Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

# **Supporting Information**

Plasmonic Ag-decorated Cu<sub>2</sub>O nanowires for boosting photoelectrochemical CO<sub>2</sub> reduction to multi-carbon products

Yanfang Zhang,<sup>a</sup>† Qingmei Wang,<sup>a</sup>† Keke Wang,<sup>a</sup> Yang Liu,<sup>a</sup> Luwei Zou,<sup>b</sup> Yu
Zhou,<sup>b</sup> Min Liu,<sup>b</sup> Xiaoqing Qiu,<sup>a</sup> Wenzhang Li, <sup>a,c\*</sup> and Jie Li <sup>a\*</sup>

- <sup>a</sup> School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- b School of Physics and Electronics, Central South University, Changsha 410083,China
- <sup>c</sup> Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, 410083, China
- \*Corresponding author e-mails:

liwenzhang@csu.edu.cn (W. Li), lijieliu@csu.edu.cn (J. Li)

† The authors contributed equally to this work.

### **Contents**

## **Experiment section**

### **Figures**

- Figure S1. Schematic illustration for the preparation of Cu<sub>2</sub>O/Ag.
- **Figure S2.** Element distribution mapping patterns of Cu<sub>2</sub>O/Ag.
- Figure S3. XRD patterns of Cu<sub>2</sub>O and Cu<sub>2</sub>O/Ag.
- **Figure S4.** a) The XPS full survey spectrum and b) O 1s XPS spectra of  $Cu_2O$  and  $Cu_2O/Ag$ .
- **Figure S5.** a) LSV curves of Cu<sub>2</sub>O and Cu<sub>2</sub>O/Ag in CO<sub>2</sub> saturated 0.1 M KHCO<sub>3</sub> electrolyte. b) LSV curves in CO<sub>2</sub>-saturated and Ar-saturated 0.1 M KHCO<sub>3</sub> of Cu<sub>2</sub>O/Ag.
- **Figure S6.** LSV curves a) and Faradaic Efficiency b) of Cu<sub>2</sub>O, Cu<sub>2</sub>O/Ag/1, Cu<sub>2</sub>O/Ag/3, Cu<sub>2</sub>O/Ag, Cu<sub>2</sub>O/Ag/10 and Cu<sub>2</sub>O/Ag/15.
- **Figure S7.** I-t curves a) and Faradaic Efficiency b) of Cu<sub>2</sub>O/Ag under different light intensities (75, 100, 125 mW cm<sup>-2</sup>).
- **Figure S8.** Mott-Schottky plots measured at different frequencies for a) Cu<sub>2</sub>O, and b) Cu<sub>2</sub>O/Ag.
- **Figure S9.** CV curves of the photocathodes a) Cu<sub>2</sub>O, and b) Cu<sub>2</sub>O/Ag; c) the capacitive current densities plotted against scan rates.

#### **Tables**

- **Table S1.** Performance comparison with Cu<sub>2</sub>O composite photocathode applied in the field of PEC CO<sub>2</sub>RR.
- **Table S2.** Electrode interface/electrolyte resistance values ( $R_{ct}$ ) of Cu<sub>2</sub>O and Cu<sub>2</sub>O/Ag.
- **Table S3.** Frequency at the minimal value in IMPS plot  $(f_{min})$  and electron transfer time  $(\tau_d)$  of Cu<sub>2</sub>O and Cu<sub>2</sub>O/Ag.

# 1. Experimental section

## 1.1 Preparation of Cu<sub>2</sub>O NWs and Cu<sub>2</sub>O/Ag photocathodes

A two-electrode system with a polished copper foil as the working electrode and a platinum sheet as the counter electrode was used for anodic oxidation in 3 M potassium hydroxide solution (3 M KOH) for 8 min to grow Cu(OH)<sub>2</sub> NWs at a constant current of 10 mA·cm<sup>-2</sup>. The as-prepared Cu(OH)<sub>2</sub> NWs were first calcined at 180 °C for 1 hour to convert to CuO, then annealed at 600 °C for 4 h in an Ar flowing atmosphere to obtain Cu<sub>2</sub>O NWs <sup>1</sup>. After the synthesis of Cu<sub>2</sub>O NWs, 1 nm, 3nm, 5 nm, 10 nm and 15 nm Ag layers were deposited on the Cu<sub>2</sub>O NWs by vacuum thermal evaporation with a growth rate of 0.1 Å·s<sup>-1</sup>. The corresponding samples were named Cu<sub>2</sub>O/Ag/1, Cu<sub>2</sub>O/Ag/3, Cu<sub>2</sub>O/Ag, Cu<sub>2</sub>O/Ag/10, and Cu<sub>2</sub>O/Ag/15, respectively.

#### 1.2 Morphology and structure characterization

The crystal structures of the samples were recorded by X-ray diffractometer (XRD, D/Max2250, Rigaku) using Cu K $\alpha$  as radiation source ( $\lambda$  = 0.15406 nm). Scanning electron microscopy (Nova Nano SEM 230, FEI) and high-resolution transmission electron microscopy (HRTEM, Tecnai G2 F20, FEI) were used to record the surface topography of the samples. TU-1901 UV-vis spectrophotometer with integrating sphere was used to record ultraviolet-visible absorption (UV-vis) spectra for analysis of optical properties. X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha<sub>+</sub>) with an Al-K $\alpha$  source was used to determine the elemental composition and valence state of the samples. In situ attenuated total reflection infrared spectroscopy (ATR-IR, Nicolet iS50, Thermo Fisher Scientific) was used to detect

reaction intermediates during CO<sub>2</sub> reduction.

#### 1.3 Photoelectrochemical measurements and CO<sub>2</sub> reduction performance

A series of PEC CO<sub>2</sub> reduction tests were performed using the H-type quartz electrolytic cell. Each cell was filled with 45 mL of 0.1 M KHCO<sub>3</sub> electrolyte solution, and the headspace volume of the cell was approximately 55 mL. Before the PEC CO<sub>2</sub>RR, CO<sub>2</sub> (99.99%) was purged from the electrolyte in the cathodic compartment for 30 min to 1 h, and then at different potentials (-1.0, -1.1, -1.2, -1.3, -1.4 V vs. Ag/AgCl) for 60 min PEC CO<sub>2</sub>RR. The PEC CO<sub>2</sub> reduction products were analyzed by gas chromatograph (GC8860, Agilent, USA) and H NMR spectroscopy (HPLC, Agilent, USA).

PEC measurements were performed at room temperature using an electrochemical workstation (Zahner) under AM 1.5 G illumination (100 mW·cm<sup>-2</sup>). The prepared sample, platinum sheet and Ag/AgCl electrode were used as working electrode, counter electrode and reference electrode, respectively. The electrolyte is CO<sub>2</sub>-saturated 0.1 M KHCO<sub>3</sub> solution. The H-type quartz electrolytic cell was used and isolated with a Nafion 117 proton exchange membrane. Linear sweep voltammetry (LSV) was performed at a scan rate of 20 mV/s over a potential range of 0.2 V to -1.6 V vs. Ag/AgCl. Mott-Schottky (M-S) plots were acquired under dark at different frequencies (1, 2, 3 kHz) over the potential range of 0.1 to -0.35 V vs. Ag/AgCl. Electrochemical impedance spectroscopy (EIS) was measured from 10 kHz to 100 mHz at -1.0 V vs. Ag/AgCl with an AC amplitude of 10 mV. Intensity-modulated photocurrent spectroscopy (IMPS) was documented by a Zahner CIMPS system at -0.5 V vs.

Ag/AgCl with the frequency range of 100 mHz to 10 kHz. Open-circuit potential (OCP) and transient photocurrent curves were recorded under chopped illumination with 60 s light-on and 30 s light-off. Cyclic voltammetry (CV) curves were measured at different scan rates (10, 20, 30, 40, 50 mV s $^{-1}$ ) in the range of -0.2 $\sim$ -0.1 V vs. RHE. The potentials were converted to reversible hydrogen electrodes (RHE) by the following formula:

$$E \text{ (vs. RHE)} = E \text{ (vs. Ag/AgCl)} + 0.059 \times \text{pH} + 0.197 \text{ V}$$
 (1)



Figure S1. Schematic illustration for the preparation of Cu<sub>2</sub>O/Ag.

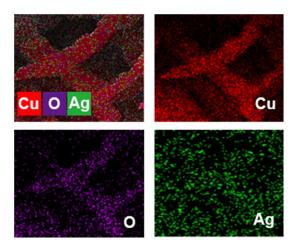



Figure S2. Element distribution mapping patterns of  $\text{Cu}_2\text{O}/\text{Ag}$ .

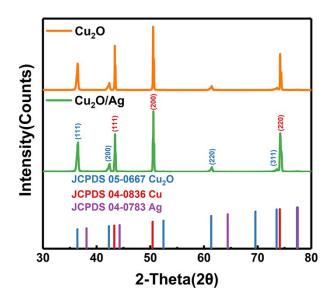



Figure S3. XRD patterns of Cu<sub>2</sub>O and Cu<sub>2</sub>O/Ag.

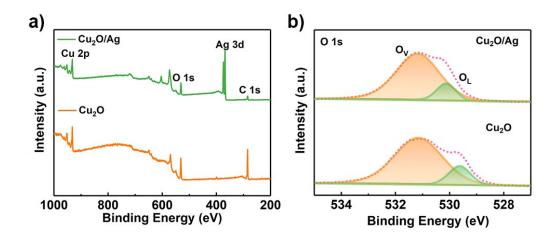



Figure S4. a) The XPS full survey spectrum and b) O 1s XPS spectra of  $\text{Cu}_2\text{O}$  and  $\text{Cu}_2\text{O}/\text{Ag}$ .

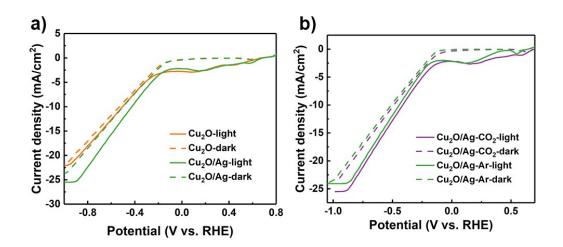



Figure S5. a) LSV curves of  $Cu_2O$  and  $Cu_2O/Ag$  in  $CO_2$  saturated 0.1 M KHCO<sub>3</sub> electrolyte. b) LSV curves in  $CO_2$ -saturated and Ar-saturated 0.1 M KHCO<sub>3</sub> of  $Cu_2O/Ag$ .

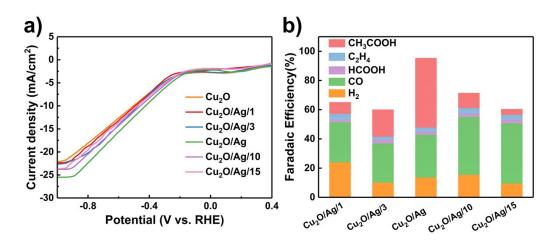



Figure S6. LSV curves a) and Faradaic Efficiency b) of Cu<sub>2</sub>O, Cu<sub>2</sub>O/Ag/1,

Cu<sub>2</sub>O/Ag/3, Cu<sub>2</sub>O/Ag, Cu<sub>2</sub>O/Ag/10 and Cu<sub>2</sub>O/Ag/15.

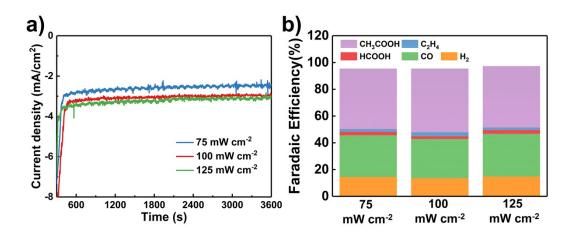



Figure S7. I-t curves a) and Faradaic Efficiency b) of  $Cu_2O/Ag$  under different light intensities (75, 100, 125 mW cm<sup>-2</sup>).

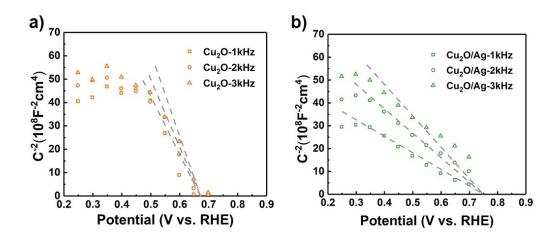



Figure S8. Mott-Schottky plots measured at different frequencies for a)  $\text{Cu}_2\text{O}$ , and b)  $\text{Cu}_2\text{O}/\text{Ag}$ .

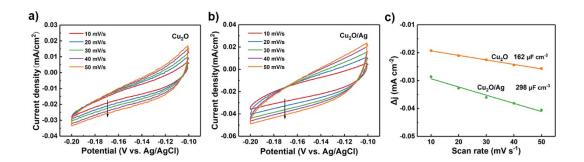



Figure S9. CV curves of the photocathodes a) Cu<sub>2</sub>O, and b) Cu<sub>2</sub>O/Ag; c) the capacitive current densities plotted against scan rates.

Table S1. Performance comparison with  $\text{Cu}_2\text{O}$  composite photocathode applied in the field of PEC  $\text{CO}_2\text{RR}$ .

| Entry | Catalyst                                                                     | Electrolyte                                                  | Potential                         | Products        | FE         | Ref.         |
|-------|------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|-----------------|------------|--------------|
| 1     | Cu <sub>3</sub> (BTC) <sub>2</sub> /Cu <sub>2</sub> O                        | AcCN/TBAPF <sub>6</sub>                                      | -1.77 V vs.<br>Fc/Fc <sup>+</sup> | СО              | 95%        | 2            |
| 2     | Cu <sub>2</sub> O/TiO <sub>2</sub> /Re(tB<br>u-bipy) (CO) <sub>3</sub> Cl    | AcCN/TBAPF <sub>6</sub>                                      | -1.73 V vs.<br>Fc/Fc <sup>+</sup> | СО              | 100%       | 3            |
| 3     | FTO/Fe <sub>2</sub> O <sub>3</sub> /WO <sub>3</sub> /Au/Cu <sub>2</sub> O/Ag | AcCN/TBAPF <sub>6</sub> /T<br>EOA                            | -1.2 V vs.<br>Fc/Fc <sup>+</sup>  | $C_2H_4$        | 60%        | 4            |
| 4     | Cu/Cu <sub>2</sub> O                                                         | 0.1 M<br>Na <sub>2</sub> CO <sub>3</sub> /NaHCO <sub>3</sub> | 0.2 V vs.<br>RHE                  | CH₃OH           | 75%        | 5            |
| 5     | Cu <sub>2</sub> O/TiO <sub>2</sub> -Cu <sup>+</sup>                          | 0.1 M KHCO <sub>3</sub>                                      | 0.3 V vs.<br>RHE                  | CH₃OH           | 50.7%      | 6            |
| 6     | Cu <sub>2</sub> O/SnO <sub>x</sub>                                           | 0.5 M NaHCO <sub>3</sub>                                     | -0.35 V vs.<br>RHE                | CO              | 74%        | 7            |
| 7     | Cu <sub>2</sub> O/CuO/Pb                                                     | 0.1 M KOH                                                    | -1.6 V vs.<br>RHE                 | НСООН,<br>СН₃ОН | 40.45<br>% | 8            |
| 8     | Cu <sub>2</sub> O/Ag                                                         | 0.1 M KHCO <sub>3</sub>                                      | -0.7 V vs.<br>RHE                 | СН₃СООН         | 47.7%      | This<br>work |

AcCN: acetonitrile;

 $TBAPF_6: tetrabuty lammonium\ hexafluorophosphate.$ 

Table S2. Electrode interface/electrolyte resistance values  $(R_{\rm ct})$  of  ${\rm Cu_2O}$  and

Cu<sub>2</sub>O/Ag.

| Electrode            | $R_1/\Omega$ | $R_{ m ct}/\Omega$ |
|----------------------|--------------|--------------------|
| Cu <sub>2</sub> O    | 35.19        | 15.16              |
| Cu <sub>2</sub> O/Ag | 34.51        | 5.11               |

Table S3. Frequency at the minimal value in IMPS plot ( $f_{min}$ ) and electron transfer time ( $\tau_d$ ) of Cu<sub>2</sub>O and Cu<sub>2</sub>O/Ag.

| Electrode            | $f_{ m min}/{ m Hz}$ | $	au_{ m d}$ /ms |
|----------------------|----------------------|------------------|
| Cu <sub>2</sub> O    | 201.03               | 0.79             |
| Cu <sub>2</sub> O/Ag | 613.82               | 0.26             |

The photogenerated charge transport time ( $\tau_d$ ) of the photocathode can be obtained from IMPS according to the following equation (1):

$$\tau_d = \frac{1}{2\pi f_{min}} \tag{1}$$

where  $f_{\min}$  represents the frequency at the minimal value in IMPS plot<sup>9</sup>.

### **Reference:**

- 1. J. Luo, L. Steier, M. K. Son, M. Schreier, M. T. Mayer and M. Gratzel, *Nano Lett.*, 2016, **16**, 1848-1857.
- 2. X. Deng, R. Li, S. Wu, L. Wang, J. Hu, J. Ma, W. Jiang, N. Zhang, X. Zheng, C. Gao, L. Wang, Q. Zhang, J. Zhu and Y. Xiong, *J. Am. Chem. Soc.*, 2019, **141**, 10924-10929.
- 3. M. Schreier, P. Gao, M. T. Mayer, J. Luo, T. Moehl, M. K. Nazeeruddin, S. D. Tilley and M. Grätzel, *Energy Environ. Sci.*, 2015, **8**, 855-861.
- 4. G. Liu, F. Zheng, J. Li, G. Zeng, Y. Ye, D. M. Larson, J. Yano, E. J. Crumlin, J. W. Ager, L.-w. Wang and F. M. Toma, *Nat. Energy*, 2021, **6**, 1124-1132.
- 5. A. A. d. S. Juliana Ferreira de Brito, Alberto José Cavalheiro, and M. V. B. Zanoni, *Int. J. Electrochem. Sci.*, 2014, **9**, 5961-5973.
- 6. K. Lee, S. Lee, H. Cho, S. Jeong, W. D. Kim, S. Lee and D. C. Lee, *J. Energy Chem.*, 2018, **27**, 264-270.
- 7. Y. Zhang, D. Pan, Y. Tao, H. Shang, D. Zhang, G. Li and H. Li, *Adv. Funct. Mater.*, 2021, **32**, 2109600.
- 8. D. H. Won, C. H. Choi, J. Chung and S. I. Woo, *Appl. Catal. B*, 2014, **158-159**, 217-223.
- 9. Q. Zeng, J. Bai, J. Li, Y. Li, X. Li and B. Zhou, *Nano Energy*, 2014, **9**, 152-160.