

(E)-4-(1-benzyl-5-oxo-1,5-dihydro-2H-pyrrol-2-ylidene)butanal (12a)

Product 12a was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : EtOAc $=5: 1$) to furnish a single isomer of 12a as a brown oil (yield $=15.7 \mathrm{mg}, 65 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.28\left(\mathrm{dd}, J_{l}=6.0 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.26$ $(\mathrm{m}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.4,170.0$, 140.1, 137.1, 132.4, 128.6 (2C), 127.2, 126.7 (2C), 124.6, 113.1, 43.8, 42.6, 20.1; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}, 242.1176$; found, 242.1175 .
Representative NOE

(E)-1-benzyl-5-(4-oxopentylidene)-1,5-dihydro-2H-pyrrol-2-one (12b)

Coses)
Product 12b was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : EtOAc $=5: 1$) to furnish a single isomer of 12b as a brown oil (yield $=18.4 \mathrm{mg}, 72 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22$ $(\mathrm{m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.26\left(\mathrm{dd}, J_{l}=6.0 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.25(\mathrm{~m}, 1 \mathrm{H})$, $4.80(\mathrm{~s}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.0,170.1$, 139.9, 137.2, 132.6, 128.5 (2C), 127.2, 126.8 (2C), 124.4, 113.9, 43.2, 42.5, 30.1, 21.6; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}, 256.1332$; found, 256.1331.
((E)-4-(1-benzyl-5-oxo-1,5-dihydro-2H-pyrrol-2-ylidene)-3-methylbutanal (12c)

Product 12c was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=4: 1$) to furnish the E isomer of $\mathbf{1 2 c}$ as a brown oil (yield $=15.6 \mathrm{mg}, 61 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.59(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.28\left(\mathrm{dd}, J_{l}=6.0 \mathrm{~Hz}, J_{2}=1.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.08\left(\mathrm{dd}, J_{l}=10.4 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.86(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}$, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 2.45\left(\mathrm{ddd}, J_{l}=17.0 \mathrm{~Hz}, J_{2}=6.2 \mathrm{~Hz}, J_{3}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.39$ (ddd, $\left.J_{l}=17.0 \mathrm{~Hz}, J_{2}=7.3 \mathrm{~Hz}, J_{3}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.5,170.0,140.1,138.8,137.1,132.8,128.6$ (2C), 127.2, 126.6 (2C), 124.7, 119.0, 50.8, 42.5, 27.4, 21.8; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}$, 256.1332; found, 256.1335.

General procedure for the photocatalytic transformation of compounds of type 8 into compounds of type 13

To a solution of compounds of type $\mathbf{8}(0.1 \mathrm{mmol}, 18.5 \mathrm{mg}$ for $\mathbf{8 a}, 10.9 \mathrm{mg}$ for $\mathbf{8 j}, 13.5$ mg for $\mathbf{8 k})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL}, 100 \mathrm{mM})$ at rt , the photocatalyst $\operatorname{Ir}(\mathrm{ppy})_{3}(0.5 \%, 0.3$ $\mathrm{mg}, 0.0005 \mathrm{mmol}$) was added and argon (balloon) was gently bubbled through the solution for 10 min . Afterwards, 2,3-dimethylbutadiene ($40.5 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) was added and the solution was irradiated using blue LED light strips (60 LEDs/m, 10.8 $\left.\mathrm{w} / \mathrm{m}, 1000 \mathrm{~lm} / \mathrm{m}, \lambda_{\max }=420 \mathrm{~nm}\right)$ at the same temperature. After completion of the reaction as indicated by tlc analysis (20 h), the solution was concentrated in vacuo and the product of type $\mathbf{1 3}$ was purified by flash column chromatography.

1-benzyl-7,8-dimethyl-1-azaspiro[4.5]deca-3,7-dien-2-one (13a)

Product 13a was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=5: 1$) to furnish 13a as a brown oil (yield $=19.8 \mathrm{mg}, 74 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.18 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (d, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.86\left(\mathrm{td}, J_{l}=12.1 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.54$ (s, 3H), $1.52(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9$, 152.1, 138.7, 128.4 (2C), 127.4 (2C), 127.0, 125.3, 124.7, 123.3, 67.4, 42.3, 38.2, 31.3, 31.1, 19.0, 18.5; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}, 268.1696$; found, 268.1693.

1,7,8-trimethyl-1-azaspiro[4.5]deca-3,7-dien-2-one (13b)

 Product 13b was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=4: 1$) to furnish 13b as a brown oil (yield $=13.7 \mathrm{mg}, 72 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17$ (d, $\left.J=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.10$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (s, $3 \mathrm{H}), 2.51(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 2.00\left(\mathrm{td}, J_{l}=12.0 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $1.67(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~d}, \mathrm{~J}=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,151.5,125.7,124.9,123.2,66.3,37.0,30.9,30.0,23.9,19.1$, 18.6; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}, 192.1383$; found, 192.1381 .

1-cyclopropyl-7,8-dimethyl-1-azaspiro[4.5]deca-3,7-dien-2-one (13c)

Product 13c was synthesized according to the general experimental procedure described above. The crude product was purified by flash column chromatography (silica gel, petroleum ether : $\mathrm{EtOAc}=4: 1$) to furnish 13c as a brown oil (yield $=15.2 \mathrm{mg}, 70 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (d, J=16.7 Hz, 1H), 2.27 (m, 2H), 2.19 (m, 2H), 1.67 (s, 3H), 1.64 (s, 3H), 1.56 (d, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 171.8,151.4,126.0,124.7,123.6,68.4,38.3,31.3$ (2C), 21.3, 19.2, 18.5, 5.1, 5.0; HRMS (TOF ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}, 218.1539$; found, 218.1540.

Electrochemical data and Stern Volmer experiments

General Experimental Details

Cyclic and square wave voltammetry experiments were carried out at room temperature using an AutoLab PGSTAT20 potentiostat. All measurements were carried out in freshly distilled and deoxygenated (with N_{2}) acetonitrile in the presence of 0.1 M of tetrabutylammonium hexafluorophosphate $\left(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ as the supporting electrolyte, at a scan rate of 100 mV s . . Nitrogen was passed through the sample
between measurements to avoid the deleterious influence of oxygen reduction. A three-electrode cell setup was used with a glassy carbon working electrode, a $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M} \mathrm{NaCl})$ reference electrode and a platinum wire as a counter electrode. In all measurements the ferrocene/ferrocenium couple was at 0.45 V versus $\mathrm{Ag} / \mathrm{AgCl}$ under the aforementioned conditions.

Electrochemical Potential

$\mathrm{E}_{1 / 2}{ }^{\text {red }}$ of compound $4 \mathbf{a}$ was measured +1.62 V and -1.79 V which was converted to SCE as reference electrode. $\mathrm{E}_{1 / 2}{ }^{\text {red }}=+1.58 \mathrm{~V}$ and -1.83 V versus SCE in $\mathrm{CH}_{3} \mathrm{CN}$.
$\mathrm{E}_{1 / 2}^{\text {red }}$ of compound $8 \mathbf{a}$ was measured +1.84 V and -1.67 V which was converted to SCE as reference electrode. $\mathrm{E}_{1 / 2}{ }^{\text {red }}=+1.80$ and -1.71 V versus SCE in $\mathrm{CH}_{3} \mathrm{CN}$.

Voltammograms:

SW: square wave voltammetry
CV: cyclic voltammetry

The corresponding redox potentials for PC4 are +0.66 V and -0.96 V (versus SCE) and for PC5 +0.31 V and -1.73 V (versus SCE). Comparing these values with those of substrates $\mathbf{4 a}$ and 8a, it is obvious that neither PC4 nor PC5 are able to initiate a SET pathway with $\mathbf{4 a}$, while substrate $\mathbf{8 a}$ can barely be reduced by PC5. Despite this fact, the reaction of substrate $\mathbf{8 a}$ with PC4 gives exactly the same results as those obtained with PC5 (see, the footnotes of Scheme 4 and 6 of the manuscript). The combination of these observed results implies that the [2+2]-cycloaddition is not a SET-induced process. Furthermore, the reaction proceeds only with photocatalysts that have high triplet state energies. For instance, the reaction does not work with MB, rose Bengal and EY. $\mathrm{Na}_{2}\left(\mathrm{E}_{T}<45 \mathrm{kcal} / \mathrm{mol}\right)$. The cyclization reaction of $\mathbf{4 a}$ has a low reaction rate with $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}\left(\mathrm{E}_{T}=46.5 \mathrm{kcal} / \mathrm{mol}\right)$, whereas all the reactions were efficiently implemented by the higher triplet energy catalysts, PC4 and PC5 ($\left.\mathrm{E}_{T}>49 \mathrm{kcal} / \mathrm{mol}\right)$.

The small degree of isomerization of compound $\mathbf{4 a}$ upon irradiation in the absence of the catalyst and without affording any [2+2]-cyclization product (see, Entry 8, Scheme 2 of the manuscript), can be explained as being the outcome of the substrate's short lived singlet excitation state. The [2+2]-cyclization proceeds via its long lived triplet state, which is generated via energy transfer from the triplet state of the excited catalyst.

Emission Quenching Experiments - Stern-Volmer Plots

The emission spectra in solution were measured on a JASCO FP-6500 fluorescence spectrophotometer equipped with a red-sensitive WRE-343 photomultiplier tube (wavelength range: 200-850 nm). All the $\operatorname{Ir}(\mathrm{ppy})_{3}$ solutions were excited at 385 nm and the emission intensity was collected at 515 nm .

Experimental procedure

A screw-top quartz cuvette was charged with a 0.015 mM degassed solution of $\operatorname{Ir}(\mathrm{ppy})_{3}$ in $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ and the initial emission data was collected. Then the appropriate amount of the quencher as a 0.2 M degassed solution in $\mathrm{CH}_{3} \mathrm{CN}$ was added. The sample was shaken for 30 sec and then the emission data for the sample was collected.

Combined Stern-Volmer plots

The Stern-Volmer quenching studies clearly illustrate that compound $\mathbf{8 a}$ quenches the excited state of $\operatorname{Ir}(\mathrm{ppy})_{3}(\mathrm{PC} 5)$ at a significantly higher rate than methylvinyl ketone (the intermolecular reaction is shown in Scheme 4 of the manuscript - product 9b) or 2,3-dimethylbuta-1,3-diene (the intermolecular reaction is shown in Scheme 6 of the manuscript - product 13a). This provides evidence that compounds of type $\mathbf{8}$ interact efficiently with the photocatalyst at the beginning of the reaction. In the case of the [2+2]-cycloaddition of compounds of type $\mathbf{8}$ with 2,3-dimethylbuta-1,3-diene, we observed the formation of intermediate 9 h (by ${ }^{1} \mathrm{H}-\mathrm{NMR}$) after 1.5 h reaction. This intermediate subsequently disappeared affording the final products of type 13. This observation could be a consequence of a sequential photocatalytic event. However, we could not isolate the intermediate $9 \mathbf{h}$ in a pure form, so the mechanism of the second step was not investigated.

In general, a significant structural feature of olefins that are amenable to photocatalytic $\mathrm{E} \rightarrow \mathrm{Z}$ isomerization is the existence of a cyclic system directly conjugated to the isomerizable $\mathrm{C}=\mathrm{C}$ bond (see, scheme below). The Z -selectivity in this case is favored by the selective excitation of the E isomer (which is fully conjugated with all sp^{2} carbons lying in the same plane). An intramolecular steric effect causes the Z isomer to twist out of the plane, thus, disrupting conjugation, and, consequently, affecting the olefin's ability to absorb energy and become excited.

However in our case (compounds of type 1), the isomerizable double bond shares an sp2 carbon with the cyclic system (it is exocyclic to that system) and therefore a twist of the type described above that leads to deconjugation is not feasible. We believe that a different source of intramolecular steric interaction is causing a partial twist in the Z isomer of exocyclic double bond leading to its partial deconjugation. This analysis could explain the selective excitation of the E isomer in this case which is responsible for the photocatalytic accumulation of the corresponding Z isomer of the γ -alkylidene- γ-lactam of type $\mathbf{1}$ (see, Scheme 1 of the manuscript).

Evidence supporting this assumption is currently being investigated and will be reported in due course.

Part B: Copies of ${ }^{1} \mathrm{H}$-NMR, ${ }^{13} \mathrm{C}$-NMR, COSY, HMBC and NOE spectra

$\stackrel{-}{\square}$	- ¢ H ¢ MnN				
\bigcirc		, ${ }^{\circ} \mathrm{O}$	$\stackrel{\text { m }}{ }$	minm	\cdots
-		$\stackrel{\circ}{\circ}$	N	- ${ }^{\text {ar }} \times$	\dot{m}
$\stackrel{\square}{1}$	\1才1/1	\downarrow		N11	

1b
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1b
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Representative NOE of compound 1b

1b

4a
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4b
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\bigcirc	∇	$\stackrel{ }{\circ}$	9	\cdots				
\cdots	\because	\bigcirc	$\stackrel{\square}{6}$	$\stackrel{ }{ }$	NO~	-7	∞	No
\bigcirc	-	M	-	$\stackrel{m}{\square}$	$\stackrel{\therefore}{\sim}$	i	$\dot{\sim}$	$\dot{\sim}$
-	$\stackrel{-1}{ }$	$\stackrel{-1}{ }$	$\stackrel{-}{1}$	$\stackrel{-1}{ }$		6	m	\cdots
1					\downarrow			$1 /$

$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4a'
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Representative NOE of compound 4a'

2a which contains
15\% of E-isomer
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2b which contains
13% of E-isomer
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Representative NOE of compound 2b

5a

$\underbrace{\text { ®M }}$

5a
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HSQC correlations of compound 5c

secondary carbon
tertiary-primary carbon

HMBC correlations of compound 5c

Representative NOE of compound 5 c

5d
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HSQC correlations of compound 7a

secondary carbon
tertiary-primary carbon

Representative NOE of compound 7a

7b
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7b
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

COSY correlations of compound 7c

HSQC correlations of compound 7c

secondary carbon
tertiary-primary carbon

Representative NOE of compound 7c

($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-198.46
-170.52
-147.54
-137.73
-128.91
<127.61
<126.92
-125.74

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| ए | |
| :--- |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ppm |

COSY correlations of compound 9a

HSQC correlations of compound 9a

Representative NOE of compound 9a

$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

9b
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Representative NOE of compound 9b

($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

9 9e
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HSQC correlations of compound 9e

Representative NOE of compound 9e

$\stackrel{\sim}{0}$	\bullet	
$\stackrel{\infty}{\infty}$	$\dot{\square}$	
1	1	

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

－	∞	のヲ）		∞			
$\stackrel{\square}{\circ}$	－	$\stackrel{\square}{-} \times$	の．${ }^{\text {a }}$	$\stackrel{\square}{\circ} \mathrm{F}$	$\stackrel{\sim}{\text { No }}$	$\stackrel{\text { N̦．}}{ }$	ㄱ．\％ํ．
－	$\stackrel{+}{\square}$		तुフ	－7		눙	¢
，	｜	$1 V$	1／1	1	＊	，	｜｜｜／

（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{0}{\circ}$	\bigcirc	
־.	${ }^{\infty}$.	
-7-3	Nin	
N	-r	
V	V	

-207.71
-169.92
-160.14
-147.24
-128.55

$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

$\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

HSQC correlations of compound 11a

secondary carbon
tertiary-primary carbon

Representative NOE of compound 11a

HSQC correlations of compound 11b

Representative NOE of compound 11a

Representative NOE of compound 12a

$\begin{aligned} & \vec{~} \\ & \dot{\circ} \\ & \stackrel{0}{i} \\ & \mid \end{aligned}$

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{y}} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	n			$\begin{aligned} & \stackrel{9}{\check{0}} \\ & \stackrel{\circ}{\circ} \\ & \text { ! } \end{aligned}$		

[^0]: ${ }^{1}$ G. I. Ioannou, D. Kalaitzakis, G. Vassilikogiannakis, Eur. J. Org. Chem. 2016, 3304.
 ${ }^{2}$ D. Kalaitzakis, E. Antonatou, G. Vassilikogiannakis, Chem. Commun. 2014, 50, 400.
 ${ }^{3}$ S. Hoxha, D. Kalaitzakis, A. Bosveli, T. Montagnon, G. Vassilikogiannakis, Org. Lett. 2021, 23, 5354.
 ${ }^{4}$ D. Kalaitzakis, T. Montagnon, I. Alexopoulou, G. Vassilikogiannakis, Angew. Chem. Int. Ed. 2012, 51, 8868.

