Electronic Supplementary Information

Choline chloride enhances the electrochemical stability of zinc plating/stripping

Chengxiang Xiao ‡^a, Rui Yao ‡^a, Haojie Zhu^a, Long Qian^a, and Cheng Yang^{*a}

^a Institute of Materials Research, Tsinghua Shenzhen International Graduate School,

Tsinghua University, Shenzhen 518055, People's Republic of China

‡ These authors contributed equally to this work.

EXPERIMENTAL PROCEDURES

Preparation of electrolytes

The control electrolyte was 0.5 M zinc chloride (Acros). The modified electrolytes were dissolved 0.5, 1.5, 2.5 and 3.5 M choline chloride (CC, Innochem) and 0.5 M zinc chloride into deionized water, which were marked as 0.5 M CC-ZnCl₂, 1.5 M CC-ZnCl₂, 2.5 M CC-ZnCl₂, and 3.5 M CC-ZnCl₂.

Assembly of cells

CR2032-type coin cells of the symmetric Zn $\|$ Zn cells and Zn $\|$ Cu half cells were assembled in the air. Glass fiber based separator from Whatman was adopted (thickness 260 μ m). The thickness of zinc foil was approximately 80 μ m.

Materials Characterizations

The morphology and microstructure on the electrode surface were characterized via scanning electron microscopy (SEM, HITACHI SU8010, Japan). X-ray diffraction (XRD, D8 Advance, Germany) with Cu-K_{α 1} radiation (λ =1.5405 Å) was implemented to detect the crystalline information of the electrode surface. In order to analyze the change of phase-transition temperature in different electrolytes, differential scanning calorimetry (DSC, Mettler Toledo, Swiss) was performed in N₂ atmosphere between - 50–30 °C at a ramping rate of 5 °C min⁻¹. The attenuated total reflectance (ATR) infrared spectrum was obtained by a Fourier transform infrared spectrometer (Nicolet IS50, America) from 400 to 4000 cm⁻¹. Nuclear magnetic resonance spectroscopy

(NMR, Bruker AVANCEIII400, Germany) was applied to qualitatively analyze the interactions between the electrolyte components. Conductivity meter (METTLER TOLEDO FE38, Swiss) and rotational viscometer (NDJ-79, China) were adopted to investigate the physicochemical properties of different electrolytes.

Electrochemical measurements

Linear scanning voltammetry (LSV) was tested in a three-electrode system by an electrochemical working station (CHI660E). Ti foil (thickness 10 µm) was used as working electrode and counter electrode. Ag/AgCl electrode was used as reference electrode. The electrolytes were 0.5 M ZnCl₂ and 2.5 M CC-ZnCl₂, respectively. The range of potential was from 1.0 to -0.2 V (versus Zn/Zn²⁺) and the scanning rate was 10 mV s⁻¹. A LAND battery measurement system was applied to test the galvanostatic and long cycling performance.

Calculation of average Coulombic efficiency (CE)

In Zn||Cu half cells, the process of CE measurements followed the reported method. Firstly, Cu foil (approximately 10 μ m) was preconditioned with one cycle at the capacity of 5 mAh cm⁻² to eliminate the oxidants of the substrate surface. Then a given amount of charge (Q_r, 5 mAh cm⁻²) was employed to deposit Zn onto the Cu foil. Next, a smaller capacity (Q_c, 0.5 mAh cm⁻²) was used to cycle between the Cu foil working electrode and the Zn counter electrode for ten cycles (n=10). Finally, the remaining Zn reservoir was exhaustively stripped to the cut-off potential, obtaining the final stripping charge capacity of $Q_{\text{S}}.$ Thus, the average CE can be calculated by:

$$CE_{ave} = \frac{nQ_c + Q_s}{nQ_c + Q_r}$$

Cl > <mark>N</mark>+ HC

Fig. S1. Structural formula of choline chloride.

Fig. S2. DSC in pure $ZnCl_2$ solutions without CC.

Fig. S3. LSV curves measured using polarization scanning at 10 mV s⁻¹ on Ti electrodes between -0.2 V and 0.4 V versus Zn/Zn^{2+} .

Fig. S4. Galvanostatic zinc plating/stripping in different electrolytes.

Fig. S5. Viscosity and conductivity of the five electrolytes.

Fig. S6. Galvanostatic zinc plating/stripping in symmetric Zn||Zn cells in 0.5 M $ZnCl_2$ and 2.5 M CC-ZnCl₂ electrolytes.

Fig. S7. SEM image of Ti foil after zinc plating at a current density of 5 mA cm⁻² and

a capacity of 5 mAh cm $^{-2}$ in 0.5 M ZnCl $_2$

Fig. S8. SEM image of Cu foil after zinc plating at a current density of 5 mA cm⁻² and a capacity of 5 mAh cm⁻² in (a) 0.5 M ZnCl₂ and (b) 2.5 M CC-ZnCl₂.

Electrolyte	CE	Ref.
Zn(TFSI) ₂ /acetamide (1/7 by mol)	75.8%	1
1 M Zn(OTf) ₂ in H ₂ O	80.5%	1
Zn(OTf) ₂ /LiTFSI/acetamide (10/20/70 by mol)	89.0%	1
30 M ZnCl ₂	95.4%	2
2.5 M CC-ZnCl_2	96.2%	Our work

Table S1. CE in different electrolytes based on standardized Zn CE protocol

References

- L. Ma, M. A. Schroeder, O. Borodin, T. P. Pollard, M. S. Ding, C. Wang and K. Xu, *Nature Energy*, 2020, 5, 743-749.
- C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D. P. Leonard, I. A. Rodríguez-Pérez, J.-X. Jiang, C. Fang and X. Ji, *Chemical Communications*, 2018, 54, 14097-14099.