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1. Experimental Section

Materials and Characterization. All reagents were purchased commercially and were not further
purified when used. Powder X-ray diffraction (PXRD) analysis were performed on a Rigaku Mini Flex
11 diffractometer at a 20 range of 3-50° (5° min~!) with CuKo. radiation (A =1.54056 A). The solid-state
UV/Vis spectra data of the cluster samples were obtained on UV-4000 spectrophotometer. Electrospray
ionization mass spectrometry (ESI-MS) were performed on a Bruker Daltonik GmbH (Bruker,
Germany). Thermogravimetric (TGA) patterns were recorded on a Mettler Toledo TGA/SDTA 851e
analyzer in a N, atmosphere. FT-IR spectra using KBr pellets were taken on a Bruker Vertex 70
Spectrometer.

Synthesis for compound {Ti(TBC[4])(O'Pr)}- HNEt;2'PrOH {Ti-PrOH}: TBC[4] (21 mg, 0.032
mmol) were added in a 15mL reaction vessel with 3 mL isopropanol. Ti(O™Pr), (100 pL, 0.33 mmol) and
three drop triethylamine were added dropwise. The resulting mixtures were sonicated for 5 min, then
were transferred to a preheated oven at 80 °C for 2 days. Yellow colored crystals were obtained after
cooling to 25 °C in a yield of ~70%. Elem. Anal. Calcd for Cs5;H74OsNTi (wt%): C, 74.62; H, 8.74; N,
1.64. Found: C, 73.91; H, 8.38; N, 1.31.

Synthesis for compound {H,Ti,(TBC[4]),(MeO),}-4MeOH {Ti,-MeOH}: TBC[4] (21 mg, 0.032
mmol) was added in a 15mL reaction vessel with 3 mL MeOH. Ti(O'Pr), (100 uL, 0.33 mmol) was added
dropwise. The resulting mixtures were sonicated for 5 min, then were transferred to a preheated oven at
80 °C for 2 days. Yellow colored crystals were obtained after cooling to 25 °C in a yield of ~70%. Anal.
Calcd for CooH;19010Ti, (Wt%): C, 74.67; H, 7.66. Found: C, 73.82; H, 7.29.

Synthesis for compound {Ti;O,(OPr),(DMF),(TBC[4]),} {Ti,-DMF}: TBC[4] (21 mg, 0.032
mmol) were added in a 15mL reaction vessel with 3 mL DMF. Ti(O™Pr), (100 pL, 0.33 mmol) was added
dropwise. The resulting mixtures were then transferred to a preheated oven at 80 °C for 2 days. Yellow
colored crystals were obtained after cooling to 25 °C in a yield of ~85%. Anal. Calcd for
Ci06H142N2046Tis (Wt%): C, 67.29; H, 7.56; N, 1.48. Found: C, 67.85; H, 7.23; N, 1.69.

Synthesis for compound {H,Ti,O,(EtO)s(TBCI4]),} {Ti,-EtOH}: TBC[4] (21 mg, 0.032 mmol)
were added in a 15mL reaction vessel with 3 mL EtOH. Ti(O'Pr), (100 pL, 0.33 mmol) was added
dropwise. The resulting mixtures were then transferred to a preheated oven at 80 °C for 2 days. Yellow
colored crystals were obtained after cooling to 25 °C in a yield of ~65%. Elem. Anal. Calcd for
Ci00H138016T1s(Wt%): C, 67.18; H, 7.78. Found: C, 67.56; H, 8.08.
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Synthesis for compound {Ti;O,(OPr),(TBC[4]),} {Ti,-PrOH}: TBC[4] (21 mg, 0.032 mmol)
were added in a 15mL reaction vessel with 3 mL PrOH. Ti(O'Pr), (100 pL, 0.33 mmol) was added
dropwise. The resulting mixtures were then transferred to a preheated oven at 80 °C for 2 days. Yellow
colored crystals were obtained after cooling to 25 °C in a yield of ~65%. Elem. Anal. Calcd for
Ci00H132014Tis(Wt%): C, 68.65; H, 7.60. Found: C, 68.26; H, 8.11.

Synthesis for compound {Ti;;(O™Pr),(TBC[4])s(Pdc)s} 14CH;CN {Ti;,Le-1}: TBC[4] (30 mg,
0.046 mmol) and 3,5-pyridinedicarboxylic acid (H,Pdc, 16.7 mg, 0.1 mmol) were added in a 15mL
reaction vessel with 3 mL CH;CN. Ti(O'Pr), (100 puL, 0.33 mmol) was added dropwise. The resulting
mixtures were then transferred to a preheated oven at 80 °C for 3 days. Red colored crystals were obtained
after cooling to 25 °C in a yield of ~55%. Elem. Anal. Calcd for C;55Hy33N 14060 T112(Wt%): C, 66.43; H,
6.82; N, 3.02. Found: C, 67.35; H, 7.32; N, 3.52.

Synthesis for compound {Ti;»(O'Pr);,(TBC[4])s(Pip)s} 34CH;CN {Ti;,Ls-2}: TBC[4] (42 mg,
0.065 mmol) and 5-(pyridin-4-yl)isophthalate (H,Pip, 100 mg, 0.4 mmol) were sealed in a 25mL Teflon-
lined reaction vesse with 5 mL CH3;CN. Ti(O'Pr), (100 pL, 0.33 mmol) was added dropwise. The
resulting mixtures were then transferred to a preheated oven at 100 °C for 3 days. Red colored crystals
were obtained after cooling to 25 °C in a low yield of ~5%. {Ti;,L¢-2} has a low yield and coexists with
other impurities. We can only manually pick a small number of crystals to do some basic characterization.

Photocurrent responses. Photoelectrochemical tests were carried out on a CHI 660E
electrochemical workstation. The platinum plate was used as the counter electrode, and the saturated
calomel electrode was used as the reference electrode. 5 mg crystal samples were ultrasonically dispersed
in 1 ml ethanol, and then the dispersion was dropped on FTO glass to prepare the working electrode. The
electrodes were immersed in the 0.2 M Na,SO,4 aqueous solution. A 300 W Xe lamp with UV cut-off
filter was used as a full-wavelength light source.

Contact Angle Measurements. Contact angles were measured on powder samples using a contact
angle meter with a rotatable substrate holder. To perform contact angle measurements, 10 mg of powder
samples of the clusters were deposited on a glass substrate bed. Then, powders were pressed to make a
flat surface by the glass slide. A 10 uL water droplet was released slowly on the flat surface of the powder
samples. The droplet image was taken by a high-performance charge-coupled device (CCD) sensor. The
contact angle of all powder samples was analyzed by five-point simulation analysis.

H, Production Experiment. Photocatalytic hydrogen production tests were investigated in a closed
gas circulation system (Beijing Perfect Light Co. Labsolar-III (AG)). Typically, 25 mg of cluster sample
was dispersed in 30 mL of H,O with 5 mL of triethanolamine (TEOA) as a sacrificial agent, and then 33
pL of 1.0 wt % H,PtClg was added. A 300 W Xe lamp was used as the UV—vis light source. Light passed
through a UV cutoff filter (A > 420 nm), and then the filtered light was focused onto the reactor. During
irradiation, the headspace gas of the reactor was intermittently sampled every 30 min and H, from the
headspace gas was monitored by a gas chromatograph (Shimadzu GC9860) equipped with a thermal
conductivity detector, a SA molecular sieve column, and Ar as carrier gas.

Theoretical and Computational Method Quantum chemistry calculations were performed using
density functional theory (DFT). The generalized gradient approach with PBE exchange-correlation
functional was adopted.! The uncontracted Slater TZP basis set was utilized for Ti atom and DZP basis
sets for other elements in the calculations.? Frozen-core approximation was applied to [1s2] of O and
[1s-2p®] of Ti atoms. Scalar relativistic effect was accounted by zeroth order regular approximation
(ZORA) approach.? All the calculations were done with ADF 2019.304 program.*
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Figure S1. Pictures of fresh crystals separated from the solution.

2. Structure of Compounds

Compounds {Ti-PrOH} {Ti,-MeOH} {Ti,-DMF} {Ti;-EtOH}
CCDC 2101662 2101663 2101664 2101665
Formula CeoHoNO,Ti CosH26014Ti, Cio6H142N206Tiy C100016H138Tis
T(K) 150 150 150 150
Fy 986.23 1575.74 1891.81 1783.66
Crystal system monoclinic monoclinic triclinic triclinic
Space group P2,/c P2i/n P-1 P-1
a, A 18.6310(2) 19.8135(4) 12.37700(10) 12.0088(4)
b, A 12.8546(2) 22.9853(4) 12.6781(2) 12.1232(4)
c, A 25.6170(3) 23.1531(4) 19.3873(2) 18.4541(5)
al® 90 90 90.5700(10) 80.451(3)
pr° 96.7860(10) 102.0212(17) 105.9730(10) 76.371(3)
y/° 90 90 114.5140(10) 65.491(3)
VIA3 6092.14(14) 10313.1(3) 2634.17(6) 2368.67(15)
Z 4 4 1 1
Peated/gCM) 0.930 0.932 1.195 1.250
/mm") 1.471 1.668 2.978 3.274
F(000) 1844 3096.0 1012.0 950.0
Data/restraints/para  12707/153/674 21636/231/1193 10672/166/786 9191/136/725
meters
Goof 1.065 1.029 1.042 1.075
Ri/WR,(I> 20(1)) 0.0764/0.2378 0.0648/0.1852 0.0537/0.1498 0.0541/0.1380
R{/wR,(all data) 0.0876/0.2561 0.0842/0.2004 0.0665/0.1568 0.0765/0.1518

Compounds {Ti4-iPrOH} {Ti12L6-1} {TilzLﬁ-Z}

CCDC 2101666 2101668 2101669

Formula Cio0H32014Ti4 Cs370H4s56N20060Ti 12 C43Hs33N40060 T

T(K) 150.1 150.1 150.1

Fy 1749.65 6718.32 7952.59

Crystal system triclinic trigonal monoclinic

Space group P-1 R-3 P2,/c

a, A 15.0667(7) 33.1580(13) 24.2214(6)

b, A 16.2142(8) 33.1580(13) 21.6454(4)

c, A 21.1278(5) 31.9101(17) 42.7779(8)

al® 98.6700(3) 90 90

p° 102.6620(4) 90 97.4170(2)

y/° 101.7650(4) 120 90
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VIA3 4825.8(4) 30383(3) 22240.0(8)

Z 2 3 2

Pealed/gem) 1.204 1.061 1.053

/mm) 3.188 0.286 2.233

F(000) 1864.0 10284.0 7462.0
Data/restraints/para  18948/67/1158 13149/105/758 39089/1048/2660
meters

Goof 1.002 0.974 1.267

R/WR,(I> 25(1)) 0.0751/0.1832 0.0733/0.1857 0.1058/0.3227

R /wWR,(all data) 0.1463/0.2262 0.1211/0.2079 0.1249/0.3413

(B) (C) (D) (E)

{Ti-PrOH} {Ti,-MeOH} {Ti,-DMF} {Ti,-EtOH} {Ti,-PrOH}

Figure S2. Structures of the simple TBC[4]-Ti clusters. The tert-butyl groups of
TBC[4] ligands are deleted for brevity.

(A) |

Figure S3. (A) ORTEP representation of the structure of {Ti-PrOH}; (B) Three-
dimensional packing structure of {Ti-PrOH}.

>

Figure S4. (A) ORTEP representation of the structure of {Ti,-MeOH}; (B) Three-
dimensional packing structure of {Ti,-MeOH}.
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Figure S5. (A) ORTEP representation of the structure of {Tiy;-DMF}; (B) Three-
dimensional packing structure of {Ti;~-DMF}.
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Figure S7. (A) ORTEP representation of the structure of {Tiz-PrOH}; (B) Three-
dimensional packing structure of {Tis-PrOH}.
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Figure S8. (A) ORTEP representation of the structure of {Ti;;L¢-1}; (B) Three-
dimensional packing structure of {Tij;L-1}. The cages are stacked to form uniform
nanotubes in a face-to-face fashion along the ¢ direction.

{Ti;;Le-1} {Ti;; L2}

Figure S10. Comparison of stacking patterns of {Ti;,L¢-1}(A) and {Ti;,Le-2}(B).
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3. Powder X-ray Diffraction
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Figure S11. The XRD patterns of {Ti-PrOH}.
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Figure S12. The XRD patterns of {Ti,-MeOH}.
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Figure S13. The XRD patterns of {Ti;-DMF}.
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Figure S14. The XRD patterns of {Ti;-EtOH}.
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Figure S15. The XRD patterns of {Ti;-PrOH}.
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Figure S16. The XRD patterns of {Ti;;L¢-1}.
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Figure S17. The XRD patterns of {Ti;;L¢-2}.
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4. XPS Tests
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Figure S18. XPS tests of {Ti]2L6-1} and {Ti12L6-2}.
4. N, Sorption Isotherm.
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Figure S19. N, sorption isotherms of {Ti;;L6-1}. {Tij2L¢-2} has a low yield (less than
5%) and coexists with other impurities. We can only manually pick a small number of
crystals to do some basic characterization. However, at least 80 mg of samples are
needed for BET experiments, and we cannot get so many samples.
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6. Energy Dispersive X-ray (EDX) Spectroscopic Analysis
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Figure S21. The EDS pattern of {Ti,-MeOH}.
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Figure S23. The EDS pattern of {Tiy,-EtOH}.
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Figure S26. The EDS pattern of {Ti;,L¢-2}.
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8. TG-Measurement
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Figure S27. The TGA and DSC curves of {Ti-PrOH}.
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Figure S28. The TGA and DSC curves of {Ti,-MeOH}.
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Figure S29. The TGA and DSC curves of {Ti;-DMF}.
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Figure S31. The TGA and DSC curves of {Tis-PrOH}.
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Figure S32. The TGA and DSC curves of {Ti;;L¢-1}.
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Figure S33. The TGA and DSC curves of {Ti;;L¢-2}.

7. IR Spectra

Figure S34-40 shows the FTIR spectra of clusters. The broad band between 3200-3500
cm! attributable to OH stretching. The strong vibration band at ca. 1620-1650 cm™! can
be ascribed to C=0 stretching of the carboxyl. The characteristic bands of Ti-O-C and
Ti-O-Ti appears in the ranges of 1000—1200 and 700-800 cm'!, respectively.
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Figure S34. IR spectrum of crystal sample of {Ti-PrOH}.
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Figure S35. IR spectrum of crystal sample of {Ti,-MeOH}.
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Figure S36. IR spectrum of crystal sample of {Ti;-DMF}.
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Figure S37. IR spectrum of crystal sample of {Ti;-EtOH}.
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Figure S38. IR spectrum of crystal sample of {Tis~PrOH}.
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Figure S39. IR spectrum of crystal sample of {Ti;,L¢-1}.
100

]——{(Ti L -2}

©
(4]
L

@0
o
L

767 em™

(-]
(%))
i 1 "

-]
o
1

-1
1617 cm ]ZOllch
1460 em’

Transmittance(%)
~
&

2962 cm™

~
o
PR

65

L T v T T T ¥ T 4 T v T b T
3500 3000 2500 2000 1500 1000 500
Wavenumber(cm )

Figure S40. IR spectrum of crystal sample of {Ti;,L¢-2}.

8. Contact Angle Tests

Ti,-IPrOH Ti,-MeOH Ti,-PrOH

Ti,-DMF Ti,-EtOH

Ti12|.6'1 Ti12L6'2

Figure S41. Contact angle pattern for the clusters and cages.
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9. ESI-MS Measurements.

{Ti(TBC[4])(CH;0)}-
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Figure S42. ESI-MS spectrum of the CH;OH solution of {Ti-PrOH}.
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Figure S43. ESI-MS spectrum of the CH;0H solution of {Ti,-MeOH}.
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Calcd: m/z= 1648.69
Found: m/z= 1648.76
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Figure S44. ESI-MS spectrum of the CH;OH solution of {Ti;~-DMF}.
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Figure S45. ESI-MS spectrum of the CH;0H solution of {Ti,-EtOH}.
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Figure S46. ESI-MS spectrum of the CH;OH solution of {Ti,~PrOH}.
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Figure S47. ESI-MS spectra of the CH;0H solution of {Ti;,L¢-1}.
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Figure S48. ESI-MS spectra of the CH;0H solution of {Ti;;L¢-2}.

9. Band-gap investigation
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Figure 49. Kubelka—Munk transformation of diffuse reflectance data of {Ti-PrOH}.
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Figure 50. Kubelka—Munk transformation of diffuse reflectance data of {Ti,-MeOH}.
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Figure 51. Kubelka—Munk transformation of diffuse reflectance data of {Ti;-DMF}.
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Figure 52. Kubelka—Munk transformation of diffuse reflectance data of {Tis-PrOH}.
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Figure 53. Kubelka—Munk transformation of diffuse reflectance data of {Ti;-EtOH}.
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Figure 54. Kubelka—Munk transformation of diffuse reflectance data of {Ti;,L¢-1}.
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Figure 55. Kubelka—Munk transformation of diffuse reflectance data of {Ti;,L¢-2}.

10. H; Evolution Study.
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Figure S56. Recycling H, evolution experiments of {Ti-PrOH}.
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Figure S57. Recycling H, evolution experiments of {Ti,-MeOH]}.
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Figure S58. Recycling H; evolution experiments of {Ti;-DMF}
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Figure S59. Recycling H; evolution experiments of {Tij;L¢-1}.
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Figure S60. IR spectrum of {Ti-PrOH} before and after photocatalytic reaction.
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Figure S61. IR spectrum of {Ti,-MeOH} before and after photocatalytic reaction.
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Figure S62. IR spectrum of {Ti,-DMF} before and after photocatalytic reaction.
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Figure S63. IR spectrum of {Ti;,L¢-1} before and after photocatalytic reaction.
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Figure S64. Solid-state UV-vis spectra of {Ti-PrOH} and sample after photocatalytic
experiment.
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Figure S65. Solid-state UV-vis spectra of {Ti,-MeOH} and sample after photocatalytic

experiment.
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Figure S66. Solid-state UV-vis spectra of {Ti,-DMF} and sample after photocatalytic
experiment.
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Figure S67. Solid-state UV-vis spectra of {Tij;L¢-1} and sample after photocatalytic

experiment.
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Figure S68. ESI-MS of {Ti;,L¢-1} after photocatalysis reaction.
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Figure 69. Mott—Schottky plot (insets are the estimated HOMO and LUMO levels of

the cluster) of {Ti-'PrOH}.
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Figure 70. Mott—Schottky plot (insets are the estimated HOMO and LUMO levels of

the cluster) of {Ti,-MeOH}.
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Figure 71. Mott—Schottky plot (insets are the estimated HOMO and LUMO levels of
the cluster) of {Ti;-DMF}.
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Figure 72. Mott—Schottky plot (insets are the estimated HOMO and LUMO levels of
the cluster) of {Ti;,L¢-2}.

10. DFT Calculation.
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Figure S73. Total density of states (tDOS) and partial DOS (pDOS) for several atomic orbitals
(AOs) in (a) {Ti-PrOH}, (b) {Ti,-MeOH}, (¢) {Ti;-DMF} and (d) {Ti; L1}

Table S2. Orbital energies of HOMO, LUMO and AEy,_ of the two cluster cages.
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Energy / eV Eromo Eiumo AEy
{Ti,-DMF} -5.265 -3.013 2.252
{TioLe-1} -5.558 -4.175 1.383
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