Electronic Supplementary Information

UiO-66 Metal Organic Frameworks with High Contents of Flexible Adipic Acid co-Linker

Tristan T. Y. Tan, Xin Li, Ken-ichi Otake, Ying Chuan Tan, Xian Jun Loh, Susumu Kitagawa,^{*} Jason Y. C. Lim^{*}

Corresponding author email: kitagawa@icems.kyoto-u.ac.jp; jason_lim@imre.a-star.edu.sg

1. Experimental	S2
2. Scanning electron microscopy	
3. Powder X-ray Diffraction	
4. NMR of Digested UiO-66 samples	S12
5. Solid state NMR	S23
6. Thermogravimetric Analysis	S30
7. Gas absorption isotherms	S36
8. Computational Modeling	S40
9. Infrared spectra	S47
10. References	

1. Experimental

1.1 Materials and methods

All materials were purchased from commercial vendors and used as received. $ZrCl_4$, adipic acid and terephthalic acid and K_3PO_4 were purchased from Sigma Aldrich. $ZrOCl_2 \cdot 8H_2O$ was purchased from Merck. 3-Methyladipic acid, acetic acid and formic acid were purchased from TCI. Concentrated hydrochloric acid was purchased from Honeywell. Anhydrous *N*,*N*-Dimethylformamide (DMF) was purchased from Acros.

Powder XRD data were collected using a Bruker D8-Advance X-ray powder diffractometer with Cu K α radiation, at a resolution of 0.02° and a scan rate of 0.1-0.5 s/point.

Thermogravimetric analyses (TGA) data was collected using a TA Instrument Q500. Samples were heated at a rate of 5 °C/min to 600 °C under air.

Liquid state ¹H NMR on digested MOF samples were done using a JEOL 500 MHz spectrometer. Samples were digested in a saturated solution of K_3PO_4 dissolved in D_2O . The relaxation delay was increased to 30 seconds to ensure accurate integration.

Solid state NMR was done using a JEOL JNM-ECZ600R/M3 spectrometer with a MAS spin rate of 20 kHZ.

Sorption measurements were performed using a BELSORP-max Absorption Measurement Instrument equipped with cryogenic temperature controller.

Scanning electron Microscopy (SEM) analysis was performed with a JEOL JSM 5600 scanning electron microscope (tungsten source), equipped with an Oxford Link ISIS with an accelerating voltage of 10 to 15 kV. Prior to SEM analysis, samples were sputtered with gold using a JEOL JFC-1200 Fine Coater.

Infrared spectroscopy was performed on Perkin Elmer Spectrum 2000.

1.2 Synthesis of mixed adipate-terephthalate UiO-66

A 50 ml screw cap glass bottle was charged with terephthalic acid, adipic acid (see Table S1 for amounts) and DMF (20 mL). The mixture was agitated by ultrasonication until the terephthalic acid and adipic acid were fully dissolved, then concentrated hydrochloric acid (35 wt%, 100 μ L) was added, followed by ZrCl₄(233 mg, 1 mmol). The mixture was again agitated by ultrasonication until homogenous. The mixture was placed in a preheated oven at 130 °C for 24 hours. The white powder formed was collected by suction filtration, rinsed with DMF (about 5 mL) and then with ethanol (about 20 ml). The collected solids were then resuspended in water (20 mL) and heated to 80 °C for 2 hours to replace the DMF within the pores with water. The solids were then collected again by filtration, rinsed with water, and dried in an oven at 60 °C for 1 hour. Material composition in Table S1 was determined by digesting about 10 mg of sample in a solution of about 10 mg of K₃PO₄ in D₂O.

Experiment	Tere	phthalic acid used		Adipic acid used	Mole percentage of adipate w.r.t
					terephthalate in MOF
	mg	mmol	mg	mmol	mol%
1	166	1	146	1	0
2	149	0.9	160	1.1	5
3	132	0.8	175	1.2	14
4	116	0.7	190	1.3	19
5	100	0.6	204	1.4	28
6	83	0.5	219	1.5	35
7	66	0.4	234	1.6	40
8	50	0.3	248	1.7	51
9	33	0.2	262	1.8	69
10	17	0.1	277	1.9	87

Table S1. Linker amounts employed in the synthesis of mixed linker UiO-66-x

1.3 Synthesis of mixed 3-methlyadipate-terephthalate UiO-66

To investigate the generality of our method, we extended our study to another linear aliphatic acid, 3-methyladipate. Crystalline MOFs with Zr and 3-methyladipate have previously been reported,¹ and we chose this ligand to study if our method can be applied to other aliphatic acids, as well as to understand how the functional groups on the aliphatic ligand may affect the loading and properties on the obtained materials. The methods for the synthesis of the MOFs containing 3-methyladipate are the same as those for the MOFs containing adipate, as outlined below.

A 50 ml screw cap glass bottle was charged with terephthalic acid, 3-methyladipic acid (see Table S2 for amounts) and DMF (20 mL). The mixture was agitated by ultrasonication until the terephthalic acid and adipic acid were fully dissolved, then concentrated hydrochloric acid (35 wt%, 100 μ L) was added, followed by ZrCl₄ (233 mg, 1 mmol). The mixture was again agitated by ultrasonication until homogenous. The mixture was placed in a preheated oven at 130 °C for 24 hours. The white powder formed was collected by suction filtration, rinsed with DMF (about 5 mL) and then with ethanol (about 20 ml). The collected solids were then resuspended in water (20 mL) and heated to 80 °C for 2 hours to replace the DMF within the pores with water. The solids were then collected again by filtration, rinsed with water, and dried in an oven at 60 °C for 1 hour. Material composition in Table S2 was determined by digesting about 10 mg of sample in a solution of about 10 mg of K₃PO₄ in D₂O.

Experiment	Terephthalic acid used		3-Methyladipic acid used		Mole percentage of 3-methyladipate
					w.r.t terephthalate in MOF
	mg	mmol	mg	mmol	mol%
1	166	1	160	1	11
2	132	0.8	192	1.2	16
3	100	0.6	224	1.4	31

Table S2. Link	er amounts employed	in the synthesis	of mixed linker	UiO-66-3Me- <i>x</i>
----------------	---------------------	------------------	-----------------	----------------------

1.4 Thermolysis of adipic acid in UiO-66-x

Samples of mixed linker UiO-66-*x* (about 150 mg) were placed in a programmable furnace and the temperature was ramped from room temperature to 300 °C at 10 °C/min. The temperature was then held at 300 °C for 5 minutes, after which the samples were removed from the furnace and allowed to cool to room temperature under ambient conditions.

Table S3. Mole fraction of adipate (*x*) in UiO-66-*x*, measured by both liquid ¹H NMR (x_{NMR}) of digested samples and TGA (x_{TGA}), TGA mass loss of adipate and terephthalate as a weight % of ZrO₂ and corresponding ratio of terephthalate, adipate and defects in each sample as calculated by the method described by Shearer and coworkers.²

Experiment	$x_{\rm NMR}$	x_{TGA}	Weight loss of	Number of	Weight loss of	Number of	Number of
			terephthalate	terephthalates	adipate	adipates per Zr ₆	defects per Zr ₆
			(wt% ZrO ₂)	per Zr6 node	(wt% ZrO2)	node	node
1	0	0	110	5.5	0	0.0	0.5
2	5	6	108	5.4	6	0.3	0.3
3	14	16	96	4.8	16	0.9	0.3
4	19	20	90	4.5	20	1.1	0.4
5	28	27	75	3.7	25	1.4	0.8
6	35	31	69	3.4	27	1.5	1.0
7	40	36	60	3.0	30	1.7	1.3
8	51	46	45	2.2	34	1.9	1.8

Table S4. Mole fraction of 3-methyladipate (*x*) in UiO-66-3Me-*x*, measured by both liquid ¹H NMR (x_{NMR}) of digested samples and TGA (x_{TGA}), TGA mass loss of 3-methyladipate and terephthalate as a weight % of ZrO₂ and corresponding ratio of terephthalate, 3-methyladipate and defects in each sample as calculated as above.

Experiment	X _{NMR}	X _{TGA}	Weight loss of	Number of	Weight loss of	Number of 3-	Number of
			terephthalate	terephthalates	3-methyladipate	methyladipate	defects per Zr ₆
			(wt% ZrO ₂)	per Zr ₆ node	(wt% ZrO ₂)	per Zr ₆ node	node
1	11	11	100	5.0	12	0.6	0.4
2	16	19	89	4.4	20	1.0	0.5
3	31	31	68	3.4	30	1.6	1.0

2. Scanning electron microscopy

Figure S1: SEM images of UiO-66-0 (left) and UiO-66-0-th (right)

Figure S2: SEM images of UiO-66-5 (left) and UiO-66-5-th (right)

Figure S3: SEM images of UiO-66-14 (left) and UiO-66-14-th (right)

Figure S4: SEM images of UiO-66-19 (left) and UiO-66-19-th (right)

Figure S5: SEM images of UiO-66-28 (left) and UiO-66-28-th (right)

Figure S6: SEM images of UiO-66-35 (left) and UiO-66-35-th (right)

Figure S7: SEM images of UiO-66-40 (left) and UiO-66-40-th (right)

Figure S8: SEM images of UiO-66-51 (left) and UiO-66-51-th (right)

Figure S9: SEM images of UiO-66-69 (left) and UiO-66-87 (right)

3. Powder X-ray Diffraction

Figure S10: Powder X-ray diffraction patterns of UiO-66-*x* samples (before thermolysis)

Figure S11: Powder X-ray diffraction patterns of UiO-66-x-th samples (after thermolysis)

Figure S12: Comparison of XRD patterns of UiO-66-40, as synthesized, after thermolysis and after evacuation.

2θ (deg)			FWHM (deg)		Cryst	allite size (nm)
	UiO-66-40 UiO-66-40-th		UiO-66-40-	UiO-66-40	UiO-66-40-th	UiO-66-40-
			vac			vac
7.4	0.14	0.17	0.23	56	47	35
8.5	0.14	0.16	0.23	59	49	35
25.7	0.17	0.19	0.29	47	42	28
29.8	0.16	0.25	0.42	52	32	19
30.7	0.18	0.26	0.33	45	32	25
33.1	0.18	0.25	0.20	45	33	41
35.6	0.18	0.24	0.32	47	35	26
37.5	0.19	0.24	0.31	45	35	27
40.7	0.19	0.25	0.31	45	34	27

Table S5: List of selected peaks, full width at half maximum (FWHM) and crystallite size calculated by the Scherrer equation.

Figure S13: Powder X-ray diffraction patterns of mixed ligand MOFs containing 3-methyladipate and terephthalate before thermolysis, UiO-66-3Me-*x* (highlighted in orange) and after thermolysis, UiO-66-3Me-*x*-th (highlighted in purple).

4. NMR of Digested UiO-66 samples

Figure S14. ¹H NMR spectrum of UiO-66-0 digested in K₃PO₄ in D₂O.

Figure S15. ¹H NMR spectrum of UiO-66-0-th digested in K_3PO_4 in D_2O .

Figure S16. ¹H NMR spectrum of UiO-66-5 digested in K_3PO_4 in D_2O .

Figure S17. 1 H NMR spectrum of UiO-66-5-th digested in K₃PO₄ in D₂O.

Figure S18. ¹H NMR spectrum of UiO-66-14 digested in K_3PO_4 in D_2O .

Figure S19. ¹H NMR spectrum of UiO-66-14-th digested in K_3PO_4 in D_2O .

Figure S20. ¹H NMR spectrum of UiO-66-19 digested in K_3PO_4 in D_2O .

Figure S21. ¹H NMR spectrum of UiO-66-19-th digested in K_3PO_4 in D_2O .

Figure S22. ¹H NMR spectrum of UiO-66-28 digested in K_3PO_4 in D_2O .

Figure S23. ¹H NMR spectrum of UiO-66-28-th digested in K_3PO_4 in D_2O .

Figure S24. $^1\!H$ NMR spectrum of UiO-66-35 digested in K_3PO_4 in $D_2O.$

Figure S25. ¹H NMR spectrum of UiO-66-35-th digested in K_3PO_4 in D_2O .

Figure S26. ¹H NMR spectrum of UiO-66-40 digested in K_3PO_4 in D_2O .

Figure S27. ¹H NMR spectrum of UiO-66-40-th digested in K_3PO_4 in D_2O .

Figure S28. $^1\!H$ NMR spectrum of UiO-66-51 digested in K_3PO_4 in $D_2O.$

Figure S29. ¹H NMR spectrum of UiO-66-51-th digested in K_3PO_4 in D_2O .

Figure S30. $^1\!H$ NMR spectrum of UiO-66-69 digested in K_3PO_4 in $D_2O.$

Figure S31. ¹H NMR spectrum of UiO-66-87 digested in K_3PO_4 in D_2O .

Figure S32. ¹H NMR spectrum of UiO-66-3Me-11 digested in K₃PO₄ in D₂O.

Figure S33. ¹H NMR spectrum of UiO-66-3Me-16 digested in K_3PO_4 in D_2O .

Figure S34. ¹H NMR spectrum of UiO-66-3Me-31 digested in K_3PO_4 in D_2O .

5. Solid state NMR

Figure S35. Solid state ¹³C NMR spectrum of UiO-66-5.

Figure S36. Solid state ¹³C NMR spectrum UiO-66-5-th.

Figure S37. Solid state ¹³C NMR spectrum of UiO-66-14.

Figure S38. Solid state ¹³C NMR spectrum of UiO-66-14-th.

Figure S39. Solid state ¹³C NMR spectrum of UiO-66-19

Figure S40. Solid state ¹³C NMR spectrum of UiO-66-19-th

Figure S41. Solid state ¹³C NMR spectrum of UiO-66-28.

Figure S42. Solid state ¹³C NMR spectrum of UiO-66-28-th.

Figure S43. Solid state ¹³C NMR spectrum of UiO-66-35.

Figure S44. Solid state ¹³C NMR spectrum of UiO-66-35-th.

Figure S45. Solid state ¹³C NMR spectrum of UiO-66-40.

Figure S46. Solid state ¹³C NMR spectrum of UiO-66-40-th.

Figure S47. Solid state ¹³C NMR spectrum of UiO-66-51.

6. Thermogravimetric Analysis

Figure S48. Thermogravimetric plots of UiO-66-0

Figure S49. Thermogravimetric plots of UiO-66-5, before (orange) and after (purple) thermolysis.

Figure S50. Thermogravimetric plots of UiO-66-14, before (orange) and after (purple) thermolysis.

Figure S51. Thermogravimetric plots of UiO-66-19, before (orange) and after (purple) thermolysis.

Figure S52. Thermogravimetric plots of UiO-66-28, before (orange) and after (purple) thermolysis.

Figure S53. Thermogravimetric plots of UiO-66-35, before (orange) and after (purple) thermolysis.

Figure S54. Thermogravimetric plots of UiO-66-40, before (orange) and after (purple) thermolysis.

Figure S55. Thermogravimetric plots of UiO-66-51, before (orange) and after (purple) thermolysis.

Figure S56. Thermogravimetric plots of UiO-66-3Me-11, before (orange) and after (purple) thermolysis.

Figure S57. Thermogravimetric plots of UiO-66-3Me-16, before (orange) and after (purple) thermolysis.

Figure S58. Thermogravimetric plots of UiO-66-3Me-31, before (orange) and after (purple) thermolysis.

7. Gas absorption isotherms

Figure S59: N_2 sorption isotherms of UiO-66-*x* before (a) and after (b) thermolysis, and CO₂ sorption isotherms of UiO-66-*x* before (c) and after (d) thermolysis.

Figure S60: Nitrogen physisorption isotherms (left) and pore size distribution (right, NLDFT model) for UiO-66-5 and UiO-66-5-th.

Figure S61: Nitrogen physisorption isotherms (left) and pore size distribution (right, NLDFT model) for UiO-66-14 and UiO-66-14-th.

Figure S62: Nitrogen physisorption isotherms (left) and pore size distribution (right, NLDFT model) for UiO-66-19 and UiO-66-19-th.

Figure S63: Nitrogen physisorption isotherms (left) and pore size distribution (right, NLDFT model) for UiO⁶⁶-28 and UiO⁶⁶-28-th.

Figure S64: Nitrogen physisorption isotherms (left) and pore size distribution (right, NLDFT model) for UiO-66-35 and UiO-66-35-th.

Figure S65: Nitrogen physisorption isotherms (left) and pore size distribution (right, NLDFT model) for UiO-66-40 and UiO-66-40-th.

Figure S66: Nitrogen physisorption isotherms of UiO-66-5 (left) and UiO-66-14 (right) plotted on a logarithmic scale for pressure.

Figure S67: Nitrogen physisorption isotherms of UiO-66-19 (left) and UiO-66-28 (right) plotted on a logarithmic scale for pressure.

Figure S68: Nitrogen physisorption isotherms of UiO-66-35 (left) and UiO-66-40 (right) plotted on a logarithmic scale for pressure.

8. Computational Modeling

8.1 Computational details

All calculations were done using ORCA 5.0.3. The geometries of two Zr₆O₄(OH)₄ clusters bridged by one terephthalate were extracted from the crystal structure reported by Lillerud and coworkers.³ The remaining terephthalates surrounding the clusters were truncated to formates, and the geometries were optimized with the coordinates of the formate carbon atoms fixed to replicate the rigidity of the framework. The bridging terephthalate was replaced with an adipate and a conformer search of the adipate was first done using the GFN2-xTB method of Grimme and Bannwarth.⁴ The geometries of the conformers found were then reoptimized using the PBE functional⁵ with an atom pairwise dispersion correction (D4),⁶ together with the def2-SVP basis set⁷ and effective core potentials for zirconium.⁸ These calculations were performed using RI density fitting approximations with the def2/J Coulomb fitting basis set.⁹ Single-point electronic energies were recalculated with the PBE0-D4 functional¹⁰ and the def2-TZVPP basis set.

Three bridging conformers and one folded isomer was optimized, with the bridging conformers labelled herein as Zr_adipic_1 to Zr_adipic_3 and an isomer where the adipate is folded and does not bridge the two nodes, labelled as Zr_adipic_folded. The energies of the 4 structures and their structures are detailed in the following subsection.

8.2 Computed energies

Table S6: DFT-calculated gas phase electronic energies.

Structure	E_{el} (PBE-D4/def2-SVP)	$E_{el}\left(PBE0\text{-}D4/def2\text{-}TZVPP\right)$
	[kcal/mol]	[kcal/mol]
Zr_terephthalate	-4102012.657	-4106030.681
Zr_adipic_1	-4055766.481	-4059747.101
Zr_adipic_2	-4055756.669	-4059741.286
Zr_adipic_3	-4055761.003	-4059739.572
Zr_adipic_folded	-4055761.264	-4059740.043
Terephthalic acid	-381715.2667	-382145.58
Adipic acid	-335470.9947	-335862.2938

8.3 Optimized Structures

Figure S69: Optimized structure of Zr_adipic_1

Figure S70: Optimized structure of Zr_adipic_2

Figure S71: Optimized structure of Zr_adipic_3

Figure S72: Optimized structure of Zr_adipic_folded

Figure S73: Optimized structure of Zr_terephthalate

Table S6: xyz coordinates of all computed structures

adipic_a	acid			Н	-0.39356	-0.30963	-4.46101
С	-1.09982	-0.8548	-1.36681				
С	0.010502	0.009177	-0.76927	terep	ohthalic_acid		
С	0.001848	0.000764	0.76165	0	1.097909	-0.11809	-2.11017
Н	-0.09058	1.051118	-1.14184	0	-1.1638	-0.12297	-2.14036
Н	0.995541	-0.34339	-1.14343	С	-0.02925	-0.12493	-0.01824
С	1.112106	0.864828	1.359179	С	1.207319	-0.1237	0.660414
Н	0.102971	-1.04117	1.134229	Н	2.141349	-0.12049	0.082008
Н	-0.98321	0.353286	1.135791	С	-0.12029	-0.12201	-1.50994
С	1.201189	0.93542	2.872257	С	-1.23395	-0.12901	0.712959
Н	1.033027	1.916785	1.007729	Н	-2.18206	-0.12992	0.155647
Н	2.112432	0.529003	1.008593	0	-1.09861	-0.13669	4.880698
С	-1.18905	-0.9252	-2.87988	С	0.028543	-0.13062	2.788769
Н	-2.10012	-0.51896	-1.01617	С	1.233246	-0.12657	2.057565
Н	-1.02076	-1.90679	-1.0154	Н	2.181355	-0.12576	2.614877
0	-2.01669	-1.56936	-3.49441	С	0.119594	-0.13361	4.280466
0	-0.23287	-0.18333	-3.50019	0	1.163105	-0.1332	4.910877
0	0.246777	0.19128	3.492569	С	-1.20802	-0.13183	2.11011
0	2.030047	1.578025	3.486772	Н	-2.14205	-0.13499	2.688517
Н	0.408434	0.31635	4.453394	Н	0.911253	-0.11647	-3.07359

н	-0.91195	-0.13857	5.844118	0	0.981028	0.975461	6.707171
				Ō	0.398479	-2,40306	8,695506
7r	adinic folded			õ	-2 38258	0 40147	8 712051
<u> </u>	_3 80131	-0 6522	10 0/680	õ	2 778361	-2 7/133	7 579655
č	2 901212	0.0022	6 402279	Ő	0.82655	0 792672	12 61729
č	3.001313	0.052202	0.493370	0	-0.62000	0.702073	12.01730
Š	-3.80131	-0.6522	-8.17601	0	3.504298	1.530586	10.08392
C	3.801313	0.652202	-3.7231	0	1.524316	3.505799	7.360868
С	0.652202	3.801313	-8.17661	0	-0.73344	-0.74371	10.17044
С	-0.6522	-3.80131	-3.7231	0	-0.7486	-0.75132	7.217104
С	0.652202	3.801313	10.94689	0	-0.3032	1.775907	8.704433
С	0.652202	3.801313	-3.7231	0	1.773833	-0.31114	8.704527
С	3.801313	0.652202	-8,17661	0	-1.54007	-3.50486	10.09003
č	-3 80131	-0.6522	-3 7231	õ	-3 50326	-1 54306	7 340058
č	-0.6522	-3 80131	-8 17661	õ	2 760182	-2 74184	9 857215
č	2 1 4 0 1 1	2 1 / 01 1 1	5 04096	0	2.703102	2 162072	6 10001
č	-3.14911	2 1 4 9 1 1 1	-3.94900	0	-0.40037	0.200962	6 104200
Š	-3.14911	3.149111	8.720136	0	-3.16/22	0.399863	6.194399
C	-9.2E-09	1.36E-08	-10.4034	0	0.379196	-3.14204	11.26422
С	3.149111	-3.14911	-5.94985	0	3.175286	-0.41391	11.22229
С	3.149111	-3.14911	8.720136	0	0.790307	-0.82013	12.61932
С	0.652202	3.801313	6.493378	Н	3.914266	-3.96762	-5.94993
С	1.18E-09	-5.9E-11	13.17365	Н	-0.79914	-4.77392	-8.71323
С	-3.80131	-0.6522	6.493378	Н	-0.80726	-4.77205	-3.18462
С	-0.6522	-3.80131	10.94689	н	-4,77195	-0.80748	-3,18457
č	3 801313	0.652202	10 94689	H	4 750772	0 827124	-3 15451
7r	-1 76015	-1 78623	8 701087	н	0.827274	4 750005	-3 15/82
21 7r	1 24700	1 244274	10 47964		2 06772	2 01 41 41	5.13402
	-1.24799	1.244274	10.47604		-3.90772	3.914141	-5.94976
Zr	1.768289	1.764573	8.709065	н	0.836213	4.739663	-8.76063
Zr	1.24878	-1.25712	6.930127	н	4.739808	0.836083	-8.76043
Zr	-1.24866	1.251143	-7.71324	Н	0.026108	0.026102	-11.5232
Zr	-1.77118	-1.77119	-5.94941	Н	-4.77396	-0.79912	-8.71317
Zr	1.246631	-1.25161	-4.16686	Н	0.834165	4.74067	11.53004
Zr	1.767347	1.767448	-5.94171	Н	-3.96624	3.915835	8.722652
7r	-1.25149	1,246448	-4.16682	н	-4,77681	-0.79705	11,479
 7r	1 251019	-1 24852	-7 71353	H	0.028254	0.030218	14 29339
21 7r	-1 2/639	1 2/5337	6 032315	Ц	0.020204	4 750287	5 02/202
2	-1.24039	1.24000	10 47696		4 745677	4.730207	5.010200
	1.246206	-1.20099	10.47000		4.740077	0.034901	5.916399
0	-3.15344	0.3927	11.25099	н	-4.75728	-0.81874	5.931166
0	-3.47746	-1.55944	10.12386	н	-0.80615	-4.76671	11.49437
0	3.170627	-0.40637	6.197022	Н	3.915768	-3.96632	8.723533
0	3.505445	1.524814	7.360568	Н	4.738292	0.836981	11.53301
0	-3.48591	-1.55388	-7.34487	Н	-3.34846	0.576276	-5.9444
0	-3.15044	0.389343	-8.4846	Н	1.390462	1.39057	-8.71745
0	3,503783	1.527831	-4.58669	н	0.576641	-3.34827	-5.94477
õ	3 163967	-0 402	-3 42342	H	1 359471	1 358995	-3 12093
õ	-0 /1375	3 175866	-8 /536	н	-3 3/1	0.564742	8 707136
ŏ	1 521010	2 502247	7 21 47		1 222560	1 212705	5 960654
Š	1.551019	0.40700	-7.3147		0.522300	0.00057	0.000004
0	0.401121	-3.16732	-3.42375	н	0.530442	-3.36257	8.600792
Õ	-1.55695	-3.47769	-4.54728	н	1.387995	1.382485	11.48511
0	1.532362	3.502485	10.08627	С	-0.16091	-0.16156	-1.46584
0	-0.41295	3.173628	11.22308	0	0.709799	-0.89968	-2.01747
0	1.527451	3.503849	-4.58719	0	-0.90013	0.706362	-2.01964
0	0.989865	0.990009	-7.92729	С	-0.91726	-0.92908	3.032474
0	-0.40157	3.163609	-3.42275	С	-1.74947	-2.17611	3.438064
0	3.503318	1.530989	-7.31462	С	-0.92722	-3.4698	3.656623
õ	0.979685	0 979376	-3 93202	Ĥ	-2 51936	-2 34566	2 657591
õ	3 175648	-0 41355	-8 45379	н	-2 32431	-1 92303	4 355263
ŏ	2 20075	0.41000	5 0/521	C C	1 21002	4 26254	4.010526
Š	-2.39073	0.400010	-3.94521		-1.31092	-4.20334	4.919550
0	0.409022	-2.39058	-5.94549	н	0.149943	-3.22128	3.737581
0	-2.73579	2.778091	-4.81146	н	-1.0315	-4.12965	2.771124
0	0.788387	-0.82197	-9.84907	С	-0.82752	-3.56292	6.180503
Ο	2.770558	-2.74349	-7.08831	Н	-0.8155	-5.25823	4.89111
0	-3.16775	0.401488	-3.42454	н	-2.40136	-4.4405	4.999868
0	0.389244	-3.15033	-8.4846	С	-0.30965	-0.31965	4.281207
0	-0.73398	-0.73414	-7.41477	н	-1.57049	-0.17282	2.557594
0	-0.73746	-0.73813	-4.47486	Н	-0.11823	-1.21836	2.319144
Ó	1.77854	-0.30458	-5,93718	0	-0.91448	0.674214	4,805781
õ	-0 30448	1 778737	-5 93733	õ	0 711648	-0 89351	4 786888
õ	-2 /7720	-1 55742	-4 5/686	õ	0.75026	-3 13606	6 150650
2	-0.41128	2 40600	7 24470	0	1 60560	2 44662	7 164700
2	-1.55381	-3.40002	-1.34412	0	-1.02009	-3.41003	1.101/08
0	-2.74383	2.770399	-1.08842	н	-0.28/64	-0.28869	-0.35922
Û	-2./3824	2.777535	7.580846				
0	-2.74215	2.767907	9.857392	Zr_adip	IC_1		
0	2.777742	-2.73625	-4.81141	С	-3.80131	-0.6522	10.94689
0	-0.82208	0.788288	-9.84911	С	3.801313	0.652202	6.493378
0	0.987903	0.984402	10.69349	С	-3.80131	-0.6522	-8.17661

C	3.801313	0.652202	-3.7231	0	2.778633	-2.73796	7.581214
C	0.652202	3.801313	-8.1/661	0	-0.82347	0.787284	12.62069
C	-0.65222	-3.80131	-3.7231	0	3.503642	1.53305	10.0872
Č	-0.6522	-3 801313	6 493378	0	-0 73407	-0 73300	10 18982
C C	0.652202	3 801313	-3 7231	Ő	-0 73764	-0 73732	7 261418
č	3.801313	0.652202	-8.17661	õ	-0.30362	1.784747	8.718611
Č	-3.80131	-0.6522	-3.7231	Ō	1.78556	-0.30365	8.719404
C	-0.6522	-3.80131	-8.17661	Ō	-1.55541	-3.48496	10.11751
С	-3.14911	3.149111	-5.94986	0	-3.47959	-1.55679	7.319385
С	-3.14911	3.149111	8.720136	0	2.770331	-2.7444	9.858927
С	4.67E-09	-2.3E-08	-10.4034	0	-0.40529	3.167528	6.201277
С	3.149111	-3.14911	-5.94986	0	-3.16672	0.400658	6.19513
С	3.149111	-3.14911	8.720136	0	0.38855	-3.15101	11.2583
С	0.652202	3.801313	6.493378	0	3.175653	-0.41271	11.22689
С	1.33E-08	-3E-08	13.17365	0	0.788095	-0.82336	12.62159
C	-3.80131	-0.6522	6.493378	н	3.91278	-3.96922	-5.95048
C	-0.6522	-3.80131	10.94689	н	-0.79769	-4.77631	-8.70963
C	3.801313	0.652202	10.94689	Н	-0.81614	-4.76633	-3.17629
∠r Z-	-1.77293	-1.77244	8.722708	н	-4.76491	-0.81839	-3.17448
Zr Zr	-1.24858	1.251023	10.48791	н	4.747698	0.829103	-3.14958
∠i 7r	1.709013	1.709012	6.717204		2 06095	4.740109	-3.14762
Zi Zr	1.24019	-1.20100	0.90040		-3.90900	3.912127	-0.90109
Zi Zr	-1.24709	-1 77173	-5 05105	н Н	0.033943	0.83/222	-8.75804
Zi Zr	1 248087	-1 24929	-4 18317	н	0.02713	0.034222	-11 5233
Zr	1 770001	1 770676	-5.94451	Н	-4 77611	-0 79775	-8 71002
Zr	-1.25154	1.249776	-4.18231	H	0.834302	4,741684	11.52861
 Zr	1.250789	-1.24763	-7.71821	Н	-3.96658	3.915619	8,720792
Zr	-1.25114	1.245906	6.950312	Н	-4.77633	-0.79752	11.47998
Zr	1.250464	-1.24815	10.48844	H	0.027489	0.028146	14.2936
0	-3.15109	0.388746	11.25768	Н	0.830733	4.746247	5.917821
0	-3.4853	-1.55562	10.11763	Н	4.746681	0.831365	5.918633
0	3.167257	-0.40463	6.198758	Н	-4.77089	-0.80836	5.952915
0	3.506997	1.527898	7.358787	Н	-0.81106	-4.76966	5.95138
0	-3.48635	-1.55445	-7.34546	Н	-0.79753	-4.7766	11.47948
0	-3.15004	0.38769	-8.48864	Н	3.915243	-3.96696	8.720929
0	3.509253	1.525826	-4.59067	Н	4.742254	0.833913	11.52782
0	3.162927	-0.40158	-3.42382	Н	-3.34903	0.578903	-5.95029
0	-0.41313	3.175843	-8.45564	н	1.393036	1.391/9/	-8.72215
0	1.533234	3.50394	-7.31708	Н	0.5791	-3.34822	-5.94988
0	0.409509	-3.17779	-3.43515	н	1.336702	1.337734	-3.11///
0	-1.00009	-3.4/5/0	-4.34013		-3.30114	1 364600	0.721047 5.01579
0	-0 /1236	3 17524	11 22717	н Н	0.577606	-3 35062	8 722751
0	-1 55685	-3 47807	7 318648	H	1 391227	1 391471	11 49365
õ	0 403264	-3 17005	6 19741	0	0.680022	-0 91138	-2 07751
õ	1.526695	3 50861	-4 5901	õ	-0.91983	0.68847	-2 08313
õ	0.991109	0.990839	-7.93291	č	-0.27556	-0.26654	-1.53667
Ō	-0.40346	3.165374	-3.42746	Õ	-0.87536	0.722853	4.840734
0	3.503638	1.532896	-7.31679	C	-0.09736	-0.10319	4.261982
0	0.981883	0.982698	-3.95095	0	0.722011	-0.88144	4.849884
0	3.175901	-0.41306	-8.45616	С	-0.69694	-0.66114	-0.14552
0	-2.39175	0.409575	-5.95308	Н	-1.00732	0.271424	0.364791
0	0.409449	-2.39099	-5.95242	Н	-1.63615	-1.24898	-0.26205
0	-2.73398	2.783526	-4.81117	С	0.348523	-1.4469	0.644359
0	0.788047	-0.8233	-9.85114	Н	0.456213	-2.46372	0.215692
0	2.769667	-2.74498	-7.08867	Н	1.340267	-0.963	0.508255
0	-3.18175	0.412384	-3.4399	С	0.02837	-1.51714	2.13738
0	0.3881/2	-3.15045	-8.48818	Н	-0.91134	-2.08703	2.309956
0	-0.73331	-0.7335	-7.41929	H	0.83023	-2.06669	2.669882
0	-0.73979	-0.73948	-4.48574		-0.10588	-0.12211	2.754815
0	1.785515	-0.30215	-5.94/81	н	0.763977	0.501238	2.440996
0	-0.30173	1.703291	-0.94000	п	-1.01321	0.41420	2.420121
0	-3.47309 -1 55478	-1.00901	-4.04404 -7 34622	7r adin	ic 2		
õ	-2 74500	2 769128	-7 08863		-3 80131	-0 6522	10 94680
õ	-2.73897	2.777124	7.581348	č	3.801313	0.652202	6.493378
Ō	-2,74363	2.771255	9.859044	č	-3.80131	-0.6522	-8,17661
0	2.781905	-2.7343	-4.81122	Č	3.801313	0.652202	-3.7231
0	-0.82295	0.787934	-9.85062	C	0.652202	3.801313	-8.17661
0	0.990539	0.99069	10.7037	С	-0.6522	-3.80131	-3.7231
0	0.98491	0.984568	6.725966	С	0.652202	3.801313	10.94689
0	0.408567	-2.39328	8.722931	С	-0.6522	-3.80131	6.493378
0	-2.39386	0.408792	8.722146	С	0.652202	3.801313	-3.7231

C	3.801313	0.652202	-8.17661	0	-0.2986	1.791457	8.733624
C	-0.6522	-3.80131	-3.7231	0	-1 55413	-0.29679 -3.4873	10 11566
C C	-3 14911	3 149111	-5.94986	0	-3 46782	-1 56142	7 311149
č	-3.14911	3.149111	8.720136	õ	2.768633	-2.74699	9.859159
С	-1.1E-08	1.66E-08	-10.4034	0	-0.40072	3.160253	6.196905
С	3.149111	-3.14911	-5.94986	0	-3.20572	0.432546	6.242385
С	3.149111	-3.14911	8.720136	0	0.384388	-3.14853	11.26536
С	0.652202	3.801313	6.493378	0	3.176172	-0.41202	11.22934
C	-1.8E-08	5.57E-09	13.17365	0	0.789038	-0.82254	12.62343
C	-3.80131	-0.6522	6.493378	н	3.917743	-3.96469	-5.95059
C	-0.6522	-3.80131	10.94689	н	-0.79638	-4.77852	-8.70626
C Zr	-1 77376	-1 77380	8 728008	п	-0.00900	-4.70033	-3.17073
Zr Zr	-1 24782	1 250809	10 49749	Н	4 739683	0.836025	-3 13815
Zr	1.773944	1.773873	8,719666	H	0.835752	4,740059	-3.13867
Zr	1.254892	-1.25418	6.981457	H	-3.96428	3.918168	-5.9506
Zr	-1.24973	1.25016	-7.72571	н	0.832079	4.745261	-8.75346
Zr	-1.77368	-1.77372	-5.95768	н	4.744767	0.832494	-8.75414
Zr	1.248956	-1.25666	-4.20475	Н	0.027539	0.027454	-11.5235
Zr	1.769923	1.769852	-5.95919	Н	-4.7785	-0.79646	-8.70629
Zr	-1.25676	1.248946	-4.20431	Н	0.832236	4.744601	11.52469
Zr	1.250223	-1.24972	-7.72566	Н	-3.97472	3.906879	8.720728
Zr	-1.25413	1.254872	6.981129	н	-4.77886	-0.79563	11.47605
Zr	1.250856	-1.24///	10.49739	н	0.025569	0.025519	14.29381
0	-3.14864	0.384527	11.26524	н	0.830199	4.744315	5.914774
0	-3.48708	-1.55415	6 107446		4.743802	0.830699	5.914085
0	3.100009	-0.40103	7 36/20/	п	-4.7400	-0.03020	5 022381
0	-3 48454	-1 55636	-7 34927	н	-0.79563	-4 77886	11 47605
õ	-3.15192	0.387781	-8.49119	Н	3,90656	-3.97503	8,720741
õ	3.504624	1.534518	-4.58255	H	4.744162	0.832611	11.5253
Õ	3.176717	-0.41385	-3.44854	H	-3.35785	0.577417	-5.96362
0	-0.40952	3.174035	-8.46284	н	1.389225	1.390307	-8.73566
0	1.532595	3.505188	-7.31643	Н	0.577025	-3.35781	-5.96319
0	0.400728	-3.16521	-3.42825	н	1.417318	1.417483	-3.22604
0	-1.55536	-3.48074	-4.55145	Н	-3.3509	0.582399	8.727334
0	1.534421	3.503673	10.08909	н	1.323449	1.323728	5.893671
0	-0.41173	3.175864	11.22983	н	0.582153	-3.35083	8.727095
0	-1.56141	-3.468	7.311291	Н	1.393302	1.393891	11.50108
0	0.432629	-3.20586	0.242542	0	0.762233	-0.84141	-2.12846
0	0.00154/	0.001/75	-4.30230	0	-0.04101	0.702291	-2.12020
0	-0 41371	3 176595	-3 44813	0	-0.96425	0.634558	4 917481
õ	3.505427	1.532501	-7.31624	č	-0.42242	-0.4225	4.460431
Õ	0.992209	0.991959	-3.98949	Ō	0.6345	-0.9643	4.917648
0	3.174331	-0.40983	-8.46232	С	0.405956	0.405371	-0.16179
0	-2.40039	0.409368	-5.96266	Н	1.473106	0.190965	0.043651
0	0.409434	-2.40026	-5.96258	н	0.191871	1.472552	0.04383
0	-2.74433	2.773911	-4.81104	С	-0.48017	-0.48063	0.709504
0	0.78782	-0.8238	-9.85314	н	-1.54935	-0.28448	0.480871
0	2.773577	-2.74255	-7.08874	Н	-0.28445	-1.54984	0.48058
0	-3.16524	0.400791	-3.42817		-0.16628	-0.16723	2.148334
0	-0 734	-0.73/1	-0.49130	П	-0.34204	-0.34407	2.331033
0	-0.734	-0.72977	-4 52108	C.	-0.94204	-0.96329	3 177519
õ	1,791279	-0.30536	-5.96574	н	-2.04779	-0.75961	3.093098
õ	-0.30528	1.791094	-5.96561	H	-0.76003	-2.04809	3.093462
Õ	-3.48057	-1.55528	-4.55137				
0	-1.55631	-3.48478	-7.3491	Zr_adipi	c_3		
0	-2.74284	2.773213	-7.08872	С	-3.80131	-0.6522	10.94689
0	-2.72681	2.79188	7.582455	С	3.801313	0.652202	6.493378
0	-2.74717	2.768381	9.859141	C	-3.80131	-0.6522	-8.17661
0	2.774042	-2.74432	-4.811	C	3.801313	0.652202	-3.7231
0	-0.82363	0.788179	-9.85331		0.652202	3.801313	-8.1/661
0	0.99314	0.332008	10.7 1092 6 737077		-0.0222	-3.00131 3 801212	-3.7237 10 07690
õ	0.301213	-2 20271	8 737453	C.	-0 6522	-3 801313	6 493378
õ	-2 30383	0.412321	8.737401	C.	0.652202	3.801313	<u>-3</u> 7231
õ	2.792028	-2.7268	7.582414	č	3.801313	0.652202	-8.17661
0	-0.82242	0.789333	12.62356	C	-3.80131	-0.6522	-3.7231
0	3.503848	1.534364	10.08896	С	-0.6522	-3.80131	-8.17661
0	1.524252	3.512979	7.364092	С	-3.14911	3.149111	-5.94986
0	-0.73208	-0.7322	10.19616	C	-3.14911	3.149111	8.720136
0	-0.73723	-0.73746	7.282215	С	-1.1E-08	4.91E-08	-10.4034

C	3 149111	-3 14911	-5 94986	0	-3 15831	0 391926	6 17928
č	2 4 4 0 4 4 4	2 4 4 0 4 4	0.04000	õ	0.10001	2 45 202	11 25024
C	3.149111	-3.14911	6.720136	0	0.391031	-3.15203	11.25031
С	0.652202	3.801313	6.493378	0	3.175737	-0.41389	11.22283
С	-3.2E-08	2.05E-08	13.17365	0	0.789066	-0.82042	12.61781
Ċ	-3 80131	-0.6522	6 493378	Ĥ	3 910628	-3 07111	-5 95149
č	0.00101	0.0022	40.04000		0.010020	4 77007	0.30140
C	-0.6522	-3.60131	10.94669		-0.6001	-4.77307	-0.71452
С	3.801313	0.652202	10.94689	Н	-0.82201	-4.76377	-3.17372
Zr	-1.76999	-1.76979	8.719688	Н	-4.76993	-0.81212	-3.18161
7r	-1 24923	1 250524	10 4809	н	4 749812	0 829884	-3 15347
 7r	1 761604	1 761096	0 715000	 L	0.925026	1 752520	2 15025
	1.761604	1.701900	0.715220		0.825026	4.753526	-3.15635
∠r	1.237032	-1.24982	6.916199	н	-3.96898	3.912825	-5.94921
Zr	-1.24762	1.251336	-7.70801	Н	0.837227	4.737696	-8.76349
Zr	-1.76937	-1.77001	-5.94751	Н	4.738564	0.836691	-8.76231
Zr	1 250/08	-1 25207	-/ 16371	Ц	0.021751	0.022511	-11 523/
21	1.230490	-1.23207	-4.10371		0.021751	0.022511	-11.52.54
∠r	1.76768	1.767341	-5.93712	н	-4.77179	-0.8007	-8.71658
Zr	-1.24598	1.242988	-4.15336	Н	0.83658	4.739903	11.53051
Zr	1.251298	-1.2474	-7.71156	Н	-3.96258	3.919768	8.721407
Zr	-1.25632	1.24496	6.927102	Н	-4.77309	-0.8002	11.48481
Zr	1 251025	-1 2/065	10 /7605	Ц	0.02408	0.02313	1/ 20367
	2 4 5 2 4 7	0.204064	14 05054		0.02400	4 740070	F 022022
0	-3.13217	0.391004	11.20204	п	0.032094	4.749079	5.922932
0	-3.48506	-1.55432	10.11615	н	4.754937	0.825808	5.930594
0	3.166878	-0.40242	6.192038	Н	-4.77767	-0.8013	5.963753
0	3.498841	1.530935	7.351958	Н	-0.79529	-4.78069	5.967848
0	-3.48685	-1.55263	-7.34294	н	-0.80085	-4.77162	11,48719
õ	3 15027	0.200116	9 49196	 Ц	2 01996	2 06227	9 719524
0	-3.13037	0.390110	-0.40100		3.91000	-3.90337	0.7 10024
0	3.505963	1.52471	-4.59012	н	4.73779	0.837784	11.53347
0	3.164835	-0.40127	-3.4199	Н	-3.34375	0.576708	-5.93609
0	-0.41497	3.176553	-8.45063	Н	1.386855	1.39147	-8.71563
0	1 53075	3 50387	-7 31428	н	0 575853	-3 34545	-5 93965
õ	0 416417	2 10011	2 44255	 Ц	1 21992	1 21//62	2 0901
0	0.410417	-3.10011	-3.44233		1.31002	0.570550	-3.0001
0	-1.55997	-3.46979	-4.54183	н	-3.35185	0.572556	8./16/42
0	1.52871	3.504118	10.08233	Н	1.407634	1.413967	5.949658
0	-0.412	3.174291	11.22656	Н	0.573479	-3.34956	8.711224
0	-1.55333	-3.48198	7.321831	Н	1.387976	1.38489	11.48844
Ô	0 386419	-3 15114	6 172273	C	-0 3464	-0 38576	-1 52177
õ	1 522206	3 507159	4 50128	õ	0.677469	0.04797	2 02709
0	1.525290	0.001.100	-4.09120	0	0.077400	-0.94707	-2.03790
0	0.99015	0.991422	-7.92328	0	-0.91583	0.648547	-2.00786
0	-0.39627	3.158519	-3.41265	С	-0.96388	-1.02862	-0.28642
0	3.503866	1.530677	-7.31428	Н	-0.49558	-2.02272	-0.14796
0	0.979904	0.976124	-3.92731	Н	-2.03175	-1.18431	-0.54858
0	3 176081	-0 41424	-8 45241	C	-0.886	-0 20887	1 013638
õ	2 29612	0 409012	5 02000	ŭ	1 20774	0.20007	0.801516
0	-2.30012	0.400912	-3.93999		-1.20774	0.033707	0.001510
0	0.409981	-2.3875	-5.94548	н	-1.6271	-0.61529	1.734535
0	-2.73167	2.780084	-4.81196	0	0.750245	-0.81173	4.755991
0	0.790658	-0.81979	-9.84888	С	0.118048	0.16138	4.224966
0	2.768637	-2.744	-7.08789	0	-0.83447	0.7951	4.79214
Ō	-3 17380	0 405321	-3 42665	Č	0.620182	0 600337	2 887943
0	0.000400	0.400021	0.42000	Ŭ	0.020102	4.0053337	2.007.0404
0	0.366463	-3.14946	-0.40020		0.111799	1.00019	2.699101
0	-0.73372	-0.73372	-7.41331	Н	1.696615	0.912368	3.06725
0	-0.74101	-0.74438	-4.46194	С	0.507747	-0.20995	1.651976
0	1.778146	-0.30329	-5.93523	Н	0.811418	-1.24379	1.923552
0	-0.30395	1.774668	-5,92939	н	1.251321	0.134303	0.901399
Ō	-3 47615	-1 55659	-4 54655				
õ	1 55207	2 40724	7 24245	Zr toro	abtalato		
0	-1.55207	-3.40724	-7.34213			0.005.00	40 47007
0	-2.74535	2.769031	-7.08858	∠r	1.756731	2.22E-08	10.47687
0	-2.74601	2.770307	7.58063	Zr	-1.9E-08	-2.48439	8.720136
0	-2.7409	2.772585	9.858161	Zr	-1.75673	2.38E-08	6.963405
0	2,784697	-2,73229	-4.81111	7r	-2.9E-09	2,484393	8,720136
Õ	-0.81953	0 790075	-9 84765	Zr	-8 9E-09	2 484393	-5 94985
õ	0.000600	0.007052	10 60524	2r 7r		2.404000	5 04095
0	0.909090	0.907903	10.09554	21	-1.0E-00	-2.40439	-5.94965
0	0.982589	0.986427	6.712215	Zr	1.756731	-1.2E-08	-4.19312
0	0.407773	-2.39153	8.707939	Zr	-1.75673	-1.8E-08	-7.70659
0	-2.39366	0.40805	8.713206	Zr	-1.75673	7.95E-09	10.47687
0	2.769999	-2.7406	7.581733	Zr	1.756731	3.18E-08	6.963405
0	-0 82078	0 790035	12 61040	 7r	1 756731	-1 1E-08	-7 70650
õ	3 50/2070	1 500005	10 09261	21 7r	-1 75670	_1 7E 00	_/ 10210
č	0.004087	1.029000	7 040077	21	-1.70070		-+.13312
0	1.536377	3.494225	1.346277	0	1.340818	-3.56543	10.15049
0	-0.73543	-0.73573	10.18556	С	2.145907	-3.157	11.04055
0	-0.73352	-0.73104	7.251735	0	2.476803	-1.95844	11.2883
0	-0.30956	1.778819	8.706641	0	-1.4315	3.567485	7.381307
0	1 775502	-0.3102	8,700144	Ċ	-2 3211	3 159852	6 5756
	1 / / :) ')	0.0102	J., JU, 47	<u> </u>	2.0211	0.100002	0.0700
õ	-1 55202	3 19617	10 11527	\cap	-2 5705	1 06107	6 2/521/
Õ	-1.55398	-3.48617	10.11527	0	-2.5705	1.96127	6.245314
0	-1.55398 -3.47909	-3.48617 -1.55415	10.11527 7.320682	0	-2.5705 -2.5718	1.96127 1.961066	6.245314 -3.47513
0 0 0	-1.55398 -3.47909 2.772395	-3.48617 -1.55415 -2.74363	10.11527 7.320682 9.859165	0 0 C	-2.5705 -2.5718 -2.32448	1.96127 1.961066 3.159326	6.245314 -3.47513 -3.80821

0	2.476004	-1.95855	-8.51956	С	-2.32076	3.156081	-8.09612
С	2.143332	-3.15675	-8.2728	С	-2.14608	-3.15714	-8.26965
0	1.336038	-3.56447	-7.38435	0	2.572175	1.961731	6.246872
0	1.434774	3.563866	-7.28715	С	2.32386	3.159966	6.578945
С	2.323163	3.155744	-8.09413	0	1.434923	3.566977	7.385751
0	2.569716	1.957353	-8.42675	0	2.473726	-1.96021	6.145003
0	2.569662	1.957987	11.19547	С	2.140985	-3.15821	6.394019
С	2.320543	3.156619	10.86594	0	1.335526	-3.56462	7.284329
õ	1,430194	3.565024	10.06116	Õ	1,989999	-1.40592	8,718762
õ	-1.33618	-3 56397	-4 51525	õ	0.000357	1 410121	6 739046
č	-2 14307	-3 15827	-3 62581	õ	-1 98939	-1 40624	8 721728
õ	-2 47708	-1 96055	-3 37743	õ	-0.00087	1 404786	10 70981
õ	-2.47700	-1.90033	6 1/860	0	-3.00738	0.067634	7 582534
č	2.47733	2 15942	6 207504	0	1 126922	0.007034	12 62627
õ	1 22057	3 56505	7 288022	0	0.000621	1 04221	10 102007
0	-1.55957	-3.30303	7.200023	0	1 47140	-1.04221	0,70076
0	3.907139	0.000331	-7.06452	0	-1.47149	1.041055	0.722270
0	0.000644	1.404414	-7.93970	0	1.470969	1.041111	0.722239
	4.465879	0.126034	-5.94814	0	-0.00029	-1.0391	7.256049
0	3.907759	0.066952	-4.81113	0	-1.43546	3.563876	10.05659
0	1.13619	-0.07012	-9.8565	0	-1.33615	-3.56552	10.15406
0	1.989903	-1.40551	-5.95083	C	-2.32475	3.155618	10.86251
С	-0.00042	-0.12798	-10.4149	0	-2.57206	1.957123	11.19405
0	-1.13684	-0.06943	-9.8559	0	-1.1363	-0.06614	12.62729
0	2.476418	-1.96103	-3.37734	0	-3.90731	0.066223	9.855892
0	-0.0007	1.410103	-3.96756	0	-2.47366	-1.959	11.29097
С	2.144081	-3.15883	-3.62732	С	-2.14221	-3.15739	11.04347
0	1.339611	-3.56497	-4.51882	С	-4.46577	0.125364	8.719448
0	-1.9893	-1.40541	-5.94947	С	0.000384	-0.12553	13.18548
0	2.570521	1.961631	-3.47432	Н	2.786191	-1.96494	8.721795
0	-2.56911	1.957321	-8.42617	Н	-0.00155	1.96252	11.50694
0	-2.47625	-1.95855	-8.51808	Н	-2.78592	-1.96478	8.724709
0	1.13217	-0.06335	-2.08204	н	0.001942	1.965842	5.940533
Ō	-3.90636	0.068122	-7.08455	н	2,786718	-1.96365	-5.95365
Ō	-1.47055	1.041629	-5.95158	н	-0.00098	1.965996	-3.16918
õ	0.000572	-1.03866	-4.48529	Н	0.001445	1.962066	-8.73694
õ	0.000294	-1 04055	-7 42072	н	-2 78597	-1 96375	-5 95146
õ	1 473107	1 042837	-5.9512	н	2 95216	3 945289	11 34894
õ	-1 13309	-0.06279	-2 08209	н	2 954794	3 949536	6 096393
č	-0.00046	-0 16185	-0.00200	н	-2 95169	3 949082	6.092034
č	1 22/080	-0.10103	0.00301	н Н	-2.95735	3.949002	11 3///0
ц Ц	2 161019	0.17234	0.112070		5 580004	0.228500	9 717762
C	2.101010	-0.10937	1 40720		2 627045	2 04551	11 67200
č	-0.00042	-0.10130	-1.497.39		2.027943	-3.94331	14 20051
	-1.22400	-0.17432	0.007922		0.000631	-0.23001	14.30031 5 76170
	-2.10191	-0.17175	0.113415		2.021299	-3.94609	5.76179
0	-1.13239	-0.06239	4.852993	н	-2.62518	-3.9482	5./6528/
	-0.00025	-0.16091	2.779526	н	-2.6243	-3.94617	11.67564
C	1.224201	-0.17228	2.082586	н	-5.5808	0.230288	8.71955
н	2.161226	-0.16871	2.657088	н	2.623886	-3.94914	-2.99524
C	5.78E-05	-0.09946	4.267762	н	5.580918	0.230836	-5.94838
0	1.13276	-0.05855	4.852147	Н	2.953204	3.949295	-3.32356
С	-1.22479	-0.17392	2.082798	Н	2.95555	3.944327	-8.57627
Н	-2.16175	-0.17134	2.657426	Н	2.625418	-3.94573	-8.90472
0	-3.90771	0.066754	-4.81135	Н	-0.00084	-0.23246	-11.5299
С	-4.46574	0.124831	-5.94841	Н	-2.9525	3.944457	-8.57942
С	2.32158	3.159994	-3.80571	Н	-2.95594	3.948583	-3.3258
0	1.431545	3.567629	-4.61097	Н	-5.58093	0.227643	-5.94906
0	3.906809	0.069139	9.853765	н	-2.62347	-3.94862	-2.99425
С	4.465839	0.125036	8.717521	Н	-2.62932	-3.94593	-8.90089
0	3.907823	0.065558	7.580414				
0	-1.3403	-3.56516	-7.37999				
0	-1.43121	3.56461	-7.29069				

9. Infrared spectra

Figure S74: Infrared spectrum of UiO-66-0

Figure S75: Infrared spectrum of UiO-66-5

Figure S76: Infrared spectrum of UiO-66-14

Figure S77: Infrared spectrum of UiO-66-19

Figure S78: Infrared spectrum of UiO-66-28

Figure S79: Infrared spectrum of UiO-66-35

Figure S80: Infrared spectrum of UiO-66-40

Figure S81: Infrared spectrum of UiO-66-51

10. References

- 1 H. Reinsch, I. Stassen, B. Bueken, A. Lieb, R. Ameloot and D. de Vos, *CrystEngComm*, 2015, **17**, 331–337.
- 2 G. C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye and K. P. Lillerud, *Chem. Mater.*, 2016, 28, 3749–3761.
- 3 S. Øien, D. Wragg, H. Reinsch, S. Svelle, S. Bordiga, C. Lamberti and K. P. Lillerud, *Cryst. Growth Des*, 2014, **14**, 5370–5372.
- 4 C. Bannwarth, S. Ehlert and S. Grimme, J. Chem. Theory Comput., 2019, 15, 1652–1671.
- 5 Perdew, Burke and Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.
- 6 E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 34112.
- 7 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys*, 2005, **7**, 3297–3305.
- 8 D. Andrae, U. Huermann, M. Dolg, H. Stoll and H. Preu, *Theoret. Chim. Acta*, 1990, 77, 123–141.
- 9 F. Weigend, Phys. Chem. Chem. Phys, 2006, 8, 1057–1065.
- 10 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.