Supporting Information for

Biomimetic Control of Charge Transfer in MOFs by Solvent Coordination for Boosting Photocatalysis

Zejin Wang^{a, d}, Rui Ding^b, Jie Zhang^{a, d}, Linrong Chen^a, Ying Wang^{*a, d}, Jianguo Liu^c and Zhigang Zou^{b, d}

^aSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210033, P.R. China.

^bCollege of Engineering and Applied Sciences, Nanjing University, Nanjing 210033, P.R. China.

^cSchool of Energy& Power and Mechanical Engineering, North China Electric Power University, Beijing 102208, P.R. China.

^dEco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing, 210093, P. R. China.

1. Experimental Section

1.1 Materials:

All chemicals were used without further purification. Perylene-3,4,9,10-tetracarboxylic dianhydride (98%, Shanghai Aladdin Biochemical Technology Co., Ltd), Nickel(II) acetate tetrahydrate (AR, Sinopharm Chemical Reagent Co., Ltd), Sodium hydroxide (AR, Sinopharm Chemical Reagent Co., Ltd). Acetonitrile, Methanol, N,N-Dimethylformamide, Dimethyl surfoxide, Ethanol (AR, all solvents are from Sinopharm Chemical Reagent Co., Ltd).

1.2 Preparation of Na-PTCA

First, PTCDA needs to be deprotonated by NaOH. PTCDA (1.256 g) and NaOH (0.512 g) are dispersed in deionized water (200 mL). After it is completely hydrolyzed to form a transparent solution (stirring at 70°C, at least 3h), fluorescent-green Na-PTCA aqueous solution is obtained¹.

1.3 Synthesis of [Ni(PTCA)·sol]-MOF

Nickel acetate (0.199 g) is dissolved in deionized water (25 mL). The obtained nickel acetate solution and Na-PTCA aqueous solution (25 mL) are fully mixed under vigorous stirring. Then, the mixed solution is transferred to a polytetrafluoroethylene lined reactor. The reactor is reacted at 120 °C for 24 h. After natural cooling to room temperature and washing with deionized water and ethanol, the final product (Actual yield= 96.8%) is dried in a vacuum oven at 70 °C for 10 h. [Ni(PTCA)·sol]-MOFs are synthesized by changing the dissolved solvent of Ni(CH₃COO)₂.

2. Characterization

2.1 Instrument parameters

XRD: Powder X-ray diffraction (PXRD) measurement was tested by Brucker D8 ADVANCE with an operating voltage 40 kV and operating current of 40 mA (Cu Karadiation, λ =1.54056 Å).

FT-IR: Fourier transform infrared (FT-IR) spectra was measured by Nicolet NEXUS870 spectrometer using KBr pellets supporter at room temperature.

PL: Photoluminescence emission spectra was obtained on Shimadzu RF-5301PC fluorometer spectrometer in the aqueous solution and the excitation wavelength was 380 nm.

XPS: X-ray photoelectron spectroscopy (XPS) measurement was performed on PHI 5000 Versa Probe X-ray photoelectron spectrometer (a monochromatic Al Ka X-ray radiation).

LRS: Raman spectra was taken on Renishanple H33148 Laser Confocal Raman spectrometer.

BET: The Brunauer-Emmett-Teller (BET) surface area experiment was measured on Micromeritics ASAP-2020 adsorption analyzer under N_2 -physisorption at 77 K. In order to study the effect of solvent, the pretreatment temperature is kept at 90 °C.

ICP-OES: Inductively coupled plasma-optical emission spectrometry (ICP-OES) measurement was carried out on Avio500 spectrometer.

TGA: Thermogravimetric analysis (TGA) experiment was measured by NETZSCH STA 449C under N_2 atmosphere with heating rate of 20 °C/min .

EPR: Electron paramagnetic resonance (EPR) measurement was carried out on Bruker BioSpin EMX PLUS (PPMS). In-situ EPR test is realized by taking a small amount of photocatalytic system solution and testing under light conditions.

UV-Vis: UV-vis spectra was collected by Shimadzu UV-3600 spectrometer.

UV-vis DRS :UV-vis diffused reflectance spectroscopy (DRS) was acquired through Shimadzu UV-3600 spectrometer with BaSO₄ as reflectance.

TRF: Time-resolved fluorescence (TRF) decay spectra was obtained by Edinburgh FLS920.

SEM: Scanning electron microscope (SEM) was measured by Hitachi S-4800 FESEM system.

2.2 Electrochemical measurements

The photo-electrochemical measurement was tested with a standard three-electrode system by using Chenhua CHI 660D electrochemical analyzer². It consisted of ITO glass coated by samples as working electrode, the saturated calomel reference electrode (SCE) (saturated KCl) and Pt counter electrode. The 300 W xenon lamp was used as light source and 0.2 M Na₂SO₄ aqueous solution as electrolyte. To prepare the working electrode, 5 mg sample and 10 μ L 0.25% Nafion were dispersed in 1 ml isopropanol. At last, the obtained dispersion solution was coaled on FTO glass surface and dried under infrared lamp. The electrochemical impedance spectra (EIS) were measured at the open circuit voltage in 0.1 M ascorbic acid aqueous solution.

2.3 Photocatalytic water oxidation reaction

The photocatalytic reactions were carried out in a quartz reactor (300 mL) and tested in Automatic on-line Photocatalytic analysis system (300 W, xenon lamp, Simulated sunlight). The specific steps were taken as follows: photocatalyst (30 mg) with 100 uL H₂PtCl₆ solution (1mg/100 mL) was added into 100 mL ascorbic acid aqueous solution (0.1 mol/L). Before the visible light irradiation, the system was bubbled with argon and evacuation several times. The amount of H₂ evolved was analyzed by gas chromatography (GC-14C, Shimadzu, TCD, Ar as the carrier).

3 Methods and Models

The first principle simulations were performed using the Vienna ab initio simulation package (VASP)³. The generalized gradient approximation (GGA) was chosen to describe the exchange-correlation interaction with the revised Perdew-Burke-Ernzerhof (PBE) functional⁴. The energy cutoff was set to 400 eV. $2 \times 2 \times 2$ was chosen to be the gamma k-point mesh. The slab for DFT simulation contains 4 Ni atoms, 16 O atoms, 18 H atoms, and 48 C atoms, namely [Ni(PTCA) sol]-MOF. As for the geometry optimization, the corresponding threshold was set to $2*10^{-2}$ eV/Å. And for the self-consistent field (SCF) energy convergence, it was 10^{-4} eV. As the descriptor of HER activity, ΔG_{H}^{*} was defined as $\Delta G_{H}^{*} = \Delta E_{H}^{*} + \Delta E_{ZPE} - T\Delta S_{H}$. ΔE_{H}^{*} is the hydrogen chemisorption energy expressed by the following equation: $\Delta E_{H}^{*} = E_{(Slab-H^{*})} - E_{(Slab-H^{*})}$ $E_{(Slab)} - \frac{1}{2}E_{H2}$ [30]. $E_{(Slab-H^*)}$ and $E_{(Slab)}$ are the computed energies of the active sites with and without adsorbed H*, respectively. ΔE_{ZPE} is the zero-point energy difference between the adsorbed and gas phases. $\Delta S_{\rm H}$ is the entropy change between the adsorbed H and gas-phase H₂ at 1 atm and T is 298.15 K. The thermal correction to Gibbs free energy is the sum of them and could be obtained via vibrational frequency calculations. VASPKIT was used [31] to directly read this value from OUTCAR file. As for computing the density of states, the SCF energy convergence is changed to 10^{-5} eV along with the previously optimized geometric structure.

Scheme 1. Optimized structures of (a) [Ni(PTCA)·H₂O]-MOF and (b) [Ni(PTCA)·EtOH]-MOF.

Atom	Wycoff	x/a	y/b	z/c	Occupancy
Ni1	4g	0.25648	0.11097	0.00000	0.500
O1	8i	0.39603	0.19559	0.09193	1.000
O2	8i	0.35013	0.51250	0.12019	1.000
O3	4g	0.13947	0.35570	0.00000	0.500
C1	8i	0.37729	0.33492	0.11859	1.000
C2	8i	0.42185	0.34699	0.24089	1.000
C3	8i	0.36581	0.19952	0.30222	1.000
C4	8i	0.36470	0.20504	0.40380	1.000
C5	8i	0.43949	0.32450	0.43887	1.000
C6	4e	0.50000	0.50000	0.40642	0.500
C7	4e	0.50000	0.50000	0.29310	0.500

Table S1. Structural parameters. Atomic coordinates for [Ni(PTCA)·H2O]-MOF in the Pbamspace group. (R_{wp} = 9.97 %, R_p =11.0%)

Fig S1. Comparison of [Ni(PTCA)·sol]-MOF: SEM of [Ni(PTCA)·EtOH]-MOF (a), [Ni(PTCA)·MeCN]-MOF (b), [Ni(PTCA)·DMF]-MOF (c) and [Ni(PTCA)·DMSO]-MOF (d).

Fig S2. XPS O 1s of [Ni(PTCA)·sol]-MOF.

Fig S3. TGA curvses of [Ni(PTCA)·sol]-MOF.

Fig S4 XRD pattern of [Ni(PTCA)·EtOH]-MOFs after removal solvent at 180°C.

Fig S5. Nitrogen adsorption desorption isotheme of [Ni(PTCA)·sol]-MOFs.

Sample	Surface Area (m²/g) ^a	Pore Volume (m ³ /g) ^b	Pore Size (Å) ^b	
Ni(PTCA)·H ₂ O	166.6995	0.183627	44.0619	
Ni(PTCA)·EtOH	109.4062	0.721355	263.7345	
Ni(PTCA)·DMF	170.8292	1.001524	234.5088	
Ni(PTCA)·DMSO	228.5810	0.758011	132.6463	
Ni(PTCA)·MeCN	17.2377	0.053474	124.0868	

Table S2. Nitrogen adsorption desorption isotherm results

^a Obtained from BET method.

 $^{\rm b}$ Total pore volume taken from the N_2 adsorption volume at a relative pressure(P/P_0) of 0.99

Fig S6. Bandgap and Mott Schottky plots of [Ni(PTCA)·sol]-MOFs.

Fig S7. Energy band structure diagrammatic sketch of [Ni(PTCA)·sol]-MOFs.

Fig S8. Raman spectrum of [Ni(PTCA)·sol]-MOFs

Sample	<i>T</i> ₁ (ns)	Rel.%	<i>τ</i> ₂ (ns)	Rel.%	X²	< <i>t</i> > (ns)
Ni(PTCA)·H₂O	0.33	12.94	4.66	87.06	1.21	3.088
Ni(PTCA)·EtOH	1.62	1.86	4.81	98.14	1.070	9.175
Ni(PTCA)·MeCN	1.31	0.90	4.73	99.10	1.074	9.067
Ni(PTCA)·DMF	4.18	69.54	5.88	30.46	1.014	7.379
Ni(PTCA)·DMSO	2.12	8.44	4.82	91.56	1.131	7.535

Table S3. Kinetic analysis of emission decay

Table S4. The physicochemical property of solvents used in this work^a

Solvent	EtOH	MeCN	DMF	MeOH	DMSO	H₂O
Polarity	4.3	6.2	6.6	6.6	7.2	10.2
Dielectric Constant (E)	24.3	36.6	38.3	33	47.2	80
Dipole Moment (D)	1.69	3.92	3.82	1.70	3.96	1.85

^a John A.Dean. Lange's handbook of chemistry.13thed. BEIJING WORLD PUBLISHING CORPORATION Publishing.1985, 10-98.

Fig S9. Comparison of photocatalytic activities of [Ni(PTCA)·EtOH]-MOF and [Ni(PTCA)·MeOH]-MOF.

Fig S10. TDOS spectrum of [Ni(PTCA)·EtOH]-MOF and [Ni(PTCA)·H²O]-MOF.

Fig S11. Ni-PDOS spectrum of [Ni(PTCA)·EtOH]-MOF and [Ni(PTCA)·H²O]-MOF.

Supplementary Reference

1. Y. Liu, X. Zhao, C. Fang, Z. Ye, Y. B. He, D. Lei, J. Yang, Y. Zhang, Y. Li, Q. Liu, Y. Huang, R. Zeng, L. Kang, J. Liu, Y. H. Huang, *Chem* **2018**, *4*, 2463-2478.

- 2. X. Hao, Y. Hu, Z. Cui, J. Zhou, Y. Wang, Z. Zou, Appl Catal B-Environ 2019, 244, 694-703.
- 3. V. Wang, N. Xu, J. C. Liu, G. Tang, W. T. Geng, Comput Phys Commun 2021, 267, 108033.
- 4. D. Gao, X. Wu, P. Wang, H. Yu, B. Zhu, J. Fan, J. Yu, Chem Eng J 2021, 408, 127230.