Electronic supplementary information for

Regulable Cross-Coupling of Alcohols and Benzothiazoles via Noble-Metal-Free Photocatalyst under Visible Light

Zi-Tong Pan,^a Xu-Kuan Qi,^b Qian Xiao,^a Xi-Wen Liang,^a Jian-Ji Zhong,^a Jing-Xin Jian,^{*,a}

Qing-Xiao Tong*,a

^aDepartment of Chemistry, Key Laboratory for Preparation and Application of Ordered

Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of

Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063,

P. R. China.

E-mail: jxjian@stu.edu.cn, qxtong@stu.edu.cn

^bState Key Lab of Urban Water Resource and Environment, School of Science, Harbin

Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, P. R. China.

Table of Contents

1. Experim	ental section	3
1) Ger	neral information	3
2) Pre	paration of 2- 2- substituted benzothiazole	4
3) Ger	neral procedure for the reactions	5
4) Opt	imization of the reaction conditions	6
5) Rad	dical-trapping experiment	8
6) Que	enching experiments	9
7) Tra	nsformation Cycle of Eosin Y	10
8) Ref	erences	11
2. Chara	cterization data of the products	12
3. NMR :	spectra for the products	23

1. Experimental section

1) General information

All chemicals, unless otherwise noted, were purchased from commercial sources and were used without further purification. Unless stated otherwise, all reactions were carried out under nitrogen atmosphere. The substrates were synthesized according to the literature methods¹. Irradiation with visible light was performed using blue LEDs ($\lambda = 450 \pm 10$ nm) illumination instruments (The instruments were designed by ourselves and the actual output power density of the LEDs at 0.5 cm distance is 33.70 mW/cm² detected by CEL-NP2000-10 (Beijing Ceau Light Co. Ltd., China) light power meter). For irradiation, the material of the reaction vessel is common glass; the distance from the light source is about 0.5 cm.

The nuclear magnetic resonance spectra were recorded on the Bruker Ascend[™] 400 MHz NMR spectrometer with tetramethylsilane (TMS) as an internal standard. High resolution mass spectra were recorded using a Q Exactive mass spectrometer (Thermo Fisher Scientific, USA).

2) Preparation of 2-2- substituted benzothiazole

Scheme S1. Synthesis of benzothiazoles.

Substituted benzothiazoles (9a, 14a, 15a, 16a) were not commercially available: **7a**, **8a** were prepared following a procedure previously reported¹⁻² in the literature (Scheme S1), In particular, a 50 mL round-bottom flask was charged with 10 mL of freshly distilled THF and the chosen 2aminobenzothiazole derivative (6.5 mmol, 0.65 M). Stirring was applied and isoamyl nitrite (1.9 mL, 14.3 mmol, 2.2 equiv., $\rho = 0.872$ g/mL) was added dropwise. The resulting mixture was then refluxed, depending on the substrate, for a period of time ranging from 1 to 6 hours. The solution was then poured into a mixture of ice and water, then the aqueous phase was extracted with ethyl acetate (3×30 mL). Organic phases were combined and washed with brine, dried on Na₂SO₄, filtered, then solvent was removed under reduced pressure. Purification was performed by means of column chromatography (SiO₂; n-hexane/ethyl acetate 95:5). Products were obtained with yields ranging from 52% to 76% (see above).

9a, 14a, 15a, 16a were prepared according to the above procedure.

3) General procedure for the reactions

The benzothiazoles substrates (0.2 mmol, 1.1 eq.), ethyl alcohol (1 mL, 85.0 equiv.), 5 mol% Esoin Y and 0.6 equiv. Fe₂(SO₄)₃ were dissolved in 4.0 mL DCE in a 15 mL reaction tube equipped with magnetic stirring bar, the reaction tube was sealed, and the resulting mixture was degassed with nitrogen for 15 min, then the reaction tube was irradiated by blue LEDs (λ = 450 ± 10 nm) at room temperature for 8-36 h. After reaction, the solvent was removed by rotary evaporation and purified by column chromatography on silica gel using petroleum ether/ethyl acetate (200:3) as the eluent.

4) Optimization of the reaction conditions

1. Substrate ratio effect					
S	+OH <u>Ar. 4%</u>	EY. 0.6 equiv. Fe₂(SO₄)3.► DCE, 450 nm			
a 0.2 mi	mol b	c			
Ent	ry a / b (equiv	.) Yield (%)			
1	1/5	0			
2	1/10	trace			
3	1/25	20			
4	1/50	58			

Table S1. Substrate ratio effect

Yields of isolated products.

1/85

Table S2. LED light effect

5

	S N +	OH <u>Ar. 4%</u>	<u>EY. 0.6 equiv. Fe₂(SO₄)₃.</u> DCE, LEDs light	S N
a 0.2	2 mmol b	80 equiv.		с
	Entry	LED light	Yiel	d (%)
	1	3W 380 nm		0
	2	3W 450 nm	(99
	3	3W 510 nm		0

99

Yields of isolated products.

Table S3. Solvent effect

	S N + .	OH <u>Ar. 4% EY. 0.6 equiv. Fe₂(SC</u> Solvent, 450 nm	\mathcal{D}_{4}
a 0.2	2 mmol b a	80 equiv.	с
-	Entry	Solvent (4 mL)	Yield (%)
-	1	MeCN	41
	2	1,4-Dioxane	80
	3	DCE	99
	4	DMF	0
	5	DMSO	0

Yields of isolated products.

Table S4. Fe₂(SO₄)₃ effect

	∑NS + .	∕он —	<u>Ar, 4% EY, Fe₂(SO₄)₃.</u> DCE, 450 nm	\rightarrow \square_{N}^{S}]
a 0.2	2 mmol b	80 equiv.		с	
	Entry	Fe ₂ (SO ₄) ₃	, (mg)	Yield (%)	
-	1	10		12	
	2	30		70	
	3	50		80	
	4	80		63	
	5	100		45	

Yields of isolated products.

Table S5. Optimization studies for the synthesis of acylation products

C	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $					
а	0.2 mmc	b 80	equiv.			d
	entry	a/b	Eosin Y (mol %)	Fe ₂ (SO ₄) ₃	solvent (0.2 M)	Yield ^a (%)
	1	1/10	2	0.6 equiv.	DCE	trace
	2	1/40	2	0.6 equiv.	DCE	31
	3	1/80	2	0.6 equiv.	DCE	72
	4	1/80	2	0.6 equiv.	DMSO	trace
	5	1/80	2	0.6 equiv.	DMF	trace
	6	1/80	2	0.6 equiv.	MeCN	35
	7	1/80	-	0.6 equiv.	DCE	trace
	8	1/80	2	-	DCE	trace
	9 ^b	1/80	2	0.6 equiv.	DCE	0

^a Yields of isolated products. ^b Without light.

5) Radical-trapping experiment

Benzothiazole **a1** (0.2 mmol), ethanol **b1** (1.0 mL), 2 mol% Eosin Y, 60 mol% Fe₂(SO₄)₃ and TEMPO (0.4 mmol) were dissolved in 4. 0 mL DCE in a 15 mL reaction tube equipped with a magnetic stirring bar, the tube was sealed and degassed with nitrogen for 15 min, and then the reaction tube was irradiated with blue LED (λ = 450±10 nm) at room temperature.

6) Quenching experiments

Figure S1. Photoluminescence quenching spectra of **EY** (Eosin Y) (1.0 x 10⁻⁵ M) by **1a** and EtOH, in Ar or air atmosphere, and inset figures shows the Stern-Volmer plots. (A) EY + **1a** in Ar, (B) EY with iron salt (EY@Fe) + **1a** in Ar, (C) EY + EtOH in Ar, (C) EY with iron salt (EY@Fe) + **1a** in Ar, (D) EY@Fe + EtOH in Ar, (E) EY + **1a** in air, (F) EY@Fe + **1a** in air, (G) EY + EtOH in air, (H) EY@Fe + EtOH in air.

Entry	ATM	EY solvent	Quencher	K (M ⁻¹)
1	Ar	EY	1a	10.9 ± 0.1
2	Ar	EY	EtOH	8.1 ± 0.1
3	Ar	EY + iron salt	1a	172.8 ± 1.1
4	Ar	EY + iron salt	EtOH	18.9 ± 0.6
5	Air	EY	1a	9.9 ± 0.2
6	Air	EY	EtOH	$\textbf{4.1}\pm\textbf{0.1}$
7	Air	EY + iron salt	1a	20.8 ± 0.3
8	Air	EY + iron salt	EtOH	7.3 ± 0.5

Table S6. Quenching constants with different additive in EY solvent

General procedure: The fluorescence quenching experiments were measured with excitation at 450 nm. A degassed MeCN solution of 1×10^{-5} M **EY** and 3.0×10^{-1} M **1a** respectively were prepared. The experiments were conducted in 1.25 cm x 1.25 cm x 4.5 cm quartz cuvette at room temperature. Appropriate volume (the whole solution volume change < 5%) of the quencher **1a** or EtOH was respectively injected to the MeCN solution (3 mL) of 1×10^{-5} M **EY** in the sealed quartz cuvette by microsyringe. For the **EY** solution with iron salt additive, 10 mg ferric sulfate solid was added.

7) Transformation Cycle of Eosin Y

Scheme S2. The chemical structure of Eosin Y and its HAT cycles with alcohol and aldehyde to form alkyl radicals.

8) References

- (a) Q. Q. Zhao, M. Li, X. S. Xue, J. R. Chen and W. J. Xiao, *Org. Lett.*, 2019, **21**, 3861;
 (b) C. Y. Zhao, K. Li, Y. Pang, J. Q. Li, C. Liang, G. F. Su and D. L. Mo, *Adv. Synth. Cat.*, 2018, **360**, 1919;
 (c) X. S. Ning, X. Liang, K. F. Hu, C. Z. Yao, J. P. Qu and Y. B. Kang, *Adv. Synth. Cat.*, 2018, **360**, 1590.
- 2 L. Capaldo, L. L. Quadri, D. Merli and D. Ravelli, *Chem. Commun.*, 2021, **57**, 4424.

2. Characterization data of the products

2-ethylbenzo[d]thiazole (1c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.97 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.34 (t, *J* = 8.0 Hz, 1H), 3.15 (q, *J* = 7.6 Hz, 2H), 1.47 (t, *J* = 7.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 173.57, 153.28, 135.07, 125.88, 124.62, 122.50, 121.50, 27.77, 13.80.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for C₉H₁₀NS: 164.0534, found: 164.0534.

2-propylbenzo[d]thiazole (2c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.99 (s, 1H), 7.85 (s, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 3.08 (s, 2H), 1.98 – 1.86 (m, 2H), 1.06 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 125.81, 124.64, 122.53, 121.51, 36.31, 23.04, 13.73.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₀H₁₂NS: 178.0690, found: 178.0690.

2-butylbenzo[d]thiazole (3c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.97 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.37 – 7.30 (m, 1H), 3.16 – 3.07 (m, 2H), 1.90 – 1.83 (m, 2H), 1.54 – 1.42 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 172.41, 153.26, 135.14, 125.85, 124.61, 122.50, 121.47, 34.06, 31.78, 22.31, 13.76.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₁H₁₄NS: 192.0847, found: 192.0854.

2-pentylbenzo[d]thiazole (4c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.97 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 7.9 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 3.11 (t, J = 7.7 Hz, 2H), 1.88 (q, J = 7.4 Hz, 2H), 1.41 (s, 4H), 0.91 (t, J = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 172.55, 153.24, 135.16, 125.91, 124.66, 122.52, 121.53, 34.38, 31.38, 29.50, 22.44, 14.02.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₂H₁₅NS: 206.1003, found: 206.1013.

2-hexylbenzo[d]thiazole (5c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.96 (s, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 3.16 – 3.07 (m, 2H), 1.88 (p, *J* = 7.6 Hz, 2H), 1.44 (p, *J* = 6.6 Hz, 2H), 1.27 (s, 4H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 172.49, 153.17, 135.10, 125.85, 124.61, 122.47, 121.46, 34.35, 31.80, 29.72, 29.12, 22.63, 14.07.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for $C_{13}H_{17}NS$: 220.1115, found: 220.1108.

2-heptylbenzo[d]thiazole (6c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.97 (d, *J* = 8.1 Hz, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.48 – 7.41 (m, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 3.15 – 3.09 (m, 2H), 1.91 – 1.85 (m, 2H), 1.35 (ddd, *J* = 20.6, 18.2, 5.5 Hz, 8H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 172.50, 153.21, 135.12, 125.86, 124.62, 122.49, 121.48, 34.36, 31.67, 29.74, 29.14, 28.97, 22.61, 14.06.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₄H₁₉NS: 234.1316, found: 234.1319.

2-octylbenzo[d]thiazole (7c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.97 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 7.9 Hz, 1H), 7.44 (t, J = 8.2 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 3.16 – 3.05 (m, 2H), 1.88 (p, J = 7.6 Hz, 2H), 1.44 (p, J = 7.0, 6.5 Hz, 2H), 1.33 – 1.23 (m, 8H), 0.88 (t, J = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 172.45, 153.25, 135.13, 125.83, 124.59, 122.49, 121.46, 34.37, 31.81, 29.73, 29.26, 29.18, 29.13, 22.64, 14.08.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₅H₂₁NS: 248.1473, found: 248.1464.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 3.43 (p, *J* = 6.9 Hz, 1H), 1.48 (d, *J* = 6.9 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 178.76, 153.13, 134.71, 125.91, 124.65, 122.62, 121.61, 34.15, 22.98.

HRMS (ESI-TOF) (m/z) for [M+Na]⁺ calculated for $C_{10}H_{11}NS$: 178.0646, found: 178.0654.

2-(sec-butyl)benzo[d]thiazole (10c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.88 (d, J = 8.1 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.31 (t, J = 8.0 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 3.08 (h, J = 6.9 Hz, 1H), 1.78 (dd, J = 14.2, 6.9 Hz, 1H), 1.65 (dq, J = 13.9, 7.1 Hz, 1H), 1.32 (d, J = 6.9 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 177.74, 153.12, 134.68, 124.53, 122.59, 121.52, 41.05, 30.59, 20.68, 11.82.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₁H₁₃NS: 192.0847, found: 192.0843.

2-(pentan-3-yl)benzo[d]thiazole (11c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.99 (d, *J* = 8.0 Hz, 1H), 7.85 (dd, *J* = 7.9, 0.4 Hz, 1H), 7.48 - 7.41 (m, 1H), 7.38 - 7.31 (m, 1H), 3.00 (tt, *J* = 8.5, 5.8 Hz, 1H), 1.90 - 1.79 (m, 4H), 0.93 (t, *J* = 7.4 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 176.86, 153.07, 134.74, 125.73, 124.53, 122.62, 121.54, 48.72, 28.94, 11.90.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₂H₁₆NS: 206.1003, found: 206.1008.

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.97 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 3.56 (p, *J* = 8.1 Hz, 1H), 2.32 – 2.20 (m, 2H), 2.00 – 1.83 (m, 4H), 1.80 – 1.70 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ ppm = 177.29, 153.14, 134.80, 125.90, 124.61, 122.51, 121.55, 44.83, 34.14, 25.66.

HRMS (ESI-TOF) (m/z) for [M+Na]⁺ calculated for C₁₂H₁₃NS:204.0802, found: 204.0806.

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.97 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.47 – 7.39 (m, 1H), 7.35 – 7.27 (m, 1H), 3.09 (tt, J = 11.7, 3.6 Hz, 1H), 2.20 (dd, J = 13.3, 2.1 Hz, 2H), 1.92 – 1.83 (m, 2H), 1.80 – 1.72 (m, 1H), 1.63 (ddd, J = 24.6, 12.3, 3.1 Hz, 2H), 1.50 – 1.37 (m, 2H), 1.36 – 1.24 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 177.57, 153.14, 134.56, 125.79, 124.50, 122.57, 121.55, 43.45, 33.43, 26.08, 25.81.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₃H₁₆NS: 218.1003, found: 218.1002.

2-cycloheptylbenzo[d]thiazole (14c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.96 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.47 – 7.39 (m, 1H), 7.36 – 7.29 (m, 1H), 3.35 – 3.21 (m, 1H), 2.22 (dd, J = 8.8, 5.1 Hz, 2H), 1.87 (dt, J = 13.0, 4.9 Hz, 4H), 1.73 – 1.57 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 178.71, 153.02, 134.69, 125.78, 124.49, 122.54, 121.51, 45.52, 35.37, 28.08, 26.55.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for $C_{14}H_{18}NS$: 232.1160, found: 232.1165.

2-(tetrahydro-2H-pyran-4-yl)benzo[d]thiazole (15c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.99 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.50 – 7.42 (m, 1H), 7.40 – 7.33 (m, 1H), 4.16 – 4.06 (m, 2H), 3.58 (t, *J* = 12.8 Hz, 2H), 3.42 – 3.30 (m, 1H), 2.05 (ddd, *J* = 29.3, 24.7, 12.1 Hz, 4H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 175.35, 153.06, 134.51, 126.01, 124.81, 122.73, 121.62, 67.51, 40.50, 32.83.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₂H₁₄NS: 220.0796, found: 220.0796.

7-chloro-2-ethylbenzo[d]thiazole (16c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.72 (dd, J = 8.0, 0.9 Hz, 1H), 7.46 (dd, J = 7.8, 0.9 Hz, 1H), 7.26 (t, J = 7.9 Hz, 1H), 3.20 (q, J = 7.6 Hz, 2H), 1.47 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 175.00, 150.21, 136.52, 127.25, 126.15, 125.14, 120.07,

27.98, 14.07.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₉H₉CINS: 198.0144, found: 198.0151.

CI

6-chloro-2-ethylbenzo[d]thiazole (17c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.85 (d, *J* = 8.7 Hz, 1H), 7.79 (d, *J* = 1.9 Hz, 1H), 7.39 (d, *J* = 8.7, 2.0 Hz, 1H), 3.13 (q, *J* = 7.6 Hz, 2H), 1.46 (t, *J* = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 174.04, 151.81, 136.25, 130.51, 126.62, 123.20, 121.09, 27.74, 13.62.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₉H₈CINS: 198.0144, found: 198.0141.

5-chloro-2-ethylbenzo[d]thiazole (18c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.85 (d, J = 8.7 Hz, 1H), 7.79 (d, J = 1.9 Hz, 1H), 7.39 (dd, J = 8.7, 2.0 Hz, 1H), 3.13 (q, J = 7.6 Hz, 2H), 1.46 (t, J = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 174.05, 151.83, 136.27, 130.52, 126.64, 123.22, 121.10, 27.74, 13.62.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₉H₉CINS: 198.0144, found: 198.0148.

4-chloro-2-ethylbenzo[d]thiazole (19c)

¹H NMR (400 MHz, CDCl₃) δ ppm = 7.72 (dd, J = 8.0, 0.9 Hz, 1H), 7.46 (dd, J = 7.8, 0.9 Hz, 1H), 7.26 (t, J = 7.9 Hz, 1H), 3.20 (q, J = 7.6 Hz, 2H), 1.47 (t, J = 7.6 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ ppm = 174.98, 150.19, 136.50, 127.23, 126.14, 125.12, 120.05, 27.98, 14.07.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₉H₈CINS: 198.0144, found: 198.0141.

7-bromo-2-ethylbenzo[d]thiazole (20c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.92 - 7.86 (m, 1H), 7.47 (dd, J = 7.7, 0.5 Hz, 1H), 7.31 (t, J = 8.0 Hz, 1H), 3.14 (q, J = 7.6 Hz, 2H), 1.47 (t, J = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 173.86, 153.11, 137.96, 127.45, 127.07, 121.33, 113.86, 27.87, 13.70.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for C₉H₉BrNS: 241.9639, found: 241.9647.

5-bromo-2-ethylbenzo[d]thiazole (21c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.11 (d, *J* = 1.6 Hz, 1H), 7.69 (d, *J* = 8.5 Hz, 1H), 7.45 (dd, *J* = 8.5, 1.8 Hz, 1H), 3.14 (q, *J* = 7.6 Hz, 2H), 1.46 (t, *J* = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 154.49, 133.88, 127.73, 125.46, 122.53, 119.47, 27.83, 13.68.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for C₉H₈BrNS: 241.9639, found: 241.9647.

2-ethyl-5-fluorobenzo[d]thiazole (22c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.96 (d, *J* = 8.9 Hz, 1H), 7.71 (s, 1H), 7.31 (s, 1H), 3.16 (q, *J* = 7.6 Hz, 2H), 1.48 (t, *J* = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 176.21, 161.73 (d, *J* = 242.7 Hz), 154.29, 130.41, 122.10 (d, *J* = 9.7 Hz), 113.24 (d, *J* = 24.9 Hz), 108.79 (d, *J* = 23.7 Hz), 27.90, 13.69.

¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm = -116.46.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for C₉H₉FNS: 182.0440, found: 182.0437.

2-ethylbenzo[d]thiazole-6-carbonitrile (23c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.18 (d, J = 1.2 Hz, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.70 (dd, J = 8.5, 1.6 Hz, 1H), 3.20 (q, J = 7.6 Hz, 2H), 1.50 (t, J = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 129.18, 126.29, 123.31, 108.24, 28.03, 13.49.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for $C_{10}H_9N_2S$: 189.0486, found: 189.0486.

2-ethyl-4-methylbenzo[d]thiazole (24c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.66 (dd, *J* = 5.3, 3.9 Hz, 1H), 7.23 (dd, *J* = 6.3, 3.0 Hz, 2H), 3.16 (q, *J* = 7.6 Hz, 2H), 2.73 (s, 3H), 1.46 (t, *J* = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 172.32, 152.62, 134.99, 132.43, 126.45, 124.43, 118.88, 27.88, 18.46, 14.07.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₀H₁₂NS: 178.0690, found: 178.0697.

2-ethyl-5,6-dimethylbenzo[d]thiazole (25c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.73 (s, 1H), 7.57 (s, 1H), 3.11 (q, J = 7.6 Hz, 2H), 2.37 (d, J = 5.9 Hz, 6H), 1.45 (t, J = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 172.38, 152.03, 134.99, 133.92, 122.72, 121.44, 27.66, 20.12, 20.01, 13.80.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for $C_{11}H_{14}NS$: 192.0847, found: 192.0846.

2-ethyl-6-(trifluoromethoxy)benzo[d]thiazole (26c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.96 (d, *J* = 8.9 Hz, 1H), 7.71 (s, 1H), 7.31 (s, 1H), 3.16 (q, *J* = 7.6 Hz, 2H), 1.48 (t, *J* = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 174.09, 151.83, 136.27, 130.53, 126.65, 123.22, 121.12, 13.64.

¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm = -58.07.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for $C_{10}H_8F_3NOS$: 248.0357, found: 203.0358.

methyl 2-ethylbenzo[d]thiazole-6-carboxylate (27c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.57 (d, J = 1.3 Hz, 1H), 8.12 (dd, J = 8.5, 1.6 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 3.96 (s, 3H), 3.17 (t, J = 7.6 Hz, 2H), 1.49 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 166.67, 156.22, 135.02, 127.15, 126.49, 123.72, 122.18, 28.02, 13.59.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₁H₁₁NO₂S: 222.0583, found: 222.0584.

HO 4-(benzo[d]thiazol-2-yl)butan-1-ol (28c)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.96 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 3.70 (t, *J* = 6.3 Hz, 2H), 3.16 (t, *J* = 7.5 Hz, 2H), 2.15 (s, 1H), 2.04 – 1.94 (m, 2H), 1.78 – 1.66 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 172.04, 153.10, 135.06, 125.95, 124.75, 122.48, 121.49, 62.10, 33.81, 31.99, 25.67 .

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₁H₁₄NOS: 208.0796, found: 208.0789.

4-(benzo[d]thiazol-2-yl)pentan-1-ol (29c) 5-(benzo[d]thiazol-2-yl)pentan-2-ol (29c')

(29c and 29c' are the compounds that we had not been isolated, because their polarities are basically the same.)

1H NMR (400 MHz, $CDCl_3$) δ ppm = 7.96 (d, J = 8.1 Hz, 1H), 7.83 (dd, J = 7.7, 4.3 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 3.64 (t, J = 6.4 Hz, 1H), 3.36 – 3.28 (m, 1H), 3.14 (t, J = 7.5 Hz, 1H), 2.38 (s, 1H), 2.04 – 1.80 (m, 2H), 1.63 (ddt, J = 33.0, 16.0, 7.9 Hz, 2H), 1.46 (d, J = 6.9 Hz, 2H), 1.20 (d, J = 6.2 Hz, 1H).

13C NMR (101 MHz, CDCl₃) δ ppm = 177.79, 172.13, 153.08, 152.88, 135.04, 134.57, 125.94, 125.90, 124.74, 124.70, 122.55, 122.47, 121.57, 121.49, 67.38, 62.32, 39.15, 38.45, 34.01, 33.67, 30.34, 25.59, 23.55, 21.32.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₂H₁₅NOS: 222.0908, found: 222.0913.

N 0 1-(benzo[d]thiazol-2-yl)ethan-1-one (1d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.19 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.61 – 7.51 (m, 2H), 2.83 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 193.14, 166.50, 153.58, 137.44, 127.70, 126.98, 125.45, 122.45, 26.16.

18 / 70

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₉H₇NOS: 178.0321, found: 178.0322.

1-(benzo[d]thiazol-2-yl)propan-1-one (2d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.18 (d, *J* = 8.1 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.61 – 7.49 (m, 2H), 3.31 (q, *J* = 7.3 Hz, 2H), 1.30 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 196.08, 166.42, 153.63, 137.25, 127.64, 127.00, 125.42, 122.50, 32.15, 7.94.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₀H₉NOS: 192.0478, found: 192.0485.

1-(benzo[d]thiazol-2-yl)butan-1-one (3d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.18 (d, J = 8.7 Hz, 1H), 7.98 (d, J = 8.6 Hz, 1H), 7.60 – 7.50 (m, 2H), 3.26 (t, J = 7.3 Hz, 2H), 1.86 (p, J = 7.4 Hz, 2H), 1.05 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm = 195.57, 166.69, 153.63, 137.29, 127.65, 126.99, 125.43, 122.50, 40.55, 17.55, 13.85.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₁H₁₁NOS: 206.0634, found: 206.0640.

1-(benzo[d]thiazol-2-yl)pentan-1-one (4d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.19 (d, J = 7.9 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.61 – 7.50 (m, 2H), 3.28 (t, J = 7.5 Hz, 2H), 1.80 (p, J = 7.5 Hz, 2H), 1.46 (h, J = 7.4 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 195.73, 166.70, 153.64, 137.31, 127.65, 126.99, 125.44, 122.50, 38.40, 26.11, 22.43, 13.97.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₂H₁₃NOS: 220.0791, found: 220.0793.

1-(benzo[d]thiazol-2-yl)hexan-1-one (5d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.18 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 7.9 Hz, 1H), 7.54 (dt, J = 20.8, 7.1 Hz, 2H), 3.27 (t, J = 7.5 Hz, 2H), 1.81 (q, J = 7.3 Hz, 2H), 1.44 – 1.35 (m, 4H), 0.92 (t, J = 6.9 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm =195.70, 166.70, 153.65, 137.31, 127.62, 126.97, 125.44, 122.49, 38.62, 31.43, 23.72, 22.52, 14.00.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for $C_{13}H_{15}NOS$: 234.0908, found:234.0911.

1-(benzo[d]thiazol-2-yl)heptan-1-one (6d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.19 (d, *J* = 7.7 Hz, 1H), 7.98 (d, *J* = 7.8 Hz, 1H), 7.61 – 7.50 (m, 2H), 3.27 (t, *J* = 7.4 Hz, 2H), 1.81 (p, *J* = 7.4 Hz, 2H), 1.47 – 1.40 (m, 2H), 1.34 (dt, *J* = 7.3, 3.7 Hz, 4H), 0.90 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 195.73, 166.71, 153.65, 137.32, 127.63, 126.97, 125.44, 122.49, 38.68, 31.64, 28.94, 24.00, 22.57, 14.11.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₄H₁₇NOS: 248.1104, found: 248.1104.

1-(benzo[d]thiazol-2-yl)octan-1-one (7d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.19 (d, *J* = 8.1 Hz, 1H), 7.98 (d, *J* = 7.8 Hz, 1H), 7.55 (dt, *J* = 20.2, 7.2 Hz, 2H), 3.27 (t, *J* = 7.4 Hz, 2H), 1.82 (q, *J* = 7.3 Hz, 2H), 1.44 – 1.39 (m, 2H), 1.31 – 1.28 (m, 6H), 0.89 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 195.74, 166.71, 153.69, 137.32, 127.63, 126.97, 125.44, 122.49, 38.67, 31.74, 29.23, 24.04, 22.68, 14.15.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₅H₁₉NOS: 262.1260, found: 262.1263.

CI

^O 1-(6-chlorobenzo[d]thiazol-2-yl)ethan-1-one (8d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.09 (d, *J* = 8.8 Hz, 1H), 7.95 (d, *J* = 2.0 Hz, 1H), 7.53 (dd, *J* = 8.8, 2.0 Hz, 1H), 2.81 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 192.87, 166.96, 152.09, 138.58, 134.08, 128.11, 126.27, 122.05, 26.16.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for C₉H₆CINOS:211.9931, found:211.9927.

1-(4-chlorobenzo[d]thiazol-2-yl)ethan-1-one (9d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.87 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.45 (t, *J* = 7.9 Hz, 1H), 2.87 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 193.10, 167.06, 150.70, 138.92, 130.43, 128.21, 127.21, 121.03, 26.14.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for C₉H₆CINOS:211.9931, found:211.9935.

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.12 (d, *J* = 1.8 Hz, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.67 (dd, *J* = 8.8, 1.8 Hz, 1H), 2.81 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 192.88, 166.92, 152.39, 138.98, 130.78, 126.54, 125.06, 121.98, 26.17.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for C₉H₆BrNOS: 255.9426, found: 255.9428.

1-(5-bromobenzo[d]thiazol-2-yl)ethan-1-one (11d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.33 (d, *J* = 1.7 Hz, 1H), 7.83 (d, *J* = 8.6 Hz, 1H), 7.62 (dd, *J* = 8.6, 1.8 Hz, 1H), 2.81 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 192.87, 167.96, 154.67, 136.17, 130.90, 128.17, 123.54, 120.63, 26.18.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for C₉H₆BrNOS: 255.9426, found: 255.9427.

⁾ 1-(5-fluorobenzo[d]thiazol-2-yl)ethan-1-one (12d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.92 (dd, *J* = 8.9, 5.0 Hz, 1H), 7.85 (dd, *J* = 9.1, 2.5 Hz, 1H), 7.32 (td, *J* = 8.8, 2.5 Hz, 1H), 2.82 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 192.94, 168.81, 160.88, 154.51, 133.03, 123.34, 117.12, 116.87, 111.19, 110.96, 26.18.

¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm = -114.04.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for C₉H₆FNOS: 196.0227, found: 196.0228.

1-(4-methylbenzo[d]thiazol-2-yl)ethan-1-one (13d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = ppm = 7.78 (d, *J* = 8.0 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 7.2 Hz, 1H), 2.83 (s, 3H), 2.80 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 193.48, 165.17, 153.19, 137.56, 135.85, 127.76, 127.22, 119.79, 26.08, 18.21.

HRMS (ESI-TOF) (m/z) for [M+Na]⁺ calculated for $C_{10}H_9NOS$: 214.0297, found: 214.0298.

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.06 (d, *J* = 8.5 Hz, 1H), 7.76 (s, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 2.81 (s, 3H), 2.53 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 193.29, 165.59, 151.81, 138.47, 128.95, 124.98, 122.05, 77.39, 26.19, 21.88.

HRMS (ESI-TOF) (m/z) for [M+Na]⁺ calculated for C₁₀H₉NOS: 192.0438, found: 192.0438.

1-(5,6-dimethylbenzo[d]thiazol-2-yl)ethan-1-one (15d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 7.94 (s, 1H), 7.72 (s, 1H), 2.80 (s, 3H), 2.42 (d, *J* = 2.6 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 193.29, 165.48, 152.51, 138.06, 136.71, 135.22, 125.26, 122.15, 26.19, 20.33.

HRMS (ESI-TOF) (m/z) for [M+H]⁺ calculated for C₁₁H₁₁NOS: 206.0634, found: 206.0636.

^{`O} 1-(6-(trifluoromethoxy)benzo[d]thiazol-2-yl)ethan-1-one (16d)

¹**H NMR** (400 MHz, CDCl₃) δ ppm = 8.20 (d, *J* = 9.0 Hz, 1H), 7.84 (s, 1H), 7.45 (d, *J* = 9.0 Hz, 1H), 2.83 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm = 192.73, 167.66, 151.93, 148.37, 138.39, 126.62, 121.02, 114.49, 29.74, 26.12.

¹⁹**F NMR** (377 MHz, CDCl₃) δ ppm = -57.88.

HRMS (ESI-TOF) (m/z) for $[M+H]^+$ calculated for $C_{10}H_6F_3NO_2S$: 262.0144, found:262.0145

3. NMR spectra for the products

¹H NMR spectrum of compound **1c** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **1c** in CDCl₃ (101 MHz):

 ^{13}C NMR spectrum of compound **2c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **3c** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **3c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **4c** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound 4c in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **5c** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound 5c in CDCl_3 (101 MHz):

¹H NMR spectrum of compound **6c** in CDCI₃ (400 MHz):

 ^{13}C NMR spectrum of compound **6c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **7c** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **7c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **9c** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **9c** in CDCl₃ (101 MHz):

 ^{13}C NMR spectrum of compound **10c** in CDCl₃ (101 MHz):

^{13}C NMR spectrum of compound **11c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **12c** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **12c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **13c** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **13c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **14c** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **14c** in CDCl₃ (101 MHz):

^{13}C NMR spectrum of compound **15c** in CDCl₃ (101 MHz):

¹³C NMR spectrum of compound **16c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **17c** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **17c** in CDCl₃ (101 MHz):

 ^{13}C NMR spectrum of compound **18c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **19c** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **19c** in CDCI₃ (101 MHz):

¹H NMR spectrum of compound **20c** in CDCl₃ (400 MHz):

^{13}C NMR spectrum of compound 20c in CDCl3 (101 MHz):

¹H NMR spectrum of compound **21c** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **21c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **22c** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **22c** in CDCI₃ (101 MHz):

¹⁹F NMR spectrum of compound **22c** in CDCI₃ (101 MHz):

-65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -18(f1(ppm) ¹H NMR spectrum of compound **23c** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **23c** in CDCl₃ (101 MHz):

¹³C NMR spectrum of compound **24c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **25c** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **25c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **26c** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **26c** in CDCl₃ (101 MHz):

¹⁹F NMR spectrum of compound **26c** in $CDCI_3$ (101 MHz):

¹H NMR spectrum of compound **27c** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **27c** in CDCl₃ (101 MHz):

¹³C NMR spectrum of compound **28c** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **29c** and **29c'** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **29c** and **29c'** in CDCl₃(101 MHz):

¹H NMR spectrum of compound **1d** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **1d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **2d** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound 2d in CDCl3 (101 MHz):

¹H NMR spectrum of compound **3d** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **3d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **4d** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **4d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **5d** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **5d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **6d** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **6d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **7d** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **7d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **8d** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **8d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **9d** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **9d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **10d** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **10d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **11d** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **11d** in CDCl₃ (101 MHz):

 ^{13}C NMR spectrum of compound **12d** in CDCl₃ (101 MHz):

 ^{19}F NMR spectrum of compound **12d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **13d** in CDCl₃ (400 MHz):

¹³C NMR spectrum of compound **13d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **14d** in CDCl₃ (400 MHz):

 13 C NMR spectrum of compound **14d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **15d** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **15d** in CDCl₃ (101 MHz):

¹H NMR spectrum of compound **16d** in CDCl₃ (400 MHz):

 ^{13}C NMR spectrum of compound **16d** in CDCl₃ (101 MHz):

