Supporting Information

for

Heavier *N*-heterocyclic half-sandwich tetrylenes

Inga-Alexandra Bischoff,^a Bernd Morgenstern,^a and André Schäfer^{*a}

^a Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany

Experimental Procedures	S1	-	S5
NMR Spectra	S6	-	S22
XRD Data	S23	-	S28
Computational Details	S29		
References	S30		

Experimental Procedures

General Information

All manipulations were carried out under an argon inert gas atmosphere using Schlenk line techniques or a glove box. Solvents were purified using an MBraun Solvent Purification System. NMR spectra were recorded on Bruker Avance III 400 spectrometers. ¹H and ¹³C NMR spectra were referenced using the solvent signals (δ^{1} H(C₆HD₅) = 7.16; δ^{13} C(C₆D₆) = 128.0) and ²⁹Si, ⁷⁷Se, ¹¹⁹Sn and ²⁰⁷Pb NMR spectra were referenced using external standards (δ^{29} Si(SiMe₄) = 0; δ^{77} Se(SeMe₂) = 0; δ^{119} Sn(SnMe₄) = 0, δ^{207} Pb(PbMe₄) = 0). Single crystal X-ray diffraction analysis were carried out on a Bruker AXS X8 Apex CCD diffractometer and a Bruker D8 Venture diffractometer with a microfocus sealed tube and a Photon II detector operating with graphite monochromated Mo Kα radiation. Data were corrected for absorption effects using the multi-scan method. Structure solution was conducted with direct methods using SHELXT and refinement by full matrix least squares calculations on F² using SHELXL2018 in the graphical user interface Shelxle.^[1] Elemental analysis was performed on an Elementar Vario MICRO cube. 1,2,3,4-Tetramethylcyclopenta-1,3-diene,^[2] Cyclopentadienyldimethylchlorosilane,^[3] 2,3,4,5-tetramethylcyclopentadienyldimethylchlorosilane,^[4] cyclopentadienyldimethyl(*tert*-butylamino)silane, tetramethyl-cyclopentadienyldimethyl(*tert*-butylamino)silane and their dilithio derivatives^[5] were synthesized according to literature procedures.

Syntheses of 1a-d

A suspension of Me₂Si(Cp^RLi)(⁴BuNLi) (Cp^R = H₄C₅: 300 mg; 1.45 mmol / Cp^R = Me₄C₅: 1.00 g; 3.80 mmol) in thf (~40 mL) was cooled to 195 K and SnCl₂ (Cp^R = H₄C₅: 274 mg; 1.45 mmol / Cp^R = Me₄C₅: 720 mg; 3.80 mmol), a solution of GeCl₂-dioxane (880 mg; 3.80 mmol) in thf (~20 mL) or a suspension of PbCl₂ (1.06 mg; 3.80 mmol) in thf (~20 mL), respectively, was added. The reaction mixture was warmed to room temperature and stirred overnight. thf Was removed *in vacuo* and the residue was extracted with hexane (~60 mL). After filtration all volatiles were removed *in vacuo* to obtain **1a-d**.

1a:

yellow crystals; 70% (317 mg; 1.02 mmol) yield

¹**H-NMR** (400.13 MHz, C₆D₆, 293 K, δ in ppm): 0.40 (6 H, s, Si(C<u>H</u>₃)₂), 0.98 (9 H, s, NC(C<u>H</u>₃)₃), 6.67 (2 H, t, *J* = 2.4 Hz, Cp<u>H</u>), 6.77 (2 H, t, *J* = 2.3 Hz, Cp<u>H</u>).

¹³C{¹H}-NMR (75.47 MHz, C₆D₆, 296 K, δ in ppm): 3.7 (Si(<u>C</u>H₃)₂), 35.9 (NC(<u>C</u>H₃)₃), 54.2 (N<u>C</u>(CH₃)₃), 102.5 (Cp-<u>C</u>), 113.1 (Cp-<u>C</u>), 121.1 (Cp-<u>C</u>).

 $^{29}\text{Si}\{^{1}\text{H}\}\text{-NMR}$ (59.63 MHz, C₆D₆, 296 K, δ in ppm): -14.5.

¹¹⁹**Sn{¹H}-NMR** (149.21 MHz, C₆D₆, 293 K, δ in ppm): -296.0.

CHN-analysis: Found: C, 42.64; H, 6.02; N, 3.72.Calc. for C₁₁H₁₉NSiSn: C, 42.34; H, 6.14; N, 4.49%.

1b:

orange oil; 78% (953 mg, 2.96 mmol) yield

¹**H-NMR** (400.13 MHz, C₆D₆, 293 K, δ in ppm): 0.50 (6 H, s, Si(C<u>H</u>₃)₂), 1.11 (9 H, s, NC(C<u>H</u>₃)₃), 1.98 (6 H, s, Cp-C<u>H</u>₃), 2.35 (6 H, s, Cp-C<u>H</u>₃).

¹³C{¹H}-NMR (100.61 MHz, C₆D₆, 293 K, δ in ppm): 6.1 (Si(<u>C</u>H₃)₂), 11.5 (Cp-<u>C</u>H₃), 13.9 (Cp-<u>C</u>H₃), 34.6 (NC(<u>C</u>H₃)₃), 54.2 (N<u>C</u>(CH₃)₃), 89.1 (Cp-<u>C</u>), 122.4 (Cp-<u>C</u>), 132.4 (Cp-<u>C</u>).

 $^{29}\text{Si}\{^{1}\text{H}\}\text{-NMR}$ (79.49 MHz, C6D6, 293 K, δ in ppm): -12.5.

HR-MS: *m*/*z* [M+H]⁺: calculated: 324.1203; found: 324.1188.

1c:

red oil; 70 % (978 mg, 2.66 mmol) yield

¹**H-NMR** (400.13 MHz, C₆D₆, 293 K, δ in ppm): 0.55 (6 H, s, Si(C<u>H</u>₃)₂), 1.11 (9 H, s, NC(C<u>H</u>₃)₃), 1.94 (6 H, s, Cp-C<u>H</u>₃), 2.42 (6 H, s, Cp-C<u>H</u>₃).

¹³C{¹H}-NMR (100.61 MHz, C₆D₆, 293 K, δ in ppm): 7.2 (Si(<u>C</u>H₃)₂), 11.5 (Cp-<u>C</u>H₃), 14.0 (Cp-<u>C</u>H₃), 34.0 (N<u>C</u>(CH₃)₃), 36.3 (NC(<u>C</u>H₃)₃), 53.9 (Cp-<u>C</u>), 98.0 (Cp-<u>C</u>), 120.5 (Cp-<u>C</u>).

²⁹Si{¹H}-NMR (79.49 MHz, C₆D₆, 293 K, δ in ppm): -16.2.

 $^{119} Sn \{ ^1 H \} \text{-} NMR$ (149.21 MHz, C_6D_6, 293 K, δ in ppm): -315.0.

CHN-analysis: Found: 46.92; H, 7.16; N, 3.71. Calc. for C15H27NSiGe: C, 48.93; H, 7.39; N, 3.80%.^[6]

HR-MS: *m*/*z* [M+O]⁺: calculated: 385.0884; found: 385.0723.

1d:

dark red crystals; 77% (400 mg, 0.88 mmol) yield

¹**H-NMR** (300.13 MHz, C₆D₆, 296 K, δ in ppm): 0.61 (6 H, s, Si(C<u>H</u>₃)₂), 1.10 (9 H, s, NC(C<u>H</u>₃)₃), 1.93 (6 H, s, Cp-C<u>H</u>₃), 2.60 (6 H, s, Cp-C<u>H</u>₃).

¹³C{¹H}-NMR (75.47 MHz, C₆D₆, 296 K, δ in ppm): 9.7 (Si(C<u>H</u>₃)₂), 11.8 (Cp-<u>C</u>H₃), 13.6 (Cp-<u>C</u>H₃), 39.0 (NC(<u>C</u>H₃)₃), 52.3 (N<u>C</u>(CH₃)₃), 100.0 (Cp-<u>C</u>), 122.4 (Cp-<u>C</u>), 125.5 (Cp-<u>C</u>).

²⁹Si{¹H}-NMR (59.63 MHz, C₆D₆, 296 K, δ in ppm): -25.8.

²⁰⁷Pb{¹H}-NMR (62.79 MHz, C₆D₆, 296 K, δ in ppm): +1561.7.

CHN-analysis: Found: C, 39.84; H, 6.16; N, 2.77. Calc. for C₁₅H₂₇NSiPb: C, 39.45; H, 5.96; N, 3.07%.

Reactions of 1a,c with Ph₂Se₂

The corresponding stannylene (**1a**: 100 mg; 0.32 mmol / **1c**: 100 mg; 0.27 mmol) and Ph₂Se₂ (for **1a/2a**: 100 mg, 0.32 mmol / for **1c/2b**: 85 mg, 0.27 mmol) were dissolved in C₆D₆ (~1 mL) and stirred overnight. Subsequently the mixtures were examined and NMR spectroscopy.

1a/2a:

¹**H-NMR** (400.13 MHz, C₆D₆, 293 K, δ in ppm): 0.34 (6 H, s, Si(C<u>H</u>₃)₂), 1.28 (9 H, s, NC(C<u>H</u>₃)₃), 5.61 (2 H, t, J = 1.1 Hz, Cp<u>H</u>), 6.51 (2 H, t, J = 1.1 Hz, Cp<u>H</u>), 6.87-6.97 (6 H, m, SePh<u>H</u>), 7.45-7.51 (4 H, m, SePh<u>H</u>). ¹³C{¹H}-NMR (100.61 MHz, C₆D₆, 293 K, δ in ppm): 3.6 (Si(<u>C</u>H₃)₂), 35.6 (NC(<u>C</u>H₃)₃), 55.4 (N<u>C</u>(CH₃)₃), 101.5 (Cp-

<u>C</u>), 124.7 (Cp-<u>C</u>), 129.2 (SePh-<u>C</u>), 132.1 (SePh-<u>C</u>), 138.1 (SePh-<u>C</u>), 139.3 (SePh-<u>C</u>).

²⁹Si{¹H}-NMR (79.49 MHz, C₆D₆, 293 K, δ in ppm): -8.5.

⁷⁷Se{¹H}-NMR (76.32 MHz, C₆D₆, 293 K, δ in ppm): 137.8 (¹J_{Se-Sn} = 1550 Hz).

¹¹⁹Sn{¹H}-NMR (149.21 MHz, C₆D₆, 293 K, δ in ppm): -88.6 (¹J_{Sn-Se} = 1626 Hz).

1c/2b:

¹**H-NMR** (400.13 MHz, C₆D₆, 293 K, δ in ppm): 0.47 (6 H, s, Si(C<u>H</u>₃)₂), 1.35 (9 H, s, NC(C<u>H</u>₃)₃), 1.61 (6 H, s, Cp-C<u>H</u>₃), 1.81 (6 H, s, Cp-C<u>H</u>₃).

¹³C{¹H}-NMR (100.61 MHz, C₆D₆, 293 K, δ in ppm): 6.1 (Si(C<u>H</u>₃)₂), 11.5 (Cp-C<u>H</u>₃), 16.3 (Cp-C<u>H</u>₃), 36.0 (NC(<u>C</u>H₃)₃), 55.3 (N<u>C</u>(CH₃)₃), 113.0 (Cp-<u>C</u>), 125.0 (Cp-<u>C</u>), 127.7 (Cp-<u>C</u>), 129.2 (SePh-<u>C</u>), 133.5 (SePh-<u>C</u>), 137.9 (SePh-<u>C</u>), 140.1 (SePh-<u>C</u>).

²⁹Si{¹H}-NMR (79.49 MHz, C₆D₆, 293 K, δ in ppm): -8.8.

⁷⁷Se{¹H}-NMR (76.32 MHz, C₆D₆, 293 K, δ in ppm): 120.9.

¹¹⁹Sn{¹H}-NMR (149.21 MHz, C₆D₆, 293 K, δ in ppm): -70.5 (¹J_{Sn-Se} = 1631 Hz).

Syntheses of 3

Route 1:

1b (366 mg; 1.14 mmol) and W(CO)₆ (400 mg; 1.14 mmol) were mixed together in thf (~4 mL) and irradiated (365 nm) for 5 h. Subsequently all volatiles removed *in vacuo*, toluene (~3 mL) was added, and the solution was stored at 248 K overnight. The precipitated solid was filtered off and toluene was removed *in vacuo* from the filtrate. The residue was sublimed at 448 K and an orange crystalline solid was obtained. Orange crystals could be obtained from toluene at 248 K.

44 % (390 mg, 0.60 mmol) yield

Route 2:

Cl₂Ge W(CO)₅·in thf was synthesized according to a literature procedure.^[7] A solution of Me₂Si(Cp[#]Li)([#]BuNLi) (250 mg; 0.95 mmol) in thf (~30 mL) was added to a solution of Cl₂Ge W(CO)₅·(512 mg; 0.95 mmol)in thf (~30 mL) at 195 K. The mixture was warmed to room temperature and stirred overnight. All volatiles were removed *in vacuo* and the residue was suspended in hexane (~60 mL). After filtration, hexane was removed *in vacuo*. Orange crystals could be obtained from a mixture of toluene and hexane at 248 K.

60 % (360 mg, 0.56 mmol) yield

¹**H-NMR** (400.13 MHz, C₆D₆, 293 K, δ in ppm): 0.30 (6 H, s, Si(C<u>H</u>₃)₂),), 1.23 (9 H, s, NC(C<u>H</u>₃)₃), 1.97 (6 H, s, Cp-C<u>H</u>₃), 2.04 (6 H, s, Cp-C<u>H</u>₃).

¹³C{¹H}-NMR (100.61 MHz, C₆D₆, 293 K, δ in ppm): 5.1 (Si(C<u>H</u>₃)₂), 11.8 (Cp-C<u>H</u>₃), 14.6 (Cp-C<u>H</u>₃), 34.3 (NC(<u>C</u>H₃)₃), 56.4 (N<u>C</u>(CH₃)₃), 78.9 (Cp-<u>C</u>), 126.0 (Cp-<u>C</u>), 139.0 (Cp-<u>C</u>), 195.2 (*J*_{Cw} = 122.2 Hz, W(<u>C</u>O)), 198.8 (W(<u>C</u>O)).
²⁹Si{¹H}-NMR (79.49 MHz, C₆D₆, 293 K, δ in ppm): 6.2.

CHN-analysis: Found: C, 37.27; H, 4.16; N, 2.12. Calc. for $C_{20}H_{27}GeNO_5SiW$: C, 37.19; H, 4.21; N, 2.17 %. **IR absorptions**: v_{max}/cm^{-1} 1909, 1940 and 2067 (CO).

Reactions of 1b-d with DMAP

Tetrylenes **1b-d** (**1b**: 45.0 mg; 0.14 mmol / **1c**: 50.0 mg; 0.14 mmol / **1d**: 40.0 mg; 0.09 mmol) and DMAP (for **1b/4a**: 17.0 mg; 0.14 mg / for **1c/4b**: 17.0 mg; 0.14 mg / for **1d/4c**: 11.0 mg; 0.09 mg) were dissolved in C_6D_6 and stirred for a few minutes. The resulting mixtures were subsequently examined by NMR spectroscopy, **4a-c** were not isolated.

4a:

¹**H-NMR** (400.13 MHz, C₆D₆, 293 K, δ in ppm): 0.57 (6 H, s, Si(C<u>H</u>₃)₂), 1.30 (9 H, s, NC(C<u>H</u>₃)₃), 2.00 (6 H, s, DMAP-N(C<u>H</u>₃)₂)), 2.20 (6 H, s, Cp-C<u>H</u>₃), 2.22 (6 H, s, Cp-C<u>H</u>₃), 6.00-6.01 (2 H, m, DMAP-C<u>H</u>), 8.29-8.31 (2 H, m, DMAP-C<u>H</u>).

¹³C{¹H}-NMR (100.61 MHz, C₆D₆, 293 K, δ in ppm): 6.7 (Si(<u>C</u>H₃)₂), 12.3 (Cp-<u>C</u>H₃), 14.4 (Cp-<u>C</u>H₃), 34.9 (NC(<u>C</u>H₃)₃), 38.4 (DMAP-N(<u>C</u>H₃)₂)), 53.8 (N<u>C</u>(CH₃)₃), 95.1(Cp-<u>C</u>), 106.5 (DMAP-<u>C</u>H), 120.9 (Cp-<u>C</u>), 132.5 (Cp-<u>C</u>) 148.8 (DMAP-<u>C</u>H), 154.5 (DMAP-C_a).

²⁹Si{¹H}-NMR (79.49 MHz, C₆D₆, 293 K, δ in ppm): -11.3.

4b:

¹**H-NMR** (400.13 MHz, C₆D₆, 293 K, δ in ppm): 0.67 (6 H, s, Si(C<u>H</u>₃)₂, **1c**), 1.36 (9 H, s, NC(C<u>H</u>₃)₃, **1c**), 2.11 (6 H, s, DMAP-N(C<u>H</u>₃)₂), DMAP), 2.20 (6 H, s, Cp-C<u>H</u>₃, **1c**), 2.34 (6 H, s, Cp-C<u>H</u>₃, **1c**), 5.93-5.95 (2 H, m, DMAP-C<u>H</u>), 8.30-8.32 (2 H, m, DMAP-C<u>H</u>).

¹³C{¹H}-NMR (100.61 MHz, C₆D₆, 293 K, δ in ppm): 8.1 (Si(<u>C</u>H₃)₂), 12.0 (Cp-<u>C</u>H₃), 14.7 (Cp-<u>C</u>H₃), 36.4 (NC(<u>C</u>H₃)₃), 38.3 (DMAP-N(<u>C</u>H₃)₂), 53.0 (N<u>C</u>(CH₃)₃), 89.7 (Cp-<u>C</u>), 106.7 (DMAP-<u>C</u>H), 122.6 (Cp-<u>C</u>), 127.4 (Cp-<u>C</u>), 148.2 (DMAP-<u>C</u>H), 154.7 (DMAP-<u>C</u>_q).

²⁹Si{¹H}-NMR (79.49 MHz, C₆D₆, 293 K, δ in ppm): -14.0.

¹¹⁹**Sn{¹H}-NMR** (149.21 MHz, C₆D₆, 293 K, δ in ppm): -129.5.

4c:

¹**H-NMR** (300.13 MHz, C₆D₆, 293 K, δ in ppm): 0.69 (6 H, s, Si(C<u>H</u>₃)₂), 1.25 (9 H, s, NC(C<u>H</u>₃)₃), 2.13 (6 H, s, Cp-C<u>H</u>₃, **1d**), 2.18 (6 H, s, DMAP-N(C<u>H</u>₃)₂), 2.56 (6 H, s, Cp-C<u>H</u>₃), 6.03-6.05 (2 H, m, DMAP-C<u>H</u>), 8.36-8.38 (2 H, m, DMAP-C<u>H</u>).

¹³C{¹H}-NMR (100.61 MHz, C₆D₆, 293 K, δ in ppm): 10.2 (Si(<u>C</u>H₃)₂), 11.9 (Cp-<u>C</u>H₃), 14.0 (Cp-<u>C</u>H₃), 38.3 (DMAP-N(<u>C</u>H₃)₂), 38.9 (NC(<u>C</u>H₃)₃), 52.0 (N<u>C</u>(CH₃)₃), 98.1 (Cp-<u>C</u>), 107.0 (DMAP-<u>C</u>H), 122.1 (Cp-<u>C</u>), 125.1 (Cp-C), 149.7 (DMAP-<u>C</u>H), 154.3 (DMAP-<u>C₃).</u>

 $^{29}\text{Si}\{^1\text{H}\}\text{-NMR}$ (79.49 MHz, C6D6, 293 K, δ in ppm): -25.7.

²⁰⁷**Pb**{¹**H**}**-NMR** (62.79 MHz, C_6D_6 , 293 K, δ in ppm): 1677.

Syntheses of 5a-c

Tetrylenes **1b-d** (**1b**: 200 mg; 0.62 mmol / **1c**: 150 mg, 0.41 mmol / **1d**: 130 mg, 0.28 mmol) and 1,3-di*iso*propyl-4,5-dimethylimidazolin-2-ylidene (NHC) (for **1b/5a**: 112 mg; 0.62 mg / for **1c/5b**: 73.0 mg; 0.41 mg / for **1d/5c**: 51.0 mg; 0.28 mg) were dissolved in hexane and an immediate precipitation of solid was observed. To this suspension, thf was slowly added until the solid was dissolved and the resulting solution was stored at 248 K.

5a:

yellow crystals; 42% (131 mg; 0.26 mmol) yield

¹**H-NMR** (400.13 MHz, C₆D₆, 293 K, δ in ppm): 0.56 (6 H, s, Si(C<u>H</u>₃)₂), 1.17 (12 H, d, *J* = 6.8 Hz, NHC-CH(C<u>H</u>₃)₂), 1.43 (9 H, s, NC(C<u>H</u>₃)₃), 1.58 (6 H, s, NHC-C<u>H</u>₃,), 2.18 (6 H, s, Cp-C<u>H</u>₃), 2.35 (6 H, s, Cp-C<u>H</u>₃, **1b**), 4.85 (2H, br s, NHC-C<u>H</u>(CH₃)₂).

¹³C{¹H}-NMR (100.61 MHz, C₆D₆, 293 K, δ in ppm): 7.55 (Si(<u>C</u>H₃)₂), 9.9 (NHC-<u>C</u>H₃), 12.3 (Cp-<u>C</u>H₃), 15.6 (Cp-<u>C</u>H₃), 22.6 (NHC-CH(<u>C</u>H₃)₂), 34.5 (NC(<u>C</u>H₃)₃), 49.1 (NHC-<u>C</u>H(CH₃)₂), 52.2 (N<u>C</u>(CH₃)₃), 124.5 (NHC-<u>C</u>), 129.0 (Cp-<u>C</u>), 132.0 (Cp-<u>C</u>), 179.4 (carbene-<u>C</u>).

²⁹Si{¹H}-NMR (79.49 MHz, C₆D₆, 293 K, δ in ppm): -6.2.

 $\textbf{CHN-analysis:} Found: C, 61.23; H, 8.93; N, 8.11. Calc. for C_{26}H_{47}N_3GeSi: C, 62.16; H, 9.43; N, 8.36\%.^{[6]}$

5b:

yellow crystals; 46% (104 mg; 0.19 mmol) yield

¹**H-NMR** (400.13 MHz, C₆D₆, 293 K, δ in ppm): 0.59 (6 H, s, Si(C<u>H</u>₃)₂), 1.12 (12 H, d, J = 10.0 Hz, NHC-CH(C<u>H</u>₃)₂), 1.45 (9 H, s, NC(C<u>H</u>₃)₃), 1.54 (6 H, s, NHC-C<u>H</u>₃), 2.29 (6 H, s, Cp-C<u>H</u>₃), 2.43 (6 H, s, Cp-C<u>H</u>₃), 4.91 (2 H, br s, NHC-C<u>H</u>(CH₃)₂).

¹³C{¹H}-NMR (100.61 MHz, C₆D₆, 293 K, δ in ppm): 8.7 (Si(<u>C</u>H₃)₂), 9.9 (NHC-<u>C</u>H₃), 12.4 (Cp-<u>C</u>H₃), 16.0 (Cp-<u>C</u>H₃), 22.6 (NHC-CH(<u>C</u>H₃)₂), 35.9 (NC(<u>C</u>H₃)₃), 50.5 (NHC-<u>C</u>H(CH₃)₂), 51.7 (N<u>C</u>(CH₃)₃), 72.0 (Cp-C), 124.9 (NHC-<u>C</u>), 127.0 (Cp-<u>C</u>), 130.3 (Cp-<u>C</u>), 184.5 (carbene-<u>C</u>).

²⁹Si{¹H}-NMR (79.49 MHz, C₆D₆, 293 K, δ in ppm): -8.0.

¹¹⁹**Sn**{¹**H**}-**NMR** (149.21 MHz, C₆D₆, 293 K, δ in ppm): 20.4.

CHN-analysis: Found: C, 56.73; H, 8.39; N, 7.38. Calc. for C₂₆H₄₇N₃SiSn: C, 56.94; H, 8.64; N, 7.66%.

5c:

orange crystals; 71% (200 mg; 0.31 mmol) yield

¹**H-NMR** (400.13 MHz, C₆D₆, 293 K, δ in ppm): 0.58 (6 H, s, Si(C<u>H</u>₃)₂, **1d**), 1.20 (12 H, d, J = 6.9 Hz, NHC-CH(C<u>H</u>₃)₂), 1.35 (9 H, s, NC(C<u>H</u>₃)₃, **1d**), 1.62 (6 H, s, NHC-C<u>H</u>₃), 2.42 (6 H, s, Cp-C<u>H</u>₃), 2.46 (6 H, s, Cp-C<u>H</u>₃), 4.68 (2 H, sept, J = 6.8 Hz, NHC-C<u>H</u>(CH₃)₂).

¹³C{¹H}-NMR (100.61 MHz, C₆D₆, 293 K, δ in ppm): 9.9 (NHC-<u>C</u>H₃), 10.8 (Si(<u>C</u>H₃)₂), 11.9 (s, Cp-<u>C</u>H₃), 15.0 (s, Cp-<u>C</u>H₃), 23.2 (s, NHC-CH(<u>C</u>H₃)₂), 37.9 (NC(<u>C</u>H₃)₃), 50.8 (NHC-<u>C</u>H(CH₃)₂), 51.1 (N<u>C</u>(CH₃)₃), 86.6 (Cp-<u>C</u>), (124.5 (NHC-<u>C</u>), 125.7 (Cp-<u>C</u>), 126.2 (Cp-<u>C</u>), 204.9 (carbene-<u>C</u>).

²⁹Si{¹H}-NMR (79.49 MHz, C₆D₆, 293 K, δ in ppm): -22.0.

²⁰⁷**Pb**{¹**H**}-**NMR** (62.91 MHz, C₆D₆, 296 K, δ in ppm): 2135.

CHN-analysis: Found: C, 48.87; H, 7.56; N, 6.56. Calc. for C₂₆H₄₇N₃PbSi: C, 49.03; H, 7.44; N, 6.60%.

NMR Spectra

90 80 70 60 Chemical shift / ppm -10 Figure S2: ¹³C{¹H} NMR spectrum of 1a (100.61 MHz, C₆D₆, 298 K) (* silicon grease).

Figure S3: ²⁹Si{¹H} NMR spectrum of 1a (79.49 MHz, C₆D₆, 298 K) (* silicon grease).

Figure S6: ¹³C{¹H} NMR spectrum of 1b (100.61 MHz, C₆D₆, 298 K) (* silicon grease).

Figure S9: ${}^{13}C{}^{1}H$ NMR spectrum of 1c (100.61 MHz, C₆D₆, 298 K).

Figure S12: ¹H NMR spectrum of 1d (400.13 MHz, C₆D₆, 298 K) (* silicon grease).

Figure S16: ¹H NMR spectrum of the reaction of 1a with Ph₂Se₂ (400.13 MHz, C₆D₆, 298 K) (* silicon grease).

Figure S17: ${}^{13}C{}^{1H}$ NMR spectrum of the reaction of 1a with Ph₂Se₂ (100.61 MHz, C₆D₆, 298 K) (* silicon grease).

Figure S18: ²⁹Si{¹H} NMR spectrum of the reaction of 1a with Ph₂Se₂ (79.49 MHz, C₆D₆, 298 K) (* silicon grease).

Figure S21: ¹H NMR spectrum of 2b (400.13 MHz, C₆D₆, 298 K).

Figure S24: ⁷⁷Se{¹H} NMR spectrum of 2b (76.32 MHz, C₆D₆, 298 K).

Figure S25: ¹¹⁹Sn{¹H} NMR spectrum of **2b** (149.21 MHz, C₆D₆, 298 K).

Figure S27: ¹³C{¹H} NMR spectrum of 3 (100.61 MHz, C₆D₆, 298 K).

– S15 –

Figure S35: ¹¹⁹Sn{¹H} NMR spectrum of 4b (149.21 MHz, C₆D₆, 298 K).

Figure S38: ²⁹Si{¹H} NMR spectrum of **4c** (79.49 MHz, C₆D₆, 298 K).

1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 10 Chemical shift / ppm Figure S39: ${}^{207}Pb{}^{1}H$ NMR spectrum of 4c (62.79 MHz, C₆D₆, 298 K).

Figure S40: ¹H NMR spectrum of 5a (400.13 MHz, C₆D₆, 298 K) (* silicon grease).

XRD Data

Crystal structure data has been deposited with the Cambridge Crystallographic Data Centre (CCDC) and is available free of charge from the Cambridge Structural Database (see reference numbers).

1a:

CCDC reference number Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume

Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

2174665 C₁₁H₁₉NSiSn 312.05 133(2) K 0.71073 Å monoclinic P21/c a = 12.4653(5) Å α= 90° b = 9.4098(4) Å $\beta = 106.4120(10)^{\circ}$ c = 11.5289(5) Å $\gamma = 90^{\circ}$ 1297.19(9) Å³ 4 1.598 mg m⁻³ 2.028 mm⁻¹ 624 0.220 x 0.161 x 0.080 mm³ 2.755 to 27.888° -16<=h<=16, -11<=k<=12, -15<=l<=15 18869 3099 [R(int) = 0.0406] 99.9% semi-empirical from equivalents 0.7456 and 0.6690 full-matrix least-squares on F² 3099 / 0 / 132 1.063 R1 = 0.0170, wR2 = 0.0425 R1 = 0.0182, wR2 = 0.0433 n/a 0.386 and -0.406 e.Å-3

Figure S51: Molecular structure of **1a** in the crystal, highlighting the intermolecular interactions (displacement ellipsoids at 50 % probability level, hydrogen atoms omitted for clarity).

1d: CCDC reference number Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 25.242°

Absorption correction Max. and min. transmission

Refinement method

Goodness-of-fit on F²

R indices (all data) Extinction coefficient

Data / restraints / parameters

Final R indices [I>2sigma(I)]

Largest diff. peak and hole

C₁₅H₂₇NPbSi 456.65 133(2) K 0.71073 Å monoclinic P21/c a = 10.7347(2) Å $\alpha = 90^{\circ}$ b = 18.9400(4) Å β= 104.5410(10)° c = 17.5783(4) Å $\gamma = 90^{\circ}$ 3459.46(13) Å³ 8 1.754 mg m⁻³ 9.809 mm⁻¹ 1760 0.149 x 0.135 x 0.100 mm³ 2.151 to 27.890° -13<=h<=14, -24<=k<=24, -23<=l<=22 57554 8246 [R(int) = 0.0350] 100.0% semi-empirical from equivalents 0.7456 and 0.5699 full-matrix least-squares on F² 8246 / 0 / 344 1.026 R1 = 0.0169, wR2 = 0.0336 R1 = 0.0218, wR2 = 0.0349 n/a 0.628 and -0.584 e.Å-3

2174664

Figure S52: Molecular structure of **1d** in the crystal, highlighting the intermolecular interactions (displacement ellipsoids at 50 % probability level, hydrogen atoms omitted for clarity).

3: CCDC reference number Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000)

F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

2174675 C20H27GeNO5SiW 645.95 133(2) K 0.71073 Å monoclinic P21/n a = 9.1997(4) Å $\alpha = 90^{\circ}$ b = 26.2141(10) Å $\beta = 100.750(2)^{\circ}$ c = 10.2037(4) Å $\gamma = 90^{\circ}$ 2417.56(17) Å³ 4 1.775 mg m⁻³ 6.075 mm⁻¹ 1256 0.200 x 0.180 x 0.030 mm³ 2.175 to 27.902° -10<=h<=12, -34<=k<=34, -13<=l<=13 32787 5770 [R(int) = 0.0382] 99.9% semi-empirical from equivalents 0.7456 and 0.5176 full-matrix least-squares on F² 5770 / 0 / 271 1.078 R1 = 0.0220, wR2 = 0.0426 R1 = 0.0299, wR2 = 0.0453 n/a 0.557 and -0.991 e.Å-3

Figure S53: Top: Illustration of bond lengths of **3**; bottom: Molecular structure of **3** in the crystal (displacement ellipsoids at 50 % probability level, hydrogen atoms omitted for clarity).

5a: CCDC reference number Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

2174673 C₂₆H₄₇GeN₃Si 502.34 132(2) K 0.71073 Å monoclinic P2₁/n a = 10.5226(3) Å $\alpha = 90^{\circ}$ b = 16.5510(5) Å β= 104.6320(10)° c = 16.5994(7) Å $\gamma = 90^{\circ}$ 2797.19(17) Å³ 4 1.193 mg m⁻³ 1.155 mm⁻¹ 1080 0.349 x 0.340 x 0.276 mm³ 1.767 to 31.583° -15<=h<=15, -24<=k<=24, -24<=l<=24 57712 9376 [R(int) = 0.0328] 100.0% semi-empirical from equivalents 0.7462 and 0.7061 full-matrix least-squares on F² 9376 / 133 / 335 1.035 R1 = 0.0317, wR2 = 0.0765 R1 = 0.0426, wR2 = 0.0816 n/a 0.674 and -0.533 e.Å-3

Figure S54: Molecular structure of 5a in the crystal (displacement ellipsoids at 50 % probability level, hydrogen atoms omitted for clarity).

5b: CCDC reference number Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

2174672 $C_{26}H_{47}N_3SiSn$ 548.44 132(2) K 0.71073 Å monoclinic P21 a = 9.0621(2) Å $\alpha = 90^{\circ}$ b = 15.2311(3) Å $\beta = 99.6810(10)^{\circ}$ c = 10.2462(2) Å $\gamma = 90^{\circ}$ 1394.10(5) Å³ 2 1.307 mg m⁻³ 0.977 mm-1 576 0.316 x 0.224 x 0.114 mm³ 2.016 to 29.633° -12<=h<=12, -21<=k<=20, -14<=l<=14 22591 7838 [R(int) = 0.0294] 100.0% semi-empirical from equivalents 0.7459 and 0.6976 full-matrix least-squares on F² 7838 / 1 / 295 1.014 R1 = 0.0226, wR2 = 0.0437 R1 = 0.0266, wR2 = 0.0454 -0.001(8)n/a 0.331 and -0.263 e.Å-3

Figure S55: Molecular structure of 5b in the crystal (displacement ellipsoids at 50 % probability level, hydrogen atoms omitted for clarity).

5c: CCDC reference number Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

2174674 C₂₆H₄₇N₃PbSi 636.94 133(2) K 0.71073 Å monoclinic P21 a = 9.0843(2) Å $\alpha = 90^{\circ}$ b = 15.3056(4) Å c = 10.2605(3) Å $\gamma = 90^{\circ}$ 1411.43(6) Å³ 2 1.499 mg m⁻³ 6.036 mm-1 640 0.320 x 0.273 x 0.096 mm³ 2.006 to 26.728° -11<=h<=11, -19<=k<=19, -12<=l<=12 39122 5966 [R(int) = 0.0455] 100.0% semi-empirical from equivalents 0.7462 and 0.4419 full-matrix least-squares on F² 5966 / 1 / 295 0.868 R1 = 0.0134, wR2 = 0.0290 R1 = 0.0147, wR2 = 0.0292 0.005(3) n/a 0.356 and -0.661 e.Å-3

 $\beta = 98.3690(10)^{\circ}$

Figure S56: Molecular structure of 5c in the crystal (displacement ellipsoids at 50 % probability level, hydrogen atoms omitted for clarity).

Computational Details

All calculations were performed using the Gaussian 16, Revision C.01 package of programs.^[8] Geometry optimizations have been carried out at the PBE0-D3/def2-TZVP level of theory and subsequent single-point calculations at the PBE0-D3/def2-TZVPP level of theory.^[9] The optimized structures were confirmed to be a minimum on the potential energy surface by subsequent frequency analysis (all positive eigenvalues).

Table S1: Molecular orbital energies calculated at the	PBE0-D3/def2-TZVPP//PBE0-D3/def2-TZVP level of
theory.	

	1a	1b	1c	1d
LUMO [eV]	-1.324	-1.274	-1.840	-1.421
HOMO [eV]	-6.104	-5.626	-5.526	-5.474
HOMO-1 [eV]	-6.480	-5.961	-5.914	-5.777
HOMO-2 [eV]	-6.796 (lone pair)	-6.540	-6.364	-6.287
HOMO-3 [eV]	-7.028	-6.647 (lone pair)	-7.004 (lone pair)	-6.784 (lone pair)

References

[1] a) G. M. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112; b) G. M. Sheldrick, *Acta Cryst.*, 2015, **A71**, 3; c) C. B. Hübschle, G. M. Sheldrick and B. Dittrich, *J. Appl. Crystallogr.*, 2011, **44**, 1281.

[2] P. Beagley, P. Davies, H. Adams and C. White, Can. J. Chem., 2011, 79, 731.

[3] W. J. Patterson, S. P. McManus and C. U. Pittman Jr., J. Polym. Sci., 1974, 12, 837.

[4] D. Stern, M. Sabat and T. J. Marks, J. Am. Chem. Soc., 1990, 112, 9558.

[5] D. W. Carpenetti, L. Kloppenburg, J. T. Kupec and J. L. Petersen, Organometallics, 1996, 15, 1572.

[6] R. E. H. Kuveke, L. Barwise, Y. van Ingen, K. Vashisth, N. Roberts, S. S. Chitnis, J. L. Dutton, C. D. Martin and R. L. Melen, *ACS Cent. Sci.*, 2022. doi.org/10.1021/acscentsci.2c00325. According to this publication, a deviation of 0.4 % in elemental analysis is not a realistic requirement. Often, there are deviations greater than 10 % especially for C.

[7] P. Jutzi and W. Steiner, Chem. Ber., 1976, 109, 3473.

[8] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

[9] a) A. Schaefer, H. Horn and R. Ahlrichs, *J. Chem. Phys.*, 1992, **97**, 2571; b) A. Schaefer, C. Huber and R. Ahlrichs, *J. Chem. Phys.*, 1994, **100**, 5829; c) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297; d) F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057; J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865; e) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865; e) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865; e) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396; f) C. Adamo and V. Barone, *J. Chem. Phys.*, 1999, **110**, 6158; g) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**, 154104.