Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

# **Supporting Information**

# A hybrid ZIF-8/ZIF-62 glass membrane for gas separation

Yating Zhang,<sup>a</sup> Yichen Wang,<sup>a</sup> Huanni Xia,<sup>a</sup> Peng Gao,<sup>c</sup> Yi Cao,<sup>\*a,b</sup> Hua Jin<sup>\*a</sup> and Yanshuo Li<sup>\*a,b</sup>

<sup>a</sup> School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.

<sup>b</sup>Hymater Co. Ltd., 777 Qingfeng Road, Ningbo 315000, China.

<sup>c</sup>Ningbo Kingfa Advanced Materials Co., Ltd., Ningbo, 315000, China.

E-mail: caoyi@nbu.edu.cn; jinhua@nbu.edu.cn; liyanshuo@nbu.edu.cn

## **1. Experimental procedures**

### 1.1 Materials

All chemicals were commercially available without further purification.  $Zn(NO_3)_2 \cdot 6H_2O$ (99.99%, Sigma-Aldrich), imidazole (Im, 99.5%, Sigma-Aldrich), benzimidazole (Bim, 99%, Sigma-Aldrich), 2-methylimidazole (Hmim, 99%, Sigma-Aldrich), N,N-dimethylformamide (DMF, 99.5%, Sinopharm Chemical Reagent Co., Ltd), methanol (99.5%, Sinopharm Chemical Reagent Co., Ltd). Porous  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> disks (18 mm in diameter, 1.0 mm in thickness, and 70 nm particles on the top layer) were purchased from Fraunhofer Institute IKTS, Germany.

## 1.2 Synthesis of ZIF-62 powder

A mixture of  $Zn(NO_3)_2 \cdot 6H_2O(0.1 \text{ M})$ , Im (1.35 M), and Bim (0.15 M) was dissolved in DMF and stirred for 15 min to obtain a homogeneous solution.<sup>1</sup> Then the solution was transferred to Teflonlined stainless-steel autoclaves and heated in an oven at 130 °C for 96 h. The product was collected by centrifugation, washed with clean DMF thoroughly and dried at 100 °C for 24h.

### 1.3 Synthesis of ZIF-8 powder

ZIF-8 nanoparticles were synthesized according to our previously reported method.<sup>2</sup> A methanol solution (60 mL) of  $Zn(NO_3)_2 \cdot 6H_2O$  (0.879 g) was quickly added to another methanol solution (60 mL) of Hmim (1.776 g), and the mixture solution was stirred at room temperature for 1 h. The product was collected by centrifugation, washed with clean methanol thoroughly and dried at 100 °C for 24h.

#### 1.4 Synthesis of (ZIF-8)<sub>x</sub>(ZIF-62)<sub>1-x</sub> hybrid crystals and glasses

A series of hybrid crystals with different doping amounts of ZIF-8 had been prepared, which were named (ZIF-8)<sub>x</sub>(ZIF-62)<sub>1-x</sub>, where x was the mass percentage of ZIF-8. Specifically, a mixture of ZIF-8 and ZIF-62 at a certain mass ratio was dispersed in deionized water and ball-milled with a 7 mm stainless steel ball at 25 Hz for 5 min. The obtained hybrid sample was obtained by centrifugation and dried at 80 °C.

Subsequently, the hybrid ZIF-8/ZIF-62 crystal was heated in a tube furnace with argon atmosphere protection, at a rate of 10°C/min to 500°C and kept for 10 min, and finally cooled naturally to room temperature.<sup>3</sup> The obtained hybrid glasses were named  $a_g[(ZIF-8)_x(ZIF-62)_{1-x}]$ .

#### 1.5 Synthesis of ZIF-8/ZIF-62 hybrid membrane via post-synthetic ligand exchange approach

Post-synthetic ligand exchange approach was employed for preparing the mixed-phase ZIF-8/ZIF-62 polycrystalline membrane. First, the ZIF-62 polycrystalline membrane was prepared by in situ growth method at room temperature. A mixture of  $Zn(NO_3)_2 \cdot 6H_2O$ , imidazole and benzimidazole with molar ratio of 1:13.5:1.5 was dissolved in DMF and stirred for 15 min. The precursor solution was then transferred to a glass container with  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> support in advance, reacted at room temperature for 12h for fabricating ZIF-62 polycrystalline membrane. To prepare ZIF-8/ZIF-62 hybrid membrane, the ZIF-62 membrane was subsequently immersed in the DMF solution containing Hmim (8 M) ligand of ZIF-8 to react at 50 °C for 2 h. Finally, the resultant ZIF-8/ZIF-62 polycrystalline membrane was heated at 500 °C for 30 min in a tube furnace filled with Ar atmosphere.

#### 1.6 Synthesis of ZIF-8/ZIF-62 hybrid membrane via in-situ solvothermal method

A DMF solution containing Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, Im, Bim and Hmim was prepared according to the optimal formula, i.e., Zn:L: Hmim: DMF molar ratio of 1:5:8:208, where L=im+bim and im: bim is 5:1. The precursor solution was transferred to a Teflon-lined stainless-steel autoclave in which the  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> support was placed horizontally in advance, and then heated at 50 °C for 2 h. The obtained ZIF-8/ZIF-62 polycrystalline membrane was then heated at 500 °C for 30 min in a tube furnace filled with Ar atmosphere to achieve the corresponding hybrid glass membrane.

We conducted controlled experiments by using single ligand of ZIF-8 or ZIF-62. All operations are consistent with the above-mentioned ZIF-8/ZIF-62 membrane preparation, except for changing the solution to Zn:Hmim:DMF molar ratio of 1:8:208 or Zn:L:DMF (L=im+bim, im:bim=5:1) molar ratio of 1:5:208, respectively.

### **1.7 Characterizations**

Powder X-ray diffraction (PXRD) patterns were carried out on a Bruker D8 ADVANCE X-ray diffractometer (accelerating voltage: 40 kV, current: 40 mA) using a Cu Kα radiation source with a 20 range between 5° and 40°. Thermogravimetric analysis (TGA) was performed on NETZSCH STA 2500 at a heating rate of 10 °C/min from 50 to 700 °C under nitrogen atmosphere. Differential scanning calorimeter (DSC) curve was obtained on NETZSCH DSC 214 instrument. Flourier transformed infrared spectroscopy (FTIR) was carried out on a VERTEX 70 (Bruker). A Nova Nano SEM 450 scanning electron microscope (SEM) instrument was used to characterize the sample

morphology at an accelerating voltage of 5 kV. The gas adsorption isotherms were measured on a Micromeritics 3Flex Surface Characterization Analyzer. Prior to gas measurement, all the samples were degassed at 80 °C for 48 h under dynamic vacuum. Proton NMR (<sup>1</sup>H NMR) spectroscopy was performed on Magnet System 500/54 Ascend. The sample was dissolved in a mixture of DMSO-D6 (500  $\mu$ L) and DCI (36.5 %)/D<sub>2</sub>O (100  $\mu$ L).

#### **1.8 Gas permeation experiments**

The gas separation performances of glass membranes were measured by the Wicke-Kallenbach method. Single gas or equimolar gas mixture was used as feed gas, and helium was used as sweep gas. A gas chromatography (Agilent 7890B) is used to measure the concentration of the gas on the permeate side.

The gas permeance was determined by Eq. (1):

$$P_i = \frac{N_i}{A \cdot \triangle P_i}$$
(Eq. 1)

where  $P_i$  (mol m<sup>-2</sup> s<sup>-1</sup> Pa<sup>-1</sup>) is the gas permeance,  $N_i$  (mol s<sup>-1</sup>) is the molar flow rate of component i,  $\Delta p_i$  (Pa) is the transmembrane pressure difference, and A (m<sup>2</sup>) represents the effective membrane area.

The ideal selectivity was determined by Eq. (2):

$$S_{ij} = \frac{P_i}{P_j}$$
(Eq. 2)

where P<sub>i</sub> and P<sub>j</sub> represent the permeance of component i and component j, respectively.

## 1.9 Calculation of the gas adsorption isotherms

All the  $C_3H_6$  and  $C_3H_8$  isotherms were fitted using Dual-site Langmuir (DSL) model (Eq. 3):

$$q = q_1 \frac{b_1 p}{1 + b_1 p} + q_2 \frac{b_2 p}{1 + b_2 p}$$
(Eq. 3)

where  $q_1$  and  $q_2$  are the adsorbed amount per mass of adsorbent (mmol g<sup>-1</sup>) for each site, p is the pressure of the bulk gas at equilibrium (kPa),  $b_1$  and  $b_2$  are the affinity coefficients of each site (kPa<sup>-1</sup>).

The IAST selectivity S<sub>ads</sub> was determined by Eq. (4):

$$S_{ads} = \frac{q_i \times p_j}{q_j \times p_i}$$
(Eq. 4)

where  $q_i$  and  $q_j$  are the adsorbed amount per mass of adsorbent of component i and j,  $p_i$  and  $p_j$  are the pressure of the bulk gas at equilibrium of component i and j in the bulk.

## 2. Supplementary Figures and Tables



Fig. S1 SEM images of (a, b) ZIF-62 and (c, d) ZIF-8.



Fig. S2 PXRD patterns of  $(ZIF-8)_x(ZIF-62)_{1-x}$  samples.



Fig. S3 (a) TG and (b) DSC curves of (ZIF-8)<sub>x</sub>(ZIF-62)<sub>1-x</sub> samples.



**Fig. S4** FTIR spectra of  $(ZIF-8)_x(ZIF-62)_{1-x}$  samples.



**Fig. S5** C<sub>3</sub>H<sub>8</sub> adsorption isotherms of  $a_g[(ZIF-8)_x(ZIF-62)_{1-x}]$  samples at 273K.



**Fig. S6** (a) Schematic diagram of the preparation of hybrid ZIF-8/ZIF-62 glass membrane. (b) XRD patterns of membranes obtained from different treatment processes, the ZIF-62 polycrystalline membrane (purple), the ZIF-8/ZIF-62 hybrid membrane via post-synthetic ligand exchange (blue) and  $a_T$ (ZIF-8/ZIF-62) hybrid membrane after heat-treatment process (green), which  $a_T$ MOF means temperature-induced amorphization.



**Fig. S7** SEM images of (a, b) the ZIF-62 polycrystalline membrane, (c, d) the ZIF-8/ZIF-62 hybrid membrane synthesized via post-synthetic ligand exchange approach, and (e, f) the  $a_T$ (ZIF-8/ZIF-62) hybrid membrane after heat-treatment process.



**Fig. S8** Schematic diagram of the preparation of  $a_g$ (ZIF-8/ZIF-62) hybrid membrane, which  $a_g$ MOF means amorphization upon melt-quenching.



Fig. S9 XRD pattern of the membranes obtained by using single ligand of ZIF-8 or ZIF-62.



**Fig. S10** SEM images of the membrane via in-situ solvothermal process at Zn:Hmim:DMF=1:8:208. Top view and cross-sectional SEM images of (a, b) the membrane, and (c, d) after heat-treatment process.



**Fig. S11** SEM images of the membrane via in-situ solvothermal process at Zn:L:DMF (L=im+bim)=1:5:208. Top view and cross-sectional SEM images of (a, b) the resultant membrane and (c, d) after heat-treatment process.



Fig. S12 <sup>1</sup>H NMR spectra of polycrystalline and glassy ZIF-8/ZIF-62 hybrid membranes.



Fig. S13 Long-term stability of the hybrid glass membrane for  $\mbox{CO}_2/\mbox{N}_2$  separation.

Table S1 The gas separation performances of hybrid ZIF-8/ZIF-62 glass membranes for equimolar  $CO_2/CH_4$  and  $C_3H_6/C_3H_8$  mixtures.

| Membran<br>e | CO <sub>2</sub> permeance<br>(×10 <sup>-9</sup> mol m <sup>-2</sup> s <sup>-1</sup> Pa <sup>-1</sup> ) | CO <sub>2</sub> /CH <sub>4</sub><br>separation<br>factor | C <sub>3</sub> H <sub>6</sub> permeance<br>(×10 <sup>-9</sup> mol m <sup>-2</sup> s <sup>-1</sup> Pa <sup>-</sup><br><sup>1</sup> ) | C <sub>3</sub> H <sub>6</sub> /C <sub>3</sub> H <sub>8</sub><br>separatio<br>n factor |
|--------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| M1           | 6.5                                                                                                    | 29.9                                                     | 0.09                                                                                                                                | 18.7                                                                                  |
| M2           | 11.7                                                                                                   | 25.2                                                     | 0.13                                                                                                                                | 12.9                                                                                  |
| M3           | 35.9                                                                                                   | 19                                                       | 0.67                                                                                                                                | 10                                                                                    |

## 3. References

- 1 Y. Wang, H. Jin, Q. Ma, K. Mo, H. Mao, A. Feldhoff, X. Cao, Y. Li, F. Pan and Z. Jiang, *Angew. Chem. Int. Ed.*, 2020, **59**, 4365-4369.
- 2 H. Jin, Y. Li, X. Liu, Y. Ban, Y. Peng, W. Jiao and W. Yang, *Chem. Eng. Sci.*, 2015, **124**, 170-178.
- 3 L. Longley, S. M. Collins, S. Li, G. J. Smales, I. Erucar, A. Qiao, J. Hou, C. M. Doherty, A. W. Thornton, A. J. Hill, X. Yu, N. J. Terrill, A. J. Smith, S. M. Cohen, P. A. Midgley, D. A. Keen, S. G. Telfer and T. D. Bennett, *Chem. Sci.*, 2019, **10**, 3592-3601.