Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Synthesis and characterization of a bimetallic americium(III) pyrithionate coordination complex

Zachary K. Huffman,^a Joseph M. Sperling,^a Cory J. Windorff,^{a,b} Brian N. Long,^a Lucas

Cordova,^a Harry Ramanantoanina,^c Cristian Celis-Barros,*^a Thomas E. Albrecht-Schönzart*^a

^a Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida

32306, United States

^b Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, PO Box 3001, Las Cruces,

New Mexico 88003, United States

^c Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, D-76021 Karlsruhe,

Germany

Electronic Supplementary Information

Tables of Contents

- Methods and general synthesis of 1-Am, 1-Ln, and 2-Ln, Pages 3-7
- Supplementary Results and Discussion
 - Spectroscopy of 1-Ln and 2-Ln, Pages 6, 8-12
 - Bonding of 1-Am, 1-Eu, and 1-Nd, Pages 5-7
- Crystallographic data of 1-Ln, 2-Ln, and 1-Am, Pages 15-34
- ¹H NMR spectra of free pyrithione ligand, **1-Ln**, and **2-Ln**, Pages 35-41
- BI tables, NLMO diagrams, other theoretical analysis of 1-Am and 1-Nd, Pages 42-47
- CHN Analysis of 1-Ln and 2-Ln, Pages 48-60
- References, Page 61

Methods

Experimental

Considerations. CAUTION! ²⁴³Am ($t^{1/2} = 7370$ years) is an α -particle emitting radioisotope that is hazardous to human health. Furthermore, the primary daughter isotope (²³⁹Np) is a strong γ -ray emitter with high specific activity. All sample manipulations were conducted on an appropriately sized scale in a specially designated laboratory equipped with HEPA filtration.

Materials. All synthetic procedures were carried out in air with no attempt to exclude air or water in a well-ventilated fume hood in ambient conditions. The following solvents and chemicals were purchased reagent grade from commercial sources and used as received: HCl (concentrated, 37%, Sigma), HNO₃ (concentrated, \geq 90%, Sigma), NH₃(aq) (concentrated, 28-30%, Sigma), Na(mpo) (Sigma-Aldrich, \geq 96%). Deionized water was obtained from an in-house system. LnCl₃•6H₂O and Ln(NO₃)₃•6H₂O were prepared by dissolution of Ln₂O₃ (Sigma-Aldrich, Strem) in concentrated acid (Sigma-Aldrich), evaporation to dryness, washing with diethyl ether (\geq 99.0%, Sigma-Aldrich), and drying under house vacuum for 12 hours.

Instrumentation. Solid-state UV-vis-NIR spectra of single crystals were collected using a CRAIC Technologies UV-vis-NIR microspectrophotometer with a mercury light source. Single crystals were isolated on glass slides using Parabar 10312 immersion oil and data were collected from 350 to 1000 nm at room temperature.

Crystallographic diffraction data were collected by mounting single crystals on a MITOGEN MicroLoop LD and aligning with a digital camera on a Bruker D8 Quest X-ray diffractometer. Collections used Mo K α X-rays ($\lambda = 0.71073$ Å) from an I μ S X-ray source and collection strategies were calculated using the APEX III software.¹ Structures were solved using intrinsic phasing methods (SHELXT) and refined by least squares techniques (SHELXL) in the OLEX2 program.^{2,3} Crystallographic data and parameters can be found below.

Synthesis.

<u>General Synthesis of $[Am(mpo)_2(\mu$ -O-mpo)(H₂O)]_2•3H_2O, 1-Am.</u> An aliquot of ²⁴³Am (5 mg of ²⁴³Am content, 0.021 mmol) in 2 M HCl was reacted with excess NH_{3(aq)} until a pale-yellow solid precipitated out of solution. Credulously identified as "Am(OH)₃," the precipitate was washed with DI water (2 × 3 mL) before being suspended in water (1 mL) and redissolved with concentrated HCl (1 mL). The resulting yellow solution was diluted to 5 mL with water and combined with Na(mpo) (10 mg, 0.067 mmol) dissolved in water (2.0 mL). Slow evaporation of the resulting solution over a period of 48 hours resulted in X-ray-quality crystals which were suitable for data collection. Due to radiological constraints, a final yield could not be determined.

<u>General Synthesis of $[Ln(mpo)_2(\mu$ -O-mpo)(H₂O)]_2</u>, **1-Ln** (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb): LnCl₃•6H₂O (0.055 mmol) or Ln(NO₃)₃•5H₂O (0.055 mmol) in water (1.0 mL) was combined with Na(mpo) (25 mg, 0.17 mmol). Slow evaporation of the solution over a period of 24 hours resulted in X-ray-quality crystals which were washed $(2 \times 3mL)$ with DI water followed by $(2 \times 3mL)$ diethyl ether prior to data collection.

1-[La(mpo)₂(µ-O-mpo)(H₂O)]₂

When LaCl₃•6H₂O (18 mg) or La(NO₃)₃•5(H₂O) (22 mg) was used, $1-[La(mpo)_2(\mu-O-mpo)(H_2O)]_2$ was isolated as colorless crystals (yield 26 mg, 88%).

1-[Pr(mpo)₂(µ-O-mpo)(H₂O)]₂

When $PrCl_3 \cdot 6H_2O$ (19 mg) or $Pr(NO_3)_3 \cdot 5(H_2O)$ (23 mg) was used, $1-[Pr(mpo)_2(\mu-O-mpo)(H_2O)]_2$ was isolated as green crystals (yield 25 mg, 87%). UV/vis/NIR [λ_{max} , nm, single crystal]: 452.9 $^{3}P_2$, 471.5 $^{3}P_1$, 489.4 $^{3}P_0$, 598.1 $^{1}D_2$.

1-[Nd(mpo)₂(µ-O-mpo)(H₂O)]₂

When NdCl₃•6H₂O (19 mg) or Nd(NO₃)₃•5(H₂O) (23 mg) was used, 1-[Nd(mpo)₂(μ -O-mpo)(H₂O)]₂ was isolated as blue crystals (yield 26 mg, 88%). UV/vis/NIR [λ_{max} , nm, single crystal]: 431.0 ²P_{1/2}, 529.7 ⁴G_{7/2}, 589.7, 597.3 – both excitations are ⁴G_{5/2} or ⁴G_{7/2}, 685.4 ⁴F_{9/2}, 738.4, 748.2, 758.7 – all excitations are ⁴F_{7/2} or ⁴S_{3/2}, 802.8, 806.5 – both excitations are ²H_{9/2} or ⁴S_{3/2}, 868.0 ⁴F_{3/2}.

1-[Sm(mpo)₂(µ-O-mpo)(H₂O)]₂

When SmCl₃•6H₂O (20 mg) or Sm(NO₃)₃•5(H₂O) (23 mg) was used, 1-[Sm(mpo)₂(μ -O-mpo)(H₂O)]₂ was isolated as colorless crystals (yield 25 mg, 84%). UV/vis/NIR [λ_{max} , nm, single crystal]: 407.6 ⁶P_{3/2}, 423.2 – excitation is ⁴F_{7/2} or ⁴L_{13/2}.

1-[Eu(mpo)₂(µ-O-mpo)(H₂O)]₂

When EuCl₃•6H₂O (20 mg) or Eu(NO₃)₃•5(H₂O) (24 mg) was used, $1-[Eu(mpo)_2(\mu-O-mpo)(H_2O)]_2$ was isolated as orange crystals (yield 24 mg, 81%).

1-[Gd(mpo)₂(µ-O-mpo)(H₂O)]₂

When $GdCl_3 \cdot 6H_2O$ (20 mg) or $Gd(NO_3)_3 \cdot 5(H_2O)$ (24 mg) was used, $1-[Gd(mpo)_2(\mu-O-mpo)(H_2O)]_2$ was isolated as colorless crystals (yield 25 mg, 83%).

$1-[Tb(mpo)_2(\mu$ -O-mpo)(H₂O)]₂

When TbCl₃•6H₂O (21 mg) or Tb(NO₃)₃•5(H₂O) (24 mg) was used, $1-[Tb(mpo)_2(\mu-O-mpo)(H_2O)]_2$ was isolated as colorless crystals (yield 25 mg, 83%).

<u>General Synthesis of $Ln(mpo)_3(H_2O)_2 \cdot H_2O$, **2-Ln** (Ln = Dy, Ho, Er, Tm, Yb, Lu): $LnCl_3 \cdot 6H_2O$ (0.055 mmol) or $Ln(NO_3)_3 \cdot 5H_2O$ (0.055 mmol) in water (1.0 mL) was combined with Na(mpo) (25 mg, 0.17 mmol). Slow evaporation of the solution over a period of 24 hours resulted in X-ray-quality crystals which were washed (2 × 3mL) with DI water followed by (2 × 3mL) diethyl ether prior to data collection.</u>

2-Dy(mpo)₃(H₂O)₂•H₂O

When DyCl₃•6H₂O (21 mg) or Dy(NO₃)₃•5(H₂O) (24 mg) was used, 2-**Dy(mpo)₃(H₂O)₂•H₂O** was isolated as colorless crystals (yield 28 mg, 86%). UV/vis/NIR [λ_{max} , nm, single crystal]: 454 ⁴I_{15/2}, 760 ⁶F_{3/2}, 809 ⁶F_{5/2}, 916 ⁶F_{7/2}.

2-Ho(mpo)₃(H₂O)₂•H₂O

When HoCl₃•6H₂O (21 mg) or Ho(NO₃)₃•5(H₂O) (24 mg) was used, **2-Ho(mpo)₃(H₂O)₂•H₂O** was isolated as pink crystals (yield 27 mg, 82%). UV/vis/NIR [λ_{max} , nm, single crystal]: 415 ⁵G₅, 452, 456, 461 - all excitations are ⁵F₁ or ⁵G₆, 480 ⁵F₃, 538, 542 – both excitations are ⁶F_{7/2} or ⁵S₂, 640 ⁵F₅.

2-Er(mpo)₃(H₂O)₂•H₂O

When $\text{ErCl}_3 \cdot 6\text{H}_2\text{O}$ (21 mg) or $\text{Er}(\text{NO}_3)_3 \cdot 5(\text{H}_2\text{O})$ (24 mg) was used, **2-Er(mpo)}_3(\text{H}_2\text{O})_2 \cdot \text{H}_2\text{O}** was isolated as pink crystals (yield 29 mg, 88%). UV/vis/NIR [λ_{max} , nm, single crystal]: 489 ${}^5\text{F}_{7/2}$, 522 ${}^2\text{H}_{11/2}$, 543 ${}^4\text{S}_{3/2}$, 656 ${}^4\text{F}_{9/2}$.

2-Tm(mpo)₃(H₂O)₂•H₂O

When TmCl₃•6H₂O (21 mg) or Tm(NO₃)₃•5(H₂O) (25 mg) was used, **2-Tm(mpo)₃(H₂O)₂•H₂O** was isolated as colorless crystals (yield 27 mg, 82%). UV/vis/NIR [λ_{max} , nm, single crystal]: 473 ¹G₄, 690 ³F₃, 795 ³H₄.

2-Yb(mpo)₃(H₂O)₂•H₂O

When YbCl₃•6H₂O (21 mg) or Yb(NO₃)₃•5(H₂O) (25 mg) was used, **2-Yb(mpo)₃(H₂O)₂•H₂O** was isolated as colorless crystals (yield 29 mg, 87%). UV/vis/NIR [λ_{max} , nm, single crystal]: 978 ²F_{5/2}.

2-Lu(mpo)₃(H₂O)₂•H₂O

When LuCl₃•6H₂O (21 mg) or Lu(NO₃)₃•5(H₂O) (25 mg) was used, **2-Lu(mpo)₃(H₂O)₂•H₂O** was isolated as colorless crystals (yield 28 mg, 84%).

Theory

Bonding. The electronic structure and bonding of **1-Nd** and **1-Am** were studied computationally based on the experimental crystal structures, where only hydrogen atoms were optimized to keep the constraints imposed by the crystal packing. A simple yet detailed analysis was performed to the full structures by localizing the molecular electron density from a density functional theory (DFT) calculation under the Natural Bond Orbital (NBO) formalism. All calculations were performed with the ADF engine in AMS 2021.106.⁴ The hybrid generalized gradient approximation (GGA) functional PBE0 was used along with the Slater-type basis set of triple- ζ quality STO-TZP. Scalar-relativistic effects were included in the zeroth-order regular approximation (ZORA) to the Dirac equation.⁵ For the free ligand geometry optimization, the GGA functional PBE was considered in conjunction with the STO-TZP basis set after which a single-point calculation was performed using the hybrid GGA PBE0 functional for comparable results. NBO calculations were performed with NBO 6,⁶ which is coupled to ADF suite.

Ligand Field DFT. Given the Laporte forbidden nature of f-f transitions, reproducing and interpreting them in terms of wavefunction composition and transition intensities from first

principles present a challenge from a theoretical viewpoint. However, recent developments on ligand field density functional theory (LFDFT)⁷ have allowed us to reproduce accurately the lower energy portion of **1-Am** (**Figure S22**). A modified version of the LFDFT in conjunction with the version implemented in ADF have been used to obtain the intensity of the *f*-*f* transitions. The ligand field parameters were obtained using the hybrid GGA functional PBE0 along with the STO-TZ2P for Am and TZP for the rest of the atoms. The HF exchange for these calculations was increased to 50% for a better prediction of the energy of the excited states.

The *f*-*f* transitions were calculated from first principles using the static approximation, i.e. no vibrational states were considered. The electric transition dipole moments were calculated in the dipole-length form according to $\mu = -r$, whereas the intensities associated with a particular electronic transition between states the initial state *i* and final state *k* were obtained from $f_{ik} = \frac{2}{3}\Delta E_{ik} < i|\mu|k > 2$

Supplementary results and discussion

Spectroscopy. Solid-state spectra of **1-Ln** and **2-Ln** reveals a broad ligand-based transition that is generally centered about 360-390 nm and exhibit Laporte forbidden *f-f* transitions characteristic of the respective cation in an aqueous environment, see **Figures S1** – **S9**. **1-Pr** shows hypersensitive transitions at 452.9 nm $\binom{{}^{3}H_{4}\rightarrow{}^{3}P_{2}}{4}$ and 598.1 nm $\binom{{}^{3}H_{4}\rightarrow{}^{1}D_{2}}{4}$, and **1-Nd** has hypersensitive transitions at 529.7 nm $\binom{{}^{4}I_{9/2}\rightarrow{}^{4}G_{7/2},{}^{4}K_{13/2}}{4}$ and 590.4 nm $\binom{{}^{4}I_{9/2}\rightarrow{}^{4}G_{5/2},{}^{2}G_{7/2}}{6}$, both a slight bathochromic shift compared to these transitions for the free ions.⁸ **1-Sm** exhibits *f-f* transitions above the ligand-based transition centered about 380 nm where the most intense *f-f* transitions for **1-Gd** are higher in energy than what is seen in the onset of the broad band. The *f-f* transitions above approximately 390 nm. Hypersensitive transitions are observed in **2-Ho** at 453.7 nm $\binom{{}^{5}I_{8}\rightarrow{}^{5}G_{6}}{1452}$ as a shoulder of the ligand-based transition onset and at 522.7 nm ($\binom{{}^{4}I_{9/2}\rightarrow{}^{4}G_{7/2},{}^{4}D_{1/2},{}^{4}F_{9/2}$) is seen in the observed in **2-Ho** at 453.7 nm $\binom{{}^{5}I_{8}\rightarrow{}^{5}G_{6}}{16}$ as well as **2-Er** at 405 nm as a shoulder of the ligand-based transition onset and at 522.7 nm ($\binom{{}^{4}I_{15/2}\rightarrow{}^{2}H_{11/2}}{112}$). Likewise, **2-Tm** exhibits *f-f* transitions at 473.2 nm $\binom{{}^{3}H_{6}\rightarrow{}^{1}G_{4}}{16}$, 690.6 nm ($\binom{{}^{3}H_{6}\rightarrow{}^{3}F_{3}}{16}$, and 795.5 nm $\binom{{}^{3}H_{6}\rightarrow{}^{3}H_{4}}{12}$).

While the colors of 1-Ln and 2-Ln are largely the same as those respective ions in aqueous solution, 1-Eu and 2-Yb appear orange and yellow in color, respectively. Solid-state absorption spectra of 1-Eu (Figure S4) shows a charge transfer band centered about 424 nm and spectra of 2-Yb (Figure S9)shows this charge transfer band centered at 401 nm, which are both marginally lower in energy than the LMCT band observed for isomorphous 1-Ln and 2-Ln. Spectra of 1-Eu shows the absorption of more light in the region from 425-450 nm compared to 2-Yb, resulting in the transmission of more orange light in 1-Eu compared to 2-Yb. While atypical for most Eu(III) and Yb(III) aqueous complexes this phenomenon has been reported elsewhere with ligands that feature soft donor atoms, namely dithiocarbamates.⁹

Only 1-Tb exhibited phosphorescence of the lanthanide pyrithionate complexes, Figure S10, where excitation using 420 nm at 298 K showed transitions characteristic of Tb(III) at 490.2 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$), 544.3 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), 586.6 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$), and 618.0 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$).

Bonding. Bond orders have been estimated with the Wiberg and NLMO approximations. The former is considered a standard approximation to estimate bond orders, whereas the latter distinguishes between bonding and antibonding interactions providing additional information of the bond. Furthermore, NLMO-based bond indices (NLMO-BI) can be decomposed in individual NLMO contributions that can be useful to identify the NLMOs that describe more appropriately the bond. **Table S30** summarizes the M–L (M = Nd, Eu, Am; L = S, O) bond orders predicted by both formalisms showing the expected trend, i.e. Am–L bonds are stronger than Ln–L bonds. Bridging O_{mpo} atoms show significantly weaker bonds (Δ WBI > 0.1) with respect to the other two non-bridging mpo ligands, which unexpectedly weakens the M–S coordination (Δ WBI > 0.1). This could relate to synergistic effects between the sulfur and oxygen atoms in mpo. This same trend is observed throughout the NLMO-BIs, though showing smaller values owing to the antibonding contributions to the bond order. Overall, the order of strength follows M–mpo3(6) > M–mpo2(5) > M–mpo1(4) (labels correspond to those of **Figure 3**).

Following the order of bond strength, M–O bonds also show differences among them, though mpo2 and mpo3 are not distinguishable as show for M–S bonds. Therefore, M–mpo2 and M–mpo3 bonds show similar bonding components including a σ – and a π –contribution with similar metal contributions (**Figure S19**). Interestingly, for the Am–O3 NLMOs, the 5*f* hybrid composition is significantly lower than even the Nd–O3 NLMOs, which is compensated by an increase of the 6*d* orbital contribution. Conversely, the double interaction of the bridging M–O bonds causes their NLMOs to differ from the other bonds, denoting the weaker interaction lacking of a significant π component. Similarly, the M–O_{water} bond compares to that of the bridges in terms of bond orders, which is also explained by the lack of a π –contribution that could reinforce the bond. Overall, the Eu – L bonds are slightly weaker than those of **1-Nd** with less involvement of the 4*f* shell. This might be attributed to the fact that the 4*f* shell is more shielded in Eu than Nd due to the progressive orbital contraction. Thus, comparing isovalent configurations such as Am and Eu highlights the difference in bonding in the same footing in terms of valence electrons.

Given the delocalized nature of the ligand (**Figure S19**), a final approach to study the metal–ligand interaction can be performed by scrutinizing the structural and electronic arrangements of the ligand upon complexation. The geometry of the mpo was optimized as a free ligand and compared to the average structures in the corresponding complexes. From the structural comparison, it is clear that the C–S and N–O distances elongate upon coordination, while the C–N bond contracts (**Table S31**). This suggests a weakening of the C–S and N–O because of the metal interaction that is compensated with a strengthening of the C–N bond, which is confirmed by calculated bond orders (**Table S32**). Our calculated values suggest an increase in the C–N WBIs by > 0.1 and a decreased in the C–S and N–O WBIs by ~ 0.1 and ~ 0.2, respectively. Furthermore, the stabilization coming from the delocalization of on sulfur lone pair (LP) to an antibonding N–O NBO in the form of a hyperbond (3-center 4-electron interaction) observed in the free ligand is completely altered upon coordination where a different sulfur LP is significantly delocalized toward the C–N bond. This supports and provides an explanation to the observed structural and electronic changes in the ligand because of the metal ligation.

While the hydroxamic acid motif has been heavily studied for decades across the f-block, this body of work aims to show the potential behind the five-membered ring encountered in hydroxamate coordination complexes and that it can be tuned using differing donor atoms to selectively bind a variety of metal ions. Thioamides specifically have been largely neglected in the chelation of f-elements and herein we show that pyrithione displays considerable electronic variation upon coordination with respect to specific cations in the f-block.

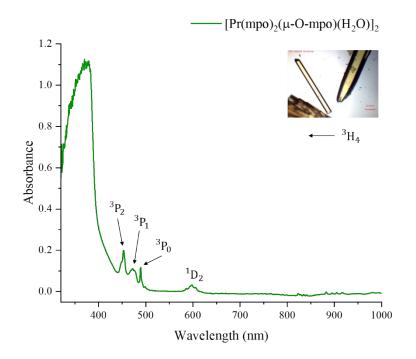


Figure S1, <u>1-Pr</u>: Solid state UV-vis/NIR absorption spectra of [Pr(mpo)₂(µ-O-mpo)(H₂O)]₂.

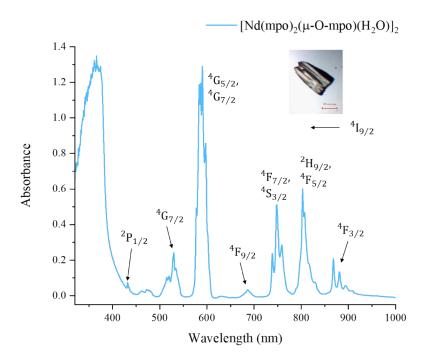


Figure S2, <u>1-Nd</u>: Solid state UV-vis/NIR absorption spectrum of [Nd(mpo)₂(µ-O-mpo)(H₂O)]₂.

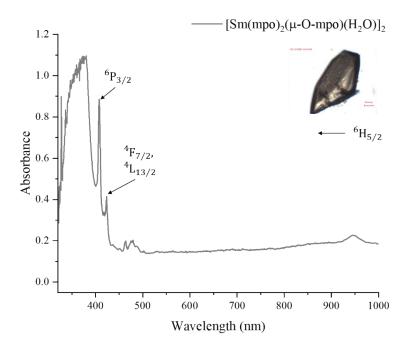
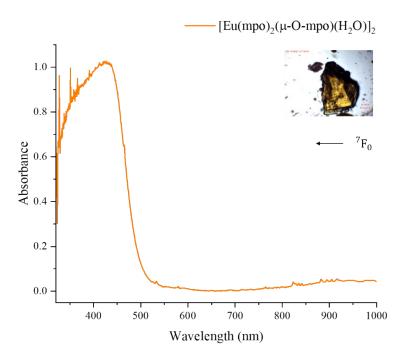



Figure S3, <u>1-Sm</u>: Solid state UV-vis/NIR absorption spectrum of $[Sm(mpo)_2(\mu$ -O-mpo)(H₂O)]_2.

Figure S4, <u>1-Eu</u>: Uv-vis/NIR absorption spectrum of [Eu(mpo)₂(µ-O-mpo)(H₂O)]₂.

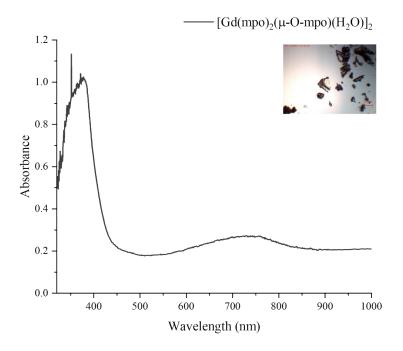


Figure S5, <u>1-Gd</u>: Uv-vis/NIR absorption spectrum of $[Gd(mpo)_2(\mu$ -O-mpo)(H₂O)]_2.

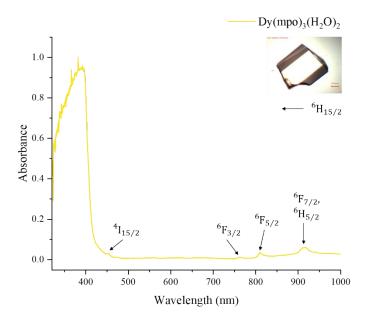


Figure S6, <u>2-Dy</u>: UV-vis/NIR absorption spectrum of Dy(mpo)₃(H₂O)₂•H₂O.

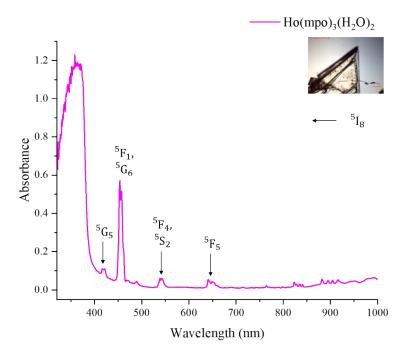


Figure S7, <u>2-Ho</u>: UV-vis/NIR absorption spectra of Ho(mpo)₃(H₂O)₂•H₂O.

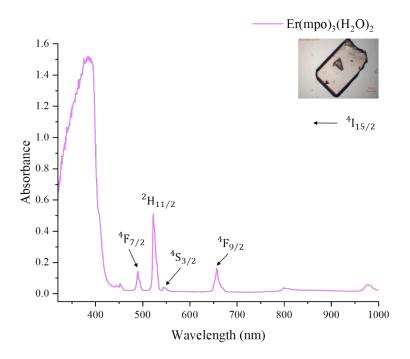


Figure S8, <u>2-Er</u>: UV-vis/NIR absorption spectra of Er(mpo)₃(H₂O)₂•H₂O.

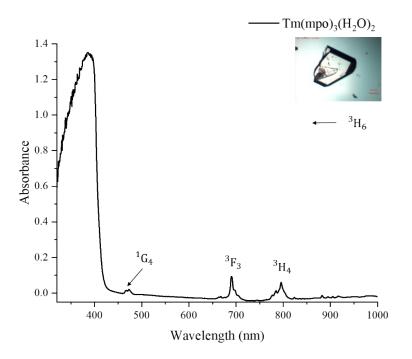


Figure S9, <u>2-Tm</u>: UV-vis/NIR absorption spectra of Tm(mpo)₃(H₂O)₂•H₂O.

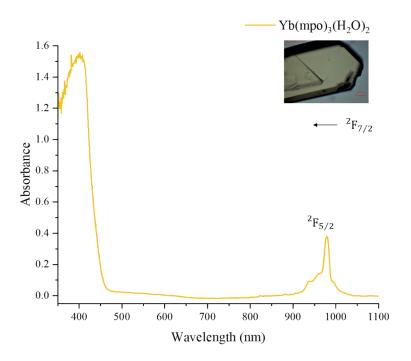


Figure S10, <u>2-Yb</u>: UV-vis/NIR absorption spectra of Yb(mpo)₃(H₂O)₂•H₂O.

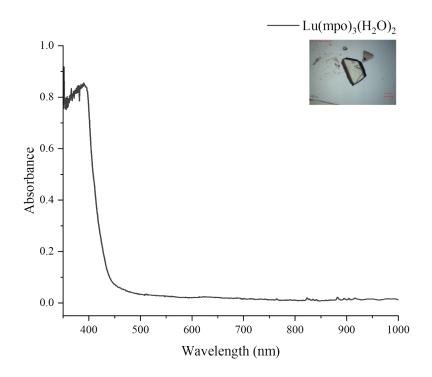
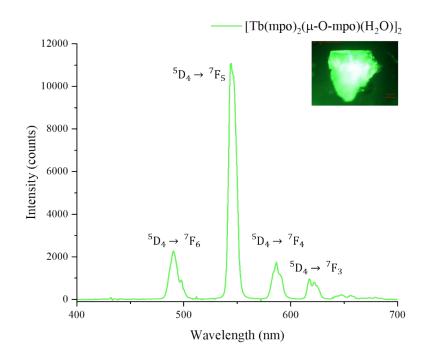



Figure S11, <u>2-Lu</u>: UV-vis/NIR absorption spectra of Lu(mpo)₃(H₂O)₂•H₂O.

Figure S12, <u>1-Tb</u>: Phosphorescence of [Tb(mpo)₂(µ-O-mpo)(H₂O)]₂ at 298 K with 420 nm excitation.

Table S1. Selected bond lengths for the 1-Am complex. Labels correspond to those shown in**Figure 3**.

	S1	S2	S3	01	O2	03
Am	2.946(2)	2.889(2)	2.873(2)	2.470(4)	2.368(4)	2.357(4)

Table S2. Selected averaged bond distances for $[M(mpo)_2(\mu$ -O-mpo)(H₂O)]_2.

1-M	Pr	Nd	Sm	Eu	Gd	Tb	Am
6-coordinate ionic radii	0.99	0.983	0.958	0.947	0.938	0.923	0.975
Ln-O _{mpo} (Å)	2.403(2)	2.393 (2)	2.363(2)	2.354 (2)	2.348 (1)	2.338 (1)	2.398 (2)
Ln-S (Å)	2.952(1)	2.934 (1)	2.908(1)	2.899 (1)	2.886 (2)	2.886 (2)	2.903 (1)
M – M dist	4.293 (3)	4.272 (2)	4.222 (5)	4.207 (5)	4.187 (3)	4.179 (8)	4.255 (4)

 Table S3: Selected averaged bond distances for 2-Ln.

1-Ln	Dy	Но	Er	Tm	Yb	Lu
6-coordinate ionic radii	0.912	0.901	0.890	0.880	0.868	0.861
Ln-S (Å)	2.829(1)	2.818(1)	2.801(1)	2.796(1)	2.784(1)	2.775(1)
Ln-O _{mpo} (Å)	2.343(2)	2.333(2)	2.322(2)	2.314(2)	2.301(2)	2.295(2)

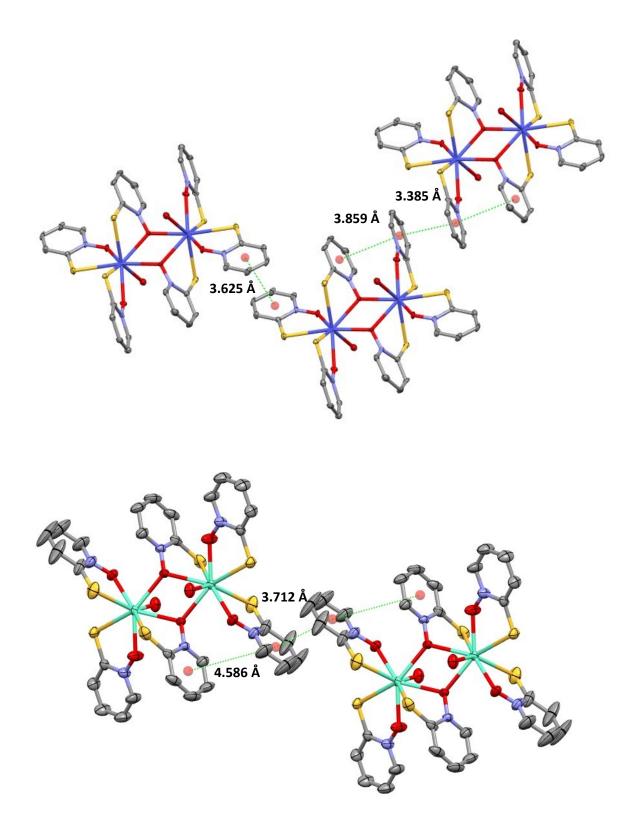


Figure S13: Crystal packing of 1-Am (top) and 1-Nd (bottom) where solvent molecules and hydrogens are omitted for clarity.

Crystallographic Data

Table S4 Crystal data and stru	cture refinement for [Pr(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂
Empirical formula	$C_{15}H_{14}N_3O_4PrS_3$
Formula weight	537.38
Temperature/K	296.15
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	10.1531(2)
b/Å	10.0034(2)
c/Å	19.5478(5)
α/\circ	90
β/°	95.0440(10)
$\gamma/^{\circ}$	90
Volume/Å ³	1977.69(8)
Z	4
ρ calcg/cm ³	1.805
μ/mm^{-1}	2.804
F(000)	1056.0
Crystal size/mm ³	$0.419 \times 0.22 \times 0.193$
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$
2Θ range for data collection/°	4.028 to 74.48
Index ranges	$-17 \le h \le 17, -17 \le k \le 17, -33 \le l \le 33$
Reflections collected	107132
Independent reflections	10213 [Rint = 0.0640, Rsigma = 0.0349]
Data/restraints/parameters	10213/0/236
Goodness-of-fit on F ²	1.029
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0351, $wR2 = 0.0654$
Final R indexes [all data]	R1 = 0.0573, $wR2 = 0.0728$
Largest diff. peak/hole / e Å ⁻³	0.81/-1.24

Table S5	Table S5 Bond Lengths for [Pr(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂					
Atom	Atom	Length/Å	Atom	Atom	Length/Å	
Pr1	S 1	2.9604(6)	N1	C1	1.357(3)	
Pr1	S3	2.9979(6)	N1	C5	1.351(3)	
Pr1	S2	2.8993(8)	N2	C6	1.355(5)	
Pr1	O31	2.5143(15)	N2	C10	1.360(5)	
Pr1	O3	2.5183(14)	C15	C14	1.372(4)	
Pr1	O4	2.4669(18)	C1	C2	1.393(3)	
Pr1	O2	2.3407(16)	C11	C12	1.409(3)	
Pr1	01	2.3538(18)	C5	C4	1.352(4)	
S1	C1	1.708(2)	C14	C13	1.378(6)	
S3	C11	1.719(3)	C2	C3	1.368(4)	
S2	C6	1.710(4)	C12	C13	1.365(5)	
03	N3	1.358(2)	C4	C3	1.381(4)	
O2	N2	1.324(3)	C6	C7	1.407(5)	
N3	C15	1.346(3)	C10	C9	1.367(7)	
N3	C11	1.360(3)	C7	C8	1.354(9)	
01	N1	1.329(3)	C9	C8	1.347(11)	
$11 \mathbf{V} \mathbf{I} \mathbf{V}$	17					

Table S6 Crystal data and stru	cture refinement for [Nd(mpo) ₂ (<i>µ</i> -O-mpo)(H ₂ O)] ₂
Empirical formula	$C_{15}H_{14}N_3NdO_4S_3$
Formula weight	540.71
Temperature/K	296.15
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	10.1252(2)
b/Å	9.9839(2)
c/Å	19.5248(5)
$\alpha/_{\circ}$	90
β/°	95.0050(10)
$\gamma/^{\circ}$	90
Volume/Å ³	1966.22(7)
Z	4
$\rho calcg/cm^3$	1.827
μ/mm^{-1}	2.984
F(000)	1060.0
Crystal size/mm ³	$0.277 \times 0.243 \times 0.158$
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$
2Θ range for data collection/°	4.038 to 82.254
Index ranges	$-18 \le h \le 18, -18 \le k \le 18, -36 \le l \le 36$
Reflections collected	112293
Independent reflections	13041 [Rint = 0.0411, Rsigma = 0.0233]
Data/restraints/parameters	13041/0/236
Goodness-of-fit on F ²	1.176
Final R indexes [I>= 2σ (I)]	R1 = 0.0383, w $R2 = 0.0805$
Final R indexes [all data]	R1 = 0.0467, wR2 = 0.0847
Largest diff. peak/hole / e Å ⁻³	1.45/-2.04

Table S7	Table S7 Bond Lengths for [Nd(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂				
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Nd1	S 1	2.9450(5)	N1	C1	1.358(3)
Nd1	S3	2.9800(6)	N1	C5	1.353(3)
Nd1	S2	2.8790(8)	N2	C6	1.359(5)
Nd1	O31	2.5013(13)	N2	C10	1.358(5)
Nd1	03	2.5026(13)	C15	C14	1.380(4)
Nd1	O4	2.4472(18)	C1	C2	1.400(3)
Nd1	O2	2.3335(16)	C11	C12	1.409(3)
Nd1	01	2.3441(18)	C14	C13	1.372(6)
S1	C1	1.708(2)	C12	C13	1.364(5)
S3	C11	1.718(3)	C2	C3	1.370(4)
S2	C6	1.707(4)	C5	C4	1.355(4)
03	N3	1.3540(19)	C3	C4	1.379(4)
02	N2	1.323(3)	C6	C7	1.405(4)
N3	C15	1.350(3)	C10	C9	1.365(7)
N3	C11	1.365(3)	C9	C8	1.336(12)
01	N1	1.322(2)	C7	C8	1.365(10)

Table S8 Crystal data and stru	cture refinement for [Sm(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂
Empirical formula	$C_{15}H_{14}N_3O_4S_3Sm$
Formula weight	546.82
Temperature/K	273.15
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	10.0701(15)
b/Å	9.9650(14)
c/Å	19.421(3)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	94.919(4)
$\gamma/^{\circ}$	90
Volume/Å ³	1941.7(5)
Z	4
ρ calcg/cm ³	1.871
μ/mm^{-1}	3.372
F(000)	1068.0
Crystal size/mm ³	$0.487 \times 0.163 \times 0.148$
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$
2Θ range for data collection/°	4.598 to 58.008
Index ranges	$-13 \le h \le 13, -13 \le k \le 13, -26 \le l \le 26$
Reflections collected	88915
Independent reflections	5167 [Rint = 0.0582, Rsigma = 0.0216]
Data/restraints/parameters	5167/0/236
Goodness-of-fit on F ²	1.106
Final R indexes [I>= 2σ (I)]	R1 = 0.0296, $wR2 = 0.0666$
Final R indexes [all data]	R1 = 0.0389, WR2 = 0.0719
Largest diff. peak/hole / e Å ⁻³	0.96/-0.52

Table S9	Table S9 Bond Lengths for [Sm(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂					
Atom	Atom	Length/Å	Atom	Atom	Length/Å	
Sm1	S 1	2.9209(9)	N1	C1	1.355(4)	
Sm1	S3	2.9527(10)	N1	C5	1.355(5)	
Sm1	S2	2.8502(12)	N2	C6	1.353(7)	
Sm1	031	2.470(2)	N2	C10	1.351(6)	
Sm1	O3	2.472(2)	C15	C14	1.371(6)	
Sm1	O4	2.415(2)	C14	C13	1.369(8)	
Sm1	O2	2.306(2)	C11	C12	1.410(5)	
Sm1	01	2.313(3)	C1	C2	1.409(5)	
S1	C1	1.705(4)	C12	C13	1.368(7)	
S3	C11	1.717(4)	C6	C7	1.407(6)	
S2	C6	1.706(6)	C2	C3	1.361(6)	
03	N3	1.359(3)	C5	C4	1.352(6)	
02	N2	1.324(4)	C10	C9	1.347(8)	
N3	C15	1.346(5)	C3	C4	1.377(6)	
N3	C11	1.355(5)	C7	C8	1.373(11)	
N1	01	1.322(4)	С9	C8	1.338(13)	
$11 \mathbf{V} 1 \mathbf{V}$	17					

Table S10 Crystal data and str	ucture refinement for [Eu(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂
Empirical formula	$C_{15}H_{14}EuN_3O_4S_3$
Formula weight	548.43
Temperature/K	273.15
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	10.0543(13)
b/Å	9.9635(13)
c/Å	19.422(3)
α/°	90
β/°	94.902(4)
$\gamma/^{\circ}$	90
Volume/Å ³	1938.5(4)
Z	4
ρ calcg/cm ³	1.879
μ/mm^{-1}	3.583
F(000)	1072.0
Crystal size/mm ³	$0.359 \times 0.158 \times 0.148$
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$
2Θ range for data collection/°	4.598 to 56.664
Index ranges	$-13 \le h \le 13, -13 \le k \le 13, -25 \le l \le 25$
Reflections collected	83814
Independent reflections	4822 [Rint = 0.0500, Rsigma = 0.0185]
Data/restraints/parameters	4822/0/236
Goodness-of-fit on F ²	1.127
Final R indexes [I>= 2σ (I)]	R1 = 0.0253, $wR2 = 0.0477$
Final R indexes [all data]	R1 = 0.0335, $wR2 = 0.0511$
Largest diff. peak/hole / e Å ⁻³	0.82/-0.62

Table S1	1 Bond Le	engths for [Eu(mpo) ₂ (µ-O-r	npo)(H ₂ O)] ₂	2	
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Eu01	Eu011	4.2072(5)	N1	C1	1.356(4)
Eu01	S 1	2.9118(8)	N1	C5	1.354(4)
Eu01	S3	2.9438(9)	N2	C6	1.357(5)
Eu01	S2	2.8407(11)	N2	C10	1.355(5)
Eu01	O31	2.4631(19)	C15	C14	1.374(5)
Eu01	03	2.4623(19)	C14	C13	1.373(7)
Eu01	O2	2.296(2)	C1	C2	1.405(4)
Eu01	O4	2.405(2)	C5	C4	1.351(5)
Eu01	01	2.306(2)	C11	C12	1.405(4)
S1	C1	1.704(3)	C12	C13	1.368(6)
S3	C11	1.722(4)	C2	C3	1.370(5)
S2	C6	1.714(5)	C6	C7	1.399(6)
O3	N3	1.359(3)	C10	C9	1.355(7)
O2	N2	1.328(4)	C4	C3	1.382(5)
N3	C15	1.344(4)	C9	C8	1.354(10)
N3	C11	1.361(4)	C7	C8	1.366(9)
01	N1	1.322(3)			
¹ 1-X,1-Y,	1-Z				

Table S12 Crystal data and str	ucture refinement for [Gd(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂
Empirical formula	$C_{15}H_{14}GdN_3O_4S_3$
Formula weight	553.72
Temperature/K	273.15
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	10.0345(7)
b/Å	9.9366(7)
c/Å	19.3797(13)
$\alpha/^{\circ}$	90
β/°	94.848(2)
$\gamma/^{\circ}$	90
Volume/Å ³	1925.4(2)
Z	4
ρ calcg/cm ³	1.910
μ/mm^{-1}	3.795
F(000)	1076.0
Crystal size/mm ³	$0.915 \times 0.371 \times 0.218$
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$
2Θ range for data collection/°	5.612 to 65.52
Index ranges	$-15 \le h \le 15, -15 \le k \le 15, -29 \le l \le 29$
Reflections collected	96150
Independent reflections	6892 [Rint = 0.0512, Rsigma = 0.0279]
Data/restraints/parameters	6892/54/236
Goodness-of-fit on F ²	1.091
Final R indexes [I>= 2σ (I)]	R1 = 0.0336, wR2 =0.0569
Final R indexes [all data]	R1 = 0.0532, WR2 = 0.0628
Largest diff. peak/hole / e Å ⁻³	1.22/-0.66

Table S13 Bond Lengths for [Gd(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂						
Atom	Atom	Length/Å	Atom	Atom	Length/Å	
Gd1	S 1	2.9034(8)	N2	C10	1.352(5)	
Gd1	S3	2.9316(8)	N2	C6	1.355(6)	
Gd1	S2	2.8241(10)	N1	C1	1.355(4)	
Gd1	O31	2.4484(18)	N1	C5	1.353(4)	
Gd1	O3	2.4511(18)	C15	C14	1.364(5)	
Gd1	O2	2.293(2)	C14	C13	1.372(7)	
Gd1	O4	2.386(2)	C12	C11	1.407(4)	
Gd1	01	2.296(2)	C12	C13	1.364(6)	
S1	C1	1.708(3)	C1	C2	1.397(4)	
S3	C11	1.720(4)	C5	C4	1.354(5)	
S2	C6	1.711(5)	C10	C9	1.350(7)	
O3	N3	1.360(3)	C6	C7	1.403(6)	
O2	N2	1.327(4)	C2	C3	1.364(5)	
N3	C15	1.347(4)	C4	C3	1.378(5)	
N3	C11	1.358(4)	C9	C8	1.352(10)	
01	N1	1.321(3)	C7	C8	1.357(9)	
$11 \mathbf{V} 1 \mathbf{V}$	17					

Table S14 Crystal data and structure refinement for [Tb(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂				
Empirical formula	C ₁₅ H ₁₄ N ₃ O ₄ S ₃ Tb			
Formula weight	555.39			
Temperature/K	273.15			
Crystal system	monoclinic			
Space group	$P2_{1}/c$			
a/Å	10.061(3)			
b/Å	9.949(3)			
c/Å	19.421(5)			
$\alpha/^{\circ}$	90			
β/°	94.797(7)			
γ^{\prime}	90			
Volume/Å ³	1937.2(9)			
Z	4			
ρ calcg/cm ³	1.904			
μ/mm^{-1}	3.999			
F(000)	1080.0			
Crystal size/mm ³	$0.422 \times 0.246 \times 0.203$			
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$			
2Θ range for data collection/°	5.602 to 55.174			
Index ranges	$-13 \le h \le 13, -12 \le k \le 12, -25 \le 1 \le 25$			
Reflections collected	101200			
Independent reflections	4455 [Rint = 0.0331, Rsigma = 0.0097]			
Data/restraints/parameters	4455/0/240			
Goodness-of-fit on F ²	1.149			
Final R indexes [I>= 2σ (I)]	R1 = 0.0183, $wR2 = 0.0442$			
Final R indexes [all data]	R1 = 0.0194, WR2 = 0.0452			
Largest diff. peak/hole / e Å ⁻³	0.49/-0.83			

Table S15 Bond Lengths for [Tb(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂						
Atom	Atom	Length/Å	Atom	Atom	Length/Å	
Tb1	S 1	2.9083(9)	N1	C1	1.359(3)	
Tb1	S3	2.9334(9)	N1	C5	1.357(3)	
Tb1	S2	2.8169(10)	N2	C6	1.359(4)	
Tb1	03	2.4457(16)	N2	C10	1.357(4)	
Tb1	O31	2.4473(16)	C15	C14	1.381(4)	
Tb1	O4	2.3799(18)	C1	C2	1.417(3)	
Tb1	O2	2.2836(17)	C2	C3	1.370(4)	
Tb1	01	2.285(2)	C11	C12	1.409(4)	
S1	C1	1.706(2)	C12	C13	1.369(5)	
S3	C11	1.725(3)	C14	C13	1.381(6)	
S2	C6	1.719(4)	C3	C4	1.384(4)	
03	N3	1.361(2)	C5	C4	1.358(4)	
02	N2	1.332(3)	C6	C7	1.405(4)	
N3	C15	1.348(3)	C10	C9	1.366(6)	
N3	C11	1.366(3)	C7	C8	1.367(7)	
01	N1	1.330(3)	С9	C8	1.348(9)	
$11 \mathbf{V} 1 \mathbf{V}$	1 7					

Table S16 Crystal data and structure refinement for Dy(mpo) ₃ (H ₂ O) ₂ •H ₂ O							
	Empirical formula			D_6S_3	(p°)3(2		
-	Formula weight 595.00			0 5			
Temperature/K			296.15				
	Crystal system						
Space g	•		triclinic <i>P</i> 1				
a/Å	1		7.4805(9)				
b/Å			11.1541(15)				
c/Å			13.1843(17)				
$\alpha/^{\circ}$			111.472(3)				
β/°			93.931(3)				
γ/°			91.055(3)				
Volume	A^3		1020.2(2)				
Z			2				
ρ calcg/c	cm ³		1.937				
μ/mm^{-1}			4.006				
F(000)			582.0				
· · · ·	size/mm ³		0.668×0.334	× 0.182			
Radiatio			MoK_{α} ($\lambda = 0.7$	71073)			
2Θ rang	ge for data	collection/°	5.464 to 67.1	/			
Index ra			$-11 \le h \le 11$,	$-17 \le k \le 17$	7, $-20 \le 1 \le 2$	20	
Reflecti	ons collec	ted	58168				
Indepen	dent reflee	ctions	7556 [Rint = 0.0650, Rsigma = 0.0331]				
Data/res	straints/par	rameters	7556/1/260				
Goodne	ss-of-fit o	n F ²	1.121				
Final R	indexes [I	>=2σ (I)]	R1 = 0.0312,	wR2 = 0.072	22		
Final R	indexes [a	ll data]	R1 = 0.0385,	wR2 = 0.07	71		
Largest	diff. peak	/hole / e Å ⁻³	1.58/-1.94				
Table S1	7 Bond L	engths for Dy((mpo) ₃ (H ₂ O) ₂ •	H ₂ O			
Atom	Atom	Length/Å		Atom	Atom	Length/Å	
Dy01	S2	2.7998(9)	N1	C1	1.372(4)	
Dy01	S3	2.8642(9)	N1	C5	1.363(4)	
Dy01	S 1	2.8246(9		N2	C6	1.379(4)	
Dy01	01	2.343(2)		N2	C10	1.357(4)	
Dy01	O2	2.360(2)		C1	C2	1.411(4)	
Dy01	05	2.392(2)		C11	C12	1.418(5)	
Dy01	O4	2.389(2)		C15	C14	1.370(6)	
Dy01	O3	2.335(2)		C6	C7	1.401(5)	
S2	C6	1.712(4)		C5	C4	1.367(5)	
S3	C11	1.705(4)		C2	C3	1.373(6)	
S1	C1	1.714(3)		C14	C13	1.384(8)	
01	N1	1.349(3)		C12	C13	1.370(7)	
02	N2	1.347(3)		C4	C3	1.389(6)	
03	N3	1.348(3)		C10	C9	1.370(5)	
N3	C11	1.370(4)		C7	C8	1.367(7)	
N3	C15	1.359(4)		C8	C9	1.386(7)	

T-LL C	Table S18 Crystal data and structure refinement for Ho(mpo) ₃ (H ₂ O) ₂ •H ₂ O						
					(mpo) ₃ (H ₂ ($J_{2} H_{2} O$	
1 1	Empirical formula			$C_{15}H_{18}HoN_3O_6S_3$			
	a weight		597.43 296.15				
	Temperature/K						
-	Crystal system						
Space g	roup		<i>P</i> 1				
a/Å			7.4507(8)				
b/Å			11.1249(13)				
c/Å			13.1555(16)				
α/°			111.452(3)				
β/°			93.982(3)				
γ/°			91.030(3)				
Volume	$e/Å^3$		1011.3(2)				
Z			2				
ρ calcg/c	cm ³		1.962				
μ/mm^{-1}			4.258				
F(000)			584.0				
Crystal	size/mm ³		0.425×0.23	7×0.115			
Radiatio			$MoK_{\alpha} (\lambda = 0)$	/			
2Θ rang	ge for data	collection/°	5.486 to 56.4				
Index ra	0		$-8 \le h \le 9, -1$	$14 \le k \le 14, -$	$16 \le l \le 17$		
Reflecti	ions collec	ted	32658				
Indepen	ndent refle	ctions	4439 [Rint = 0.0586, Rsigma = 0.0416]				
	straints/pa		4439/1/260				
Goodne	ess-of-fit o	n F ²	1.131				
Final R	indexes []	$\geq 2\sigma(I)$]	R1 = 0.0269	, wR2 =0.045	7		
	indexes [a			, wR2 = 0.042	86		
Largest	diff. peak	/hole / e Å ⁻³	0.84/-0.92				
Table S1	19 Bond L	engths for Ho	(mpo) ₃ (H ₂ O) ₂	2•H2O			
Atom	Atom	Length/Å		Atom	Atom	Length/Å	
Ho01	S 3	2.8522(9))	N2	C6	1.371(4)	
Ho01	S 1	2.7847(9))	N2	C10	1.353(4)	
Ho01	S2	2.8108(9		N1	C1	1.367(4)	
Ho01	01	2.344(2)		N1	C5	1.354(4)	
Ho01	O2	2.330(2)		C11	C12	1.401(5)	
Ho01	O4	2.366(2)		C6	C7	1.406(5)	
Ho01	05	2.370(2)		C10	C9	1.358(5)	
Ho01 Ho01	O5 O3	2.370(2) 2.321(2)		C10 C15	C9 C14	1.358(5) 1.362(5)	
Ho01	O3			C15	C14	1.358(5) 1.362(5) 1.405(5)	
Ho01 S3	O3 C11	2.321(2) 1.707(4)		C15 C1	C14 C2	1.362(5)	
Ho01 S3 S1	O3 C11 C1	2.321(2)		C15	C14 C2 C4	1.362(5) 1.405(5)	
Ho01 S3 S1 S2	O3 C11 C1 C6	2.321(2) 1.707(4) 1.709(4)		C15 C1 C5 C14	C14 C2 C4 C13	1.362(5) 1.405(5) 1.361(5)	
Ho01 S3 S1 S2 O1	O3 C11 C1 C6 N1	2.321(2) 1.707(4) 1.709(4) 1.708(4)		C15 C1 C5 C14 C12	C14 C2 C4 C13 C13	1.362(5) 1.405(5) 1.361(5) 1.379(6)	
Ho01 S3 S1 S2 O1 O2	O3 C11 C1 C6 N1 N2	2.321(2) 1.707(4) 1.709(4) 1.708(4) 1.349(3)		C15 C1 C5 C14 C12 C7	C14 C2 C4 C13 C13 C8	1.362(5) 1.405(5) 1.361(5) 1.379(6) 1.357(6)	
Ho01 S3 S1 S2 O1 O2 O3	O3 C11 C1 C6 N1 N2 N3	2.321(2) 1.707(4) 1.709(4) 1.708(4) 1.349(3) 1.349(3)		C15 C1 C5 C14 C12	C14 C2 C4 C13 C13 C8 C8	1.362(5) 1.405(5) 1.361(5) 1.379(6) 1.357(6) 1.360(5)	
Ho01 S3 S1 S2 O1 O2	O3 C11 C1 C6 N1 N2	2.321(2) 1.707(4) 1.709(4) 1.708(4) 1.349(3) 1.349(3) 1.344(3)		C15 C1 C5 C14 C12 C7 C9	C14 C2 C4 C13 C13 C8	1.362(5) 1.405(5) 1.361(5) 1.379(6) 1.357(6) 1.360(5) 1.385(5)	

Table S	20 Currete	data and stur	atura rafinan	ont for Fre	(\mathbf{H})		
	Table S20 Crystal data and stru Empirical formula				шро)з(п2С	<i>)</i> ₂ • n ₂ 0	
-		1	$C_{30}H_{36}Er_2N_6O_{12}S_6$				
	a weight		1199.53 296.15				
1 1	Temperature/K						
Crystal	-		triclinic				
Space g	roup		P1				
a/Å			7.44370(10)				
b/Å			11.0980(2)				
c/Å			13.1205(2)				
α/°			111.4100(10)				
β/°			94.0230(10)				
γ/°	0.5		91.0700(10)				
Volume	$e/Å^3$		1005.46(3)				
Z			1				
ρ calcg/c	cm ³		1.981				
μ/mm^{-1}			4.522				
F(000)			586.0				
Crystal	size/mm ³		0.563×0.34	× 0.258			
Radiatio	on		MoK_{α} ($\lambda = 0$.	71073)			
2Θ rang	ge for data	collection/°	3.946 to 92.9	52			
Index ra	anges		$-15 \le h \le 15, -22 \le k \le 22, -26 \le 1 \le 26$				
Reflecti	ions collec	ted	178231				
Indepen	dent refle	ctions	17847 [Rint = 0.0522, Rsigma = 0.0296]				
Data/res	straints/pa	rameters	17847/1/264				
Goodne	ess-of-fit o	n F ²	1.019				
Final R	indexes [I	$>=2\sigma(I)$]	R1 = 0.0291,	wR2 =0.043	85		
Final R	indexes [a	ull data]	R1 = 0.0452,	wR2 = 0.05	525		
Largest	diff. peak	/hole / e Å ⁻³	1.08/-1.10				
Table S2	21 Bond I	engths for Er($(H_2O)_2$	H ₂ O			
Atom	Atom	Length/Å		Atom	Atom	Length/Å	
Er1	S3	2.8413(4)	N3	C11	1.3665(19)	
Er1	S2	2.7693(4		N3	C15	1.355(2)	
Er1	S1	2.7935(4		N2	C6	1.3657(19)	
Er1	02	2.3327(1		N2	C10	1.3519(19)	
Er1	01	2.3186(1		C1	C2	1.409(2)	
Er1	04	2.3565(1		C11	C12	1.413(2)	
Er1	03	2.3143(1		C6	C7	1.405(2)	
Er1	05	2.3604(1		C15	C14	1.366(3)	
S3	C11	1.7042(1		C13 C5	C4	1.367(2)	
S2	C11 C6	1.7083(1		C10	C4 C9	1.369(2)	
S2 S1	C0 C1	1.7060(1		C10 C2	C9 C3	1.360(3)	
	N2	1.3443(1		C2 C4	C3	1.390(3)	
02		1.3443(1				1.362(3)	
01	N1 N2	1.3452(1		C12	C13	1.385(4)	
O3	N3 C1	1.3674(1		C14	C13	1.379(4)	
N1	C1	1.JU/4(1	• <i>)</i>	C9	C8		
N1	C5	1.3513(1	9)	C7	C8	1.361(3)	

	•	l data and stru	icture refinen	nent for Tm	(mpo) ₃ (H ₂	$O_2 \cdot H_2 O$	
Empiric	Empirical formula			$C_{15}H_{18}N_3O_6S_3Tm$			
Formula	a weight		601.43				
Temper	Temperature/K						
Crystal	Crystal system						
Space g	roup		$P\bar{1}$				
a/Å			7.4398(9)				
b/Å			11.1083(14)				
c/Å			13.1269(16)				
α/°			111.312(3)				
β/°			94.019(3)				
γ/°			91.182(3)				
Volume	2/Å3		1006.9(2)				
Ζ			2				
ρ calcg/c	2m ³		1.984				
μ/mm^{-1}			4.754				
F(000)			588.0				
Crystal	size/mm ³		0.539×0.24	× 0.171			
Radiatio	on		$MoK_{\alpha} (\lambda = 0.$	71073)			
2Θ rang	ge for data o	collection/°	5.496 to 57.5	38			
Index ra	inges		$-10 \le h \le 10$,	$-15 \le k \le 15$	$5, -17 \le l \le 1$	17	
Reflecti	ons collect	ed	15505				
Indepen	dent reflec	tions	5179 [Rint = 0.0342, Rsigma = 0.0331]				
Data/res	straints/para	ameters	5179/0/258				
Goodne	ss-of-fit on	F^2	1.184				
Final R	indexes [I>	$\geq 2\sigma$ (I)]	R1 = 0.0232,	wR2 = 0.050	50		
Final R	indexes [al	l data]	R1 = 0.0264,	wR2 = 0.05	87		
Largest	diff. peak/	hole / e Å ⁻³	0.82/-1.03				
Table S2	3 Bond Le	engths for Tm	(mpo) ₃ (H ₂ O) ₂	•H ₂ O			
Atom	Atom	Length/Å	(p =)3(2 =)2	Atom	Atom	Length/Å	
Tm1	S3	2.8371(9)	N1	C1	1.373(4)	
Tm1	S 1	2.7662(9		N1	C5	1.359(4)	
Tm1	S2	2.7854(9		N2	C6	1.369(4)	
Tm1	01	2.325(2)		N2	C10	1.358(4)	
Tm1	02	2.312(2)		C1	C2	1.398(5)	
Tm1	05	2.349(2)		C11	C12	1.412(5)	
Tm1	03	2.306(2)		C6	C7	1.407(5)	
Tm1	04	2.353(2)		C15	C14	1.367(5)	
S3	C11	1.704(4)		C5	C4	1.361(5)	
S1	C1	1.709(4)		C10	C9	1.366(5)	
S2	C6	1.711(4)		C14	C13	1.384(7)	
01	N1	1.346(3)		C7	C8	1.370(6)	
02	N2	1.350(3)		C2	C3	1.363(6)	
03	N3	1.343(3)		C12	C13	1.364(6)	
N3	C11	1.371(4)		C9	C8	1.387(6)	
N3	C15	1.356(4)		C4	C3	1.390(7)	
		. ,			-	. ,	

Table S24 Crystal data and stru	ucture refinement for Yb(mpo) ₃ (H ₂ O) ₂ •H ₂ O			
Empirical formula	$C_{15}H_{18}N_3O_6S_3Yb$			
Formula weight	605.54			
Temperature/K	296.15			
Crystal system	triclinic			
Space group	PĪ			
a/Å	7.4273(3)			
b/Å	11.0844(4)			
c/Å	13.0835(5)			
α/°	111.299(2)			
β/°	94.085(2)			
γ^{\prime}	91.071(2)			
Volume/Å ³	999.86(7)			
Z	2			
ρ calcg/cm ³	2.011			
μ/mm^{-1}	5.027			
F(000)	590.0			
Crystal size/mm ³	$0.243 \times 0.2 \times 0.188$			
Radiation	$MoK_a (\lambda = 0.71073)$			
2Θ range for data collection/°	3.948 to 63.422			
Index ranges	$-10 \le h \le 10, -16 \le k \le 16, -19 \le l \le 19$			
Reflections collected	81495			
Independent reflections	6745 [Rint = 0.0444, Rsigma = 0.0192]			
Data/restraints/parameters	6745/0/272			
Goodness-of-fit on F^2	1.101			
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0204, WR2 = 0.0499			
Final R indexes [all data]	R1 = 0.0235, $wR2 = 0.0511$			
Largest diff. peak/hole / e $Å^{-3}$	1.35/-0.88			
Table S25 Bond Lengths for Yb(n	- / / /			
Atom Atom Length/Å Yb1 S3 2.8301(7)	$\begin{array}{c ccc} Atom & Atom & Length/Å \\ N1 & C1 & 1.368(3) \end{array}$			
_				
	-			
Yb1 S1 2.7714(7) Yb1 O2 2.3122(17)	-			
Yb1 O1 2.2967 (18)				
Yb1 O4 2.3317(19				
Yb1 O3 2.2953 (18)				
Yb1 O5 2.341(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
S3 C11 1.703 (3)	$\begin{array}{cccc} C0 & C7 & 1.112(1) \\ C10 & C9 & 1.369(4) \end{array}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
S1 C1 1.705(3)	C14 $C13$ $1.389(6)$			
$\begin{array}{cccc} 01 & 01 & 01 \\ 02 & N2 & 1.350(3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{ccc} 0.2 & 1.2 \\ 0.1 & N1 & 1.349(3) \end{array}$	C4 $C3$ 1.381(5)			
O3 N3 1.336(3)	C12 C13 1.361(5)			
N3 C11 1.371(3)	C9 C8 1.377(6)			
N3 C15 1.355(3)	C8 C7 1.360(5)			

Table S26 Crystal data and structure refinement for Lu(mpo) ₃ (H ₂ O) ₂ •H ₂ O						
Empirical formul		C ₁₅ H ₁₉ LuN ₃ C		1 /0(-)	
Formula weight		608.48				
Temperature/K		273.15				
Crystal system		triclinic				
Space group		P1				
a/Å		7.4092(3)				
b/Å		11.0676(5)				
c/Å		13.0778(6)				
α/°		111.325(2)				
β/°		94.072(2)				
$\gamma/^{\circ}$		91.141(2)				
Volume/Å ³		995.25(8)				
		2				
$\rho calcg/cm^3$		2.030				
μ/mm^{-1}		5.312				
F(000)		594.0	0×0.1			
Crystal size/mm ³		0.465×0.243				
Radiation	11	$MoK_{\alpha} (\lambda = 0)$	/			
2Θ range for data	conection/	5.518 to 55.1		16 < 1 < 16		
Index ranges Reflections collect	atad	$-9 \le h \le 9, -14 \le k \le 14, -16 \le 1 \le 16$				
Independent refle		72598 4577 [Rint = 0.0548, Rsigma = 0.0190]				
Data/restraints/pa		4577/1/264				
Goodness-of-fit o		1.086				
Final R indexes		R1 = 0.0167,	wR2 = 0.039)3		
Final R indexes		R1 = 0.0194,				
Largest diff. peak		0.91/-0.66				
Table S27 Bond I		(mp0) ₃ (H ₂ O) ₂	•H ₂ O			
Atom Atom	Length/Å	(F =)3(2 =)2	Atom	Atom	Length/Å	
Lu1 S3	2.8224(7	7)	N2	C10	1.345(3)	
Lu1 S1	2.7405(7	7)	N2	C6	1.369(3)	
Lu1 S2	2.7611(7	7)	N1	C1	1.365(3)	
Lu1 O2	2.2920(1	.8)	N1	C5	1.354(3)	
Lu1 O1	2.3029(1		C11	C12	1.404(4)	
Lu1 O4	2.3206(1		C10	C9	1.370(4)	
Lu1 O3	2.2888(1		C15	C14	1.363(4)	
Lu1 O5	2.3243(1		C1	C2	1.405(4)	
S3 C11	1.702(3)		C6	C7	1.406(4)	
S1 C1	1.706(3)		C5	C4	1.362(4)	
S2 C6	1.704(3)		C14	C13	1.383(5)	
O2 N2	1.347(3)		C12	C13	1.356(5)	
01 N1	1.344(2)		C9	C8	1.384(5)	
O3 N3	1.340(3)		C7	C8	1.368(5)	
N3 C11	1.369(3)		C2	C3	1.357(5)	
N3 C15	1.354(3)		C4	C3	1.378(6)	

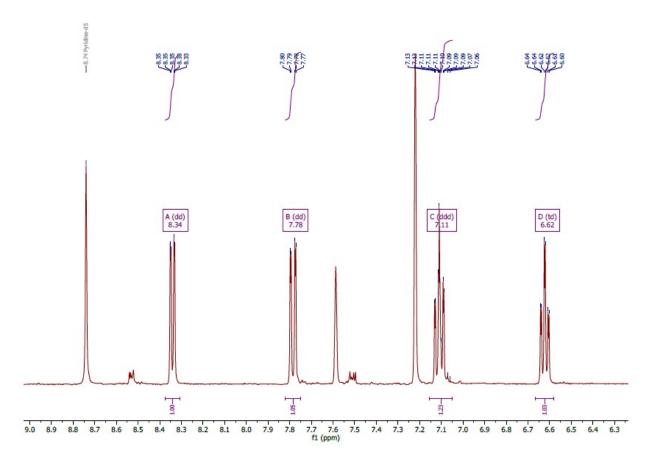
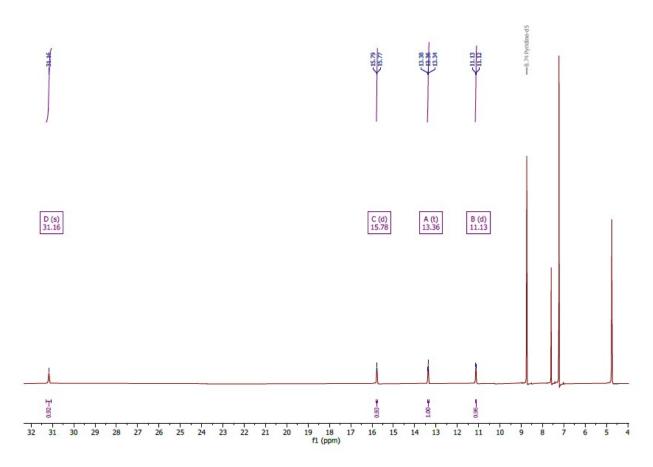
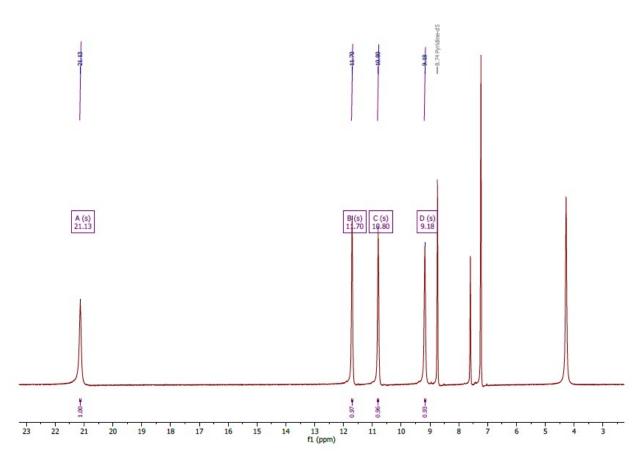
Table S28 Crystal data and str	ucture refinement for [Am(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂ •3H ₂ O
Empirical formula	$C_{15}H_{20}AmN_3O_7S_3$
Formula weight	693.52
Temperature/K	100.15
Crystal system	triclinic
Space group	P1
a/Å	8.3942(10)
b/Å	9.6982(10)
c/Å	13.6896(18)
$\alpha/^{\circ}$	92.332(5)
β/°	107.744(4)
γ°	92.932(3)
Volume/Å ³	1058.2(2)
Z	2
ρ calcg/cm ³	2.177
μ/mm^{-1}	3.963
F(000)	660.0
Crystal size/mm ³	$0.536 \times 0.298 \times 0.19$
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$
2Θ range for data collection/°	5.104 to 56.706
Index ranges	$-11 \le h \le 11, -12 \le k \le 12, -18 \le 1 \le 18$
Reflections collected	54347
Independent reflections	5265 [Rint = 0.0711, Rsigma = 0.0311]
Data/restraints/parameters	5265/1/274
Goodness-of-fit on F ²	1.178
Final R indexes [I>= 2σ (I)]	R1 = 0.0392, wR2 = 0.0960
Final R indexes [all data]	R1 = 0.0406, WR2 = 0.0973
Largest diff. peak/hole / e Å ⁻³	2.87/-4.89

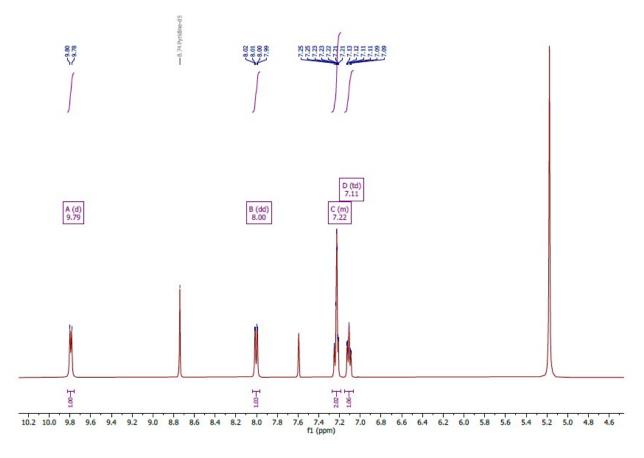
Table S29 Bond Lengths for [Am(mpo) ₂ (µ-O-mpo)(H ₂ O)] ₂ •3H ₂ O						
Atom	Atom	Length/Å	Atom	Atom	Length/Å	
Am1	S2	2.8890(16)	N1	C5	1.352(8)	
Am1	S3	2.8734(16)	N1	C1	1.371(8)	
Am1	S1	2.9453(16)	N2	C6	1.353(8)	
Am1	011	2.519(4)	N2	C10	1.360(8)	
Am1	01	2.468(4)	N3	C15	1.357(9)	
Am1	03	2.355(5)	N3	C11	1.358(8)	
Am1	O2	2.366(4)	C5	C4	1.361(9)	
Am1	N1	3.254(5)	C6	C7	1.409(9)	
Am1	N11	3.439(5)	C7	C8	1.380(9)	
Am1	O4	2.441(5)	C15	C14	1.379(9)	
Am1	N2	3.401(5)	C11	C12	1.414(9)	
Am1	N3	3.391(5)	C8	C9	1.398(10)	
S2	C6	1.721(6)	C4	C3	1.396(12)	
S3	C11	1.713(7)	С9	C10	1.357(10)	
S1	C1	1.730(7)	C14	C13	1.394(10)	
01	N1	1.349(6)	C12	C13	1.376(10)	
03	N3	1.337(6)	C1	C2	1.414(9)	
02	N2	1.358(7)	C2	C3	1.362(12)	
$11 \mathbf{V} \mathbf{I} \mathbf{V}$	17					

¹H Nuclear Magnetic Resonance Spectroscopy

¹H NMR spectra of **1-Ln** (Pr, Sm, Nd, Eu) and **2-Ln** (Yb, Lu) were collected in pyridine- d_5 as other solvents quickly precipitated the solids, see below. Spectra of **1-Ln** reveals four resonances that correspond with the four distinct resonances present in the major thiol form of pyrithione. Both **1-Pr** and **1-Nd** show paramagnetic broadening typical of both $4f^2$ and $4f^3$ systems ranging from 31 to 21 ppm, respectively. The spectrum of **1-Sm** exhibits peak splitting that is also observable in spectra of the free ligand: two triplets of doublets at 7.11 and 7.22 ppm correspond to aromatic protons meta- to the sulfur and N-oxide groups while the two doublets at 8.00 and 9.79 ppm are assigned to the protons meta- to these chelating moieties. Similarly, spectra of **1-Eu** and **2-Yb** show four, paramagnetic shifting of the other **1-Ln** (Gd, Tb) and **2-Ln** (Dy, Ho, Er, Tm) complexes was significant such that no set of resonances are observable. Due to sample constraints and radioactive hazards, ¹H NMR was unable to be collected on **1-Am**.

Monomeric 2-Ln contains three symmetric pyrithionate ligands which yield a single set of resonances, Figures S17 and S18. A single set of resonances is observed in 1-Ln, which indicates either a dynamic process via monomer-dimer equilibrium or dissociation of the dimers in the solution-state. Future studies using this ligand should investigate the behavior of 2-Ln in the solution-state using other deuterated, less complexing solvents.


Figure S14: Pyrithione, free ligand

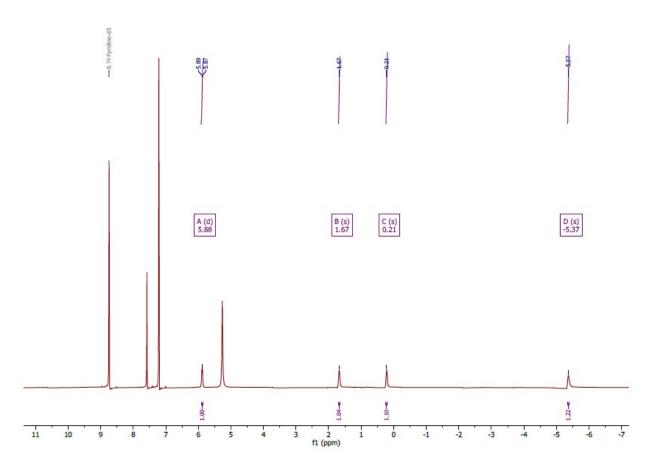

Figure S15: [Pr(mpo)₂(*µ*-O-mpo)(H₂O)]₂

Figure S16: [Nd(mpo)₂(*µ*-O-mpo)(H₂O)]₂

Figure S17: [Sm(mpo)₂(µ-O-mpo)(H₂O)]₂

Figure S18: [Eu(mpo)₂(*µ*-O-mpo)(H₂O)]₂

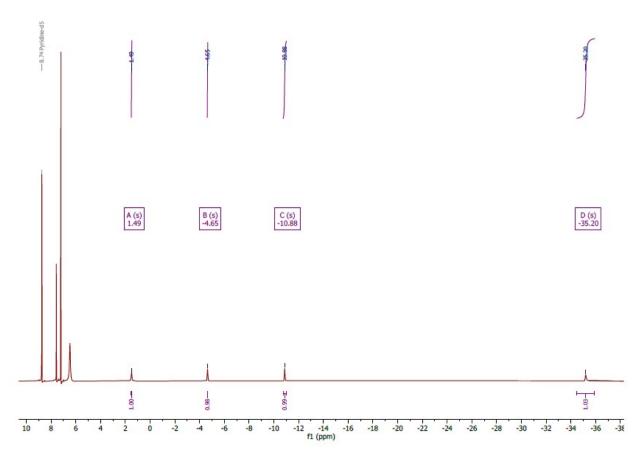
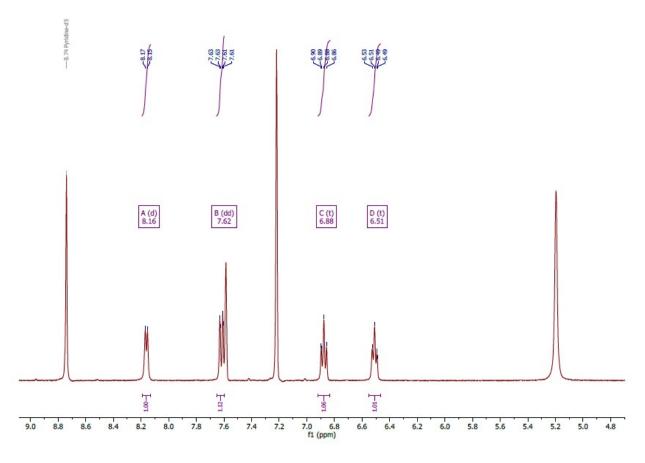
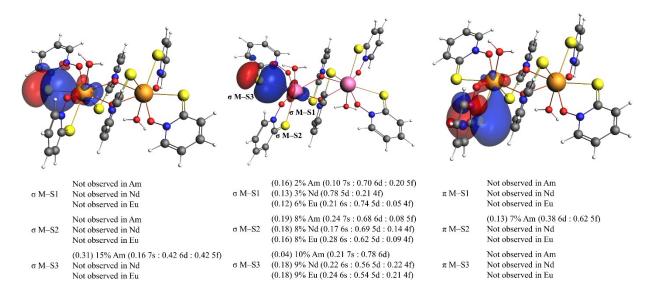




Figure S19: Yb(mpo)₃(H₂O)₂•H₂O

Figure S20: Lu(mpo)₃(H₂O)₂•H₂O

Figure S21. Selected natural localized molecular orbitals (NLMOs) showing the main metal – sulfur interactions. Metal contributions to the NLMOs are shown along with their hybrid contributions and contribution to the NLMO-BI (brackets).

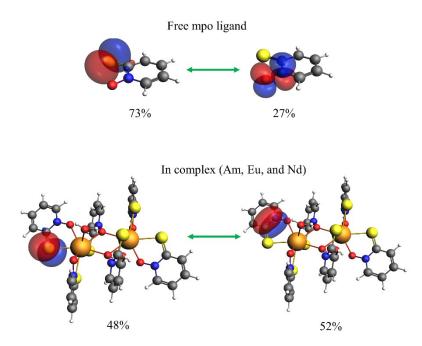
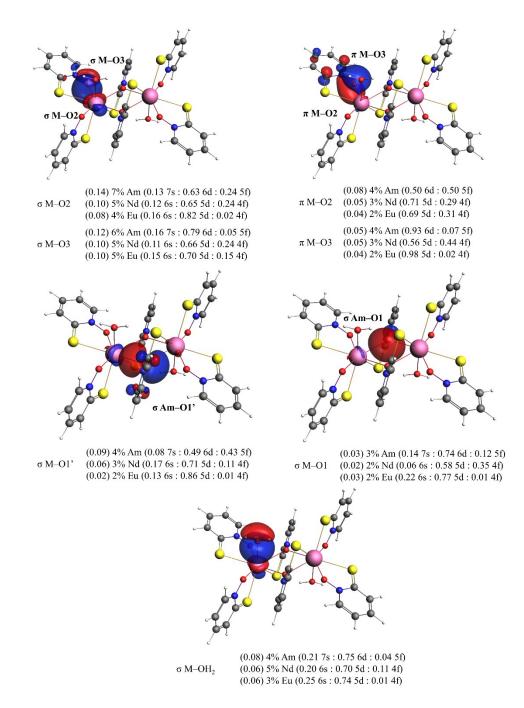
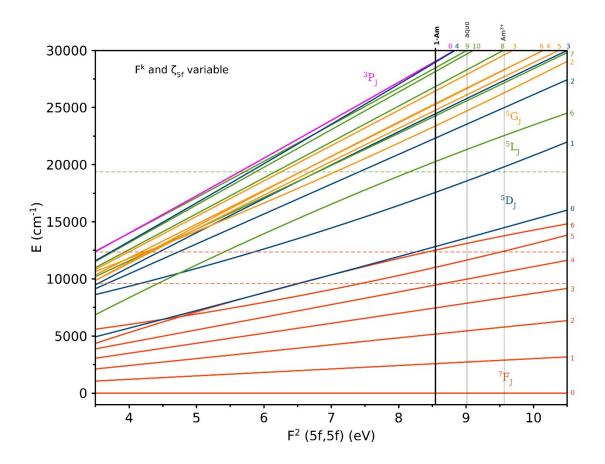




Figure S22. Selected hyperbonds (3-center 4-electron bonds) observed in the free mpo ligand and in complexes 1-Am, 1-Eu, and 1-Nd. The orbitals shown correspond to the natural bond orbitals (NBOs) involved in hyperbonding (A: $+B-C \rightarrow A-B + :C$).

Figure S23. Selected natural localized molecular orbitals (NLMOs) showing the main metal – oxygen interactions. Metal contributions to the NLMOs are shown along with their hybrid contributions and contribution to the NLMO-BI (brackets).

Figure S24. LFDFT energy levels of Am(III) as a function of F^k and ζ_{5f} parameters. It was assumed that F^4 , F^6 , and ζ_{5f} are dependent functions of F^2 . The vertical black line refers to the position of the electronic structure of **1-Am**, while grey vertical lines are shown as references for a nona-aquo and free Am³⁺ ions. For simplicity the Russell-Saunders notation has been used to label the nature of the ground and excited states.

		WBI			NLMO-	BI
M - L bond*	1-Nd	1-Eu	1-Am	1-Nd	1-Eu	1-Am
S1	0.333	0.313	0.393	0.219	0.198	0.251
S2	0.461	0.419	0.501	0.306	0.264	0.348
S3	0.451	0.413	0.568	0.296	0.253	0.433
01	0.183	0.153	0.245	0.099	0.085	0.131
O2	0.318	0.257	0.386	0.176	0.143	0.218
O3	0.316	0.262	0.382	0.173	0.150	0.202
01'	0.185	0.154	0.248	0.105	0.086	0.147
OH ₂	0.186	0.163	0.226	0.090	0.080	0.101

Table S30. Wiberg (WBI) and Natural Localized Molecular Orbital bond indices (NLMO-BI).Labels correspond to the 1-Am structure in Figure 3.

Bond	System	Average distance
	1-Am	1.723
C–S	1-Nd	1.711
	Free mpo	1.705
	1-Am	1.360
C–N	1-Nd	1.360
	Free mpo	1.440
	1-Am	1.347
N–O	1-Nd	1.333
	Free mpo	1.294

Table S31. Selected mpo bond lengths of the free and in-complex geometries. The free mpo bond lengths correspond to those obtained by geometry optimization at the PBE/TZP level of theory.

Table S32. Wiberg bond indices of the free and in-complex mpo. WBIs of complexed mpo correspond to average values of all coordinated mpo ligands.

WBI	mpo	1-Nd	1-Am	ΔWBI_{mpo-}	1- ΔWBI _{1-Nd-1-} Am
C-S	1.394	1.276	1.273	0.121	0.002
C-N	1.036	1.151	1.154	-0.118	-0.003
N-O	1.274	1.107	1.101	0.173	0.007

Relative energy (cm ⁻¹)	J	Wavefunction composition
0	0	50% ⁷ F + 36% ⁵ D + 12% ³ P
2,467 - 2,800	1	68% ⁷ F + 27% ⁵ D
5,064 - 5,517	2	81% ⁷ F + 15% ⁵ D
7,411 – 7,745	3	86% ⁷ F + 6% ⁵ D
9,100 - 9,926	4	87% ⁷ F + 5% ⁵ D
10,827 - 11,570	5	82% ⁷ F + 10% ⁵ G + 5% ⁵ F
11,944 - 12,590	6	72% ⁷ F + 21% ⁵ G

Table S33. Average wavefunction composition of the low-lying states of 1-Am calculated fromLFDFT. Contributions < 5% were omitted.</td>

	MIDWESTMICRO
-	lab
6	
"Pr	**
	SAMPLE IDENTIFICATION ON Vial

Analysis Requested: CHN

Single

Triplicate

Analysis Requested	Customer Theory		ffice Use Only: ; are total % Found	Molecular Formula:	Pr(C5H5NOS)3(H2O)
С	33.3%	32.98	33.01	Air Sensitive/ Glove Box:	YES NO V
н	3.1%	2.63	2.69	Hazardous/	
N	7.8%	7.60	7.59	Explosive:	YES NO
				Hydroscopic:	YES NO 🖌
				Vacuum Drying Requested: Yes No	Temp: °C Time: Hr, Min.
-				Sample Return Address: Yes No	

Shipping address: Mickwest Microlab	Submitter Comments:
Attn: Valerie Guzzetta 7212 N. Shadeland Ave., Suite 110 Indianapolis, IN 46250 Phone: 317-849-6606 Fax: 317-849-8534 Email: Info@midwestlab.com Website: www.midwestlab.com	Office Use Only

Please include 1 submission form per sample.

RECEIVED AUG 2 2 2022

Figure S25: CHN Analysis of 1-Pr.

	MIDWESTMICRO
-0) lab
"Nd"	
1	SAMPLE IDENTIFICATION ON Vial

Analysis Requested:

Single

Duplicate V Triplicate

Analysis Requested	Customer Theory		ffice Use Only: 5 are total % Found	Molecular Formula:	Nd(C5H5NOS)3(H2O)
с	33.1%	33.48	33.35	Air Sensitive/ Glove Box:	YES NO V
н	3.1%	2.57	2.27	Hazardous/	
N	7.7%	7.69	7.32	Explosive:	YES NO 🛩
				Hydroscopic:	VES NO
				Vacuum Drying Requested: Yes No	Temp: *C Time: Hr, Min.
				Sample Return Address: Yes No	

Shipping address:	Submitter Comments:	
Midwest Microlab		
Attn: Valerie Guzzetta		
7212 N. Shadeland Ave., Suite 110		
Indianapolis, IN 46250		
Phone: 317-849-6606		
Fax: 317-849-8534	Office Use Only	
Email: info@midwestlab.com		
Website: www.midwestlab.com		
And the second s	1	

Please include I submission form per sample.

RECEIVED AUG 2 2 2022

Figure S26: CHN Analysis of 1-Nd.

0	MIDWESTMICRO
	'Sm"
	SAMPLE IDENTIFICATION ON Vial

Analysis Requested:

Single

Triplicate

Customer Theory			Molecular Formula:	Sm(C5H5NOS)3 (H2O)
32.7%	32.85	33.05	Air Sensitive/	YES NO M
3.1%	2.53	2.59	Hazardous/	
7.6%	7.54	7.54	Explosive:	YES NO
			Hydroscopic:	YES NO
			Vacuum Drying Requested: Yes No	Temp: *C Time: Hr Min.
			Sample Return Address: Yes	
	Theory 32.7% 3.1%	Theory Results 32.7% 32.85. 3.1% 2.53	Theory Results are total % Found 32.7% 32.85. 33.05 3.1% 2.53 2.59	Theory Results are total % Found Formula: 32.7% 32.85. 33.05 Air Sensitive/ Glove Box: 3.1% 2.53 2.59 Hazardous/ Explosive: 7.6% 7.54 7.54 Hydroscopic: Vacuum Drying Requested: Yes No v No v Sample Return Address:

Shipping address:	Submitter Comments:
Midwest Microlab	
Attn: Valerie Guzzetta	
7212 N. Shadeland Ave., Suite 110 Indianapolis, IN 46250	
Phone: 317-849-6606	
Fax: 317-849-8534	Office Use Only
Email: info@midwestlab.com Website: www.midwestlab.com	

Please include I submission form per sample.

RECEIVED AUG 2 2 2022

Figure S27: CHN Analysis of 1-Sm.

	MIDWESTMICRO
-	lab
	Eu"
	SAMPLE IDENTIFICATION ON Vial

Analysis Requested: _____

Single

Duplicate 🔽 Triplicate

Analysis Requested	Customer Theory		ffice Use Only: : are total % Found	Molecular Formula:	Eu(C5H5NOS)3(H2O)
с	32.7%	35.39	**	Air Sensitive/ Glove Box:	YES NO
н	3.1%	3.09		Hazardous/	
N	7.6%	7.94		Explosive:	YES NO V
				Hydroscopic:	YES NO
				Vacuum Drying Requested: Yes	Temp: 'C Time: Hr Min.
				Sample Return Address: Yes No V	

Shipping address:	Submitter Comments.
Midwest Microlab	
Attn: Valerie Guzzetta	
7212 N. Shadeland Ave., Suite 110	
Indianapolis, IN 46250	
Phone: 317-849-6606	
Fax: 317-849-8534	Office Use Only
Email: info@midwestlab.com	** Sample lid was not screwed on and the sample leaked all over
Website: www.midwestlab.com	
	Only 0.794 mg of sample was viable in the vial.**

Please Include 1 submission form per sample.

RECEIVED AUG 2 2 2022

Figure S28: CHN Analysis of 1-Eu.

	MIDWESTMICRO
-	lab
"(3d"
	SAMPLE IDENTIFICATION ON Vial

Analysis Requested:

Single

Triplicate

Analysis Requested	Customer Theory		ffice Use Only: 1 are total % Found	Molecular Formula:	Gd(C5H5NOS)3 (H2O)
с	32.3%	31.70	31.66	Air Sensitive/ Glove Box:	YES NO
н	3.1%	2.56	2.74	Hazardous/	
N	7.5%	7.25	6.96	Explosive:	YES NO
				Hydroscopic:	YES NO
				Vacuum Drying Requested: Yes No	Temp:*C Time: Hr Min.
•				Sample Return Address: Yes	-

Shipping address: Midwest Microlab	Submitter Comments:
Attn: Valerie Guzzetta	
7212 N. Shadeland Ave., Suite 110	
Indianapolis, IN 46250 Phone: 317-849-6606	
Fax: 317-849-8534	Office Use Only
Email: info@midwestlab.com	
Website: www.midwestlab.com	

Please include 1 submission form per sample.

RECEIVED AUG 2 2 2022

Figure S29: CHN Analysis of 1-Gd.

	MIDWESTMICRO
	ТЬ"
£	SAMPLE IDENTIFICATION ON Viol

Analysis Requested:

Single

Duplicate V Triplicate

Analysis Requested	Customer Theory		fice Use Only: are total % Found	Molecular Formula:	Tb(C5H5NOS)3(H2O)
с	32.3%	32.17	32.48	Air Sensitive/ Glove Box:	YES NO 🛩
н	3.1%	2.44	2.50	Hazardous/	
N	7.5%	7.47	7.51	Explosive:	YES NO
				Hydroscopic:	YES NO 🖌
				Vacuum Drying Requested: Yes v No v	Temp: 25 °C Time: 2 Hr Min.
+				Sample Return Address: Yes No	

Shipping address:	bmitter Comments: Sample may be wet, please pul	I vacuum without heat.
Attn: Valene Guzzetta 7212 N. Shadeland Ave., Suite 110 Indianapolis, IN 46250		
Phone: 317-849-6606 Fax: 317-849-8534 Email: info@midwestlab.com Website: www.midwestlab.com	ffice Use Only	
Please include 1 submission form per sample.	RECEIVED AUG 2 2 2022	We appreciate your business.

Figure S30: CHN Analysis of 1-Tb.

ß	MIDWESTMICRO
6	lab
E	-
	"Dy"
	SAMPLE IDENTIFICATION ON Vial

Analysis Requested:

Single

Duplicate

Analysis Requested	Customer Theory		iffice Use Only: s are total % Found	Molecular Formula:	Dy(C5H5NOS)3(H2O) 2
с	31.2%	30.78	31.00	Air Sensitive/ Glove Box:	YES NO V
н	3.3%	3.21	3.08	Hazardous/	
N	7.3%	6.98	7.02	Explosive:	YES NO
				Hydroscopic:	YES NO
				Vacuum Drying Requested: Yes No	Temp: °C Time: Hr Min.
				Sample Return Address: Yes	
				No V	

Shipping address: Midwest Microlab Attn: Valerie Guzatta 7212 N. Shadeland Ave., Suite 110 Indianapolis, IN 46250 Phone: 317-849-6606 Fax: 317-849-8534 Email: info@midwestlab.com Website: www.midwestlab.com	Submitter Comments: Office Use Only	
Construction of the second	1	

Please include 1 submission form per sample.

RECEIVED AUG 2 2 2022

Figure S31: CHN Analysis of 2-Dy.

MI	DWESTMICR
	101
"Ho"	
C 4440	LE IDENTIFICATION ON Vial

Analysis Requested: CHN

Single

Triplicate

Analysis Requested	Customer Theory		ffice Use Only: are total % Found	Molecular Formula:	Ho(C5H5NOS)3(H2O) 2
с	30.1%	30.14	30.99	Air Sensitive/ Glave Bax:	YES NO V
н	3.3%	2.92	3.29	Hazardous/	
N	7.2%	6.92	6.76	Explosive:	YES NO
				Hydroscopic:	YES NO
				Vacuum Drying Requested: Yes	Temp: "C Time: Hr Min.
•				Sample Return Address: Yes No	-

Shipping address: Midwest Microlab	itter Comments:	
Attn: Valerie Guzzetta 7212 N. Shadeland Ave., Suite 110 Indianapolis, IN 46250		
Phone: 317-849-6606	e Use Only	
Please include 1 submission form per somple.	RECEIVED AUG 2 2 2022	We appreciate your business.

Figure S32: CHN Analysis of 2-Ho.

	MIDWESTMICR	ç
~	la la	10
-6	-	
E		
	SAMPLE IDENTIFICATION ON Vial	

CHN Analysis Requested:

Duplicate Single

Analysis Requested	Customer Theory		illice Use Only: s are total % Found	Molecular Formula:	Er(C5H5NOS)3(H2O) 2
с	30.8%	30.49	30.25	Air Sensitive/ Glove Box:	YES NO V
н	3.3%	2.93	2.92	Hazardous/	
N	7.2%	6.96	6.93	Explosive:	YES NO
				Hydroscopic:	YES NO 🖌
				Vacuum Drying Requested: Yes No	Temp: "C Time: Hr Min.
				Sample Return Address: Yes	
				No 🗸	

Triplicate

	Submitter Comments:
a	

Shipping address:
Midwest Microlab
Attn: Valerie Guzzetta
7212 N. Shadeland Ave., Suite 110
Indianapolis, IN 46250
Phone: 317-849-6606
Fax: 317-849-8534
Email: info@midwestlab.com
Website: www.midwestlab.com

Office Use Only

Please include 1 submission form per sample.

RECEIVED AUG 2.2 2022

We appreciate your business.

Figure S33: CHN Analysis of 2-Er.

MI	DWESTMICR(
"Tm"	
	E IDENTIFICATION ON Vial

Duplicate 🖌

Analysis Requested:

Single

Triplicate

Analysis Requested	Customer Theory		ffice Use Only: are total % Found	Molecular Formula:	Tm(C5H5NOS)3 (H2O)2
с	30.7%	30.82	30.56	Air Sensitive/ Glove Box:	YES NO W
н	3.3%	2.89	2.96	Hazardous/	
N	7.2%	7.02	6.86	Explosive:	YES NO
				Hydroscopic:	YES NO
				Vacuum Drying Requested: Yes No	Temp: *C Time: Hr Min.
*				Sample Return Address: Yes No	

	1 Submitter Comments
Shipping address: Midwest Microlab Attn: Valerie Guzzetta 7212 N. Shadeland Ava., Suite 110 Indianapolis, IN 46250 Phone: 317-849-6605 Fax: 317-849-8534	Submitter Comments:
Email: info@midwestlab.com Webste: www.midwestlab.com	
and the second se	

Please include 1 submission form per sample.

RECEIVED AUG 2 2 2022

Figure S34: CHN Analysis of 2-Tm.

OM	IDWESTMICRO
	10L
"ҮЬ"	
SAM	PLE IDENTIFICATION ON Vial

Analysis Requested: CHN

Duplicate Single

Analysis Requested	Customer Theory	Office Use Only: Results are total % Found		Molecular Formula:	Yb(C5H5NOS)3(H2O) 2
с	30.5%	30.02	30.15	Air Sensitive/ Glove Box:	YES NO
н	3.2%	3.02	2.98	Hazardous/	YES NO
N	7.1%	6.95	6.87	Explosive:	
				Hydroscopic:	YES NO
				Vacuum Drying Requested: Yes No	Temp: *C Time: Hr Min.
				Sample Return Address: Yes	

Triplicate

Shipping address: Midwest Microlab Attn: Valerie Guzetta 7212 N. Shadeland Ave., Suite 110 Indianapolis, IN 46250 Phone: 317-849-6506 Fax: 317-849-8534 Email: Info@midwestlab.com Website: www.midwestlab.com	Submitter Comments:
Please include 1 submission form per sa	mple. We appreciate your business.

Please include 1 submission form per sample.

RECEIVED AUG 2 2 2022

Figure S35: CHN Analysis of 2-Yb.

MIDWE	STMICRO
"Lu" SAMPLE IDENTIF	TCATION ON Vial

Analysis Requested: CHN

Single

Triplicate

Analysis Requested	Customer Theory		iffice Use Only: s are total % Found	Molecular Formula:	Lu(C5H5NOS)3(H2O) 2
с	30.4%	30.22	30.36	Air Sensitive/ Glove Box:	YES NO
н	3.2%	2.91	2.92	Hazardous/ Explosive:	YES NO
N	7.1%	6.97	6.76		
		÷.,		Hydroscopic:	YES NO
				Vacuum Drying Requested: Yes No	Temp: 'C Time: Hr Min.
-				Sample Return Address: Yes	-

Shipping address: Midwest Microlab	Submitter Comments:	
Attn: Valerie Guzzetta 7212 N. Shadeland Ave., Suite 110		
Indianapolis, IN 46250 Phone: 317-849-6606 Fax: 317-849-8534	Office Use Only	
Email: Info@midwestlab.com Website: <u>www.midwestlab.com</u>		

Please include I submission form per sample.

RECEIVED AUG 2 2 2022

We appreciate your business.

Figure S36: CHN Analysis of 2-Lu.

References

- 1 APEX3. Bruker AXS, Inc.: Madison, WI 2017.
- 2 Sheldrick, G. M. Crystal Structure Refinement with SHELXL. *Acta Crystallogr. C* 2015, **71**, 3-8.
- 3 Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr. A* 2015, **71**, 3-8.
- 4 G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, *J Comp. Chem.* 2001, **22**, 931–967.
- 5 Lenthe, E. van; Baerends, E. J.; Snijders, J. G. Relativistic Regular Two-component Hamiltonians. J. Chem. Phys. 1993, **99**, 4597–4610.
- 6 Glendening, E. D.; Landis, C. R.; Weinhold, F. NBO 6.0 : Natural Bond Orbital Analysis Program. J. Comput. Chem. 2013, **34**, 1429–1437.
- 7 Ramanantoanina, H.; Urland, W.; Cimpoesu, F.; Daul, C. Phys. Chem. Chem. Phys. 2013, 15, 13902-13910.
- 8 Binnemans, K.; Srller-Walrand, C. G. Chem. Phys. Lett. 1995, 235, 163–174.
- 9 Liu, G. K.; Jensen, M. P.; Almond, P. M. J. Phys. Chem. A 2006, 110 (6), 2081–2088.