Supporting Information

Visible-light-promoted iron catalyzed C–H functionalization of 1,4-naphthoquinones via oxidative coupling with sulfoximines

Alpa Sharma,^{†,‡} Harpreet Kour,[†] Jaspreet Kour, ^{†,‡} Kamal,[§] Sanghapal D. Sawant*^{†,‡}

[†]Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001 (UT of J&K), India

[‡]Academy of Scientific and Innovative Research, Ghaziabad-201002 (Uttar Pradesh), India

[§] Indian Institute of Technology, Jammu-181121 (UT of J&K), India.

Content

1.	General experimental section	S 3		
2.	General experimental procedures,			
	Optimization Studies, Tables, Figures and Schemes	S4 - S7		
3.	Physical and Spectroscopic Characterization	S8 - S26		
	Data of Compounds			
4.	¹ H and ¹³ C { ¹ H} NMR and HRMS Spectra	S27 – S97		
5.	References	S98		
6.	X-ray crystallography data	S99		

General experimental section:

All reactions were performed in oven-dried glass apparatus. Solvents were distilled in the standard way, and commercial reagents were used without any purification. Analytical TLC was performed on 60 F254 plates, and visualized by exposure to ultraviolet light (UV-254 nm). Column chromatography was carried out with silica (60-120, 100-200 mesh). NMR spectra for characterization of compounds were recorded on Bruker Advance DPX FT-NMR 400 MHz instrument (¹H, 2D, ¹H-¹H-COSY and ¹H-¹³C HMBC, HMQC, and NOESY) at 400 MHz and (¹³C) at 100 MHz respectively. ¹⁹F NMR were recorded at 376 MHz. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ (δ H = 7.26 and δ C = 77.16 ppm) and DMSO-d6 ($\delta H = 2.50$ and $\delta C = 39.52$ ppm) as internal reference and coupling constants (J) are given in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-Resolution Mass Spectra (HRMS) were recorded using Waters XEVO-G2-XS-Q-TOF mass spectrometer. Analytical and semi-preparative HPLC (Thermofisher) purifications were carried out on reversed-phase columns connected to a binary pump and monitored using a photodiode array detector. The Microwave assisted reactions were performed on CHEM Discover Microwave system. Melting points were recorded on BUCHI melting point M-560.

General Procedure for the synthesis of naphthoquinone-sulfoximine derivatives

To a 10 mL vial equipped with a magnetic stir bar was added 1,4-naphthoquinone (0.32 mmol, 1 equiv), sulfoximine (0.47 mmol, 1.5 equiv), FeCl₃ (12 mol %) and 2 mL of EtOH. The reaction mixture was stirred at room temperature under a 60 W blue LED in air for 12 h. After the indicated reaction time, the reaction mixture was extracted with EtOAc twice. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The resulting crude residue was subjected to silica gel column-chromatography by using EtOAc/hexane to afford the desired coloured products.

General Procedure for the synthesis of benzoquinone-sulfoximine derivatives

To a solution of substituted benzoquinone (1 mmol, 1 equiv), FeCl₃ (0.12 mmol, 0.12 equiv) and sulfoximine (1.5 equiv) in ethanol. The reaction was carried out under microwave irradiation at 100 W at 100 °C for 10 min. The reaction mixture was cooled to room temperature and diluted with EtOAc. Then the whole mixture was transferred into separatory funnel and washed with H₂O. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The resulting crude residue was subjected to silica gel column-chromatography by using EtOAc/hexane to afford the desired coloured products.

General Procedure for the synthesis of sulfoximines

The sulfide (1 equiv), phenyliodine(III)diacetate (PIDA) (2.5 equiv) and ammonium carbamate (2.0 equiv) were added to a flask containing a stirrer bar. MeOH was used as solvent and the reaction was stirred at 25 °C for 3 h. After the indicated reaction time, solvent was removed under reduced pressure and purified by column chromatography which afforded the sulfoximine product.¹

Optimization of the Reaction Conditions

a) Table S1: Examination of Metal Catalysts other than Iron

$\begin{array}{c} & & \\$					
S No.	Metal Catalyst	Isolated			
		Yield (%) of 3a			
1	Pd(OAc) ₂ ,	52			
2	Co(OAc) ₂	34			
3	Mn(OAc) ₃	64			
4	Ni(C ₅ HF ₆ O ₂) ₂ .xH ₂ O	28			
5	Cu-Mn spinel	68			
6	Cu(OAc) _{2.} H ₂ O	67			

$+ HN \underset{2}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset$				
S No.	Metal	Solvent	Isolated	
	Catalyst		Yield (%) of 3a	
1	FeCl ₃	THF	trace	
2	FeCl ₃	DMSO	trace	
3	FeCl ₃	DMF	trace	
4	FeCl ₃	MeOH	75	
5	FeCl ₃	EtOH: Water (1:1)	36	
6	FeCl ₃	EtOH	78	
7	FeCl ₃	Water	0	
8	FeCl ₃	Acetone	trace	

b) Table S2: Examination of Different Solvents

Figure S1: HSQC and HMBC correlation of 5n, 8a and 8b

Table S3: Optimization studies for Microwave assisted addition of sulfoximine to benzoquinone

	R_1 R_3 R_2 R_4 + O_9	NH S 0 FeCl ₃ , E MW, 10 100 °C, 10	tOH, 0 W, 0 Min. 10(a	R ₃ N ^S S ^O R a-d)
Yields 50 - 78% 10a = 73%; 10b = 78%; 10c = 56%; 10d = 5			s 50 - 78% %; 10c = 56%; 10d = 50%	
Entry	Power (W)	Temperature (° C)	Time (Min)	Isolated yield of 10b (%)
1	50	100	10	57
2	80	100	10	63
3	100	100	10	78
4	100	100	15	77
5	120	100	10	75

Scheme S1: Sulfoximine addition on benzoquinones

Scheme S2: *m*-Anisidine and *p*-toluenesulfonamide addition on 1,4-naphthoquinones

Scheme S3: Late – stage functionalization of the sulfoximinated naphthoquinone product

General Procedure for the synthesis of 12

A mixture of **3k** (1 equiv), thiophenol (2 equiv) and DMSO (2 mL) was placed in a reaction vial with a magnetic stirrer bar. The tube was then placed into an oil bath and the reaction was conducted at 100 °C for 2 h. After the reaction was finished the resulting suspension was diluted with water (2.0 mL) and extracted with ethyl acetate (6.5 mL x 3). Then the organic layer was washed with brine and dried over Na₂SO₄ and the solvents were removed under reduced vacuum. The resultant crude residue was purified by column chromatography using EtOAc/hexane to give the desired product **12**.²

Scheme S4. Control Experiments

Physical and Spectroscopic Characterization Data of Compounds:

2-((METHYL(OXO)(PHENYL)-Λ⁶-SULFANYLIDENE)AMINO)NAPHTHALENE-1,4-DIONE (3a)

The compound **3a** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 3/7), 76.93 mg, 78% yield; yellow solid; m.p. = 158 - 160 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.99 (dd, J = 5.3, 3.7 Hz, 1H), 7.92 – 7.89 (m, 3H), 7.61 – 7.51 (m, 5H), 6.27 (s, 1H), 3.34 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 183.8, 181.8, 150.0, 136.8, 133.1, 132.8, 131.7, 131.4, 130.5, 129.0, 126.8, 125.7, 124.8, 118.4, 46.2.

HRMS (ESI) m/z: [M+H] ⁺ Calcd. For C₁₇H₁₄NO₃S: 312.0694; found: 312.0707.

2-(((4-BROMOPHENYL)(METHYL)(OXO)-A⁶-SULFANYLIDENE)AMINO) NAPHTHALENE-1,4-DIONE (3b)

The compound **3b** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 1/3), 98.50 mg, 80% yield; yellow solid; m.p. = 151 - 153 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.04 (d, *J* = 7.6 Hz, 1H), 7.99 (d, *J* = 7.2 Hz, 1H), 7.85 (d, *J* = 8.3 Hz, 2H), 7.73 (d, *J* = 8.6 Hz, 2H), 7.66 (dd, *J* = 9.2, 7.5 Hz, 2H), 6.37 (s, 1H), 3.40 (s, 3H)

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 185.0, 182.9, 150.8, 137.5, 134.1, 133.4, 133.0, 132.5, 131.5, 129.6, 129.4, 126.9, 126.0, 120.2, 47.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₃NO₃SBr: 389.9800; found: 389.9805

2-((ETHYL(OXO)(PHENYL)-Λ⁶-SULFANYLIDENE)AMINO)NAPHTHALENE-1,4-DIONE (3c)

The compound **3c** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 3/7), 85.59 mg, 83% yield; yellow solid; m.p. = 124 - 126 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 8.01 – 7.97 (m, 1H), 7.91 – 7.86 (m, 3H), 7.62 – 7.52 (m, 5H), 6.31 (s, 1H), 3.55 – 3.38 (m, 2H), 1.31 (t, *J* = 7.4 Hz, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 184.7, 182.9, 151.5, 135.6, 134.1, 133.7, 132.7, 132.4, 131.6, 129.9, 128.6, 126.6, 125.7, 119.2, 53.0, 7.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₈H₁₆NO₃S: 326.0851; found: 326.0852.

2-(((2-FLUOROPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO) NAPHTHALENE-1,4-DIONE (3d)

The compound **3d** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 3/7), 88.81 mg, 85% yield; yellow solid; m.p. = 133-135 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 8.06 – 8.01 (m, 1H), 7.98 – 7.95 (m, 1H), 7.92 – 7.88 (m, 1H), 7.62 – 7.57 (m, 3H), 7.37-7.32 (m, 1H), 7.19 – 7.13 (m, 1H), 6.31 – 6.30 (m, 1H), 3.48 (d, J = 2.8 Hz, 3H).

¹⁹F NMR (377 MHz, CDCl₃): δ -108.14 – -108.27 (m).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 185.1, 182.6, 160.1, 157.6, 150.8, 136.6 (d, J = 8.4 Hz), 134.0, 132.9, 132.5, 131.6 (d, J = 4.3 Hz), 127.0, 125.9 (d, J = 5.0 Hz) 125.3 (d, J = 3.7 Hz), 119.6, 117.8 (d, J = 23.2 Hz), 46.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₃NO₃FS: 330.0600; found: 330.0598.

2-((OXODIPHENYL-Λ⁶-SULFANYLIDENE)AMINO)NAPHTHALENE-1,4-DIONE (**3E**)

The compound **3e** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 3/7), 95.75 mg, 81% yield; yellow solid; m.p. = 172 - 174 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.04 – 8.01 (m, 5H), 7.94 – 7.91 (m, 1H), 7.62 – 7.58 (m, 2H), 7.51 – 7.44 (m, 6H), 6.45 (s, 1H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 185.0, 183.0, 151.0, 139.9, 133.9, 133.7, 132.9, 132.7, 131.9, 129.9, 129.7, 128.3, 127.7, 126.8, 126.0, 120.4.

HRMS (**ESI**) **m/z:** [M+H]⁺ Calcd. For C₂₂H₁₆NO₃S: 374.0851; found: 374.0859.

2-(((4-CHLOROPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO) NAPHTHALENE-1,4-DIONE (3f)

The compound **3f** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 3/7), 84.33 mg, 77% yield; yellow solid; m.p. = 158 - 160 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.99 – 7.96 (m, 1H), 7.93 – 7.90 (m, 1H), 7.87 – 7.84 (m, 2H), 7.62 – 7.55 (m, 2H), 7.51 – 7.48 (m, 2H), 6.30 (s, 1H), 3.33 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 184.9, 182.9, 150.8, 141.0, 136.8, 134.1, 132.9, 132.5, 131.5, 130.4, 129.3, 126.9, 125.9, 120.1, 47.4.

HRMS (**ESI**) **m/z:** [M+H]⁺ Calcd. For C₁₇H₁₄NO₃SCl: 346.0305; found: 346.0292.

2-((METHYL(3-NITROPHENYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO) NAPHTHALENE-1,4-DIONE (3g)

The compound **3g** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 3/7), 84.73 mg, 75% yield; Yellow solid; m.p. = 230 - 232 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.77 (t, *J* = 1.9 Hz, 1H), 8.46 – 8.43 (m, 1H), 8.28 – 8.25 (m, 1H), 7.94 – 7.90 (m, 2H), 7.77 (t, *J* = 8.0 Hz, 1H), 7.64 – 7.55 (m, 2H), 6.40 (s, 1H), 3.37 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 185.0, 182.4, 150.0, 148.8, 142.4, 134.2, 132.9, 132.8, 132.3, 131.2, 131.1, 128.1, 126.9, 125.9, 122.7, 121.2, 47.7.

HRMS (ESI) m/z: [M+H] ⁺ Calcd. For C₁₇H₁₃N₂O₅S: 357.0545; found: 357.0551.

2-(((3-METHOXYPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO) NAPHTHALENE-1,4-DIONE (3h)

The compound **3h** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 3/7), 79.04 mg, 73% yield; yellow solid; m.p. = 130 - 132 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.98 (m, 1H), 7.91 – 7.89 (m, 1H), 7.60 – 7.56 (m, 2H), 7.47 – 7.39 (m, 3H), 7.10 (d, *J* = 7.9 Hz, 1H), 6.27 (s, 1H), 3.79 (s, 3H), 3.34 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 184.9, 183.0, 160.7, 151.2, 139.1, 133.9, 132.9, 132.5, 131.6, 131.2, 126.9, 125.9, 120.5, 119.8, 119.6, 112.6, 55.9, 47.3. HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₈H₁₆NO₄S:342.0800; found: 342.0803.

2-((METHYL(OXO)(PYRIDIN-2-YL)-Λ⁶-SULFANYLIDENE)AMINO) NAPHTHALENE-1,4-DIONE (3i)

The compound **3i** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 3/7), 69.28 mg, 70% yield; orange coloured solid; m.p. = 133 - 134 °C. **¹H NMR (400 MHz, CDCl₃)** δ 8.64 (d, *J* = 4.7 Hz, 1H), 8.27 (dd, *J* = 7.9, 0.7 Hz, 1H), 7.99 - 7.90 (m, 3H), 7.61 - 7.47 (m, 3H), 6.45 (s, 1H), 3.42 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 185.3, 182.5, 157.6, 150.8, 150.4, 138.6, 134.1, 132.8, 132.6, 11.3, 127.4, 126.9, 125.9, 123.1, 120.4, 44.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₆H₁₃N₂O₃S: 313.0647; found: 313.0644.

2-((METHYL(OXO)(P-TOLYL)-Λ⁶-SULFANYLIDENE)AMINO)NAPHTHALENE-1,4-DIONE (3j)

The compound **3j** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 3/7), 79.43 mg, 77% yield; yellow solid; m.p. = 128 - 130 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 – 8.05 (m, 1H), 7.96 (dd, J = 7.2, 1.4 Hz, 1H), 7.86 – 7.83 (m, 2H), 7.66 – 7.62 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H), 6.32 (s, 1H), 3.40 (s, 3H), 2.44 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃) δ 184.8, 183.1, 151.3, 145.5, 134.5, 133.8, 132.8, 132.5, 131.7, 130.8, 128.0, 126.8, 125.8, 119.3, 47.3, 21.7.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₈H₁₆NO₃S: 326.0851; found: 326.0864.

2-(((3-BROMOPHENYL)(METHYL)(OXO)-Λ⁶-SULFANEYLIDENE)AMINO) NAPHTHALENE-1,4-DIONE (3k)

The compound **3k** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 3/7), 98.90 mg, 81% yield; yellow solid; m.p. = 175 - 177 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.12 (s, 1H), 8.05 – 8.01 (m, 1H), 7.99 – 7.95 (m, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.69 – 7.61 (m, 2H), 7.46 (t, J = 8.0 Hz, 1H), 6.37 (s, 1H), 3.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 185.0, 182.7, 150.6, 140.6, 137.2, 134.1, 133.0, 132.4, 131.5, 131.4, 130.6, 126.9, 126.2, 125.9, 124.1, 120.2, 47.5.

HRMS (**ESI**) **m/z:** [M+H]⁺ Calcd. For C₁₇H₁₃NO₃SBr: 389.9800; found: 389.9798.

2-((DIMETHYL(OXO)-Λ⁶-SULFANEYLIDENE)AMINO)NAPHTHALENE-1,4-DIONE (3l)

The compound **31** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 1/1), 56.96 mg, 72 % yield; yellow solid; m.p. = 169 - 171 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.07 (m, 2H), 7.74 – 7.65 (m, 2H), 6.53 (s, 1H), 3.40 (s, 6H).
¹³C NMR (101 MHz, CDCl₃): δ 185.2, 183.3, 151.5, 134.2, 132.9, 132.6, 131.6, 126.9, 126.0, 118.8, 44.1 (2C).

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₂H₁₂NO₃S: 250.0538; found: 250.0546.

2-((DIETHYL(OXO)-Λ⁶-SULFANEYLIDENE)AMINO)NAPHTHALENE-1,4-DIONE (3m)

The compound **3m** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 2/3), 58.96 mg, 67% yield; yellow solid; m.p. = 155 - 157 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.00 – 7.94 (m, 2H), 7.64 – 7.55 (m, 2H), 6.51 (s, 1H), 3.39 – 3.32 (m, 4H), 1.40 (t, J = 7.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 185.0, 183.2, 152.3, 133.9, 132.7, 132.6 131.6, 126.7, 125.8, 118.0, 47.4 (2C), 7.4 (2C).

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₄H₁₆NO₃S: 278.0851; found: 278.0833.

2-CHLORO-3-((METHYL(OXO)(PHENYL)- Λ⁶-SULFANYLIDENE)AMINO) NAPHTHALENE-1,4-DIONE (5a)

The compound **5a** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 2/8), 72.08 mg, 80% yield; Orange Coloured solid; m.p. = 209 - 211 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.11 (dd, *J* = 7.6, 1.3 Hz, 1H), 8.06 (dd, *J* = 8.1, 1.5 Hz, 2H), 7.94 (d, *J* = 1.3 Hz, 1H), 7.71 – 7.59 (m, 5H), 3.44 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃: δ 179.6, 178.4, 147.6, 141.7, 134.3, 133.2, 133.1, 132.0, 130.2, 129.7, 127.8, 127.2, 126.7, 126.7, 49.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₃NO₃SCl: 346.0305; found: 346.0313.

2-(((4-ACETYLPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO)-3-CHLORONAPHTHALENE-1,4-DIONE (5b)

The compound **5b** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 2/8), 74.77 mg, 74% yield; Yellow solid; m.p. = 225 - 227 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.09 (s, 3H), 8.05 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.86 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.63 (td, *J* = 7.6, 1.4 Hz, 1H), 7.54 (td, *J* = 7.6, 1.3 Hz, 1H), 3.38 (s, 3H), 2.60 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 196.6, 178.6, 177.3, 146.0, 144.6, 139.4, 133.4, 132.2, 130.9, 129.0, 128.4, 127.2, 126.2, 126.0, 125.8, 47.8, 26.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₉H₁₅NO₄SCl: 388.0410; found: 388.0417.

2-(((4-BROMOPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO)-3-CHLORONAPHTHALENE-1,4-DIONE (5c)

The compound **5c** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 2/8), 95.52 mg, 87% yield; Orange solid; m.p. = 236 - 238 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.12 (dd, J = 7.6, 1.0 Hz, 1H), 7.97 – 7.91 (m, 3H), 7.76 – 7.73 (m, 2H), 7.69(dd, J = 7.6, 1.4 Hz, 1H), 7.65 – 7.61 (m, 1H), 3.43 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 179.6, 178.4, 147.2, 140.8, 134.4, 133.2, 132.9, 131.9, 130.1, 128.4, 128.3, 128.1, 127.3, 126.8, 48.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₂NO₃SClBr: 423.9410; found: 423.9423.

2-CHLORO-3-((OXODIPHENYL-Λ⁶-SULFANYLIDENE)AMINO)NAPHTHALENE-1,4-DIONE (5d)

The compound **5d** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 2/8), 88.95 mg, 84% yield; Orange solid; m.p. = 202 - 204 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 8.15 – 8.09 (m, 5H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.70 – 7.66 (m, 1H), 7.62 – 7.57 (m, 1H), 7.55 – 7.49 (m, 6H).

¹³C {¹H} NMR (101 MHz, CDCl₃) δ 178.9, 178.5, 147.5, 142.6, 134.2, 133.1, 132.8, 132.0, 130.2, 129.5, 128.7, 127.5, 127.3, 126.7, 124.8.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₂₂H₁₅NO₃SCl: 408.0461; found: 408.0449.

2-CHLORO-3-(((2-FLUOROPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE) AMINO)NAPHTHALENE-1,4-DIONE (5e)

The compound **5e** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 2/8), 77.48 mg, 82% yield; Orange solid; m.p. = 221 - 222 °C. **¹H NMR (400 MHz, CDCl₃):** δ 8.21 - 8.20 (m, 1H), 8.06 - 8.03 (m, 1H), 7.89 - 7.87 (m, 1H), 7.62 - 7.54 (m, 3H), 7.37 - 7.33 (m, 1H), 7.19 - 7.14 (m, 1H), 3.53 (s, 3H). **¹⁹F NMR (377 MHz, CDCl₃):** δ -108.20 - -108.24 (m). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ 178.5, 177.5, 158.8, 156.3, 146.0, 134.5 (d, J = 8.3 Hz), 133.3, 132.1, 130.9, 129.6, 129.4 (d, J = 48.4 Hz) 128.2 (d, J = 14.1 Hz), 126.2, 125.7, 123.9 (d, J = 3.8 Hz), 116.4, (d, J = 22.2 Hz), 47.0 (d, J = 2.4 Hz).

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₂NO₃SClF: 364.0210; found: 364.0217.

2-CHLORO-3-(((4-CHLOROPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE) AMINO)NAPHTHALENE-1,4-DIONE (5f)

The compound **5f** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 2/8), 87.56 mg, 89% yield; Orange solid; m.p. = 240 - 242 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.12 (dd, J = 7.6, 1.0 Hz, 1H), 8.03 – 7.98 (m, 2H), 7.96 (dd, J = 7.6, 1.0 Hz, 1H), 7.70 (td, J = 7.5, 1.4 Hz, 1H), 7.63 (td, J = 7.5, 1.3 Hz, 1H), 7.59 – 7.56 (m, 2H), 3.44 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 179.6, 178.4, 147.2, 140.2, 139.9, 134.4, 133.2, 131.9, 130.1, 130.0, 128.2, 128.1, 127.3, 126.8, 49.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₂NO₃SCl₂: 379.9915; found: 379.9920.

2-CHLORO-3-((METHYL(3-NITROPHENYL)(OXO)-Λ⁶-SULFANYLIDENE) AMINO)NAPHTHALENE-1,4-DIONE (5g)

The compound **5g** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 3/7), 86.28 mg, 85% yield; Orange solid; m.p. = 211 - 212 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.94 (t, *J* = 1.9 Hz, 1H), 8.52 – 8.50 (m, 1H), 8.43 – 8.40 (m, 1H), 8.13 (dd, *J* = 7.6, 1.0 Hz, 1H), 7.94 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.85 (t, *J* = 8.0 Hz, 1H), 7.72 (td, *J* = 7.6, 1.4 Hz, 1H), 7.64 (td, *J* = 7.5, 1.3 Hz, 1H), 3.50(s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 179.7, 178.3, 148.7, 146.6, 144.5, 134.6, 133.4, 132.2, 131.8, 131.0, 130.0, 128.9, 127.6, 127.3, 126.9, 122.2, 48.7.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₂N₂O₅SCl: 391.0155; found: 391.0143.

2-(((4-BROMOPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO)-5,8-DIHYDROXYNAPHTHALENE-1,4-DIONE (5h)

The compound **5h** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 4/6), 60.93 mg, 55% yield; crimson red solid; m.p. = 197 - 199 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 12.76 (s, 1H), 12.30 (s, 1H), 7.85 – 7.83 (m, 2H), 7.77 – 7.75 (m, 2H), 7.19 (dd, J = 26.8, 9.4 Hz, 2H), 6.32 (s, 1H), 3.42 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 187.9, 185.4, 158.4, 156.8, 151.7, 136.6, 133.6, 130.5, 130.1, 129.5, 127.9, 119.9, 111.9, 111.4, 47.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₃NO₅SBr: 421.9698; found: 421.9694.

5,8-DIHYDROXY-2-(((3-METHOXYPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO)NAPHTHALENE-1,4-DIONE (5i)

The compound **5i** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 4/6), 57.07 mg, 58% yield; Dark red solid; m.p. = 169 - 171 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 12.77 (s, 1H), 12.36 (s, 1H), 7.52 – 7.47 (m, 3H), 7.22 – 7.14 (m, 3H), 6.30 (s, 1H), 3.88 (s, 3H), 3.43 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 187.9, 185.7, 160.7, 158.1, 156.5, 151.9, 138.2, 131.2, 130.2, 127.6, 120.6, 119.8, 119.3, 112.7, 112.0, 111.3, 55.9, 47.0.

HRMS (**ESI**) **m/z:** [M+H]⁺ Calcd. For C₁₈H₁₆NO₆S: 374.0698; found: 374.0708.

5,8-DIHYDROXY-2-((METHYL(OXO)(PHENYL)-Λ⁶-SULFANYLIDENE) AMINO)NAPHTHALENE-1,4-DIONE (5j)

The compound **5j** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 4/6), 46.19 mg, 51% yield; Dark red solid; m.p. = 160 - 162 °C. ¹H NMR (400 MHz, CDCl₃): δ 12.70 (s, 1H), 12.29 (s, 1H), 7.92 – 7.90 (m, 2H), 7.63 (d, J = 7.4 Hz, 1H), 7.58 – 7.54 (m, 2H), 7.15 - 7.07 (m, 2H), 6.22 (s, 1H), 3.36 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ 188.0, 185.8, 158.2, 156.6, 152.1, 149.2, 137.2, 134.6, 130.4, 130.3, 128.0, 127.8, 119.4, 112.1, 47.2.

HRMS (ESI) m/z: [M+H] ⁺ Calcd. For C₁₇H₁₄NO₅S: 344.0593; found: 344.0580.

2-(((4-CHLOROPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO)-6,7-DIMETHYLNAPHTHALENE-1,4-DIONE (5k)

The compound **5k** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 2/8), 53.27 mg, 53% yield; yellow solid; m.p. = 212 - 214 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 8.4 Hz, 2H), 7.78 (s, 1H), 7.72(s, 1H), 7.56 (d, J = 8.4 Hz, 2H), 6.30 (s, 1H), 3.39 (s, 3H), 2.35 (s, 6H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 185.4, 183.0, 150.7, 143.9, 142.5, 140.9, 137.1, 130.5, 130.4, 129.3, 129.1, 128.0, 127.0, 120.0, 47.5, 20.3, 20.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₉H₁₇NO₃SCl: 374.0618; found: 374.0625.

2-(((3-BROMOPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)METHYL)-6,7-DIMETHYLNAPHTHALENE-1,4-DIONE (51)

The compound **51** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 2/8), 57.30 mg, 51% yield; yellow solid; m.p. = 169 - 171 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.11 (t, *J* = 1.8 Hz, 1H), 7.90 – 7.88 (m, 1H), 7.77 – 7.76 (m, 2H), 7.72 (s, 1H), 7.45 (t, *J* = 8.0 Hz, 1H), 6.31 (s, 1H), 3.37 (s, 3H), 2.34 (s, 6H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 185.5, 182.8, 150.5, 144.0, 142.5, 140.9, 137.1, 131.5, 130.6, 130.5, 129.4, 128.0, 127.0, 126.2, 124.1, 120.2, 47.6, 20.3, 20.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₉H₁₇NO₃SBr: 418.0113; found: 418.0122.

2-(((3-BROMOPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO)-8-NITRONAPHTHALENE-1,4-DIONE (5m)

The compound **5m** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 4/6), 91.93 mg, 86% yield; Orange solid; m.p. = 142 - 145 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.19 – 8.16 (m, 1H), 8.11 (t, *J* = 1.9 Hz, 1H), 7.90 (dd, *J* = 7.9, 0.9 Hz, 1H), 7.82 – 7.77 (m, 2H), 7.63 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.51 – 7.46 (m, 1H), 6.36 (s, 1H), 3.42 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 182.2, 179.5, 151.2, 148.7, 139.3, 137.7, 134.7, 133.5, 131.7, 130.8, 128.5, 126.7, 126.5, 124.3, 122.9, 118.7, 47.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₂N₂O₅SBr: 434.9650; found: 434.9640.

2-((METHYL(OXO)(PHENYL)-Λ⁶-SULFANYLIDENE)AMINO)-8-NITRONAPHTHALENE-1,4-DIONE (5n)

The compound **5n** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 4/6), 72.98 mg, 83% yield; yellow solid; m.p. = 217 - 219 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 8.11 (dd, J = 7.8, 1.2 Hz, 1H), 7.93 – 7.90 (m, 2H), 7.72 (t, J = 7.9 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.58 – 7.53 (m, 3H), 6.28 (s, 1H), 3.35 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 182.1, 179.8, 151.7, 148.7, 137.0, 134.7, 134.5, 133.6, 130.3, 128.5, 128.1, 126.6, 122.9, 118.2, 46.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₃N₂O₅S: 357.0545; found: 357.0560.

2-(((4-CHLOROPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO)-8-NITRONAPHTHALENE-1,4-DIONE (50)

The compound **50** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 4/6), 77.04 mg, 80% yield; Yellow Solid; m.p. = 147 - 149 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 8.11 (dd, J = 7.8, 1.2 Hz, 1H), 7.88 – 7.84 (m, 2H), 7.73 (t, J = 7.9 Hz, 1H), 7.57 (dd, J = 7.9, 1.2 Hz, 1H), 7.53 – 7.50 (m, 2H), 6.28 (s, 1H), 3.36 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ 182.1, 179.6, 151.3, 148.6, 141.5, 135.6, 134.7, 133.5, 130.6, 129.5, 128.5, 126.6, 122.8, 118.5, 46.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₂N₂O₅SCl: 391.0155; found: 391.0145.

2-METHYL-3-((METHYL(OXO)(PHENYL)-Λ⁶-SULFANYLIDENE)AMINO) NAPHTHALENE-1,4-DIONE (7a)

The compound **7a** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 1/9), 45.48 mg, 48% yield; orange coloured solid; m.p. = 164 - 166 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.96 (d, *J* = 7.3 Hz, 1H), 7.92 (dd, *J* = 7.5, 1.1 Hz, 2H), 7.83 (d, *J* = 7.3 Hz, 1H), 7.51 (m, 5H), 3.28 (s, 3H), 2.19 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 186.4, 181.1, 147.4, 142.7, 133.8, 132.8, 132.7, 132.5, 130.9 (2C), 129.6, 126.7, 126.5, 126.0, 49.4, 11.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₈H₁₆NO₃S: 326.0851; found: 326.0843.

2-METHYL-3-((METHYL(3-NITROPHENYL)(OXO)-Λ⁶-SULFANYLIDENE) AMINO)NAPHTHALENE-1,4-DIONE (7b)

The compound **7b** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 1/9), 56.02 mg, 52% yield; yellow solid; m.p. = 210 - 212 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.76 (t, J = 1.9 Hz, 1H), 8.42 - 8.39 (m, 1H), 8.28 - 8.26 (m, 1H), 7.98 (dd, J = 7.7, 0.9 Hz, 1H), 7.80 (dd, J = 7.7, 0.9 Hz, 1H), 7.75 (t, J = 8.0 Hz, 1H), 7.58 (td, J = 7.5, 1.4 Hz, 1H), 7.49 (td, J = 7.5, 1.3 Hz, 1H), 3.33 (s, 3H), 2.21 (s, 3H). ¹³C NMR (101 MHz, CDCl3): δ 185.3, 181.2, 148.8, 146.3, 145.5, 134.1, 132.8, 132.7,

132.1, 131.9, 131.0, 130.6, 127.3, 126.7, 126.2, 121.9, 49.1, 12.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₈H₁₅N₂O₅S: 371.0702; found: 371.0691.

2-((ETHYL(OXO)(PHENYL)-Λ⁶-SULFANYLIDENE)AMINO)-3-METHYLNAPHTHALENE-1,4-DIONE (7c)

The compound **7c** was purified by column chromatography silica gel (Eluent: EtOAc/Hexane = 1/9), 54.36 mg, 55% yield; yellow solid; m.p. = 132-134 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.96 (dd, *J* = 7.7, 0.9 Hz, 1H), 7.85 – 7.78 (m, 3H), 7.56 – 7.44 (m, 5H), 3.33 (q, *J* = 7.3 Hz, 2H), 2.22 (s, 3H), 1.28 (t, *J* = 7.4 Hz, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 186.4, 181.0, 147.6, 140.6, 133.7, 132.8, 132.5, 130.9, 130.6, 129.5, 127.2, 126.7, 126.0, 55.2, 11.8, 8.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₉H₁₈NO₃S: 340.1007; found: 340.0990.

2-(((4-CHLOROPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO)-5-HYDROXYNAPHTHALENE-1,4-DIONE (8a)

The compound **8a** was purified by semipreparative RP-HPLC using a Purospher STAR C_{18} column, an acetonitrile-water (15% to 65%) gradient with a flow of 2.0 mL/min, and monitoring at 210 nm, 254 nm, 280 nm and 300 nm, 8.73 mg of compound in 10% yield was reported as yellow solid; m.p. = 169 - 171 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 11.84 (s, 1H), 7.86 – 7.83 (m, 2H), 7.54 – 7.43 (m, 5H), 7.11 (dd, J = 8.2, 1.3 Hz, 1H), 6.22 (s, 1H), 3.35 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 188.0, 184.0, 161.8, 150.5, 141.3, 136.8, 135.9, 132.4, 130.5, 129.4, 123.4, 120.2, 118.5, 114.7, 47.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₃NO₄SCl: 362.0254; found: 362.0260.

2-(((4-CHLOROPHENYL)(METHYL)(OXO)-Λ⁶-SULFANYLIDENE)AMINO)-8-HYDROXYNAPHTHALENE-1,4-DIONE (8b)

The compound **8b** was purified by semipreparative RP-HPLC using a Purospher STAR C_{18} column, an acetonitrile-water (15% to 65%) gradient with a flow of 2.0 mL/min, and monitoring at 210 nm, 254 nm, 280 nm and 300 nm, 78.56 mg, 90% yield; Orange coloured solid; m.p. = 178 - 180 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 12.28 (s, 1H), 7.85 (d, J = 8.6 Hz, 2H), 7.53 – 7.50 (m, 3H), 7.43 (t, J = 7.9 Hz, 1H), 7.15 – 7.12 (m, 1H), 6.23 (s, 1H), 3.33 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 190.5, 182.0, 160.8, 151.8, 141.0, 136.6, 134.9, 131.3, 130.4, 129.1, 124.7, 119.6, 119.1, 114.7, 47.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₃NO₄SCl: 362.0254; found: 362.0247.

5-HYDROXY-2-((METHYL(3-NITROPHENYL)(OXO)-Λ⁶-SULFANYLIDENE) AMINO)NAPHTHALENE-1,4-DIONE (8c)

The compound **8c** was purified by semipreparative RP-HPLC using a Purospher STAR C_{18} column, an acetonitrile-water (15% to 65%) gradient with a flow of 2.0 mL/min, and

monitoring at 210 nm, 254 nm, 280 nm and 300 nm, 7.20 mg, 8% yield; Orange Coloured solid; m.p. = 176 - 177 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 11.64 (s, 1H), 8.77 (t, J = 1.9 Hz, 1H), 8.49 – 8.46 (m, 1H), 8.28 – 8.25 (m, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.53 – 7.45 (m, 2H), 7.11(dd, J = 8.2, 1.4 Hz, 1H), 6.31 (s, 1H), 3.40 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 187.4, 184.1, 161.8, 149.9, 141.4, 137.1, 133.2, 132.5, 131.6, 128.7, 123.6, 123.2, 121.5, 118.8, 47.4

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₃N₂O₆S: 373.0494; found: 373.0503.

8-HYDROXY-2-((METHYL(3-NITROPHENYL)(OXO)-Λ⁶-SULFANYLIDENE) AMINO)NAPHTHALENE-1,4-DIONE (8d)

The compound **8d** was purified by semipreparative RP-HPLC using a Purospher STAR C_{18} column, an acetonitrile-water (15% to 65%) gradient with a flow of 2.0 mL/min, and monitoring at 210 nm, 254 nm, 280 nm and 300 nm, 77.28 mg, 92% yield; Orange Coloured solid; m.p. = 215 - 217 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 12.25 (s, 1H), 8.76 (t, *J* = 1.9 Hz, 1H), 8.47 – 8.44 (m, 1H), 8.27 – 8.24 (m, 1H), 7.78 (t, *J* = 8.0 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.14 (dd, *J* = 7.9, 1.6 Hz, 1H), 6.34 (s, 1H), 3.36 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 190.8, 181.8, 161.0, 151.2, 149.0, 142.4, 136.2, 132.8, 131.4, 131.1, 128.3, 125.1, 122.7, 120.0, 114.8, 47.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₃N₂O₆S: 373.0494; found: 373.0497.

3,5-DICHLORO-2-((METHYL(OXO)(PHENYL)-Λ⁶-SULFANYLIDENE)AMINO) CYCLOHEXA-2,5-DIENE-1,4-DIONE (10a)

The compound **10a** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 1/9), 67.88 mg, 73% yield; dark red solid; m.p. = 165 - 167 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.93 – 7.91 (m, 2H), 7.60 – 7.52 (m, 3H), 6.70 (s, 1H), 3.33 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 179.4, 173.1, 146.1, 145.1, 141.0, 133.6, 130.4, 129.8, 126.7, 123.9, 48.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₃H₁₀NO₃SCl₂: 329.9758; found: 329.9761.

3,5-DICHLORO-2-((METHYL(3-NITROPHENYL)(OXO)-Λ⁶-SULFANYLIDENE) AMINO)CYCLOHEXA-2,5-DIENE-1,4-DIONE (10b)

The compound **10b** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 1/9), 82.45 mg, 78% yield; dark red solid; m.p. = 170 - 173 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 8.79 (s, 1H), 8.47 – 8.42 (m, 1H), 8.31 – 8.26 (m, 1H), 7.78 (t, *J* = 8.0 Hz, 1H), 6.74 (d, *J* = 0.6 Hz, 1H), 3.40 (s, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃): δ 178.4, 171.9, 147.6, 144.2, 144.0, 142.8, 131.1, 130.1, 129.2, 126.8, 124.0, 121.1, 47.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₃H₉N₂O₅SCl₂: 374.9609; found: 374.9597.

2,5-DIMETHYL-3-((METHYL(OXO)(PHENYL)-Λ⁶-SULFANYLIDENE)AMINO) CYCLOHEXA-2,5-DIENE-1,4-DIONE (10c)

The compound **10c** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 1/9), 64.16 mg, 56% yield; orange coloured solid; m.p. = 133 - 135 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.91 – 7.86 (m, 2H), 7.56 – 7.48 (m, 3H), 6.36 (d, *J* = 1.6 Hz, 1H), 3.23 (s, 3H), 2.01 (s, 3H), 1.83 (d, *J* = 1.6 Hz, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ 187.2, 182.6, 155.0, 141.5, 141.3, 132.9, 131.7, 128.4, 126.8, 125.5, 48.0, 14.6, 9.9.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. For C₁₅H₁₅NO₃NaS: 312.0670; found: 312.0675.

2-ISOPROPYL-5-METHYL-3-((METHYL(OXO)(PHENYL)-Λ⁶-SULFANYLIDENE) AMINO)CYCLOHEXA-2,5-DIENE-1,4-DIONE (10d)

The compound **10d** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 1/9), 48.45 mg, 50% yield; dark orange coloured solid; m.p. = 128 - 130 °C. **¹H NMR (400 MHz, CDCl₃):** δ 7.87 (dd, J = 8.2, 1.5 Hz, 2H), 7.54 – 7.47 (m, 3H), 6.29 (d, J = 1.2 Hz, 1H), 3.24 (s, 3H), 2.01 (s, 3H), 0.96 (d, J = 6.9 Hz, 3H), 0.84 (d, J = 6.9 Hz, 3H). **¹³C {¹H} NMR (101 MHz, CDCl₃):** δ 187.6, 181.9, 150.6, 144.6, 141.2, 131.6, 129.8, 128.4, 126.2, 125.5, 47.9, 25.5, 20.3 (2C), 9.8.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₂₀NO₃S: 318.1164; found: 318.1149.

2-((3-METHOXYPHENYL)AMINO)NAPHTHALENE-1,4-DIONE (11a)

The compound **11a** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 1/9), 82.4 mg, 93% yield; red solid; m.p. = 163 - 165 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.05 – 8.02 (m, 2H), 7.71 – 7.66 (m, 1H), 7.61 – 7.57 (m, 1H), 7.49 (s, 1H), 7.24 (t, J = 8.1 Hz, 1H), 6.80 (dd, J = 7.9, 1.9 Hz, 1H), 6.73 (t, J = 2.2 Hz, 1H), 6.69 – 6.67 (m, 1H), 6.38 (s, 1H), 3.75 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 184.1, 182.2, 160.7, 144.7, 138.7, 135.1, 133.3, 132.5, 130.5, 130.4, 126.7, 126.3, 114.9, 111.1, 108.6, 103.9, 55.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₁₇H₁₄NO₃: 280.0974; found: 280.0990.

2-(((3-BROMOPHENYL)(METHYL)(OXO)-Λ⁶-SULFANEYLIDENE)AMINO)-3-(PHENYLTHIO)NAPHTHALENE-1,4-DIONE (12)

The compound **12** was purified by column chromatography on silica gel (Eluent: EtOAc/Hexane = 1/9), 43.52 mg, 68% yield; red solid; m.p. = 207 - 210 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (dd, J = 7.7, 0.9 Hz, 1H), 7.92 (dd, J = 7.6, 1.0 Hz, 1H), 7.82 (t, J = 1.8 Hz, 1H), 7.70 – 7.63 (m, 3H), 7.60 (td, J = 7.5, 1.3 Hz, 1H), 7.45 – 7.41 (m, 2H), 7.38 (t, J = 7.9 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.23 – 7.21 (m, 1H), 2.91 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 182.0, 179.3, 149.0, 143.6, 135.9, 135.5, 134.2, 133.0, 132.8, 130.9, 130.6, 130.3, 129.0, 128.8, 128.2, 127.1, 126.8, 126.4, 124.9, 123.4, 48.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd. For C₂₃H₁₇NO₃S₂Br: 497.9833; found: 497.9828.

^{1}H and ^{13}C { $^{1}\text{H}} NMR and HRMS Spectra$

HRMS of 3a

¹H NMR (400 MHz) of 3b in CDCl₃

¹³C {¹H} NMR (101 MHz) of 3b in CDCl₃

¹H NMR (400 MHz) of 3c in CDCl₃

HRMS of 3c

¹⁹F NMR (377 MHz) of 3d in CDCl₃

HRMS of 3d

¹H NMR (400 MHz) of 3e in CDCl₃

¹³C {¹H} NMR (101 MHz) of 3e in CDCl₃

¹H NMR (400 MHz) of 3f in CDCl₃

110 100 90 f1 (ppm) 130 120

HRMS of 3f

¹H NMR (400 MHz) of 3g in CDCl₃

¹³C {¹H} NMR (101 MHz) of 3g in CDCl₃

¹H NMR (400 MHz) of 3h in CDCl₃

HRMS of 3h

						¥ 1					
*	Elementa	I Compositio	on Repor	t		17					Page 1
Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3											
	Monoisotopia 24 formula(e Elements Us C: 0-18 H NQ-I 100222_08 6	c Mass, Even Eli) evaluated with ed: : 0-200 N: 0- (0.138) Cm (5:7)	ectron lons 1 results v 1 O: 0-4	vithin limi S: 0-'	ts (up to 1 QN	3 closest /I DIVISIOI Xevo G2-X	results for N, CSIR-IIIN S QTOF YF	r each mass) A JAMMU C2015		N [∞]] 0	10-Feb-2022 11:54:20 1: TOF MS ES+
	100		24	0.1500		364. 342.0803	0622 413.:	2663			1.86e+006
	% 081.6401	126.0142 186	5.0583	268.18	314		365.0892 391.1121	414.2697	522.0997 55	601.3491	661 5250
	1	00 150	200	250	300	350	400	450	500	550 600	650 m/z
	Minimum: Maximum:		2.0	3.0	-1.5 50.0						
	Mass 342.0803	Calc. Mass 342.0800	mDa 0.3	PPM 0.9	DBE 11.5	i-FIT 51.0	Norm n/a	Conf(%) n/a	Formula C18 H16 N	04 S	
							4				

¹H NMR (400 MHz) of 3i in CDCl₃

8.63 8.63 8.63 8.26 8.26 8.26 7.73 7.73 7.75 7.75 7.75 7.75 7.75 7.74 7.74 6.45

¹³C {¹H} NMR (101 MHz) of 3i in CDCl₃

HRMS of 3j

¹H NMR (400 MHz) of 3k in CDCl₃

¹³C {¹H} NMR (101 MHz) of 3k in CDCl₃

¹H NMR (400 MHz) of 3l in CDCl₃

HRMS of 31

¹H NMR (400 MHz) of 3m in CDCl₃

8.00 8.00 7.98 7.61 7.62 7.63 7.63 7.64 7.65 7.65 7.65 7.65 7.55 7.55 7.55 7.55	3.33 3.337 3.334 3.334 3.334 3.334 3.334 3.334 3.334	1.42 1.40
		\checkmark

¹³C {¹H} NMR (101 MHz) of 3m in CDCl₃

Calc. Mass 278.0851

Mass

278.0833

mDa

-1.8

PPM

-6.5

DBE

7.5

Norm

n/a

Conf(%) Formula

C14 H16 N O3 S

n/a

i-FIT

1012.9

S47

HRMS of 5a

¹H NMR (400 MHz) of 5b in CDCl₃

S48

¹³C {¹H} NMR (101 MHz) of 5b in CDCl₃

533.0410 0.7 1.8 12.5 38.1 n/a n/a C19 H15 N 04 S Cl

HRMS of 5c

¹H NMR (400 MHz) of 5d in CDCl₃

¹³C {¹H} NMR (101 MHz) of 5d in CDCl₃

¹⁹F NMR (377 MHz) of 5e in CDCl₃

¹³C {¹H} NMR (101 MHz) of 5e in CDCl₃

^{13}C {¹H} NMR (101 MHz) of 5f in CDCl₃

HRMS of 5f

¹H NMR (400 MHz) of 5g in CDCl₃

¹³C {¹H} NMR (101 MHz) of 5g in CDCl₃

¹H NMR (400 MHz) of 5h in CDCl₃

S58

HRMS of 5h

¹H NMR (400 MHz) of 5i in CDCl₃

¹³C {¹H} NMR (101 MHz) of 5i in CDCl₃

¹H NMR (400 MHz) of 5j in CDCl₃

S61

HRMS of 5j

¹H NMR (400 MHz) of 5k in CDCl₃

¹³C {¹H} NMR (101 MHz) of 5k in CDCl₃

¹H NMR (400 MHz) of 5l in CDCl₃

HRMS of 51

¹H NMR (400 MHz) of 5m in CDCl₃

¹³C {¹H} NMR (101 MHz) of 5m in CDCl₃

2D NMR (COSY) Spectra of 5n in CDCl₃

HMBC Spectra of 5n in CDCl₃

NOESY Spectra of 5n in CDCl₃

HRMS of 50

¹H NMR (400 MHz) of 7a in CDCl₃

¹³C {¹H} NMR (101 MHz) of 7a in CDCl₃

HRMS of 7a

¹H NMR (400 MHz) of 7b in CDCl₃

HRMS of 7b

5.0 4.5 f1 (ppm) 2.03H

3.0 2.5 2.0 1.5 1.0 0.5

4.0 3.5

3.014

-0.5

0.0

1.00-I 2.86-I 5.03-J

10.5 10.0

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5

¹³C {¹H} NMR (101 MHz) of 7c in CDCl₃

HRMS of 7c

¹H NMR (400 MHz) of 8a in CDCl₃

S77

2D NMR (COSY) Spectra of 8a in CDCl₃

HSQC Spectra of 8a in CDCl₃

HMBC Spectra of 8a in CDCl₃

NOESY Spectra of 8a in CDCl₃

HRMS of 8a

¹H NMR (400 MHz) of 8b in CDCl₃

2D NMR (COSY) Spectra of 8b in CDCl₃

HSQC Spectra of 8b in CDCl₃

NOESY Spectra of 8b in CDCl₃

¹H NMR (400 MHz) of 8c in CDCl₃

HRMS of 8c

¹H NMR (400 MHz) of 8d in CDCl₃

^{13}C {¹H} NMR (101 MHz) of 8d in CDCl₃

Number of isotope peaks used for i-FIT = 3

180422_02 8 (0.172) Cm (8)

Monoisotopic Mass, Even Electron Ions 46 formula(e) evaluated with 1 results within limits (up to 3 closest results for each mass) Elements Used: C: 0-17 H: 0-100 N: 0-2 O: 0-6 S: 0-1 NQ-6-HB

QMI DIVISION, CSIR-IIIM JAMMU Xevo G2-XS QTOF YFC2015

18-Apr-202 13:58:0 1: TOF MS ES+

HRMS of 10a

^{13}C {1H} NMR (101 MHz) of 10b in CDCl_3

HRMS of 10b

		i de la companya de l			Page 1
lemental Composition F	Report			0	
ingle Mass Analysis olerance = 50.0 PPM / DE lement prediction: Off umber of isotope peaks use	3E: min = -1.5, max = 5 ed for i-FIT = 3	0.0		CI U	
Ionoisotopic Mass, Even Elect 11 formula(e) evaluated with 1 Iements Used: 2: 0-13 H: 0-100 N: 0-2 3Q-CI-H	ron lons results within limits (up to O: 0-5 S: 0-1 Cl: 0 QMI Xi	-2 -2 DIVISION, CSIR-IIIM evo G2-XS QTOF YFC	or each mass) JAMMU 22015	Ö	04-May-2022 11:59:11 1: TOF MS ES+
)40522_02 6 (0.138)		338 3407			2.10e+006
¹⁰⁰]		371.00	91 441.3	2967	
125.9851 125.9851 167.0116 0 125 150 175 2	4 301. 247.9825 246.0071 255.9688 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1399 302.1433 00 325 350 3	374.9597 393.2963 413.2651 75 400 425	507.271 442.3000 485.2892 450 475 500	³ 536.1650 537.1655 542.1218 525 550 575 m/z
Minimum: Maximum:	-1.5 2.0 50.0 50.0				
Mass Calc. Mass 374.9597 374.9609	mDa PPM DBE -1.2 -3.2 9.5	i-FIT Nor 1040.7 n/a	m Conf(%) H n/a ('ormula 213 H9 N2 O5 S C	:12

HRMS of 10c

¹H NMR (400 MHz) of 10d in CDCl₃

¹³C {1H} NMR (101 MHz) of 10d in CDCl₃

HRMS of 10d

¹H NMR (400 MHz) of 11a in CDCl₃

^{13}C {1H} NMR (101 MHz) of 11a in CDCl_3

HRMS of 11a

¹H NMR (400 MHz) of 12 in CDCl₃

HRMS of 12

REFERENCE

- 1. A. Tota, M. Zenzola, S. J. Chawner, S. S. John-Campbell, C. Carlucci, G. Romanazzi, L. Degennaro, J. A. Bull and R. Luisi, *Chem comm*, 2016, **53 2**, 348-351.
- 2. X. Huang, J. Li, X. Li, J. Wang, Y. Peng and G. Song, *RSC Adv.*, 2019, **9**, 26419-26424.

X-ray Crystallography Data

Table S4. Crystal data and structure refinement for 5n

Compound 5n (CCDC 2194439)

Identification code	5n		
CCDC Number	2194439		
Empirical formula	C ₁₇ H ₁₂ N ₂ O ₅ S		
Formula weight	356.35		
Temperature/K	108.0		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a/Å	11.173(3)		
b/Å	5.3337(15)		
c/Å	25.755(7)		
$\alpha/^{\circ}$	90.00		
β/°	95.565(10)		
$\gamma/^{\circ}$	90.00		
Volume/Å ³	1527.6(7)		
Ζ	4		
$\rho_{calc}g/cm^3$	1.549		
μ/mm^{-1}	0.245		
F(000)	736.0		
Radiation	MoKa ($\lambda = 0.71073$)		
2Θ range for data collection/°	4.62 to 56.7		
Index ranges	$-14 \le h \le 14, -7 \le k \le 7, -34 \le 1 \le 34$		
Reflections collected	43547		
Independent reflections	3797 [$R_{int} = 0.0636$, $R_{sigma} = 0.0299$]		
Data/restraints/parameters	3797/0/227		
Goodness-of-fit on F ²	1.087		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0372, wR_2 = 0.0940$		
Final R indexes [all data]	$R_1 = 0.0412, wR_2 = 0.0966$		
Largest diff. peak/hole / e Å ⁻³	0.41/-0.42		