Palladium-catalyzed native α-amino acid derivative-directed arylation/oxidation of benzylic C–H bonds: synthesis of 5aryl-1,4-benzodiazepin-2-ones

Fengxuan Jiang,^b Menghua Xu,^c Wenfeng Bei,^b Kai Cheng,^{*b} and Lehao Huang^{*a}

^aSchool of Pharmaceutical Science , Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, People's Republic of China

^bKey Laboratory of Alternative Technologies for Fine Chemicals Process, Institute of Applied Chemistry, Shaoxing University, Shaoxing, Zhejiang Province 312000, People's Republic of China

^cState Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China

Supporting Information

Contents

1. General considerations	52
2. Detailed optimization of reaction conditions	S2
3. Typical procedure for preparation of <i>N</i> -protected valine derivatives 1m	S3
4. Typical Procedure for Preparation of N-Boc-valine derivatives 1ab	S4
5. Typical procedure for preparation of N-protected amino acid derivatives 1	la,
1ac-ae, 1n-z	35
6. Typical Procedure for Bifunctional Products 3a-y	510
7. Typical Procedure for Bifunctional Products 3a on a one-gram scale	526
8. Typical Procedure for synthesis of the 5-aryl-1,4-Benzodiazepine-2-one	
derivatives 4a–j	.S26
9. References	.S30
10. NMR Spectra	S31

1. General considerations

Unless otherwise noted, All reactions were performed under air in oven-dried glassware. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker spectrometer (400/500 MHz). Chemical shifts were reported in δ units relative to internal standard TMS (δ 0) for ¹H NMR (CDCl₃ or DMSO-d6), ¹³C NMR (center peak is δ 77.00 in CDCl₃ or δ 39.90 in DMSO-d6). Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), Coupling constants are reported in Hertz (Hz). The melting point is determined by Melting Point M-560. High resolution mass spectra (HRMS) were performed on a XEVO G2-XS QTOF/H-CLASS or a SCIEX TripleTOF 6600 System with ESI source. The melting points were measured on Buchi M-560. The enantiomeric ratio (er) was determined by HPLC analysis on Agilent 1260 Infinity II Prime using Daicel CHIRALPAK® column OD-H, AS-H. N-protected amino acid derivatives 1 were synthesized according to the literature procedure or known method.¹⁻³ Palladium catalysts (>98% purity) and other reagents (aryl iodides, α -amino acid derivatives, Ag salt etc.) were purchased from Energy Chemical (>95% purity) and used without further purification. Solvents were dried with according to the standard procedures and degassed with argon. Column chromatography was carried out on Tsingdao silica gel (particle size 200-300 mesh).

$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $							
entry	[Pd]	Ag salt	Solvent	T (°C)	yield (%) ^b		
1	-	Ag ₂ CO ₃	DMAC	130	N.R.		
2	PdCl ₂	Ag ₂ CO ₃	DMAC	130	32		
3	Pd(PPh ₃) ₄	Ag ₂ CO ₃	DMAC	130	49		
4	Pd ₂ (dba) ₃	Ag ₂ CO ₃	DMAC	130	Trace		
5	Pd(CH ₃ CN) ₂ Cl ₂ (10 mol %)	Ag ₂ CO ₃	DMAC	130	38		
6	Pd(OAc) ₂ (10 mol %)	Ag ₂ CO ₃	DMAC	130	52		
7	$Pd(OAc)_2$ (15 mol %)	Ag ₂ CO ₃	DMAC	130	71		
8	$Pd(OAc)_2$ (20 mol %)	Ag ₂ CO ₃	DMAC	130	87		
9 ^c	Pd(OAc) ₂	Ag ₂ CO ₃	DMAC	130	68		

2. Detailed optimization of reaction conditions(Table S1)

	(20 mol %)				
10	Pd(OAc) ₂	-	DMAC	130	N.R.
11	Pd(OAc) ₂	AgF	DMAC	130	37
12	Pd(OAc) ₂	AgOAc	DMAC	130	N.R.
13	Pd(OAc) ₂	Ag ₂ O	DMAC	130	47
14	Pd(OAc) ₂	AgNO ₃	DMAC	130	N.R.
15	Pd(OAc) ₂	AgOTs	DMAC	130	N.R.
16	Pd(OAc) ₂	CF ₃ COOAg	DMAC	130	N.R.
17	Pd(OAc) ₂	Ag ₂ CO ₃ (1.5 eq)	DMAC	130	72
18	Pd(OAc) ₂	Ag ₂ CO ₃ (1.0 eq)	DMAC	130	59
19	Pd(OAc) ₂	Ag ₂ CO ₃	xylene	130	N.R.
20	Pd(OAc) ₂	Ag ₂ CO ₃	1,4-dioxane	130	N.R.
21	Pd(OAc) ₂	Ag ₂ CO ₃	DMF	130	56
22	Pd(OAc) ₂	Ag ₂ CO ₃	DCE	130	N.D
23	Pd(OAc) ₂	Ag ₂ CO ₃	DMSO	130	20
24	Pd(OAc) ₂	Ag ₂ CO ₃	DMAC	140	78
25	Pd(OAc) ₂	Ag ₂ CO ₃	DMAC	120	70
26	Pd(OAc) ₂	Ag ₂ CO ₃	DMAC	110	46
27 ^d	Pd(OAc) ₂	Ag ₂ CO ₃	DMAC	130	81
28 ^e	Pd(OAc) ₂	Ag ₂ CO ₃	DMAC	130	73

^{*a*}Reaction conditions: 1a (0.25 mmol), Pd catalyst (0.050 mmol), PhI (0.75 mmol, 153 mg), Ag salt (0.50 mmol), solvent (2.5 mL), 4Å MS, 130 °C, 24h. ^{*b*}Isolated yields. ^{*c*}Reaction without 4Å MS. ^{*d*}(0.50 mmol, 2.0 equiv) PhI was used. ^{*e*}(0.375 mmol, 1.5 equiv) PhI was used.

3. Typical procedure for preparation of N-protected valine derivatives 1m¹

N-(2,2,2-trifluoroacetyl)-glycine (1.71 g, 10 mmol), *o*-toluidine (2.14 g, 20 mmol) was dissolved in DMF (5 mL) followed by addition of DMF (5 mL) of DCC (3.09 g, 15 mmol) and HOBT (1.35 g, 10 mmol) dropwise at 0 °C. Subsequently, the reaction was performed at room temperature for 12 h until *o*-toluidine was consumed completely. The precipitated dicyclohexyl urea (DCU) was filtered. The filtrate was diluted with ethyl acetate (30 mL), and the organic phase was washed with 1 N HCl (3 × 30 mL), brine, 1 M Na₂CO₃ solution (3 × 30 mL) and again with brine. The solvent was then dried over anhydrous Na₂SO₄ and and concentrated. The crude product was purified by silica gel column chromatography with ethyl acetate/petroleum ether to afford the desired product (EA/PE = 1:5 or 1:10,v/v).

2,2,2-trifluoro-*N*-(**2-oxo-2-(o-tolylamino)ethyl)acetamide (1m, CAS no. 357158-15-7).** 1.04 g, 40% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:5 , v/v); mp 146 – 148 °C; δ ¹H NMR (500 MHz, DMSO) δ 9.78 (s, 1H), 9.53 (s, 1H), 7.40 (d, *J* = 7.8 Hz, 1H), 7.22 (d, *J* = 7.4 Hz, 1H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.09 (t, *J* = 7.3 Hz, 1H), 4.07 (d, *J* = 5.6 Hz, 2H), 2.21 (s, 3H). ¹³C NMR (125 MHz, DMSO) δ 165.9, 156.8 (q, *J* = 36.4 Hz), 135.8, 131.7, 130.3, 126.0, 125.3, 124.9, 115.9 (q, *J* = 287.9 Hz), 42.3, 17.7. HRMS (ESI) calcd for C₁₁H₁₁F₃N₂O₂ [M + H]⁺261.0845, found 261.0846.

4. Typical Procedure for Preparation of *N*-Boc-valine derivatives 1ab²

o-toluidine (2.12 g, 10 mmol), DCC (2.48 g, 12 mmol), and DMAP (0.317 g, 2.6 mmol) was dissolved in CH₂Cl₂ (30 mL) followed by addition of *N*-Boc-L-valine (2.39 g, 11 mmol) in CH₂Cl₂ (10 mL) dropwise at 0 °C. Then the reaction mixture was stirred for 12 hours at room temperature. Upon completion (monitored by TLC), the precipitated dicyclohexyl urea (DCU) was filtered. The filtrate was concentrated in vacuo to obtain the desired product (EA/PE = 1:10, v/v).

tert-butyl(3-methyl-1-oxo-1-(o-tolylamino)buta*N*-2-yl)carbamate (1ab, CAS no. 672959-58-9). 2.85 g, 93% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 139 – 141 °C; ¹H NMR (400 MHz, DMSO) δ 9.30 (s, 1H), 7.34 (d, *J* = 7.5 Hz, 1H), 7.21 (d, *J* = 7.3 Hz, 1H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.08 (t, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 8.3 Hz, 1H), 3.96 (t, *J* = 7.8 Hz, 1H), 2.19 (s, 3H), 2.10 – 1.96 (m, 1H), 1.40 (s, 9H), 0.94 (dd, *J* = 11.7, 6.7 Hz, 6H); ¹³C NMR (100 MHz, DMSO) δ 171.0, 156.1, 136.5, 132.3, 130.7, 126.4, 125.7, 125.6, 78.5, 60.8, 30.6, 28.6, 19.8, 18.98, 18.2. HRMS (ESI) calcd for $C_{17}H_{26}N_2O_3$ [M + H]⁺ 307.2016, found 307.2018.

5. Typical procedure for preparation of *N*-protected amino acid derivatives1a, 1ac-ae, 1n-z³

Step1: Aromatic amine (10 mmol), DCC (2.48 g, 12 mmol), and DMAP (0.317 g, 2.6 mmol) was dissolved in CH_2Cl_2 (30 mL) followed by addition of *N*-Boc-L-amino acid (11 mmol) in CH_2Cl_2 (10 mL) dropwise at 0 °C. Then the reaction mixture was stirred for 12 hours at room temperature until aromatic amine was consumed completely. After completion, the precipitated dicyclohexyl urea (DCU) was filtered. The filtrate was concentrated in vacuo to obtain the crude product.

Step2: 11 mL TFA was slowly added dropwise to the above crude product at 0 °C and stirred for 1 h until the starting material had disappeared, excess TFA was removed under vacuum \cdot 20 mL CH₂Cl₂ was added for dilution, followed by the addition of Et₃N until the pH of the solution was slightly alkaline. Subsequently, 4.0 mL of anhydride or acyl chloride in CH₂Cl₂ (20 mL) was slowly added dropwise to the above system at 0 °C and stirred for 1 h. The reaction mixture was concentrated in vacuo, and then water (20 mL) was added to the reaction mixture. The solution was extracted with EtOAc (3×20 mL). The combined organic layer was washed with water (20 mL) and dried over Na₂SO₄. The solvent was evaporated in vacuo, and the residue was purified by flash chromatography using ethyl acetate/petroleum ether as eluent to give the desired product.

3-methyl-*N***-(o-tolyl)-2-(2,2,2-trifluoroacetamido)butanamide (1a, CAS no. 1808766-08-6).** 2.48 g, 82% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 197– 205 °C; ¹H NMR (400 MHz, DMSO) δ 9.68 (s, 1H), 9.67 (s, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.22 (d, *J* = 7.4 Hz, 1H), 7.17 (t, *J* = 7.1 Hz, 1H), 7.11 (t, *J* = 6.9 Hz, 1H), 4.38 (t, *J* = 8.6 Hz, 1H), 2.24 – 2.17 (m, 4H), 1.01 (d, *J* = 6.8 Hz, 3H), 0.96 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.1, 157.0 (q, *J* = 36.6 Hz), 136.1, 132.5, 130.8, 126.4, 126.1, 125.8, 116.4 (q, *J* = 288.1 Hz), 60.1, 30.1, 19.5, 19.2, 18.2. HRMS (ESI) calcd for C₁₄H₁₇F₃N₂O₂ [M + H]⁺ 303.1315, found 303.1324.

N-(3-methyl-1-oxo-1-(o-tolylamino)butan-2-yl)benzamide (1ac, CAS no. 1009493-81-5). 2.42 g, 78% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 216 – 218 °C; ¹H NMR (400 MHz, DMSO) δ 9.55 (s, 1H), 8.50 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 7.3 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.4 Hz, 2H), 7.37 (d, J = 7.7 Hz, 1H), 7.21 (d, J = 7.3 Hz, 1H), 7.16 (t, J = 7.3 Hz, 1H), 7.09 (t, J = 7.3 Hz, 1H), 4.49 (t, J = 8.3 Hz, 1H), 2.33 – 2.14 (m, 4H), 1.04 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, DMSO) δ 170.7, 167.2, 136.5, 134.6, 132.3, 131.8, 130.8, 128.7, 128.1, 126.4, 125.7, 125.6, 60.2, 30.4, 19.9, 19.6, 18.3. HRMS (ESI) calcd for C₁₉H₂₂N₂O₂ [M + H]⁺ 311.1754, found 311.1757.

2-acetamido-3-methyl-*N***-(o-tolyl)butanamide (1ad, CAS no. 1214129-69-7).** 2.06 g, 83% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 229 – 231 °C; ¹H NMR (400 MHz, DMSO) δ 9.44 (s, 1H), 8.07 (d, *J* = 8.3 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.28 – 7.13 (m, 2H), 7.09 (t, *J* = 7.1 Hz, 1H), 4.36 (t, *J* = 7.7 Hz, 1H), 2.20 (s, 3H), 2.06 (dd, *J* = 13.2, 6.4 Hz, 1H), 1.91 (s, 3H), 0.94 (t, *J* = 7.6 Hz, 6H). ¹³NMR (100 MHz,) δ 170.7, 169.9, 136.5, 132.3, 130.7, 126.3, 125.7, 125.7, 58.7, 30.9, 22.9, 19.8, 18.8, 18.3. HRMS (ESI) calcd for C₁₄H₂₀N₂O₂ [M + H]⁺ 249.1598, found 249.1601.

3-methyl-*N***-(o-tolyl)-2-(2,2,2-trifluoro-***N***-methylacetamido)butanamide (1ae).** 1.84 g, 58% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:15, v/v); mp 83 – 86 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 1H), 7.69 (s, 1H), 7.24 – 7.16 (m, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 4.54 (d, *J* = 11.2 Hz, 1H), 3.17 (d, *J* = 1.4 Hz, 3H), 2.54 – 2.44 (m, 1H), 2.22 (s, 3H), 1.10 (d, *J* = 6.4 Hz, 3H), 0.95 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 158.9 (q, *J* = 36.3 Hz), 135.1, 130.6, 129.0, 126.7, 125.5, 122.7, 116.5 (q, *J* = 287.6 Hz), 65.5, 30.5, 25.5, 19.5, 18.3, 17.7. HRMS (ESI) calcd for C₁₅H₁₉F₃N₂O₂ [M + H]⁺ 317.1472, found 317.1474.

N-(o-tolyl)-2-(2,2,2-trifluoroacetamido)propanamide (1n, CAS no. 2210945-86-9). 1.62 g, 59% yield; white solid after purification by column chromatography (eluent, ethyl

acetate/petroleum ether = 1:5, v/v); mp 162 – 164 °C; ¹H NMR (400 MHz, DMSO) δ 9.72 (s, 1H), 9.56 (s, 1H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.22 (d, *J* = 7.3 Hz, 1H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.11 (t, *J* = 7.2 Hz, 1H), 4.57 (q, *J* = 7.0 Hz, 1H), 2.19 (s, 3H), 1.45 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 171.1, 156.7 (q, *J* = 36.5 Hz), 136.2, 132.7, 130.8, 126.4, 126.0, 125.8, 116.3 (q, *J* = 287.9 Hz), 49.9, 18.1, 17.9. HRMS (ESI) calcd for C₁₂H₁₃F₃N₂O₂ [M + H]⁺ 275.1002, found 275.1001.

2-methyl-*N***-(o-tolyl)-2-(2,2,2-trifluoroacetamido)propanamide (1o, CAS no. 2341641-00-5).** 1.50 g, 52% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 131 – 134 °C; ¹H NMR (400 MHz, DMSO) δ 9.35 (s, 1H), 9.20 (s, 1H), 7.21 (d, *J* = 7.1 Hz, 1H), 7.20 – 7.10 (m, 3H), 2.14 (s, 3H), 1.54 (s, 6H). ¹³C NMR (100 MHz, DMSO) δ 171.5, 156.1 (q, *J* = 36.3 Hz), 136.6, 134.3, 130.6, 127.2, 126.4, 126.3, 116.0 (q, *J* = 288.9 Hz), 57.9, 24.9, 18.0. HRMS (ESI) calcd for C₁₃H₁₅F₃N₂O₂ [M + H]⁺ 289.1159, found 289.1163.

(o-tolyl)-1-(2,2,2-trifluoroacetamido)cyclopropane-1-carboxamide (1p). 1.94 g, 68% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 208 – 211 °C; ¹H NMR (400 MHz, DMSO) δ 9.97 (s, 1H), 9.46 (s, 1H), 7.23 (d, *J* = 6.9 Hz, 1H), 7.18 – 7.13 (m, 3H), 2.14 (s, 3H), 1.44 (dd, *J* = 7.7, 4.5 Hz, 2H), 1.07 (dd, *J* = 7.7, 4.5 Hz, 2H). ¹³C NMR (100 MHz, DMSO) δ 169.1, 158.4 (q, *J* = 36.7 Hz), 136.5, 134.4, 130.7, 127.1, 126.5, 126.4, 116.2 (q, *J* = 287.7 Hz), 35.1, 18.0, 16.6. HRMS (ESI) calcd for C₁₃H₁₃F₃N₂O₂ [M + H]⁺ 287.1002, found 287.1009.

4-methyl-N-(o-tolyl)-2-(2,2,2-trifluoroacetamido)pentanamide (1q, CAS no. 2210941-17-4). 2.02 g, 64% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 134 – 145 °C; ¹H NMR (400 MHz, DMSO) δ 9.74 (d, *J* = 7.7 Hz, 1H), 9.68 (s, 1H), 7.28 (d, *J* = 7.4 Hz, 1H), 7.22 (d, *J* = 7.3 Hz, 1H), 7.17 (t, *J* = 6.9 Hz, 1H), 7.14 – 7.09 (m, 1H), 4.69 – 4.53 (m, 1H), 2.18 (s, 3H), 1.80 (dd, *J* = 10.2, 8.4 Hz, 1H), 1.72 – 1.60 (m, 2H), 0.94 (dd, *J* = 13.9, 6.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO) δ 170.0, 157.0 (q, *J* = 36.7 Hz), 136.2, 133.0, 130.8, 126.4, 126.2, 126.1, 116.3 (q, *J* = 288.3 Hz), 52.7, 24.9, 23.3, 21.7, 18.2.

3-phenyl-*N***-(o-tolyl)-2-(2,2,2-trifluoroacetamido)propanamide (1r, CAS no. 2210438-10-9).** 2.73 g, 78% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 189 – 191 °C; ¹H NMR (400 MHz, DMSO) δ 9.87 (d, *J* = 8.1 Hz, 1H), 9.73 (s, 1H), 7.37 (d, *J* = 7.1 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 3H), 7.25 – 7.16 (m, 3H), 7.1 (t, *J* = 7.3 Hz, 1H), 4.88 – 4.82 (m, 1H), 3.23 (dd, *J* = 13.6, 5.0 Hz, 1H), 3.09 (dd, *J* = 13.5, 10.3 Hz, 1H), 2.14 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.0, 156.8 (q, *J* = 36.6 Hz), 137.6, 136.0, 132.8, 130.8, 129.7, 128.6, 127.1, 126.4, 126.2, 125.9, 116.2 (q, *J* = 288.0 Hz), 55.6, 37.4, 18.1. HRMS (ESI) calcd for C₁₈H₁₇F₃N₂O₂ [M + H]⁺ 351.1315, found 351.1315.

4-(methylthio)-*N*-(**o-tolyl**)-**2-(2,2,2-trifluoroacetamido)**butanamide (1s). 1.37 g, 41% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:5, v/v); mp 150 – 153 °C; ¹H NMR (400 MHz, DMSO) δ 9.76 (d, *J* = 7.5 Hz, 1H), 9.65 (s, 1H), 7.35 – 7.28 (m, 1H), 7.22 (d, *J* = 7.4 Hz, 1H), 7.18 (dd, *J* = 10.6, 4.4 Hz, 1H), 7.12 (td, *J* = 7.3, 1.2 Hz, 1H), 4.69 – 4.58 (m, 1H), 2.63 – 2.54 (m, 1H), 2.53 – 2.49 (m, 1H), 2.19 (s, 3H), 2.16 – 2.10 (m, 2H), 2.09 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.2, 157.1 (q, *J* = 36.5 Hz), 136.1, 132.9, 130.8, 126.5, 126.2, 126.0, 115.7 (q, *J* = 287.9 Hz), 53.6, 31.1, 30.2, 18.2, 15.0. HRMS (ESI) calcd for C₁₄H₁₇F₃N₂O₂S [M + H]⁺ 335.1036, found 335.1038.

3-(1H-indol-3-yl)-*N***-(o-tolyl)-2-(2,2,2-trifluoroacetamido)propanamide (1t).** 1.95 g, 49% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:5, v/v); mp 192 – 193 °C; ¹NMR (400 MHz,) δ 10.88 (s, 1H), 9.81 (d, *J* = 7.7 Hz, 1H), 9.74 (s, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 7.2, 1H), 7.25 – 7.18 (m, 2H), 7.18 – 7.15 (m, 1H), 7.12 – 7.06 (m, 2H), 7.00 (t, *J* = 7.4 Hz, 1H), 4.96 – 4.68 (m, 1H), 3.35 – 3.27 (m, 1H), 3.21 (dd, *J* = 14.5, 9.6 Hz, 1H), 2.12 (s, 3H). ¹³NMR (100 MHz,) δ 169.5, 156.8 (q, *J* = 42.4 Hz), 136.5, 136.1, 133.0, 130.8, 127.5, 126.4, 126.2, 126.1, 124.4, 121.5, 119.0, 118.8, 116.3 (q, *J* = 288.0 Hz), 111.8, 109.9, 55.1, 27.7, 18.1. HRMS (ESI) calcd for C₂₀H₁₈F₃N₃O₂ [M + H]⁺ 390.1424, found 390.1424.

N-(2,4-dimethylphenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (1u). 2.34 g, 74% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 219 – 221 °C; ¹H NMR (400 MHz, DMSO) δ 9.65 (d, 1H), 9.59 (s, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.03 (s, 1H), 6.97 (d, J = 8.0 Hz, 1H), 4.36 (t, J = 8.8 Hz, 1H), 2.25 (s, 3H), 2.23 – 2.17 (m, 1H), 2.15 (s, 3H), 1.00 (d, J = 6.7 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.0, 157.0 (q, J = 36.6), 135.2, 133.5, 132.5, 131.3, 126.9, 125.8, 116.3 (q, J = 288.1 Hz), 60.1, 30.1, 20.90, 19.5, 19.2, 18.2. HRMS (ESI) calcd for C₁₅H₁₉F₃N₂O₂ [M + H]⁺ 317.1472, found 317.1472.

N-(4-methoxy-2-methylphenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (1v). 2.09 g, 63% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 219 – 221 °C; ¹H NMR (400 MHz, DMSO) δ 9.64 (d, *J* = 8.3 Hz, 1H), 9.56 (s, 1H), 7.15 (d, *J* = 8.7 Hz, 1H), 6.80 (d, *J* = 2.8 Hz, 1H), 6.74 (dd, *J* = 8.7, 2.9 Hz, 1H), 4.32 (t, *J* = 8.5 Hz, 1H), 3.72 (s, 3H), 2.24 – 2.18 (m, 1H), 2.16 (s, 3H), 1.00 (d, *J* = 6.8 Hz, 3H), 0.95 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.1, 157.5, 157.0 (q, *J* = 36.6 Hz), 134.6, 129.0, 127.4, 116.4 (q, *J* = 286.3 Hz),115.8, 111.7, 60.0, 55.6, 30.1, 19.5, 19.2, 18.4. HRMS (ESI) calcd for C₁₅H₁₉F₃N₂O₃ [M + H]⁺ 333.1421, found 333.1421.

N-(4-fluoro-2-methylphenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (1w). 2.27 g, 71% yeild; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 214 – 219 °C; ¹H NMR (400 MHz, DMSO) δ 9.71 (s, 1H), 9.68 (s, 1H), 7.30 (dd, J = 8.7, 5.6 Hz, 1H), 7.10 (dd, J = 9.7, 2.8 Hz, 1H), 7.01 (td, J = 8.6, 2.9 Hz, 1H), 4.34 (t, J = 8.4 Hz, 1H), 2.25 – 2.16 (m, 4H), 1.01 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.2, 160.1 (d, J = 241.8 Hz), 157.1 (q, J = 36.8 Hz), 135.6 (d, J = 8.3 Hz), 132.3, 127.8 (d, J = 8.7 Hz), 117.1 (d, J = 22.2 Hz), 116.4 (q, J = 286.3), 113.0 (d, J = 22.2 Hz), 60.1, 30.0, 19.5, 19.2, 18.2. HRMS (ESI) calcd for C₁₄H₁₆F₄N₂O₂ [M + H]+ 321.1221, found 321.1224.

N-(4-chloro-2-methylphenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (1x). 2.42 g, 72% yeild; white solid after purification by column chromatography (eluent, ethyl

acetate/petroleum ether = 1:10, v/v); mp 230 – 232 °C; ¹H NMR (400 MHz, DMSO) δ 9.73 (s, 1H), 9.70 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 8.5 Hz, 1H), 7.32 (d, *J* = 2.1 Hz, 1H), 7.23 (dd, *J* = 8.5, 2.3 Hz, 1H), 4.36 (t, *J* = 8.4 Hz, 1H), 2.22 – 2.17 (m, 4H), 0.99 (d, *J* = 6.7 Hz, 3H), 0.95 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.3, 157.1 (q, *J* = 36.7 Hz), 135.1, 134.9, 130.4, 129.9, 127.3, 126.3, 116.4 (q, *J* = 288.1 Hz), 60.1, 30.0, 19.5, 19.2, 18.0. HRMS (ESI) calcd for C₁₄H₁₆ClF₃N₂O₂ [M + H]⁺ 337.0925, found 337.0926.

N-(2,3-dimethylphenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (1y). 2.18 g, 69% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 219 – 222 °C; ¹H NMR (400 MHz, DMSO) δ 9.72 (s, 1H), 9.67 (d, *J* = 8.1 Hz, 1H), 7.11 – 7.07 (m, 1H), 7.06 – 7.01 (m, 2H), 4.37 (t, *J* = 8.4 Hz, 1H), 2.25 (s, 3H), 2.22 – 2.19 (m, 1H), 2.07 (s, 3H), 1.01 (d, *J* = 6.8 Hz, 3H), 0.96 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.2, 157.0 (q, *J* = 36.5 Hz), 137.5, 135.9, 131.8, 127.7, 125.7, 124.1, 116.4 (q, *J* = 287.9 Hz), 60.1, 30.1, 20.5, 19.5, 19.3, 14.4. HRMS (ESI) calcd for C₁₅H₁₉F₃N₂O₂ [M + H]⁺ 317.1472, found 317.1472.

N-(2-benzylphenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (1z). 2.57 g, 68% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 227 – 228 °C; ¹H NMR (400 MHz, DMSO) δ 9.85 (s, 1H), 9.69 (s, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.24 – 7.19 (m, 3H), 7.17 – 7.14 (m, 5H),4.41 (s, 1H), 4.14 – 3.80 (m, 2H), 2.15 (dd, *J* = 14.2, 7.1 Hz, 1H), 0.92 (dd, *J* = 19.0, 6.6 Hz, 6H); ¹³C NMR (100 MHz, DMSO) δ 169.4, 157.0 (q, *J* = 36.7 Hz), 140.7, 136.1, 135.7, 130.6, 129.2, 128.7, 126.9, 126.6, 126.4, 126.4, 116.4 (d, *J* = 288.2 Hz), 59.9, 36.8, 30.3, 19.4, 19.1. HRMS (ESI) calcd for C₂₀H₂₁F₃N₂O₂ [M + H]⁺ 379.1628, found 379.1629.

6. Typical Procedure for Bifunctional Products 3a-y

A mixture of *N*-protected amino acid derivatives **1** (0.25 mmol), aryl iodides **2** (0.75 mmol), $Pd(OAc)_2$ (0.05 mmol, 20 mol %), Ag_2CO_3 (0.5 mmol), 4 Å molecuar sieve, and DMAc (2.5 mL) was placed in a 35 mL pressure tube with PTFE cap under air. The tube was heated at 130 °C for 24 h. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (3 mL), and filtered through celite. Then, the 15 mL water was added to filtrate and the mixture was extracted with ethyl acetate (15 mL) for 3 times. The organic layers was dried by Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography with ethyl acetate/petroleum ether to afford the desired product (EA/PE = 1:7 ~ 1:20, v/v).

N-(2-benzoylphenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (3a). 85 mg, 87% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 159-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.29 (s, 1H), 8.62 (d, *J* = 8.2 Hz, 1H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.64 – 7.60 (m, 3H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.19 – 7.12 (m, 2H), 4.60 (dd, *J* = 8.3, 5.2 Hz, 1H), 2.37 – 2.29 (m, 1H), 1.08 (dd, *J* = 12.8, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 168.4, 157.3 (q, *J* = 37.1 Hz), 139.5, 138.3, 134.5, 133.9, 132.7, 129.9, 128.4, 123.4, 123.1, 121.5, 115.8 (q, *J* = 287.6 Hz), 59.6, 32.2, 19.01, 17.8. HRMS (ESI) calcd for C₂₀H₁₉F₃N₂O₃ [M + H]⁺ 393.1421, found 393.1425.

HPLC: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 95/5, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 13.7 min (minor), t_{R2} = 15.1 min (major).

3-methyl-N-(2-(4-methylbenzoyl)phenyl)-2-(2,2,2-trifluoroacetamido)butanamide (3b). 79 mg, 78% yield; white solid after purification by column chromatography (eluent, ethyl

acetate/petroleum ether = 1:20, v/v); mp 105 – 108 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.20 (s, 1H), 8.58 (d, *J* = 8.0 Hz, 1H), 7.70 – 7.52 (m, 4H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.16 (td, *J* = 7.7, 1.0 Hz, 2H), 4.59 (dd, *J* = 8.3, 5.2 Hz, 1H), 2.46 (s, 3H), 2.38 – 2.27 (m, 1H), 1.04 (dd, *J* = 12.7, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 168.3, 157.0 (q, *J* = 37.2 Hz), 143.8, 139.3, 135.5, 134.2, 133.7, 130.2, 129.1, 123.7, 123.0, 121.5, 115.8 (q, *J* = 290.4 Hz), 59.5, 32.2, 21.7, 19.0, 17.8. HRMS (ESI) calcd for C₂₁H₂₁F₃N₂O₃ [M + H]⁺407.1577, found 407.1584.

HPLC: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 95/5, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 13.6 min (minor), t_{R2} = 14.7 min (major).

3-methyl-*N*-(2-(3-methylbenzoyl)phenyl)-2-(2,2,2-trifluoroacetamido)butanamide (3c). 65 mg, 64% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 108-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.29 (s, 1H), 8.60 (d, *J* = 8.3 Hz, 1H), 7.65 – 7.58 (m, 2H), 7.52 (s, 1H), 7.47 (d, *J* = 7.4 Hz, 1H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.20 – 7.13 (m, 1H), 4.60 (dd, *J* = 8.3, 5.4 Hz, 1H), 2.43 (s, 3H), 2.39 – 2.20 (m, 1H), 1.04 (dd, *J* = 12.3, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 168.5, 157.1 (q, *J* = 37.6 Hz), 139.5, 138.4, 138.3, 134.4, 134.0, 133.5, 130.3, 128.2, 127.2, 123.5, 123.1, 121.4, 115.8 (q, *J* = 287.8 Hz), 59.6, 32.1, 21.4, 19.0, 17.8. HRMS (ESI) calcd for C₂₁H₂₁F₃N₂O₃ [M + H]⁺407.1577, found 407.1581.

HPLC: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 90/10, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 9.5 min (minor), t_{R2} = 10.0 min (major).

N-(2-(4-ethylbenzoyl)phenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (3e). 76 mg, 72% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 113 – 116 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.21 (s, 1H), 8.58 (d, J = 8.3 Hz, 1H), 7.71 – 7.54 (m, 4H), 7.32 (d, J = 8.1 Hz, 2H), 7.24 (s, 1H), 7.16 (t, J = 7.6 Hz, 1H), 4.59 (dd, J = 8.4, 5.3 Hz, 1H), 2.75 (q, J = 7.6 Hz, 2H), 2.37 – 2.28 (m, 1H), 1.29 (t, J = 7.6 Hz, 3H), 1.04 (dd, J = 12.7, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 168.4, 157.1 (q, J = 37.5 Hz), 149.9, 139.3, 135.7, 134.2, 133.7, 130.3, 127.9, 123.8, 123.0, 121.5, 130.8 (q, J = 287.8 Hz), 59.6, 32.1, 29.0, 19.0, 17.8, 15.2. HRMS (ESI) calcd for C₂₂H₂₃F₃N₂O₃ [M + H]⁺421.1734, found 421.1739.

HPLC: Daicel Chiralcel As-H, *n*-hexane/isopropanol 95/5, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 13.3 min (minor), t_{R2} = 12.2 min (major).

N-(2-(4-(tert-butyl)benzoyl)phenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (3f). 65 mg, 58% yield; yellow liquid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); ¹H NMR (400 MHz, CDCl₃) δ 11.24 (s, 1H), 8.59 (d, *J* = 8.2 Hz, 1H), 7.71 – 7.64 (m, 3H), 7.60 (t, *J* = 7.9 Hz, 1H), 7.52 (s, 1H), 7.50 (s, 1H), 7.27 (d, *J* = 6.4 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 4.59 (dd, *J* = 8.3, 5.3 Hz, 1H), 2.37 – 2.28 (m, 1H), 1.37 (s, 9H), 1.04 (dd, *J* = 13.0, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 168.4, 157.1 (d, *J* = 37.3 Hz), 156.7, 139.3, 135.4, 134.2, 133.8, 130.1, 125.4, 123.8, 123.0, 121.5, 115.8 (q, *J* = 287.8 Hz), 59.6, 35.2, 32.1, 31.1, 19.0, 17.8. HRMS (ESI) calcd for C₂₄H₂₇F₃N₂O₃ [M + H]⁺ 449.2047, found 449.2047.

HPLC: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 90/10, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 8.5 min (minor), t_{R2} = 9.1 min (major).

N-(2-(4-methoxybenzoyl)phenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (3g). 74 mg, 70% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 120 – 124 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.00 (s, 1H), 8.54 (d, *J* = 8.2 Hz, 1H), 7.75 (d, *J* = 8.9 Hz, 2H), 7.69 – 7.55 (m, 2H), 7.20 – 7.11 (m, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 4.57 (dd, *J* = 8.3, 5.2 Hz, 1H), 3.91 (s, 3H), 2.36 – 2.27 (m, 1H), 1.06 (dd, *J* = 12.0, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 168.2, 163.6, 157.0 (q, *J* = 37.4 Hz), 138.9, 133.8, 133.1, 132.7, 115.8 (q, *J* = 290.4 Hz), 130.5, 124.3, 123.1, 121.6, 113.7, 59.5, 55.6, 32.2, 19.0, 17.8. HRMS (ESI) calcd for C₂₁H₂₁F₃N₂O₄ [M + H]⁺423.1526, found 423.1532.

HPLC: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 95/5, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 20.6 min (minor), t_{R2} = 24.1 min (major).

RetTime[min]	Туре	Width[min]	Area[mAU*s]	Height[mAU]	Area%
20.594	BB	3. 3333	1026.2528	21.2132	3.8974
24.119	BB	4.3053	25305. 2568	575. 4458	96.1026

N-(2-(4-chlorobenzoyl)phenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (3h). 73 mg, 68% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 132 – 135 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.16 (s, 1H), 8.60 (d, J = 7.8 Hz, 1H), 7.71 – 7.56 (m, 4H), 7.53 – 7.45 (m, 2H), 7.22 – 7.09 (m, 2H), 4.58 (dd, J = 8.3, 5.3 Hz, 1H), 2.39 – 2.26 (m, 1H), 1.05 (dd, J = 12.2, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 168.4, 157.1 (q, J = 29.7 Hz), 139.5, 139.3, 136.5, 134.7, 133.6, 131.4, 128.8, 123.2, 123.1, 121.6, 111.5 (q, J = 278.5 Hz), 59.6, 32.1, 19.0, 17.8. HRMS (ESI) calcd for C₂₀H₁₈ClF₃N₂O₃ [M + H]⁺427.1031, found 427.1018.

HPLC: Daicel Chiralcel AS-H, *n*-hexane/isopropanol 90/10, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 12.2 min (minor), t_{R2} = 10.7 min (major).

Methyl 4-(2-(3-methyl-2-(2,2,2-trifluoroacetamido)butanamido)benzoyl)benzoate (3i). 81 mg, 72% yield; white solid after purification by column chromatography (eluent, ethyl

acetate/petroleum ether = 1:15, v/v); mp 121 – 122 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.00 (s, 1H), 8.54 (d, J = 8.0 Hz, 1H), 7.78 – 7.69 (m, 2H), 7.66 – 7.52 (m, 2H), 7.21 – 7.10 (m, 2H), 7.06 – 6.92 (m, 2H), 4.57 (dd, J = 8.3, 5.2 Hz, 1H), 3.91 (s, 3H), 2.36 – 2.26 (m, 1H), 1.04 (dd, J = 12.0, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 168.2, 163.6, 157.1 (q, J = 37.2 Hz), 138.9, 133.8, 133.2, 132.7, 130.5, 129.2, 124.3, 123.1, 121.6, 115.8 (d, J = 287.2 Hz), 113.7, 59.5, 55.6, 32.2, 19.0, 17.8. HRMS (ESI) calcd for C₂₂H₂₁F₃N₂O₅ [M + H]⁺ 451.1476, found 451.1480.

HPLC: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 95/5, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 24.4 min (minor), t_{R2} = 27.7 min (major).

verime[min]	Type	AIGCULTUTUT	VI Ga[muo+2]	nerRucfmuol	AT Call
24.388	BB	3.2900	342.2555	4.7786	9.0483
27.688	BB	4.4878	3440. 3022	56.1610	90.9517

Ethyl 4-(2-(3-methyl-2-(2,2,2-trifluoroacetamido)butanamido)benzoyl)benzoate (3j). 84 mg, 72% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:15, v/v); mp 129 – 131 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.33 (s, 1H), 8.65 (d, *J* = 8.4 Hz, 1H), 8.17 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.64 (t, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.32 – 7.22 (m, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 4.61 (dd, *J* = 8.2, 5.6 Hz, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 2.47 – 2.16 (m, 1H), 1.43 (t, *J* = 7.1 Hz, 3H), 1.06 (dd, *J* = 11.6, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 168.6, 165.6, 157.1 (q, *J* = 37.7 Hz), 141.9, 139.8, 135.1, 134.0, 133.8, 129.5, 129.5, 123.2, 122.8 121.5, 115.8 (q, *J* = 287.8 Hz), 61.5, 59.7, 32.0, 19.0, 17.8, 14.3. HRMS (ESI) calcd for C₂₃H₂₃F₃N₂O₅ [M + H]⁺ 465.1632, found 465.1638.

N-(2-(4-cyanobenzoyl)phenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (3k). 73 mg, 70% yield; yellow liquid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:15, v/v); ¹H NMR (400 MHz, CDCl₃) δ 11.24 (s, 1H), 8.66 (d, J = 8.0 Hz, 1H), 7.80 (q, J = 8.5 Hz, 4H), 7.67 (t, J = 7.9 Hz, 1H), 7.53 (dd, J = 7.9, 1.4 Hz, 1H), 7.23 – 7.11 (m, 2H), 4.59 (dd, J = 8.3, 5.4 Hz, 1H), 2.38 – 2.29 (m, 1H), 1.06 (dd, J = 12.1, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.2, 168.6, 157.1 (q, J = 37.3 Hz), 141.9, 140.0, 135.5, 133.7, 132.2, 130.1, 123.3, 122.2, 121.7, 115.8 (q, J = 279.4 Hz), 117.8, 115.9, 59.7, 32.0, 19.0, 17.8. HRMS (ESI) calcd for C₂₁H₁₈F₃N₃O₃ [M + H]⁺418.1373, found 418.1369.

HPLC: Daicel Chiralcel AS-H, *n*-hexane/isopropanol 90/10, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 31.3 min (minor), t_{R2} = 25.1 min (major).

3-methyl-*N***-(2-(4-nitrobenzoyl)phenyl)-2-(2,2,2-trifluoroacetamido)butanamide (3l).** 71 mg, 65% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:15, v/v); mp 164 – 167 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.28 (s, 1H), 8.68 (d, *J* = 7.8 Hz, 1H), 8.42 – 8.30 (m, 2H), 7.91 – 7.79 (m, 2H), 7.74 – 7.63 (m, 1H), 7.53 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.23 – 7.16 (m, 1H), 7.12 (d, *J* = 8.1 Hz, 1H), 4.60 (dd, *J* = 8.3, 5.4 Hz, 1Hz, 1H), 7.23 – 7.16 (m, 1H), 7.12 (d, *J* = 8.1 Hz, 1H), 4.60 (dd, *J* = 8.3, 5.4 Hz, 1Hz, 1Hz, 1Hz) (dz = 8.3, 5.4 Hz), 7.12 (dz = 8.3 Hz) (dz = 8.3 Hz), 7.12 (dz = 8.

1H), 2.39 - 2.30 (m, 1H), 1.06 (dd, J = 12.1, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl3) δ 198.1, 168.6, 158.7 (q, J = 25.2 Hz), 149.9, 143.6, 140.1, 135.7, 133.8, 130.5, 123.7, 123.3, 122.1, 121.7, 115.9 (q, J = 267.5 Hz), 59.7, 32.0, 19.0, 17.8. HRMS (ESI) calcd for C₂₀H₁₈F₃N₃O₅ [M + H]⁺ 438.1272, found 438.1272.

HPLC: Daicel Chiralcel AS-H, *n*-hexane/isopropanol 90/10, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 25.8 min (minor), t_{R2} = 21.4 min (major).

N-(2-((2-benzoylphenyl)amino)-2-oxoethyl)-2,2,2-trifluoroacetamide (3m). 61 mg, 70% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:7, v/v); mp 112 – 114 °C; ¹H NMR (500 MHz, CDCl₃) δ 11.22 (s, 1H), 8.55 (d, *J* = 8.6 Hz, 1H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.65 – 7.56 (m, 3H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.40 (s, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 4.24 (d, *J* = 4.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 165.5, 157.3 (q, *J* = 37.8 Hz), 139.4, 138.2, 134.4, 133.8, 132.7, 129.9, 128.4, 123.4, 123.1, 121.6, 115.7 (q, *J* = 287.5 Hz), 43.6. HRMS (ESI) calcd for C₁₇H₁₃F₃N₂O₃ [M + H]⁺ 351.0951, found 351.0959.

N-(2-benzoylphenyl)-2-(2,2,2-trifluoroacetamido)propanamide (3n). 74 mg, 81% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:15, v/v); mp 141 – 143 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.35 (s, 1H), 8.58 (d, *J* = 8.2 Hz, 1H), 7.77 – 7.67 (m, 2H), 7.62 (t, *J* = 8.0 Hz, 3H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 5.3 Hz, 1H), 7.17 (t,

J = 7.6 Hz, 1H), 4.70 (p, J = 6.9 Hz, 1H), 1.63 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 169.4, 156.6 (q, J = 37.7 Hz), 139.7, 138.2, 134.6, 134.0, 132.7, 129.9, 128.4, 123.3, 123.1, 121.5, 115.7 (q, J = 287.5 Hz), 50.5, 18.8. HRMS (ESI) calcd for C₁₈H₁₅F₃N₂O₃ [M + H]⁺ 365.1108, found 365.1107.

HPLC: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 95/5, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 33.3 min (minor), t_{R2} = 28.1 min (major).

N-(2-benzoylphenyl)-2-methyl-2-(2,2,2-trifluoroacetamido)propanamide (30). 71 mg, 75% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 123 – 126 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.69 (s, 1H), 8.64 (d, *J* = 8.3 Hz, 1H), 7.84 (s, 1H), 7.72 – 7.68 (m, 2H), 7.68 – 7.59 (m, 3H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.17 (t, *J* = 7.1 Hz, 1H), 1.85 (d, *J* = 9.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 200.4, 172.6, 156.0 (q, *J* = 36.8 Hz), 140.2, 138.4, 134.8, 134.8, 134.3, 132.7, 129.9, 128.4, 122.9, 121.2, 117.2 (q, *J* = 278.0 Hz), 58.6, 24.0. HRMS (ESI) calcd for C₁₉H₁₇F₃N₂O₃ [M + H]⁺ 379.1264, found 379.1262.

N-(2-benzoylphenyl)-1-(2,2,2-trifluoroacetamido)cyclopropane-1-carboxamide (3p). 59 mg, 63% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 168 – 170 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.82 (s,

1H), 8.57 (d, J = 8.3 Hz, 1H), 7.68 – 7.61 (m, 3H), 7.60 – 7.54 (m, 2H), 7.54 – 7.48 (m, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.11 – 6.99 (m, 1H), 1.73 (q, J = 5.0 Hz, 2H), 1.20 (q, J = 5.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 169.1, 158.5 (q, J = 37.8 Hz), 140.1, 138.4, 134.4, 133.8, 132.5, 129.9, 128.3, 122.8, 122.5, 120.9, 115.6 (q, J = 288.4 Hz), 35.9, 17.8. HRMS (ESI) calcd for C₁₉H₁₅F₃N₂O₃ [M + H]+ 377.1108, found 377.1114.

N-(2-benzoylphenyl)-4-methyl-2-(2,2,2-trifluoroacetamido)pentanamide (3q). 80 mg, 79% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 161 – 162 °C; ¹H NMR (400 MHz, CDCl₃) 11.31 (s, 1H), 8.57 (d, J = 8.3 Hz, 1H), 7.73 – 7.66 (m, 2H), 7.66 – 7.54 (m, 4H), 7.48 (t, J = 7.7 Hz, 2H), 7.14 (t, J = 7.6 Hz, 1H), 4.75 (dt, J = 13.7, 6.9 Hz, 1H), 1.90 – 1.68 (m, 3H), 0.98 (dd, J = 11.6, 6.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 169.8, 157.1 (q, J = 36.5 Hz), 139.5, 138.3, 134.4, 133.8, 132.6, 129.9, 128.4, 123.6, 123.1, 121.6, 115.8 (q, J = 287.9 Hz), 53.5, 41.8, 24.9, 22.8, 22.0. HRMS (ESI) calcd for C₂₁H₂₁F₃N₂O₃ [M + H]⁺406.1577, found 406.1571.

HPLC: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 95/5, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 14.9 min (minor), t_{R2} = 16.9 min (major).

letTime[min]	Туре	Width[min]	Area[mAU*s]	Height[mAU]	Area%
14.944	BB	1.8397	122.1964	3.5892	0.9390
16.915	BB	3.9400	12890. 6019	411.9440	99.0610

N-(2-benzoylphenyl)-3-phenyl-2-(2,2,2-trifluoroacetamido)propanamide (3r). 95 mg, 86% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 153 – 155 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.96 (s, 1H), 8.53 (d, *J* = 8.3 Hz, 1H), 7.65 (dd, *J* = 5.1, 3.2 Hz, 2H), 7.64 – 7.60 (m, 1H), 7.60 – 7.55 (m, 2H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.24 – 7.11 (m, 6H), 7.00 (m, 1H), 4.86 (dd, *J* = 13.0, 7.3 Hz, 1H), 3.29 (dd, *J* = 13.8, 5.6 Hz, 1H), 3.21 (dd, *J* = 13.8, 7.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 167.9, 156.6 (q, *J* = 37.8 Hz), 139.1, 138.1, 134.6, 134.3, 133.7, 132.7, 130.0, 129.2, 128.8, 128.3, 127.5, 123.1, 121.5, 115.6 (q, *J* = 288.0 Hz), 55.9, 38.8. HRMS (ESI) calcd for C₂₄H₁₉F₃N₂O₃ [M + H]⁺ 441.1421, found 441.1420.

HPLC: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 90/10, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 17.6 min, t_{R2} = 18.6 min.

N-(2-benzoylphenyl)-4-(methylthio)-2-(2,2,2-trifluoroacetamido)butanamide (3s). 55 mg, 52% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:10, v/v); mp 136 – 137 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.35 (s,

1H), 8.57 (d, J = 8.3 Hz, 1H), 7.71 (d, J = 7.4 Hz, 2H), 7.62 (t, J = 7.6 Hz, 3H), 7.50 (t, J = 7.7 Hz, 3H), 7.18 (t, J = 7.6 Hz, 1H), 4.85 (dd, J = 12.9, 6.6 Hz, 1H), 2.70 – 2.46 (m, 2H), 2.33 – 2.28 (m, 1H), 2.27 – 2.15 (m, 1H), 2.10 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 168.3, 156.9 (q, J = 37.8 Hz), 139.4, 138.2, 134.4, 133.8, 132.7, 130.0, 128.4 123.6, 123.2, 121.6, 115.8 (q, J = 287.8 Hz), 53.9, 31.7, 29.6, 15.3. HRMS (ESI) calcd for C₂₀H₁₉F₃N₂O₃S [M + H]⁺ 425.1141, found 425.1151.

HPLC: Daicel Chiralcel AS-H, *n*-hexane/isopropanol 90/10, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 20.8 min, t_{R2} = 22.8 min.

N-(2-benzoyl-4-methylphenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (3u). 80 mg, 79% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 136 – 138 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.11 (s, 1H), 8.47 (d, *J* = 8.3 Hz, 1H), 7.75 – 7.66 (m, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.42 (d, *J* = 10.8 Hz, 2H), 7.17 (d, *J* = 7.9 Hz, 1H), 4.57 (dd, *J* = 8.3, 5.3 Hz, 1H), 2.47 – 2.15 (m, 4H), 1.03 (dd, *J* = 11.6, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 168.2, 157.0 (q, *J* = 37.2 Hz), 138.3, 137.0, 135.1, 134.0, 132.8, 132.6, 129.9, 128.4, 123.5, 121.5, 115.8 (q, *J* = 286.2 Hz), 59.5, 32.2, 20.8, 19.0, 17.8. HRMS (ESI) calcd for C₂₁H₂₁F₃N₂O₃ [M + H]⁺407.1577, found 407.1575.

N-(2-benzoyl-4-methoxyphenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (3v). 81 mg, 77% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 130 – 132 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.78 (s, 1H), 8.47 (d, J = 9.1 Hz, 1H), 7.77 – 7.68 (m, 2H), 7.62 (dd, J = 10.5, 4.3 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.17 (d, J = 3.0 Hz, 1H), 7.15 (d, J = 3.0 Hz, 1H), 7.11 (d, J = 3.0 Hz, 1H), 4.54 (dd, J = 8.3, 5.4 Hz, 1H), 3.77 (s, 3H), 2.34 – 2.25 (m, 1H), 1.03 (dd, J = 10.5, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 167.9, 157.0 (q, J = 36.9 Hz), 154.9, 138.0, 132.9, 132.4, 130.0, 128.5, 125.2, 1233, 119.3, 118.8, 115.8 (q, J = 287.6 Hz), 59.5, 55.7, 32.2, 19.0, 17.9. HRMS (ESI) calcd for C₂₁H₂₁F₃N₂O₄ [M + H]⁺423.1526, found 423.1534.

HPLC: Daicel Chiralcel AS-H, *n*-hexane/isopropanol 90/10, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 14.4 min (minor), t_{R2} = 12.8 min (major).

N-(2-benzoyl-4-fluorophenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (3w). 90 mg, 88% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 159 – 161 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.96 (s, 1H), 8.58 (dd, *J* = 8.7, 4.9 Hz, 1H), 7.78 – 7.69 (m, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.6

Hz, 2H), 7.38 – 7.28 (m, 2H), 7.14 (d, J = 7.6 Hz, 1H), 4.56 (dd, J = 8.2, 5.5 Hz, 1H), 2.45 – 2.26 (m, 1H), 1.04 (dd, J = 11.8, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 168.3, 157.3 (q, J = 37.3 Hz), 137.5, 135.5, 133.2, 129.9, 128.6, 125.0 (d, J = 5.9 Hz), 123.6 (d, J = 7.2 Hz), 121.2 (d, J = 22.1 Hz), 119.9, 119.6, 115.8 (q, J = 287.8 Hz), 59.5, 32.1, 19.0, 17.8. HRMS (ESI) calcd for C₂₀H₁₈F₄N₂O₃ [M + H]⁺411.1327, found 411.1330.

HPLC: Daicel Chiralcel AS-H, *n*-hexane/isopropanol 90/10, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 11.6 min (minor), t_{R2} = 9.8 min (major).

N-(2-benzoyl-4-chlorophenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (3x). 81 mg, 76% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 143 – 144 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.07 (s, 1H), 8.58 (d, J = 8.6 Hz, 1H), 7.71 (d, J = 7.3 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.55 (dd, J = 16.6, 8.7 Hz, 4H), 7.15 (d, J = 8.2 Hz, 1H), 4.57 (dd, J = 8.3, 5.5 Hz, 1H), 2.30 (dt, J = 13.4, 6.7 Hz, 1H), 1.04 (dd, J = 12.2, 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 168.5, 157.1 (q, J = 37.4 Hz), 137.9, 137.5, 134.2, 133.2, 133.0, 129.9, 128.7, 128.4, 124.7, 123.0, 115.8 (q, J = 287.8 Hz), 59.6, 32.0, 19.0, 17.8. HRMS (ESI) calcd for C₂₀H₁₈ClF₃N₂O₃ [M + H]⁺ 427.1031, found 427.1035.

N-(2-benzoyl-3-methylphenyl)-3-methyl-2-(2,2,2-trifluoroacetamido)butanamide (3y). 65 mg, 64% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:20, v/v); mp 139 – 141 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.76 (dd, J = 8.0, 6.7 Hz, 3H), 7.66 – 7.56 (m, 1H), 7.45 (t, J = 7.8 Hz, 2H), 7.40 (t, J = 7.9Hz, 1H), 7.11 (d, J = 7.6 Hz, 2H), 4.29 (dd, J = 8.4, 5.8 Hz, 1H), 2.10 (s, 3H), 2.01 – 1.91 (m, 1H), 0.79 (d, J = 6.8 Hz, 3H), 0.74 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 168.1, 156.9 (q, J = 37.5 Hz), 137.1, 136.2, 134.4, 133.5, 131.9, 130.3, 129.6, 129.0, 127.9, 121.9, 115.7 (q, J = 288.0 Hz), 58.8, 31.9, 20.4, 18.6, 17.5. HRMS (ESI) calcd for C₂₁H₂₁F₃N₂O₃ [M + H]⁺ 407.1577, found 407.1565.

HPLC: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 90/10, flow rate =0.5 mL/min, uv-vis λ = 210 nm, t_{R1} = 12.0 min (minor), t_{R2} = 10.4 min (major).

7. Typical Procedure for Bifunctional Products 3a on a one-gram scale

A mixture of *N*-protected amino acid derivatives **1a** (3.30 mmol), aryl iodides **2a** (9.90 mmol), $Pd(OAc)_2$ (0.66 mmol), Ag_2CO_3 (6.60 mmol), 4 Å molecuar sieve, and DMAc (15 mL) was placed in a 150 mL pressure tube with PTFE cap under air. The tube was heated at 130 °C for 24 h. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (30 mL), and filtered through celite. Then, the 30 mL water was added to filtrate and the mixture was extracted with ethyl acetate (50 mL) for 3 times. The organic layers was dried by Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography with ethyl acetate/petroleum ether to afford the desired product (EA/PE = 1:20, v/v).

8. Typical Procedure for synthesis of the 5-aryl-1,4-Benzodiazepine-2-one derivatives 4a-j³

A mixture of **3** (0.11 mmol), Cs₂CO₃ (0.072 g, 0.22 mmol) and 2 mL MeOH/H₂O (1:1) was placed in a 35 mL pressure tube with PTFE cap under air. The tube was heated at 65 °C for 12 h. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (3 mL), filtered through celite, and concentrated in vacuo. The residue was purified by silica gel column chromatography with ethyl acetate/petroleum ether to afford the desired product (EA/PE = $1:2 \sim 1:5$).

3-isopropyl-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepi*N***-2-one (4a, CAS no. 34124-69-1).** 25 mg, 82% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:5, v/v); mp 200 – 202 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 7.62 – 7.50 (m, 3H), 7.51 – 7.43 (m, 1H), 7.43 – 7.35 (m, 3H), 7.19 (t, *J* = 7.5 Hz, 2H), 3.16 (d, *J* = 9.2 Hz, 1H), 2.81 – 2.71 (m, 1H), 1.24 (d, *J* = 6.7 Hz, 3H), 1.11 (dd, *J* = 6.5, 3.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 168.7, 139.5, 138.4, 131.5, 131.1, 130.2, 129.8, 128.2, 127.6, 123.2, 121.1, 69.3, 29.0, 20.4, 19.1. HRMS (ESI) calcd for C₁₈H₁₈N₂O [M + H]⁺ 279.1492, found 279.1489.

3-isopropyl-5-(p-tolyl)-1,3-dihydro-2H-benzo[e][1,4]diazepi/V-2-one (4b). 30 mg, 93% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:5, v/v); mp 214 – 215 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 7.57 – 7.48 (m, 1H), 7.46 (d, *J* = 7.7 Hz, 2H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.18 – 7.12 (m, 4H), 3.12 (d, *J* = 9.3 Hz, 1H), 2.77 (dd, *J* = 15.5, 6.6 Hz, 1H), 2.39 (s, 3H), 1.23 (d, *J* = 6.7 Hz, 3H), 1.09 (dd, *J* = 6.5, 1.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 168.5, 140.4, 138.4, 136.8, 131.4, 131.1, 129.8, 128.8, 127.8, 123.1, 121.1, 69.2, 29.0, 21.4, 20.4, 19.1. HRMS (ESI) calcd for C₁₉H₂₀N₂O [M + H]⁺ 293.1649, found 293.1646.

3-isopropyl-5-(4-methoxyphenyl)-1,3-dihydro-2H-benzo[e][1,4]diazepi*N***-2-one (4c, CAS no. 152236-83-4).** 32 mg, 94% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:5, v/v); mp 227 – 228 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.48 (s, 1H), 7.53 – 7.49 (m, 3H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.19 (d, *J* = 8.1 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.86 (d, *J* = 8.8 Hz, 2H), 3.82 (s, 3H), 3.08 (d, *J* = 9.2 Hz, 1H), 2.83 – 2.57 (m, 1H), 1.20 (d, *J* = 6.7 Hz, 3H), 1.09 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5 168.0, 161.3, 138.5, 132.1, 131.4, 131.4, 131.1, 127.8, 123.1, 121.3, 111.5, 69.2, 55.4, 29.0, 20.4, 19.1. HRMS (ESI) calcd for C₁₉H₂₀N₂O₂ [M + H]⁺ 309.1598, found 309.1621.

Methyl 4-(3-isopropyl-2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepi/N-5-yl)benzoate (4d). 32 mg, 86% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:3, v/v); mp 230 – 232 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.65 (d, J = 40.0 Hz, 1H), 8.07 – 7.97 (m, 2H), 7.67 – 7.46 (m, 2H), 7.52 (t, J = 7.7 Hz, 1H), 7.32 – 7.19 (m, 2H), 7.15 (t, J = 7.1 Hz, 1H), 3.92 (s, 3H), 3.15 (d, J = 9.1 Hz, 1H), 2.87 – 2.7 (m, 1H), 1.22 (d, J = 6.6 Hz, 3H), 1.09 (dd, J = 17.5, 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 168.0, 167.0, 143.4, 138.6, 131.8, 131.4, 130.7, 129.8, 129.4, 127.1, 123.3, 121.4, 69.6, 52.3, 29.0, 20.4, 19.1. HRMS (ESI) calcd for C₂₀H₂₀N₂O₃ [M + H]⁺ 337.1547, found 337.1544.

3-isopropyl-7-methyl-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepi*N***-2-one (4e).** 29 mg, 89% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:5, v/v); mp 212 – 214 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.65 – 7.51 (m, 2H), 7.46 – 7.41 (m, 1H), 7.41 – 7.34 (m, 2H), 7.32 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.13 (s, 1H), 7.04 (d, *J* = 8.2 Hz, 1H), 3.11 (d, *J* = 9.2 Hz, 1H), 2.93 – 2.67 (m, 1H), 2.32 (s, 3H), 1.20 (d, *J* = 6.7 Hz, 3H), 1.07 (dd, *J* = 6.4, 4.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 168.6, 139.6, 136.0, 133.1, 132.5, 131.0, 130.1, 129.8, 128.2, 127.6, 120.9, 69.3, 29.0, 20.8, 20.3, 19.1. HRMS (ESI) calcd for C₁₉H₂₀N₂O [M + H]⁺ 293.1649, found 293.1646.

3-isopropyl-7-methoxy-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepi*N***-2-one** (4f, CAS no. 2226130-96-5). 31 mg, 91% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:5, v/v); mp 191 – 192 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.50 (d, *J* = 25.4 Hz, 1H), 7.65 – 7.52 (m, 2H), 7.46 – 7.29 (m, 3H), 7.15 (t, *J* = 7.3 Hz, 1H), 7.07 (dd, *J* = 8.9, 2.8 Hz, 1H), 6.81 – 6.78 (m, 1H), 3.71 (d, *J* = 2.3 Hz, 3H), 3.12 (d, *J* = 9.3 Hz, 1H), 2.81 – 2.71 (m, 1H), 1.21 (d, *J* = 6.7 Hz, 3H), 1.08 (dd, *J* = 18.7, 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 168.2, 154.9, 139.3, 132.3, 130.2, 129.8, 128.5, 128.2, 122.7, 118.7, 114.2, 69.4, 55.7, 29.0, 20.4, 19.2. HRMS (ESI) calcd for C₁₉H₂₀N₂O₂ [M + H]⁺ 309.1598, found 309.1585.

7-chloro-3-isopropyl-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepi*N***-2-one** (4g, CAS no. 14404-96-7). 33 mg, 97% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:5, v/v); mp 225 – 226 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.01 (d, *J* = 3.9 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.44 (m, 2H), 7.41 – 7.34 (m, 2H), 7.31 (d, *J* = 1.6 Hz, 1H), 7.17 (d, *J* = 8.7 Hz, 1H), 3.10 (d, *J* = 9.2 Hz, 1H), 2.88 – 2.60 (m, 1H), 1.21 (d, *J* = 6.7 Hz, 3H), 1.08 (dd, *J* = 6.5, 3.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 167.6, 138.8, 137.3, 131.7, 130.5, 130.3, 129.8, 128.8, 128.5, 128.4, 122.9, 69.5, 29.0, 20.4, 19.1. HRMS (ESI) calcd for C₁₈H₁₇ClN₂O [M + H]⁺ 313.1102, found 313.1111.

5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepi*N***-2-one (4h, CAS no. 2898-08-0).** 24 mg, 94% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:2, v/v); mp 175 – 177 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.47 (s, 1H), 7.51 (m, 3H), 7.44 (t, *J* = 7.3 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.32 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.20 (d, *J* = 7.9 Hz, 1H), 7.18 – 7.11 (m, 1H), 4.33 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 171.1, 139.4, 138.8, 131.7, 131.4, 130.3, 129.7, 128.2, 127.3, 123.4, 121.1, 56.7. HRMS (ESI) calcd for C₁₅H₁₂N₂O [M + H]⁺ 237.1023, found 237.1028.

5-phenylspiro[benzo[e][1,4]diazepine-3,1'-cyclopropan]-2(1H)-one (4i). 28 mg, 98% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:5, v/v); mp 230 – 231 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.38 (s, 1H), 7.52 (dd, *J* = 5.3, 3.3 Hz, 2H), 7.50 – 7.40 (m, 2H), 7.40 – 7.32 (m, 2H), 7.24 (t, *J* = 7.9, 1.4 Hz, 1H), 7.18 – 7.07 (m, 2H), 1.32 (q, *J* = 5.0 Hz, 2H), 0.96 (q, *J* = 5.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 174.4, 139.6, 138.7, 131.7, 130.9, 130.3, 129.6, 128.3, 128.1, 122.9, 120.8, 46.0, 12.9. HRMS (ESI) calcd for C₁₇H₁₄N₂O [M + H]⁺ 263.1179, found 263.1180.

3-(2-(methylthio)ethyl)-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepi/N-2-one (4j, CAS no. 884492-51-7). 29 mg, 86% yield; white solid after purification by column chromatography (eluent, ethyl acetate/petroleum ether = 1:2, v/v); mp 147 – 149°C; ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 7. 58 – 7.48 (m, 3H), 7 .47 – 7.41 (m, 1H), 7.41 – 7.32 (m, 3H), 7. 16 (t, *J* = 8.0 Hz, 2H), 3. 79 (dd, *J* = 8.6, 5.2 Hz, 1H), 2.98 – 2.69 (m, 2H), 2.69 – 2.53 (m, 1H), 2.47 (m, 1H), 2.12 (s, 3H). ¹³NMR (100 MHz, CDCl₃) δ 171.9, 169.7, 139.3, 138.3, 131.8, 131.3, 130.3, 129.8, 128.2, 127.6, 123.4, 121.04, 61.6, 30.7, 30.5, 15.5. HRMS (ESI) calcd for C₁₈H₁₈N₂OS [M + H]⁺ 311.1213, found 311.1221.

9. References

(1) Kar, S.; Drew, M. G. B.; Pramanik, A., Nano structures through self-assembly of protected hydrophobic amino acids: encapsulation of rhodamine B dye by proline-based nanovesicles. J Mater Sci 2012, 47, 1825-1835.

(2) Dörr, A. A.; Lubell, W. D., γ -Turn Mimicry with Benzodiazepinones and Pyrrolobenzodiazepinones Synthesized from a Common Amino Ketone Intermediate. Org. Lett. 2015, 17, 3592-3595.

(3) Sykes, B. M.; Atwell, G. J.; Hogg, A.; Wilson, W. R.; O'Connor, C. J.; Denny, W. A., N-Substituted 2-(2,6-Dinitrophenylamino)propanamides: Novel Prodrugs That Release a Primary Amine via Nitroreduction and Intramolecular Cyclization. J. Med. Chem. 1999, 42, 346-355.

10. NMR Spectra

¹H NMR of product **1ab** (DMSO-*d6*)

¹H NMR of product **1ac** (DMSO-*d6*)

¹H NMR of product **1q** (DMSO-*d6*)

¹H NMR of product **1u** (DMSO-*d6*)

¹H NMR of product **1v** (DMSO-*d6*)

¹H NMR of product **1x** (DMSO-*d6*)

¹H NMR of product **1y** (DMSO-*d6*)

¹H NMR of product **3a** (CDCl₃)

¹H NMR of product **3b** (CDCl₃)

The peak in black oval is the signal of grease.

The peak in black oval is the signal of grease.

-199.366 -108.396 -108.396 -155.395 -155.393 -155.393 -155.393 -155.393 -155.393 -155.393 -157.103 -177.233 -277.235 -277.235 -277.235 -277.235 -277.235 -277.235 -277.2

The peak in black oval is the signal of grease.

¹H NMR of product **3g** (CDCl₃)

The peak in black oval is the signal of grease.

The peak in black oval is the signal of grease.

¹H NMR of product **3j** (CDCl₃)

The peak in black oval is the signal of grease.

¹H NMR of product **3m** (CDCl₃)

¹H NMR of product **3n** (CDCl₃)

¹H NMR of product **30** (CDCl₃)

¹H NMR of product **3p** (CDCl₃)

The peak in black oval is the signal of grease.

¹H NMR of product **3u** (CDCl₃)

The peak in black oval is the signal of grease.

The peak in black oval is the signal of grease.

¹H NMR of product **3y** (CDCl₃)

The peak in black oval is the signal of ethyl acetate.

The peak in black oval is the signal of grease.

The peak in black oval is the signal of grease.

The peak in black oval is the signal of grease.

The peak in black oval is the signal of ethyl acetate.

The peak in black oval is the signal of ethyl acetate.

¹H NMR of product **4i** (CDCl₃)

The peak in black oval is the signal of grease.

