Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information Appendix

Biocatalytic Dynamic Reductive Kinetic Resolution of Aryl α-Chloro β-Keto Esters: Divergent, Stereocontrolled Synthesis of Diltiazem, Clentiazem, and Siratiazem

Xiaoping Yue,¹ Yitong Li,¹ Minjie Liu,^{2,3} Di Sang,^{2,3} Zedu Huang,^{2,3*} and Fener Chen^{1,2,3*}

¹Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy, Sichuan University Chengdu, 610041, P. R. China

²Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China E-mail: huangzedu@fudan.edu.cn, rfchen@fudan.edu.cn

³Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China

E-mail: huangzedu@fudan.edu.cn; rfchen@fudan.edu.cn

*Authors to whom correspondence should be addressed

Table of Contents	2
General information	4
Protein expression and preparation of cell-free extract (CFE) of enzymes	4
Table S1. The details of genes used in this study	5
Nucleotide and amino acid sequences of LfSDR1	6
Figure S1. SDS-PAGE analysis of LfSDR1	6
Scheme S1. Ketoreductases YDL124w- and CaADH-catalyzed synthesis of <i>syn-(2S,3R)</i> via DYRKR)-1a 7
Table S2. Screening KREDs for the stereoselective reduction of α -chloro β -keto ester	: 6b 8
Figure S2. Effect of pH on the reaction conversion	9
Scheme S2. Possible mechanism for the formation of side product S1	10
Figure S3. Effect of temperature on the reaction conversion	11
Figure S4. Effect of the amount of methanol on the reaction conversion	12
Figure S5. Effect of the loading of glucose on the reaction conversion	13
Figure S6. Effect of substrate concentration on the reaction conversion	14
Scheme S3. General procedure for the synthesis of α-chloro β-keto esters 6	15
Scheme S4. Preparative-scale (0.6 mmol) synthesis of <i>anti-(2S,3S)-1</i> catalyzed by LfSI)R1 19
Scheme S5. Synthesis of α-chloro β-keto ester 6b by chlorination of keto ester 8b in f using chlorine gas generated <i>in situ</i>	low 25
Scheme S6. LfSDR1-catalyzed ten-gram scale synthesis of <i>anti-(2S,3S)-1b</i> at a 100 g/l substrate concentration	L of 26
Scheme S7. Synthesis of trans methyl (2 <i>R</i> ,3 <i>S</i>)-3-(4-methoxyphenyl) glycidate 9	27
Scheme S8. Synthesis of benzothiazepinones 12a	28
Scheme S9. Synthesis of compound 13a	29
Scheme S10. Synthesis of diltiazem (3a)	30
Scheme S11. Synthesis of thiol 10b	31
Scheme S12. Synthesis of benzothiazepinones 12b	32
Scheme S13. Synthesis of compound 13b	33
Scheme S14. Synthesis of clentiazem (3b)	34
Scheme S15. Synthesis of amino chloride 14b	35
Scheme S16. Synthesis of siratiazem (3c)	36
References	37
¹ H NMR and ¹³ C NMR Spectra	38

Chiral HPLC Spectra	
---------------------	--

General information

Unless otherwise specified, all reagents and solvents were purchased from commercial sources and used as received. Codon-optimized synthetic genes (pET22b-LaADH and pET28a-LfSDR1) were purchased from Genewiz (China) (Table S1). The rest of the enzymes listed in Table S1 were prepared as we previously described.^[1,2] Chemically competent cells of *E. coli* BL21 (DE3) were purchased from Weidi Biotech (Shanghai, China). LB medium contained yeast extract (5 g/L), tryptone (10 g/L), NaCl (10 g/L). Melting points were measured using an MP450 fully automatic melting-point apparatus. NMR spectra were recorded on a Bruker Avance 400 spectrometer in CDCl₃ or DMSO-d₆ using tetramethylsilane (TMS) as the internal standard. Coupling constant (*J*) values are given in Hz. Optical rotations were measured by a Rudolph AUTOPOL I Automatic Polarimeter. HRMS were recorded on a Bruker micrOTOF spectrometer. Chiral-HPLC analysis was performed with Daicel Chiralpak IA column (25 cm × 4.6 mm × 5 µm), and Chiracel OJ-H column (25 cm × 4.6 mm × 5 µm).

Protein expression and preparation of cell-free extract (CFE) of enzymes

An approximately 12 h culture of *E. coli* BL21 (DE3) cells freshly transformed with the appropriate plasmid and grown in LB medium supplemented with kanamycin (50 µg/mL) or ampicillin (100 µg/mL) was diluted 1:100 into 0.5 L of the same medium in a 2 L flask. The culture was shaken at 37 °C until the optical density at 600 nm reached 0.6-0.8, and then the flask was placed in an ice/water bath for 30 minutes before the addition of isopropylthio- β -D-galactoside (IPTG) to a final concentration of 0.1 mM. The culture was shaken for an additional 16-18 h at 18 °C. The cells were collected by centrifugation and then resuspended in an appropriate amount of NaP_i buffer to make a 15% w/v suspension. The cells were lysed by sonication on ice, and debris was removed by centrifugation at 15 000 rpm for 30 minutes at 4 °C. This collected supernatant (cell-free extract (CFE)) was used as the biocatalyst. To quantify the cell-free extract, a portion of the cell-free extract similarly prepared in water was lyophilized and weighed, and thus obtained information was used as the reference for the calculation of the enzyme loading (g/L).

	0	,	
Name	Accession No.	Source	aa
RasADH	EU485985	Ralstonia sp. DSMZ 6428	250
KmCR2	XP_022675166.1	Kluyveromyces marxianus CBS4857	341
YCR107w	NP_010032.1	Saccharomyces cerevisiae	363
KRED-F42	WP_023468191.1	Exiguobacterium sp. MH3	249
KdoADH	CDO95209.1	Kluyveromyces dobzhanskii	342
LaADH	WP_021765610.1	Leifsonia aquatica	283
SyADH	EU427523.1	Sphingobium yanoikuyae	263
YNL331c	NP_014068.1	Saccharomyces cerevisiae	376
YBR149w	NP_009707.3	Saccharomyces cerevisiae	344
YJR096w	NP_012630.1	Saccharomyces cerevisiae	282
YNL274c	NP_014125.1	Saccharomyces cerevisiae	350
KRED-Pglu	AKP95857.1	Pichia glucozyma	252
KRED-Bt	WP_103592444.1	Bacillus thuringiensis	253
BYueD	WP_134982026.1	Bacillus subtilis	243
LkADH	WP_054768785.1	Lactobacillus kefiri	252
<i>Kp</i> ADH	XP_001644505.1	Kluyveromyces polyspora	342
LtCR	XP_002554048.1	Lachancea thermotolerans	281
CgCR	XP_447302.1	Candida glabrata	310
LfSDR1	WP_015638890.1	Lactobacillus fermentum	247
ChKRED20	AHC30841.1	Chryseobacterium sp. CA49	244

Table S1. The details of genes used in this study.

Nucleotide sequence of LfSDR1 (codon optimized for expression in E. coli)

ATGGGTCAGTTCGATAACAAAGTGGCTTTAGTGACTGGTGGTACCAAAGGTATTGG TTTAGCAATTGCCGAACTGTTTTTAAAGGAAGGTGCCAAAGGCGTTGCCTTTACCG GTCGTCACGAAGATGAAGGCAAAGCCGTGCAAGAACGTTAGGTGAACGCTCTTT ATTTATTACCCAAGATGTGAGCAAAGAAGAAGAAGACTGGCAGAACGCAACCAAAGCA GTGGTGGACAAGTTCGGTCAGCTGGATGCCATCGTGAATAACGCCGGCATTGGCA CCCCGCTGGGCATTGAAGAGATGACTTTAGATCACTGGAACCGTGAAATCGCCATC GATCTGACCGGTACCATGCTGGGTTGCAAATATGGCGTGAAAGGCCATGAAGGAGC ATGGTGGTGCCATTGTGAACATCAGCAGCATCGAAGGTATGATCGGCGATCCGACC GTGCCGGCATACAATGCCGCAAAAGGTGGCGTGCGTTTACTGACCAAGAGCGTTG CTTTAGAATGCGCCGAAAAGGGCTACGCCATCCGCGTTAATAGCATCTATCCGGGC GTGATCGCCACCCGGCTGATCGACCATCTGGACGAACCAAACAGTTTTATAT TGATAAACATCCGATGGGTCGTTTAGGTAAACCGGAAGAGGTTGCCAAAATGGCC GTGTTCGTTGCCAGTGATGGTGCCAGCTTTAGCACCGGCAACCAAAATGGCC GTGTTCGTTGCCAGTGATGGTGCCAGCTTTAGCACCGGCAACCAAACAGTTCGGTGGA CGGTGGTTATACCGCCCAGTAA

Amino acid sequence of LfSDR1

MGQFDNKVALVTGGTKGIGLAIAELFLKEGAKGVAFTGRHEDEGKAVQERLGERSLFI TQDVSKEEDWQNATKAVVDKFGQLDAIVNNAGIGTPLGIEEMTLDHWNREIAIDLTG TMLGCKYGVKAMKEHGGAIVNISSIEGMIGDPTVPAYNAAKGGVRLLTKSVALECAE KGYAIRVNSIYPGVIATPLIDHLDDATKQFYIDKHPMGRLGKPEEVAKMAVFVASDGA SFSTGSEFVVDGGYTAQ

Figure S1. SDS-PAGE analysis of LfSDR1. Coomassie staining. M: RealBand 3-color Regular Range Protein Marker (Sangon Biotech, China). Lane 1: soluble cell fraction of LfSDR1.

Stewart's work: ketoreductase YDL124w-catalyzed DYRKR

Scheme S1. Ketoreductases YDL124w- and CaADH-catalyzed synthesis of *syn-(2S,3R)-1*a via DYRKR.

	o l		KREDs GDH, glucose, MeOH (10% y			OH O			/
	MeO CI		100 mM NaP _i ,	pH 7.0	MeO	CI	MeO	CI	
	6b 30 °C, 520 rpm		1	anti-1b		syn-1b			
Entry	Enzyme	Conv. $(\%)^b$	Isomer I (%) ^c	Isomer II (%) ^c	Isomer III (%) ^c	Isomer IV (%) ^c	dr (<i>anti:syn</i>) ^c	ee anti (%) ^c	ee <i>syn</i> (%) ^c
1	RasADH	88.9	88.48	0.83	1.62	9.07	8.4:1	98.1	69.7
2	KmCR2	98.4	47.70	0.37	21.40	30.53	1:1.1	98.5	17.6
3	YCR107w	7.0	0	100	0	0	>99:1	>99	/
4	KRED-F42	92.0	9.29	4.65	0.26	85.80	1:6.2	33.3	>99
5	KdoADH	93.0	11.33	39.98	5.92	42.77	1:1.1	55.8	75.7
6	LaADH	< 5.0				$\mathbf{n.d.}^d$			
7	SyADH	< 5.0				n.d.			
8	YNL331c	10.0	15.33	22.61	47.15	14.91	1:1.6	19.2	46.8
9	YBR149w	21.2	1.41	14.50	84.09	0	1:5.3	82.3	>99
10	YJR096w	< 5.0				n.d.			
11	YNL274c	< 5.0				n.d.			
12	KRED-Pglu	< 5.0				n.d.			
13	KRED-Bt	18.3	27.75	0.67	0.14	71.44	1:2.5	95.3	>99
14	BYueD	11.0	15.68	52.86	0	31.46	2.2:1	54.2	>99
15	LkADH	75.0	3.04	74.99	2.57	19.40	3.6:1	92.2	76.6
16	<i>Kp</i> ADH	13.5	2.79	92.23	2.26	2.72	19.1:1	94.1	n.d.
17	LtCR	7.0	33.49	12.24	51.21	3.06	1:1.2	46.5	88.7
18	CgCR	6.0	16.00	61.00	7.50	15.50	3.3:1	58.4	34.8
19	LfSDR1	98.0	0.73	97.24	0.92	1.11	48.2:1	98.5	n.d.
20	ChKRED20	65.9	70.39	14.49	0.96	14.16	5.6:1	65.9	87.3

Table S2. Screening KREDs for the stereoselective reduction of α-chloro β-keto ester 6b.^{*a*}

^{*a*} A reaction mixture (60 mL) composed of **6b** (10 mM), glucose (20 mM), NADP⁺ (0.2 mM), 10 mL 15% (w/v) cell-free extract (CFE) of KREDs in NaP_i buffer (100 mM, pH 7.0), 1 mL 15% (w/v) CFE of GDH in NaP_i buffer (100 mM, pH 7.0), 6 mL MeOH, and 43 mL NaP_i buffer (100 mM, pH 7.0) was stirred at 30 °C with 520 rpm for 12 h. ^{*b*} The conversions were determined based on uncorrected integrals of UV/Vis responses of the products and substrate in HPLC analysis using a chiral stationary phase. ^{*c*} The percentages of different product isomers, dr, and ee values were determined and calculated based on uncorrected integrals of UV/Vis responses in HPLC analysis using a chiral stationary phase. ^{*d*} n.d.: not determined.

Figure S2. Effect of pH on the reaction conversion. Reaction conditions (60 mL): **6b** (10 mM), glucose (20 mM), NADP⁺ (0.2 mM), 10 mL of 15% (w/v) cell-free extract (CFE) of LfSDR1 in NaP_i buffer (100 mM, pH 7.0), 0.2 mL of 15% (w/v) CFE of GDH in NaP_i buffer (100 mM, pH 7.0), and 6 mL of MeOH, in 43 mL of different buffers, including 100 mM sodium citrate buffer (pH 5.0, 5.5, and 6.0), 100 mM NaP_i buffer (pH 6.5, 7.0, and 7.5), and 100 mM Tris buffer (pH 8.0). Reaction mixtures were incubated at 30 °C with 520 rpm stirring for 1.5 h. Each data point represents the mean result of duplicate assays.

Scheme S2. Possible mechanism for the formation of side product S1.

2-chloro-1-(4-methoxyphenyl)ethan-1-one (S1)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.91 (m, 2H), 7.00-6.93 (m, 2H), 4.66 (s, 2H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.7, 164.2, 131.0, 127.2, 114.1, 55.6, 45.7.

Figure S3. Effect of temperature on the reaction conversion. Reaction conditions (60 mL): **6b** (10 mM), glucose (20 mM), NADP⁺ (0.2 mM), 10 mL of 15% (w/v) CFE of LfSDR1 in NaP_i buffer (100 mM, pH 6.5), 0.2 mL of 15% (w/v) CFE of GDH in NaP_i buffer (100 mM, pH 6.5), and 6 mL of MeOH, in 43 mL of NaP_i buffer (100 mM, pH 6.5). Reaction mixtures were incubated at different temperatures with 520 rpm stirring for 1.5 h. Each data point represents the mean result of duplicate assays.

Figure S4. Effect of the amount of methanol on the reaction conversion. Reaction conditions (60 mL): **6b** (10 mM), glucose (20 mM), NADP⁺ (0.2 mM), 10 mL of 15% (w/v) CFE of LfSDR1 in NaP_i buffer (100 mM, pH 6.5), 0.2 mL of 15% (w/v) CFE of GDH in NaP_i buffer (100 mM, pH 6.5), and 0 to 18 mL of MeOH, in 32 to 50 mL of NaP_i buffer (100 mM, pH 6.5). Reaction mixtures were incubated at 35 °C with 520 rpm stirring for 1.5 h. Each data point represents the mean result of duplicate assays.

Figure S5. Effect of the loading of glucose on the reaction conversion. Reaction conditions (60 mL): **6b** (10 mM), glucose (10 to 30 mM), NADP⁺ (0.2 mM), 10 mL of 15% (w/v) CFE of LfSDR1 in NaP_i buffer (100 mM, pH 6.5), 0.2 mL of 15% (w/v) CFE of GDH in NaP_i buffer (100 mM, pH 6.5), and 9 mL of MeOH, in 41 mL of NaP_i buffer (100 mM, pH 6.5). Reaction mixtures were incubated at 35 °C with 520 rpm stirring for 1.5 h. Each data point represents the mean result of duplicate assays.

Figure S6. Effect of substrate concentration on the reaction conversion. Reaction conditions (60 mL): **6b** (10 to 50 mM), glucose (1.5 equiv. relative to **6b**), NADP⁺ (0.2 mM), 10 mL of 15% (w/v) CFE of LfSDR1 in NaP_i buffer (100 mM, pH 6.5), 0.2 mL of 15% (w/v) CFE of GDH in NaP_i buffer (100 mM, pH 6.5), and 9 mL of MeOH, in 41 mL of NaP_i buffer (100 mM, pH 6.5). Reaction mixtures were incubated at 35 °C with 520 rpm stirring for 1.5 h. Each data point represents the mean result of duplicate assays.

Scheme S3. General procedure for the synthesis of α-chloro β-keto esters 6.^[3]

This is a modified literature procedure.^[3] A mixture of CH₃ONa (0.81 g, 15 mmol, 1.5 equiv.) and dimethyl carbonate (12 mL) was stirred for 10 minutes at room temperature and then heated at reflux, and a solution of **7** (10 mmol) in dimethyl carbonate (3 mL) was added dropwise over 4 h. After refluxing for 2 h at 80 °C, the reaction was cooled down and neutralized by HCl (4 N). The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried with anhydrous Na₂SO₄, concentrated *in vacuo* to give keto ester **8**, which was used directly in the next step without further purification.

A mixture of **8** and 1,2-dichloroethane (15 mL) was stirred for 15 minutes at room temperature and then heated at reflux, and sulfuryl chloride (10 mmol, 1.0 equiv.) was added dropwise over 2 h. The mixture was then cooled down, and quenched in ice water and the solvent was evaporated. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give α -chloro β -keto ester **6**.

Ethyl 2-chloro-3-oxo-3-phenylpropanoate (6a) was prepared in 88% yield (1.98 g) as pale yellow oil starting directly from 10 mmol of **8a**. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03-7.98 (m, 2H), 7.68-7.60 (m, 1H), 7.56-7.47 (m, 2H), 5.61 (s, 1H), 4.29 (q, J = 7.1 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 188.4, 165.4, 134.5, 133.5, 129.4, 129.1, 63.4,

58.1, 14.0. **HRMS** (ESI, m/z) calcd for C₁₁H₁₂ClO₃ [M + H]⁺ 227.0469, found 227.0470.

Methyl 2-chloro-3-(4-methoxyphenyl)-3oxopropanoate (6b) was prepared in 98% yield (66.9 g) as white solid starting from 280 mmol of 7b. m.p. = 44-45 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 9.0 Hz, 2H), 6.98 (d, J = 9.0 Hz, 2H), 5.63 (s, 1H), 3.90 (s, 3H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.7, 166.0, 164.6, 131.8,

126.1, 114.2, 57.6, 55.7, 53.8. **HRMS** (ESI, m/z) calcd for $C_{11}H_{12}ClO_4$ [M + H]⁺ 243.0419, found 243.0420.

Methyl 2-chloro-3-oxo-3-phenylpropanoate (6c) was prepared in 93% yield (1.98 g) as pale yellow oil starting from 10 mmol of **7c**. ¹**H NMR** (400 MHz, CDCl₃) δ 8.06-7.95 (m, 2H), 7.68-7.61 (m, 1H), 7.56-7.44 (m, 2H), 5.64 (s, 1H), 3.83 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 188.3, 165.9, 134.6, 133.3, 129.4, 129.1, 57.8, 54.0. **HRMS** (ESI, m/z) calcd for C₁₀H₁₀ClO₃ [M

+ H]⁺ 213.0313, found 213.0317.

Methyl 2-chloro-3-oxo-3-(p-tolyl)propanoate (6d) was prepared in 93% yield (47.0 g) as white solid starting from 223 mmol of 7d. m.p = 46.8-48.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 5.67 (s, 1H), 3.76 (s, 3H), 2.37 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 187.8, 165.8, 145.6, 130.6, 129.6, 129.3, 57.5, 53.6, 21.6. HRMS (ESI, m/z) calcd

for $C_{11}H_{12}ClO_3 [M + H]^+ 227.0469$, found 227.0471.

Methyl 3-(4-(*tert*-butyl)phenyl)-2-chloro-3oxopropanoate (6e) was prepared in 75% yield (2.01 g) as pale yellow oil starting from 10 mmol of 7e. ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.92 (m, 2H), 7.55-7.49 (m, 2H), 5.63 (s, 1H), 3.83 (s, 3H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 187.7, 165.9, 158.6, 130.6, 129.3, 126.0, 57.7, 53.8, 35.4, 31.0.

HRMS (ESI, m/z) calcd for $C_{14}H_{18}ClO_3$ [M + H]⁺ 269.0939, found 269.0942.

Methyl 2-chloro-3-(4-fluorophenyl)-3-oxopropanoate (6f) was prepared in 86% yield (1.97 g) as pale yellow oil starting from 10 mmol of 7f. ¹H NMR (400 MHz, CDCl₃) δ 8.08-8.01 (m, 2H), 7.22-7.15 (m, 2H), 5.58 (s, 1H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.8, 166.5 (d, J = 256.3 Hz), 165.7, 132.3 (d, J = 9.5 Hz),

129.7 (d, J = 3.0 Hz), 116.3 (d, J = 22.2 Hz), 57.8, 54.0. **HRMS** (ESI, m/z) calcd for $C_{10}H_8CIFO_3Na [M + Na]^+ 253.0038$, found 253.0038.

Methyl2-chloro-3-(4-chlorophenyl)-3-oxopropanoate (6g) was prepared in 87% yield (2.12g) as pale yellow oil starting from 10 mmol of 7g. ¹HNMR (400 MHz, CDCl₃) δ 8.08-8.00 (m, 2H), 7.23-7.14 (m, 2H), 5.58 (s, 1H), 3.84 (s, 3H). ¹³C NMR(100 MHz, CDCl₃) δ 187.2, 165.7, 141.3, 131.6, 130.8,

129.5, 57.8, 54.1. **HRMS** (ESI, m/z) calcd for $C_{10}H_8Cl_2O_3Na [M + Na]^+ 268.9743$, found 268.9741.

Methyl3-(4-bromophenyl)-2-chloro-3-
oxopropanoate (6h) was prepared in 90% yield (2.61
g) as pale yellow oil starting from 10 mmol of 7h. 1 H
NMR (400 MHz, CDCl₃) δ 7.88-7.84 (m, 2H), 7.67-
7.63 (m, 2H), 5.57 (s, 1H), 3.83 (s, 3H). 13 C NMR
(100 MHz, CDCl₃) δ 187.4, 165.7, 132.5, 132.0, 130.9,
130.1, 57.8, 54.1. HRMS (ESI, m/z) calcd for

 $C_{10}H_9BrClO_3 [M + H]^+ 290.9418$, found 290.9414.

Methyl2-chloro-3-(3-methoxyphenyl)-3-
oxopropanoate (6i) was prepared in 83% yield (2.01
g) as pale yellow oil starting from 10 mmol of 7i. ¹H
NMR (400 MHz, CDCl₃) δ 7.56 (ddd, J = 7.7, 1.7, 0.9
Hz, 1H), 7.52 (dd, J = 2.7, 1.6 Hz, 1H), 7.41 (t, J = 8.0
Hz, 1H), 7.18 (ddd, J = 8.3, 2.7, 0.9 Hz, 1H), 5.63 (s,
line DMMP (100 MW) (2.01 L 100 L 100 L)

1H), 3.86 (s, 3H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 165.9, 160.1, 134.6, 130.0, 121.8, 121.2, 113.5, 57.8, 55.6, 53.9. **HRMS** (ESI, m/z) calcd for C₁₁H₁₂ClO₄ [M + H]⁺ 243.0419, found 243.0416.

Methyl2-chloro-3-(2-methoxyphenyl)-3-
oxopropanoate (6j) was prepared in 86% yield (2.08 g)
as pale yellow oil starting from 10 mmol of 7j. ¹H NMR
(400 MHz, CDCl₃) δ 7.87 (dd, J = 7.8, 1.8 Hz, 1H), 7.53
(ddd, J = 8.4, 7.3, 1.8 Hz, 1H), 7.03 (ddd, J = 8.0, 7.3,
1.0 Hz, 1H), 6.97 (dd, J = 8.5, 1.0 Hz, 1H), 5.71 (s, 1H),
3.88 (s, 3H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)

δ 188.2, 166.3, 158.7, 135.6, 131.9, 123.9, 121.3, 111.8, 62.5, 55.5, 53.3. **HRMS** (ESI, m/z) calcd for C₁₁H₁₂ClO₄ [M + H]⁺ 243.0419, found 243.0414.

Methyl 2-chloro-3-(3,4-dimethoxyphenyl)-3oxopropanoate (6k) was prepared in 29% yield (0.78 g) as pale yellow oil starting from 10 mmol of 7k. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 8.4, 2.1 Hz, 1H), 7.55 (d, J = 2.1 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 5.62 (s, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.8, 166.2, 154.6,

149.5, 126.4, 124.5, 111.3, 110.3, 57.8, 56.4, 56.2, 54.0. **HRMS** (ESI, m/z) calcd for $C_{12}H_{13}CINaO_5$ [M + Na]⁺ 295.0344, found 295.0349.

Methyl 2-chloro-3-(3,4-dimethylphenyl)-3oxopropanoate (6l) was prepared in 36% yield (0.86 g) as pale yellow oil starting from 10 mmol of 7l. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 2.0 Hz, 1H), 7.70 (dd, J = 7.9, 2.0 Hz, 1H), 7.23 (d, J = 7.9 Hz, 1H), 5.64 (s, 1H), 3.80 (s, 3H), 2.31 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.0, 166.0, 144.6,

137.6, 131.1, 130.3, 130.2, 127.1, 57.6, 53.8, 20.2, 19.8. **HRMS** (ESI, m/z) calcd for $C_{12}H_{13}CINaO_3$ [M + Na]⁺ 263.0445, found 263.0439.

Methyl2-chloro-3-(naphthalen-2-yl)-3-oxopropanoate(6m) was prepared in 77% yield(2.01 g) as off white solid starting from 10 mmol of7m. m.p = 79.2-80.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 1.9 Hz, 1H), 8.08-7.98 (m, 2H), 7.92(dd, J = 14.8, 8.4 Hz, 2H), 7.68-7.57 (m, 2H), 5.80 (s,

1H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.3, 166.0, 136.2, 132.5, 131.7, 130.7, 130.0, 129.6, 129.1, 128.0, 127.4, 124.4, 57.9, 54.0. **HRMS** (ESI, m/z) calcd for C₁₄H₁₂ClO₃ [M + H]⁺ 263.0469, found 263.0468.

Methyl 2-chloro-3-oxo-3-(thiophen-2-yl)propanoate (6n) was prepared in 79% yield (1.72 g) as pale yellow oil starting from 10 mmol of 7n. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 3.9, 1.1 Hz, 1H), 7.77 (dd, J =4.9, 1.1 Hz, 1H), 7.17 (dd, J = 5.0, 3.9 Hz, 1H), 5.49 (s, 1H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 181.1, 165.5, 140.0, 136.4, 134.6, 128.7, 58.6, 54.0. HRMS

(ESI, m/z) calcd for $C_8H_8ClO_3S$ [M + H]⁺ 218.9877, found 218.9880.

Methyl 2-chloro-3-(furan-2-yl)-3-oxopropanoate (60) was prepared in 93% yield (1.87 g) as pale yellow oil starting from 10 mmol of **70**. ¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (dd, J = 1.7, 0.7 Hz, 1H), 7.42 (dd, J = 3.7, 0.8 Hz, 1H), 6.62 (dd, J = 3.7, 1.7 Hz, 1H), 5.50 (s, 1H), 3.83 (s, 3H).¹³**C NMR** (100 MHz, CDCl₃) δ 176.8, 165.4, 149.7, 148.1, 120.6, 113.3, 57.6, 54.0. **HRMS** (ESI, m/z) calcd

for $C_8H_8ClO_4 [M + H]^+ 203.0106$, found 203.0103.

Scheme S4. Preparative-scale (0.6 mmol) synthesis of anti-(2S,3S)-1 catalyzed by LfSDR1.

To a solution of α -chloro β -keto ester **6** (0.6 mmol) in MeOH (9 mL) were added glucose (0.9 mmol, 1.5 equiv.), NADP⁺ (0.2 mM), 200 μ L 15% (w/v) CFE of GDH in NaP_i buffer (100 mM, pH 6.5), 10 mL 15% (w/v) CFE of LfSDR1 in NaP_i buffer (100 mM, pH 6.5), and 41 mL of NaP_i buffer (100 mM, pH 6.5). After stirring at 35 °C (referred to the setting temperature of the heating apparatus, applied to all the biocatalytic reactions) with 520 rpm for 6 h, the reaction mixture was extracted with ethyl acetate and subjected to centrifugation for three times. The organic layers were combined, dried with Na₂SO₄, and filtered. An aliquot of the filtrate was taken for ¹H NMR analysis to determine the diastereoselectivity. The filtrate was concentrated *in vacuo* and the residue was purified by preparative thin layer chromatography on silica gel (petroleum ether/ethyl acetate) to afford *anti*-(2*S*,3*S*)-1.

Ethyl (2*S*,3*S*)-2-chloro-3-hydroxy-3phenylpropanoate (*anti*-(2*S*,3*S*)-1a) was prepared in 95% yield (130.3 mg) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.32 (m, 5H), 5.02 (dd, J =7.9, 5.1 Hz, 1H), 4.37 (d, J = 7.9 Hz, 1H), 4.23 (dq, J =7.1, 1.0 Hz, 2H), 3.38 (d, J = 5.2 Hz, 1H), 1.26 (t, J =7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0,

138.9, 128.8, 128.5, 127.0, 75.3, 62.4, 59.3, 13.9. **HRMS** (ESI, m/z) calcd for $C_{11}H_{13}ClO_3Na$ [M + Na]⁺ 251.0445, found 251.0447. [α]_D²⁰ = +28.40 (c = 1.0, MeOH). **HPLC** Chiracel® OJ-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 1.0 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 15.106 min, t₂ = 16.956 min (major), t₃ = 24.619 min, t₄ = 27.492 min. ee = >99%, dr = >99:1 (dr = >99:1, after purification).

Methyl (2*S*,3*S*)-2-chloro-3-hydroxy-3-(4methoxyphenyl)pr opanoate (*anti*-(2*S*,3*S*)-1b) was prepared in 96% yield (140.2 mg) as white solid. **m.p.** = 82-83 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.30 (m, 2H), 6.93-6.89 (m, 2H), 4.99 (dd, *J* = 8.1, 3.9 Hz, 1H), 4.36 (d, *J* = 8.2 Hz, 1H), 3.811 (s, 3H), 3.808 (s, 3H), 2.97 (d, *J* = 4.8 Hz, 1H). ¹³C

NMR (100 MHz, CDCl₃) δ 169.5, 159.9, 130.8, 128.2, 114.0, 75.0, 59.1, 55.3, 53.2. **HRMS** (ESI, m/z) calcd for C₁₁H₁₃ClO₄Na [M + Na]⁺ 267.0395, found 267.0392. [α]_D²⁰ = +32 (c = 0.94, CHCl₃). (lit.^[3]: [α]_D²⁰ = +36 (c = 0.94, CHCl₃)). **HPLC** Chiracel® OJ-H, 250 × 4.6 mm column, hexane/2-propanol 70:30, 1.0 mL/min flow rate, 220 nm UV lamp, 25 °C, $t_1 = 11.528$ min, $t_2 = 12.825$ min (major), $t_3 = 16.463$ min, $t_4 = 19.876$ min. ee = 99%, dr = 43:1, (dr = 99:1, after purification).

Methyl (2*S*,3*S*)-2-chloro-3-hydroxy-3phenylpropanoate (*anti*-(2*S*,3*S*)-1c) was prepared in 86% yield (110.0 mg) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.32 (m, 5H), 5.02 (dd, *J* = 8.0 Hz, 4.7 Hz, 1H), 4.38 (d, *J* = 8.0 Hz, 1H), 3.78 (s, 3H), 3.32 (d, *J* = 4.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 138.8, 128.9, 128.6, 127.0, 75.4, 59.1,

53.2. **HRMS** (ESI, m/z) calcd for C₁₀H₁₁ClO₃Na [M + Na]⁺ 237.0289, found 237.0286. [α]_D²⁰ = +8.67 (c = 0.7, MeOH). **HPLC** Chiracel® OJ-H, 250 × 4.6 mm column, hexane/2-propanol 70:30, 0.6 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 14.275 min, t₂ = 18.251 min (major), t₃ = 21.604 min, t₄ = 24.258 min. ee = >99%, dr = 43:1 (dr = 42:1, after purification).

Methyl(2S,3S)-2-chloro-3-hydroxy-3-(p-tolyl)propanoate (anti-(2S,3S)-1d) was prepared in 96%yield (131.1 mg) as pale yellow oil. ¹H NMR (400 MHz,CDCl₃) δ 7.30-7.25 (m, 2H), 7.19 (d, J = 7.9 Hz, 2H),5.00 (dd, J = 8.0, 4.9 Hz, 1H), 4.38 (d, J = 8.0 Hz, 1H),3.80 (s, 3H), 2.99 (d, J = 5.0 Hz, 1H), 2.36 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 169.5, 138.8, 135.9, 129.4, 126.9, 75.3, 59.1, 53.2, 21.3. **HRMS** (ESI, m/z) calcd for C₁₁H₁₃ClO₃Na [M + Na]⁺ 251.0445, found 251.0442. [α]_D²⁰ = +20.16 (c = 1.0, MeOH). **HPLC** Chiracel® OJ-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 1.0 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 15.777 min, t₂ = 19.254 min (major), t₃ = 24.427 min, t₄ = 32.646 min. ee = 92%, dr = 17:1 (dr = 16:1, after purification).

Methyl (2*S*,3*S*)-3-(4-(*tert*-butyl)phenyl)-2-chloro-3-hydrox ypropanoate (*anti*-(2*S*,3*S*)-1e) was prepared in 93% yield (150.1 mg) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.38 (m, 2H), 7.35-7.30 (m, 2H), 5.02 (dd, *J* = 8.1, 4.5 Hz, 1H), 4.40 (d, *J* = 8.1 Hz, 1H), 3.82 (s, 3H), 2.88 (d, *J* = 4.9 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (100 MHz,

CDCl₃) δ 169.6, 152.0, 135.8, 126.8, 125.7, 75.3, 59.0, 53.3, 34.8, 31.4. **HRMS** (ESI, m/z) calcd for C₁₄H₁₉ClO₃Na [M + Na]⁺ 293.0915, found 293.0918. [α]_D²⁰ = +13.40 (c = 0.2, MeOH). **HPLC** Chiracel® IF, 250 × 4.6 mm column, hexane/2-propanol 90:10, 0.8 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 8.921 min, t₂ = 10.760 min, t₃ = 12.024 min (major), t₄ = 13.162 min. ee = >99%, dr = 37:1 (dr = 35:1, after purification).

Methyl (2*S*,3*S*)-2-chloro-3-(4-fluorophenyl)-3hydroxyprop anoate (*anti*-(2*S*,3*S*)-1f) was prepared in 79% yield (110.1 mg) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.30 (m, 2H), 7.08-7.00 (m, 2H), 4.99 (dd, *J* = 8.2, 4.9 Hz, 1H), 4.33 (d, *J* = 8.2 Hz, 1H), 3.83 (dd, *J* = 5.1, 2.4 Hz, 1H), 3.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 162.7 (d, *J* = 245.6

Hz), 134.6 (d, J = 3.0 Hz), 128.7 (d, J = 8.3 Hz), 115.3 (d, J = 21.4 Hz), 74.4, 59.1, 53.1. **HRMS** (ESI, m/z) calcd for C₁₀H₁₀ClFO₃Na [M + Na]⁺ 255.0195, found 255.0195. [α]_D²⁰ = +23.54 (c = 1.0, MeOH). **HPLC** Chiracel® IF, 250 × 4.6 mm column, hexane/2propanol 85:15, 0.8 mL/min flow rate, 220 nm UV lamp, 35 °C, t₁ = 13.765 min, t₂ = 14.514 min (major), t₃ = 17.810 min, t₄ = 22.580 min. ee = 96%, dr = 9.2:1 (dr = 9:1, after purification).

Methyl (2*S*,3*S*)-2-chloro-3-(4-chlorophenyl)-3hydroxypropanoate (*anti*-(2*S*,3*S*)-1g) was prepared in 87% yield (130.0 mg) as pale yellow oil. *Anti/syn* = $5:1; {}^{1}$ H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 4H), 5.13 (d, *J* = 6.0 Hz, 1H, *syn*), 5.01 (d, *J* = 7.9 Hz, 1H, *anti*), 4.41 (d, *J* = 6.0 Hz, 1H, *syn*), 4.32 (d, *J* = 7.9 Hz, 1H, *anti*), 3.79 (s, 3H, *anti*), 3.69 (s, 3H, *syn*), 3.29 (s,

1H, *anti*), 3.20 (s, 1H, *syn*). ¹³C NMR (100 MHz, CDCl₃) δ 169.3 (*anti*), 168.4 (*syn*), 137.2 (*anti*), 136.7 (*syn*), 134.6 (*anti*), 134.6 (*syn*), 128.8 (*syn*), 128.7 (*anti*), 128.4 (*anti*), 128.0 (*syn*), 74.6 (*anti*), 73.7 (*syn*), 62.4 (*syn*), 58.9 (*anti*), 53.3 (*anti*), 53.2 (*syn*). HRMS (ESI, m/z) calcd for C₁₀H₁₀Cl₂O₃Na [M + Na]⁺ 270.9899, found 270.9892; $[\alpha]_D^{20} = +17.17$ (c = 0.6, MeOH). HPLC Chiracel® OJ-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 1.0 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 15.358 min, t₂ = 17.291 min (major), t₃ = 24.481 min, t₄ = 26.659 min. ee = 77%, dr = 7.2:1 (dr = 6.7:1, after purification).

Methyl (2*S*,3*S*)-3-(4-bromophenyl)-2-chloro-3hydroxypr opanoate (*anti*-(2*S*,3*S*)-1h) was prepared in 95% yield (167.1 mg) as pale yellow oil. *Anti/syn* = 5:1; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.46 (m, 2H), 7.31-7.20 (m, 2H), 5.13 (dd, *J* = 5.9, 3.9 Hz, 1H, *syn*), 5.01 (dd, *J* = 7.8, 4.7 Hz, 1H, *anti*), 4.41 (dd, *J* = 5.9,

1.4 Hz, 1H, *syn*), 4.33 (dd, J = 7.9, 1.3 Hz, 1H, *anti*), 3.80 (s, 3H, *anti*), 3.71 (s, 3H, *syn*), 3.10 (d, J = 4.8 Hz, 1H, *anti*), 3.06 (d, J = 4.0 Hz, 1H, *syn*). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.3 (*anti*), 168.5 (*syn*), 137.8 (*anti*), 137.3 (*syn*), 131.9 (*syn*), 131.8 (*anti*), 128.8 (*anti*), 128.4 (*syn*), 123.0, 74.8 (*anti*), 73.9 (*syn*), 62.4 (*syn*), 58.9 (*anti*), 53.4. **HRMS** (ESI, m/z) calcd for C₁₀H₁₀BrClO₃Na [M + Na]⁺ 314.9394, found 314.9391; [α]_D²⁰ = +19.90 (c = 0.4, MeOH). **HPLC** Chiracel® OJ-H, 250 × 4.6 mm column, hexane/2propanol 90:10, 1.0 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 15.989 min, t₂ = 18.266 min (major), $t_3 = 24.612$ min, $t_4 = 26.567$ min. ee = 75%, dr = 5.3:1 (dr = 6.1:1, after purification).

Methyl (2*S*,3*S*)-2-chloro-3-hydroxy-3-(3methoxypheny- l)propanoate (*anti*-(2*S*,3*S*)-1i) was prepared in 95% yield (138.7 mg) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, *J* = 7.9 Hz, 1H), 7.00-6.93 (m, 2H), 6.88 (dd, *J* = 8.2, 2.7 Hz, 1H), 5.00 (dd, *J* = 7.9, 4.9 Hz, 1H), 4.38 (d, *J* = 7.9 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.12 (d, *J* = 5.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 159.8, 140.4, 129.7, 119.3, 114.4, 112.6, 75.4, 59.0, 55.4, 53.3. **HRMS** (ESI, m/z) calcd for C₁₁H₁₃ClO₄Na [M + Na]⁺ 267.0395, found 267.0395. [α]_D²⁰ = +16.94 (c = 1.0, MeOH). **HPLC** Chiracel® OJ-H, 250 × 4.6 mm column, hexane/2-propanol 70:30, 1.0 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 9.608 min, t₂ = 11.958 min (major), t₃ = 13.447 min, t₄ = 15.076 min. ee = >99%, dr = >99:1 (dr = >99:1, after purification).

Methyl (2*S*,3*S*)-2-chloro-3-hydroxy-3-(2methoxyphenyl) pr opanoate (*anti*-(2*S*,3*S*)-1j) was prepared in 93% yield (136.0 mg) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 2H), 6.98 (dt, *J* = 7.5, 1.1 Hz, 1H), 6.95-6.90 (m, 1H), 5.10 (t, *J* = 7.9 Hz, 1H), 4.67 (d, *J* = 7.8 Hz, 1H), 3.89 (s, 3H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.4,

156.8, 129.9, 129.5, 126.1, 121.0, 110.8, 74.2, 57.5, 55.5, 53.0. **HRMS** (ESI, m/z) calcd for C₁₁H₁₃ClO₄Na [M + Na]⁺ 267.0395, found 267.0396. [α]_D²⁰ = +19.23 (c = 1.2, MeOH). **HPLC** Chiracel® OJ-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 0.6 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 34.598 min (major), t₂ = 37.889 min, t₃ = 39.877 min, t₄ = 55.606 min. ee = >99%, dr = >99:1 (dr = >99:1, after purification).

Methyl (2*S*,3*S*)-2-chloro-3-(3,4-dimethoxyphenyl)-3-hydro xypropanoate (*anti*-(2*S*,3*S*)-1k) was prepared in 89% yield (147.3 mg) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.94-6.84 (m, 3H), 4.98 (d, *J* = 8.0 Hz, 1H), 4.36 (d, *J* = 8.0 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 149.5, 149.2, 131.3, 119.7,

110.9, 109.7, 75.3, 59.2, 56.03, 56.01, 53.3. **HRMS** (ESI, m/z) calcd for $C_{12}H_{15}CINaO_5$ [M + Na]⁺ 297.0500, found 297.0491. [α]_D²⁰ = +19.85 (c = 0.4, MeOH). **HPLC** Chiracel® OJ-H, 250 × 4.6 mm column, hexane/2-propanol 85:15, 1.0 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 27.216 min (major), t₂ = 32.609 min, t₃ = 50.917 min, t₄ = 55.043 min. ee = >99%, dr = 24:1 (dr = >99:1, after purification).

Methyl (2*S*,3*S*)-2-chloro-3-(3,4-dimethylphenyl)-3hydroxy propanoate (*anti*-(2*S*,3*S*)-11) was prepared in 74% yield (107.6 mg) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.08 (m, 3H), 4.97 (dd, *J* = 8.1, 4.5 Hz, 1H), 4.39 (d, *J* = 8.1 Hz, 1H), 3.82 (s, 1H), 2.91 (d, *J* = 4.9 Hz, 1H), 2.28 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 137.4, 137.0, 136.1,

129.8, 128.0, 124.4, 75.3, 58.9, 53.1, 19.9, 19.6. **HRMS** (ESI, m/z) calcd for $C_{12}H_{15}CINaO_3$ [M + Na]⁺ 265.0602, found 265.0594. [α]_D²⁰ = +38.8 (c = 0.15, MeOH). **HPLC** Chiracel® IF, 250 × 4.6 mm column, hexane/2-propanol 90:10, 1.0 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 8.155 min, t₂ = 8.620 min (major), t₃ = 9.213 min, t₄ = 10.091 min. ee = 98%, dr = 17:1 (dr = 15:1, after purification).

Methyl(2S,3S)-2-chloro-3-hydroxy-3-
(naphthalen-2-yl) pro panoate (*anti*-(2S,3S)-1m)
was prepared in 95% yield (150.2 mg) as pale yellow
solid. **m.p.** = 82-83 °C. ¹H NMR (400 MHz, CDCl₃)
 δ 7.88-7.82 (m, 4H), 7.58-7.42 (m, 3H), 5.20 (dd, J =
7.9, 4.8 Hz, 1H), 4.51 (d, J = 7.9 Hz, 1H), 3.79 (s,
3H), 3.33 (d, J = 4.9 Hz, 1H). ¹³C NMR (100 MHz,

CDCl₃) δ 169.5, 136.1, 133.5, 133.1, 128.6, 128.3, 127.8, 126.8, 126.6, 126.5, 124.1, 75.6, 59.0, 53.3. **HRMS** (ESI, m/z) calcd for C₁₄H₁₃ClO₃Na [M + Na]⁺ 287.0445, found 287.0444. [α]_D²⁰ = +30.46 (c = 1.0, MeOH). **HPLC** Chiracel® OJ-H, 250 × 4.6 mm column, hexane/2-propanol 70:30, 1.0 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 15.039 min (major), t₂ = 18.509 min, t₃ = 22.030 min, t₄ = 27.397 min. ee = >99%, dr = 85:1 (dr = >99:1, after purification).

Methyl (2*S*,3*S*)-2-chloro-3-hydroxy-3-(thiophen-2-yl) propa noate (*anti*-(2*S*,3*S*)-1n) was prepared in 97% yield (128.1 mg) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.11 (dt, *J* = 3.6, 0.9 Hz, 1H), 7.01 (dd, *J* = 5.1, 3.5 Hz, 1H), 5.33 (dd, *J* = 7.6, 5.6 Hz, 1H), 4.45 (d, *J* = 7.6 Hz, 1H), 3.82 (s, 3H), 3.22 (d, *J*

= 5.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 142.1, 127.0, 126.4, 126.1, 71.7, 59.4, 53.4. **HRMS** (ESI, m/z) calcd for C₈H₉ClO₃SNa [M + Na]⁺ 242.9853, found 242.9853. [α]_D²⁰ = +8.98 (c = 1.0, MeOH). **HPLC** Chiracel® OJ-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 1.0 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 19.735 min, t₂ = 24.631 min (major), t₃ = 34.485 min, t₄ = 45.821 min. ee = >99%, dr = >99:1 (dr = >99:1, after purification).

Methyl(2S,3S)-2-chloro-3-(furan-2-yl)-3-hydroxypropanoate(anti-(2S,3S)-10) was prepared in98% yield (120.1 mg) as pale yellow oil. ¹H NMR (400MHz, CDCl₃) δ 7.40 (dt, J = 1.9, 1.0 Hz, 1H), 6.45-6.32(m, 2H), 5.06 (d, J = 8.0 Hz, 1H), 4.59 (d, J = 8.0, 1H),3.80 (s, 3H), 3.44 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 151.2, 142.9, 110.5, 109.2, 69.1, 56.7, 53.3. HRMS

(ESI, m/z) calcd for C₈H₉ClO₄Na [M + Na]⁺ 227.0082, found 227.0080; $[\alpha]_D{}^{20} = +22.80$ (c = 0.6, MeOH). **HPLC** Chiracel® IF, 250 ×4.6 mm column, hexane/2-propanol 90:10, 1.0 mL/min flow rate, 220 nm UV lamp, 25 °C, t₁ = 10.034 min, t₂ = 11.553 min (major), t₃ = 15.735 min, t₄ = 24.604 min. ee = >99%, dr = >99:1 (dr = >99:1, after purification).

Scheme S5. Synthesis of α -chloro β -keto ester 6b by chlorination of keto ester 8b in flow using chlorine gas generated *in situ*.^[4]

This is a modified literature procedure.^[4] HCl (6 M, 50 mL, 300 mmol) and NaClO (1.5 M, 50 mL, 75 mmol) were placed in 50 mL gas tight syringes and introduced by the syringe pumps to the first micromixer with 24 mL/h and 30 mL/h flow rates, respectively. The

mixture was then passed through the 5 mL PTFE reactor coil (1/16, i.d. = 0.8 mm),

which was connected to the second micromixer. A solution of the crude product of β -keto ester **8b** (6.0 g, 28.8 mmol), synthesized in the previous step and used without further purification, in dichloroethane (30 mL) was placed in a 50 mL gas-tight syringe and introduced to the second micromixer with 45 mL/h flow rate. The resulting mixture

was then passed through the second 5 mL PTFE reactor coil $(\frac{1}{16}, \text{ i.d.} = 0.8 \text{ mm})$ at

42 °C (water bath) and 7 bar back-pressure with 3-minute residence time. After pumping the above **8b** solution for 6.7 minute (corresponding to 1.0 g of **8b**), the mixture eluted from the outlet of the reaction device was collected in a flask containing cooled 30% Na₂SO₃. The organic layer was easily separated from the aqueous layer, and the aqueous layer was extracted with ethyl acetate for two times. The combined organic layer was concentrated *in vacuo* to give crude product, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to afford α -chloro β keto ester **6b** (0.93 g, 80% yield over two steps).

Scheme S6. LfSDR1-catalyzed ten-gram scale synthesis of *anti*-(2*S*,3*S*)-1b at a 100 g/L of substrate concentration.

To a stirred mixture of glucose (16.3 g, 1.5 equiv.), NADP⁺ (21.7 mg, 0.2 mM), cellfree extracts of LfSDR1 (12 g/L), and cell-free extracts of GDH (0.6 g/L) in NaP_i buffer (124.7 mL, 100 mM, pH 6.5) at 35 °C was continuously fed of a solution of **6b** (14.6 g, 100 g/L) in methanol (21.9 mL) at a rate of 0.15 mL/min through a syringe pump. This feeding process lasted for 4 h, followed by an additional 20 h of reaction time which was applied to guarantee a complete reduction of all the substrate added. The pH of the biotransformation during the entire process was maintained between 6.0 and 6.5 by titrating a NaOH solution. Complete conversion (>99%) was achieved as judged by the chiral HPLC analysis. Celite was then added and the resulting mixture was filtered. Ethyl acetate was employed to wash the filter cake for three times, and the two layers of filtrate were separated. The aqueous layer was extracted further with ethyl acetate for two times, and the combined organic layer was then washed with brine, dried, and concentrated *in vacuo* to furnish *anti*-(2*S*,3*S*)-**1b** (14.0 g, 95% yield) with a chemical purity of 94%, as well as an optical purity of 54:1 dr and 98% ee.

Scheme S7. Synthesis of *trans* methyl (2*R*,3*S*)-3-(4-methoxyphenyl) glycidate 9.^[3]

This is a modified literature procedure.^[3] To a solution of chlorohydrin *anti*-(2*S*,3*S*)-**1b** (50 g, 205 mmol) in toluene (500 mL) was added DBU (46.8 g, 307.5 mmol, 1.5 equiv.). After stirring under reflux for 1 h, the mixture was diluted with water (1.5 L) and extracted with ethyl acetate for three times. The combined organic layers were washed with water, dried with anhydrous Na₂SO₄. and concentrated *in vacuo* to give compound **9** as pale yellow oil (40.31 g, 95% yield).

Methyl (2R,3S)-3-(4-methoxyphenyl)oxirane-2-carboxylate

¹**H NMR** (400 MHz, CDCl₃) δ 7.22 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 4.07 (d, J = 1.6 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.53 (d, J = 1.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.9, 160.3, 127.2, 126.7, 114.1, 58.0, 56.6, 55.4, 52.6. **HRMS** (ESI, m/z) calcd for C₁₁H₁₃O₄ [M +

H]⁺ 209.0808, found 209.0810. $[\alpha]_D^{20} = -187$ (c = 1.0, MeOH). (lit.^[3]: $[\alpha]_D^{20} = -196$ (c = 1.0, MeOH)).

Scheme S8. Synthesis of benzothiazepinones 12a.^[3,5,6]

This is a modified literature procedure.^[3,5,6] A solution of *trans*-methyl glycidate **9** (10 g, 48 mmol) in toluene (200 mL) was heated at reflux. 2-Aminothiophenol **10a** (6.61 g, 52.8 mmol, 1.1 equiv.) and a solution of FeCl₃ 6H₂O (1.28 mg, 4.8×10^{-3} mmol, 10^{-4} equiv.) in MeOH (480 µL) were added, and the resulting mixture was stirred at reflux for 4 h. Then, *p*-toluenesulfonic acid (165 mg, 0.96 mmol, 0.02 equiv.) was added and the reflux continued for an additional 7 h. After cooling down, the solvent was concentrated *in vacuo*, and the residue was purified by recrystallization (petroleum ether/ethyl acetate = 2:1) to give compound **12a** as off white solid (10.5 g, 73% yield).

(2S,3S)-3-hydroxy-2-(4-methoxyphenyl)-2,3-dihydrobenzo[b][1,4]thiazepin-4(5 H)-one

m.p. = 210-212 °C. ¹**H NMR** (400 MHz, DMSO-d₆) δ 10.32 (s, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.47-7.33 (m, 3H), 7.21-7.07 (m, 2H), 6.88 (d, *J* = 8.8 Hz, 2H), 5.05 (d, *J* = 6.7 Hz, 1H), 4.75 (d, *J* = 6.2 Hz, 1H), 4.30 (t, *J* = 6.4 Hz, 1H), 3.75 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆) δ 172.5, 159.0, 142.0, 133.9, 130.9, 130.0, 128.5, 126.2, 125.6, 122.6, 113.3, 69.6, 57.1, 55.1. **HRMS** (ESI, m/z) calcd for C₁₆H₁₆NO₃S [M + H]⁺ 302.0845, found 302.0845. [α]_D²⁰ = +120 (c = 1.0, DMF). (lit.^[3]: [α]_D²⁰ = +100 (c = 0.53, DMF)).

Scheme S9. Synthesis of compound 13a.

A mixture of benzothiazepinone **12a** (140 mg, 0.46 mmol), DMAP (5.7 mg, 0.046 mmol, 0.1 equiv.), and Ac₂O (53 μ L, 0.56 mmol, 1.2 equiv.) in toluene (14 mL) was heated at reflux for 2 h. After cooling down, the toluene layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated *in vacuo*, and the residue was purified by recrystallization (petroleum ether/ethyl acetate = 2:1) to give compound **13a** as off white solid (150.6 mg, 94% yield).

(2*S*,3*S*)-2-(4-methoxyphenyl)-4-oxo-2,3,4,5-tetrahydrobenzo[b][1,4]thiazepin-3-yl acetate

m.p. = 90.1-91.2 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.49-7.38 (m, 3H), 7.28-7.17 (m, 2H), 6.85 (d, J = 8.7 Hz, 2H), 5.33 (d, J = 7.0 Hz, 1H), 5.16 (d, J = 7.0 Hz, 1H), 3.80 (s, 3H), 1.92 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.8, 168.8, 159.8, 140.7, 135.0, 130.60, 130.56, 127.1, 127.0, 126.9, 123.2, 113.8, 71.2, 55.3, 55.0, 20.4. **HRMS** (ESI, m/z) calcd for C₁₈H₁₈NO₄S [M + H]⁺ 344.0951, found 344.0956. [α]_D²⁰ = +92.8 (c = 1.0, MeOH).

Scheme S10. Synthesis of diltiazem (3a).

To a solution of benzothiazepinone **13a** (100 mg, 0.29 mmol) in DMF (10 mL) was added 2-(dimethylamino) ethyl chloride (**14a**) (37.4 mg, 0.35 mmol, 1.2 equiv.). Under vigorous stirring was then added potassium carbonate (161.2 mg, 1.2 mmol, 4 equiv.). The resulting mixture was heated at reflux for 2 h. After cooling down, the reaction mixture was poured into iced water, and brine was added. This aqueous solution was extracted with ethyl acetate for three times. The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated *in vacuo*, and the residue was purified by recrystallization (petroleum ether/ethyl acetate = 2:1) to give diltiazem (**3a**) as off white solid (108.1 mg, 90% yield).

(2*S*,3*S*)-5-(2-(dimethylamino)ethyl)-2-(4-methoxyphenyl)-4-oxo-2,3,4,5-tetrahydr -obenzo[b][1,4]thiazepin-3-yl acetate

m.p. = 100-102 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.4 Hz, 1H), 7.51-7.39 (m, 4H), 7.29-7.21 (m, 1H), 6.88 (d, *J* = 8.7 Hz, 2H), 5.14 (d, *J* = 7.5 Hz, 1H), 5.00 (d, *J* = 7.5 Hz, 1H), 4.47-4.39 (m, 1H), 3.81 (s, 3H), 3.74-3.68 (m, 1H), 2.74-2.67 (m, 1H), 2.49-2.42 (m, 1H), 2.27 (s, 6H), 1.89 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 170.0, 166.9, 159.8, 145.5, 135.4, 131.1, 130.9, 128.7, 127.5, 126.8, 124.8, 113.8, 71.2, 56.6, 55.3, 54.4, 48.1, 45.7, 20.6. **HRMS** (ESI, m/z) calcd for C₂₂H₂₇N₂O₄S [M + H]⁺ 415.1686, found 415.1694. [*α*]_D²⁰ = +118 (c = 1.0,

CHCl₃). (lit.^[3]: $[\alpha]_D^{20} = +112$ (c = 0.56, CHCl₃)).

Scheme S11. Synthesis of thiol 10b.^[7]

This is a modified literature procedure.^[7] To a solution of 2-amino-6-chlorobenzothiazole (**S2**) (5 g, 27.2 mmol) in water (50 mL) was added KOH (25 g). The resulting mixture was heated under reflux until evolution of ammonia ceased. Filtered, and the filtrate was diluted with ice-cold water. Addition of acetic acid with vigorous stirring to neutralize the filtrate. The temperature of the solution was maintained at room temperature or below by adding ice to avoid the formation of decomposed, greenish mass. The precipitate thus formed was extracted three times with petroleum ether. The combined organic layers were dried with anhydrous Na₂SO₄, concentrated *in vacuo*, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to afford thiol **10b** as pale yellow solid (1.39 g, 32% yield).

2-amino-5-chlorobenzenethiol

m.p. = 109-111 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.16-7.09 (m, 2H), 6.65 (dt, J = 9.0, 1.3 Hz, 1H), 4.32 (s, 2H), 1.57 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 147.3, 135.8, 131.8, 122.4, 119.5, 116.4.

Scheme S12. Synthesis of benzothiazepinones 12b.^[3,5,6]

This is a modified literature procedure.^[3,5,6] A solution of *trans*-methyl glycidate **9** (100 mg, 0.48 mmol) in toluene (10 mL) was heated at reflux. Aminothiophenol **10b** (84.2 mg, 0.53 mmol, 1.1 equiv.) and a solution of FeCl₃ 6H₂O (0.013 mg, 4.8×10^{-5} mmol, 10^{-4} equiv.) in MeOH (4.8 µL) were added, and the resulting mixture was stirred at reflux for 4 h. Then, *p*-toluenesulfonic acid (1.72 mg, 0.01 mmol, 0.02 equiv.) was added and the reflux continued for an additional 7 h. After cooling down, the solvent was concentrated *in vacuo*, and the residue was purified by recrystallization (petroleum ether/ethyl acetate = 2:1) to give compound **12b** as pale yellow solid (109.8 mg, 68% yield).

(2*S*,3*S*)-8-chloro-3-hydroxy-2-(4-methoxyphenyl)-2,3-dihydrobenzo[b][1,4] thiaz-epine-4(5H)-one

m.p. = 238.7-239.4 °C. ¹**H NMR** (400 MHz, DMSO-d₆) δ 10.34 (s, 1H), 7.64 (d, *J* = 2.4 Hz, 1H), 7.48 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.41-7.29 (m, 2H), 7.15 (d, *J* = 8.6 Hz, 1H), 6.95-6.78 (m, 2H), 5.08 (d, *J* = 6.5 Hz, 1H), 4.91 (s, 1H), 4.32 (d, *J* = 6.5 Hz, 1H), 3.75 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆) δ 173.0, 159.5, 141.5, 133.2, 131.3, 130.1, 129.1, 128.9, 128.8, 124.4, 113.8, 70.6, 57.6, 55.6. **HRMS** (ESI, m/z) calcd for C₁₆H₁₄ClNNaO₃S [M + Na]⁺ 358.0275, found

358.0281. $[\alpha]_D^{20} = +51.9$ (c = 0.2, DMSO).

Scheme S13. Synthesis of compound 13b.

A mixture of benzothiazepinone **12b** (234.5 mg, 0.7 mmol), DMAP (8.56 mg, 0.07 mmol, 0.1 equiv.), and Ac₂O (78.9 μ L, 0.84 mmol, 1.2 equiv.) in toluene (25 mL) was heated at reflux for 2 h. After cooling down, the toluene layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated *in vacuo*, and the residue was purified by recrystallization (petroleum ether/ethyl acetate = 2:1) to give compound **13b** as pale yellow solid (202.9 mg, 77% yield).

(2*S*,3*S*)-8-chloro-2-(4-methoxyphenyl)-4-oxo-2,3,4,5-tetrahydrobenzo[b][1,4] thia -zepin-3-yl acetate

m.p. = 111.3-114.0 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.69 (d, J = 2.4 Hz, 1H), 7.47-7.38 (m, 2H), 7.37 (dd, J = 8.5, 2.4 Hz, 1H), 7.13 (d, J = 8.5 Hz, 1H), 6.88-6.77 (m, 2H), 5.30 (d, J = 6.9 Hz, 1H), 5.16 (d, J = 7.0 Hz, 1H), 3.79 (s, 3H), 1.93 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.9, 168.9, 160.1, 139.4, 134.5, 132.0, 130.7, 130.7, 128.9, 126.5, 124.4, 114.0, 71.2, 55.4, 55.1, 20.6. **HRMS** (ESI, m/z) calcd for C₁₈H₁₆ClNNaO₄S [M + Na]⁺ 400.0381, found

400.0374. $[\alpha]_D^{20} = +28.23$ (c = 0.4, MeOH).

Scheme S14. Synthesis of clentiazem (3b).

To a solution of benzothiazepinone **13b** (109.3 mg, 0.29 mmol) in DMF (10 mL) was added 2-(dimethylamino)ethyl chloride (**14a**) (37.4 mg, 0.35 mmol, 1.2 equiv.). Under vigorous stirring was then added potassium carbonate (161.2 mg, 1.2 mmol, 4 equiv.). The resulting mixture was heated at reflux for 2 h. After cooling down, the reaction mixture was poured into iced water, and brine was added. The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated *in vacuo*, and the residue was purified by recrystallization (petroleum ether/ethyl acetate = 2:1) to give clentiazem (**3b**) as off white solid (111.3 mg, 85% yield).

(2*S*,3*S*)-8-chloro-5-(2-(dimethylamino)ethyl)-2-(4-methoxyphenyl)-4-oxo-2,3,4,5-tetrahydrobenzo[b][1,4]hiazepine-3-yl acetate

m.p. = 127.4-129.1 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.50-7.36 (m, 4H), 6.87 (d, J = 8.3 Hz, 2H), 5.11 (d, J = 7.5 Hz, 1H), 4.99 (d, J = 7.5 Hz, 1H), 4.42-4.27 (m, 1H), 3.78 (s, 1H)3H), 3.75-3.65 (m, 1H), 2.75-2.64 (m, 1H), 2.50-2.39 (m, 1H), 2.26 (s, 6H), 1.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 166.7, 159.9, 144.1, 134.8, 132.4, 131.1, 130.8, 130.2, 126.2, 125.9, 113.8, 70.8, 56.5, 55.2, 54.4, 47.9, 45.4, 20.5. HRMS (ESI, m/z) calcd for $C_{22}H_{26}ClN_2O_4S$ [M + H]⁺ 449.1296, found 449.1281. $[\alpha]_D^{20} = +49.25$ (c = 0.4, MeOH).

Scheme S15. Synthesis of amino chloride 14b.^[8]

This is a modified literature procedure.^[8] 2-(Isopropyl(methyl)amino)ethan-1-ol (**S3**) (936 mg, 8 mmol) was first dissolved in chloroform (12 mL) and stirred in an ice-cold bath, to which 0.84 mL of thionyl chloride (12 mmol, 1.5 equiv.) in chloroform (2.4 mL) was added dropwise over 30 min. The resulting mixture was heated to reflux for 4 h. The solvent was then evaporated *in vacuo* and the solid remained was re-dissolved in ethanol and precipitated into diethyl ether. The resultant light yellow solid was filtrated, washed with diethyl ether, and used for the next reaction without further purification.

Scheme S16. Synthesis of siratiazem (3c).

To a solution of benzothiazepinone **13a** (100 mg, 0.29 mmol) in DMF (10 mL) was added amino chloride (**14b**) (156.6 mg, 1.16 mmol, 4.0 equiv.). Under vigorous stirring was then added potassium carbonate (162 mg, 1.2 mmol, 4 equiv.). The resulting mixture was heated at reflux for 2 h. After cooling down, the reaction mixture was poured into iced water, and brine was added. The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated *in vacuo*, and the residue was purified by recrystallization (petroleum ether/ethyl acetate = 2:1) to give siratiazem (**3c**) as off white solid (93.2 mg, 73% yield).

(2*S*,3*S*)-5-(2-(isopropyl(methyl)amino)ethyl)-2-(4-methoxyphenyl)-4-oxo-2,3,4,5tetrahydrobenzo[b][1,4]hiazepine-3-yl acetate

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.7 Hz, 1H), 7.43 (d, J = 8.1 Hz, 2H), 7.34 (t, J = 7.7 Hz, 1H), 7.11 (d, J = 7.9 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 8.3 Hz, 2H), 5.46-5.23 (m, 2H), 4.55-4.43 (m, 2H), 3.82 (s, 3H), 3.01-2.91 (m, 1H), 2.90-2.80 (m, 2H), 2.33 (s, 3H), 1.77 (s, 3H), 1.05 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 161.8, 159.7, 149.5, 134.1, 130.5, 130.1, 128.6, 124.8, 124.5, 124.4, 113.6, 71.7, 65.0, 60.4, 55.4, 54.1, 51.1, 37.6, 20.4, 18.0. **HRMS** (ESI, m/z) calcd for C₂₄H₃₀N₂O₄SNa [M + Na]⁺ 465.1818, found 465.1820. [α]_D²⁰ = +244.8 (c = 0.2, MeOH).
References

[1] Z. Wang, Y. Zeng, X. Wu, Z. Li, Y. Tao, X. Yu, Z. Huang and F. Chen, *Org. Biomol. Chem.*, 2020, **18**, 2672-2677.

[2] Z. Wang, X. Wu, Z. Li, Z. Huang and F. Chen, *Org. Biomol. Chem.*, 2019, **17**, 3575-3580.
[3] C. Mordant, C. C. de Andrade, R. Touati, V. Ratovelomanana-Vidal, B. B. Hassine and J.-P. Gen *ê*, *Synthesis*, 2003, 2405-2409.

[4] T. Fukuyama, M. Tokizane, A. Matsui and I. Ryu, React. Chem. Eng., 2016, 1, 613-615.

[5] A. Schwartz, P. B. Madan, E. Mohacsi, J. P. O'Brien, L. J. Todaro and D. L. Coffen, *J. Org. Chem.*, 1992, **57**, 851-856.

[6] B. M. Adger, J. V. Barkley, S. Bergeron, M. W. Cappi, B. E. Flowerdew, M. P. Jackson, R. McCague, T. C. Nugent and S. M. Roberts, *J. Chem. Soc.*, *Perkin Trans.*, 1997, 1, 3501-3507.
[7] S. Mor and S. Sindhu, *RSC Adv.*, 2019, 9, 12784-12792.

[8] C. Xiao, Y. Cheng, Y. Zhang, J. Ding, C. He, X. Zhuang and X. Chen, *J. Polym. Sci. Pol. Chem.*, 2014, **52**, 671-679.

The ${}^{13}C$ NMR (100 MHz, CDCl₃) Spectrum of S1

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of 6a

.0 10.5 10.0 9.5 9.0

The ¹H NMR (400 MHz, CDCl₃) Spectrum of 6b

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of **6b**

The ¹H NMR (400 MHz, CDCl₃) Spectrum of 6c

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of 6c

100 90 f1 (ppm) -10

The ¹H NMR (400 MHz, CDCl₃) Spectrum of 6d

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of 6d

42

43

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of 6f

The ¹H NMR (400 MHz, CDCl₃) Spectrum of 6h

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of 6h

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of **6**l

8.547 8.543 8.041 8.041 8.008 8.001 8.001 8.001 7.987 7.1.927 7.1.927 7.1.578 7.1.5987 7.1.5987 7.1.5987 7.1.5987 7.1.5987 7.1.5987 7.1.5987 7.1.59877 7.1.5987 7.1.59877 7.1.59877 7.1.598777 7.1.598

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of **6m**

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of **6n**

The ¹H NMR (400 MHz, CDCl₃) Spectrum of 60

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of **60**

100 90 δ(ppm)

0 -10

58

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of **1g**

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of 13a

$\begin{array}{c} 7.5.695\\ -7.7.675\\ -7.7.480\\ -7.7.480\\ -7.7.4480\\ -7.7.4480\\ -7.7.448\\ -7.7.448\\ -7.7.448\\ -7.7.448\\ -7.7.448\\ -7.7.448\\ -7.7.488\\ -7.7.488\\ -7.7.488\\ -7.7.488\\ -7.7.488\\ -7.7.288$

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of **3**

The ¹H NMR (400 MHz, CDCl₃) Spectrum of 10a

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of **10a**

The ¹H NMR (400 MHz, DMSO-d₆) Spectrum of **12b**

The ¹³C NMR (100 MHz, DMSO-d₆) Spectrum of **12b**

The ¹³C NMR (100 MHz, CDCl₃) Spectrum of 16

-169.568 -161.822 -159.735 -149.488 -134.100 -134.100 -134.100 -124.8554 -112.4955 -113.619	71.736 65.015 60.404 55.387 55.387 55.093	-37.616	~20.360 ~17.949
--	--	---------	--------------------

Reduction of 6a with NaBH₄

0.6143 9230.21973 227.03760 40.2287

Bioreduction of 6a with LfSDR1

4 27.492 BB

Reduction of 6b with NaBH₄

Bioreduction of 6b with LfSDR1

#	[min]		[min]		[min]	[mAU*s]	[mAU]	8
1	14.275	BV	0.2834	5929.38086	326.23514	8.1889		
2	18.251	BB	0.3545	5748.37305	253.83910	7.9389		
3	21.604	VB	0.4801	2.93168e4	971.87659	40.4885		
4	24.258	BB	0.6423	3.14131e4	737.81470	43.3837		

Bioreduction of 6c with LfSDR1

peak	retention tim	e type	peak width	peak area	peak height	peak area
峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	14.206	BV	0.2794	96.30255	5.36230	0.4355
2	18.130	BB	0.4273	2.15045e4	814.81421	97.2451
3	21.683	BB	0.4066	231.82509	8.87759	1.0483
4	24.731	BB	0.4877	281.08383	8.97549	1.2711

Reduction of 6d with NaBH₄

Bioreduction of 6d with LfSDR1

peak retention time type		peak width	peak area	peak height	peak area	
峰(峰 保留时间 类型		峰宽	峰面积	峰高	峰面积
#	# [min]		[min]	[mAU*s]	[mAU]	8
1	15.838	BB	0.4274	865.11395	32.46219	3.5586
2	19.089	BB	0.4331	2.19681e4	780.80920	90.3640
3	24.948	BB	0.4818	237.19223	7.17468	0.9757
4	33.815	BB	0.6899	1240.27795	27.31751	5.1018

Bioreduction of 6e with LfSDR1

Reduction of 6f with NaBH4

Bioreduction of 6f with LfSDR1

Reduction of 6g with NaBH₄

Bioreduction of 6g with LfSDR1

Bioreduction of 6h with LfSDR1

Reduction of 6i with NaBH₄

Bioreduction of 6i with LfSDR1

Reduction of 6j with NaBH₄

pea	k retention tim	ne type	peak width	n peak area	peak height	peak area
峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
	-	-				
1	34.598	BB	0.7194	1.99956e4	425.39532	14.6469
2	37.889	BV	0.7799	1.98363e4	392.94656	14.5302
3	39.877	VB	0.9377	4.70158e4	711.67230	34.4394
4	55.606	BB	1.6332	4.96698e4	433.67389	36.3835

Bioreduction of 6j with LfSDR1

Reduction of 6k with NaBH₄

Bioreduction of 6k with LfSDR1

			1 A A							
1	33.735	VV	0.	.8027	7987.	49902	143.	21753	100.	.0000

Reduction of 61 with NaBH4

Bioreduction of 61 with LfSDR1

Reduction of 6m with NaBH₄

Bioreduction of 6m with LfSDR1

Reduction of 6n with NaBH₄

Bioreduction of 6n with LfSDR1

Reduction of 60 with NaBH4

Bioreduction of 60 with LfSDR1

