Electronic Supplementary Information

Synthesis of 2-arylethenesulfonyl fluorides and isoindolinones: Ru-

catalyzed C-H activation of nitrones with ethenesulfonyl fluoride

Tong-Tong Wang,^a and Li-Ming Zhao*^{ab}

^aSchool of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116,

Jiangsu, China

^bState Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191,

China

*Email: *lmzhao@jsnu.edu.cn*

Table of Contents

General MethodsS
General Procedure for the Synthesis of Compound 3 and Characterization Data
General Procedure for the Synthesis of Compound 5 and Characterization DataS9-S12
Scale Synthesis of 1.0 mmol 3a
Procedure for the Synthesis of Compound 6 and Characterization Data
Procedure for the Synthesis of Compound 7 and Characterization Data
Procedure for the Synthesis of Compound 8 and Characterization Data
Mechanism Studies
Scheme S1. Proposed Reaction Mechanism
Scheme S2. Proposed Reaction Mechanism for the Formation of 7
Table S1. Optimization of the Reaction Conditions S20-S2
References
Copies of ¹ H and ¹³ C NMR Spectra for Compound 3
Copies of ¹ H and ¹³ C NMR Spectra for Compound 5S40-S4
Copies of ¹ H and ¹³ C NMR Spectra for Compound 6
Copies of ¹ H and ¹³ C NMR Spectra for Compound 7
Copies of ¹ H and ¹³ C NMR Spectra for Compound 8
Crystal Structure of Compound 3a

General Methods. Solvents and reagents were used as purchased without further purification. The reaction progress was monitored by thin-layer chromatography (TLC) on silica gel plates. Visualization of the developed plates was performed under a UV lamp. Chromatographic purification was performed with silica gel (100-200 mesh size). Melting points were uncorrected. Nuclear magnetic resonance spectra (¹H and ¹³C NMR) were recorded on Bruker DPX 400 MHz and 100 MHz spectrometers in CDCl₃ or DMSO-*d*₆ with the chemical shift (δ) given in parts per million (ppm). Multiplicities were indicated as follows: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets) and so forth; the coupling constant (*J*) was given in hertz (Hz). High-resolution mass spectra (HRMS) were recorded on a Q-Exactive Focus Orbitrap mass spectrometer. Arylnitrones **1** were prepared according to the literature procedure.¹

General Procedure for the Synthesis of Compound 3. Arylnitrones 1 (0.2 mmol, 1.0 equiv), ethenesulfonyl fluoride 2 (0.4 mmol, 2.0 equiv), $[RuCl_2(p-cymene)]_2$ (0.02 mmol, 0.1 equiv), AgSbF₆ (0.06 mmol, 0.3 equiv), Cu(OAc)₂·H₂O (0.4 mmol, 2.0 equiv), 1,4-benzoquinone (0.4 mmol, 2.0 equiv), and 1,2-dichloroethane (2.0 mL) were placed in a 15 mL pressure tube under the air atmosphere. The tube was then sealed and the reaction mixture was stirred at 100 °C on a heating block for 1 h. After completion of the reaction, the resulting mixture was cooled to room temperature and filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel to provide compound 3.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)*phenyl*)*ethene-1-sulfonyl fluoride* (**3***a*). White solid (45 mg, 79% yield), ethyl acetate/petroleum ether = 1:5. mp 136-138 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 15.6 Hz, 1H), 7.60-7.58 (m, 1H), 7.51-7.49 (m, 3H), 6.86 (dd, *J* = 15.6, 1.6Hz, 1)

1H), 5.70 (s, 1H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 146.8 (d, *J* = 3.2 Hz), 139.1, 132.1, 130.5, 129.3 (d, *J* = 1.4 Hz), 128.1, 127.7, 120.0 (d, *J* = 27.9 Hz), 52.7, 28.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₇FNO₃S 286.0908; found 286.0900.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)-5-*methoxyphenyl*)*ethene-1-sulfonyl fluoride* (**3b**). Yellow solid (55 mg, 87% yield), ethyl acetate/petroleum ether = 1:5. mp 122-124 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 15.6 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.00 (s, 1H), 6.99 (d, *J* = 7.6 Hz, 1H), 6.80 (d, *J* = 15.6 Hz, 1H), 5.77 (s, 1H), 3.86 (s, 3H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 160.9, 147.2 (d, *J* = 4.1 Hz), 131.5, 131.2, 129.5, 120.0 (d, *J* = 28.1 Hz), 117.1, 113.1, 55.7, 52.4, 28.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₉FNO₄S 316.1013; found 316.1018.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)-5-(*methylthio*)*phenyl*)*ethene-1-sulfonyl* fluoride (3c). Yellow solid (52 mg, 78% yield), ethyl acetate/petroleum ether = 1:10. mp 116-118 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 15.6 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.34 (s, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 6.83 (dd, *J* = 15.6, 1.6 Hz, 1H), 5.71 (s, 1H), 2.53 (s, 3H), 1.46 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 146.7 (d, *J* = 3.2 Hz), 142.7, 135.0, 130.1 (d, *J* = 1.4 Hz), 128.6, 128.1, 124.8, 120.4 (d, *J* = 28.1 Hz), 52.6, 28.8, 15.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₉FNO₃S₂ 332.0785; found 332.0791.

(*E*)-2-(4-(*Tert-butylcarbamoyl*)-[1,1'-biphenyl]-3-yl)ethene-1-sulfonyl fluoride (3d). Yellow solid (66 mg, 91% yield), ethyl acetate/petroleum ether = 1:10. mp 122-124 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 15.6 Hz, 1H), 7.75 (s, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.60-7.56 (m, 3H), 7.51-7.47 (m, 2H), 7.44 (d, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 15.6 Hz, 1H), 5.72 (s, 1H), 1.50 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 146.9 (d, *J* = 3.9 Hz), 143.7, 139.0, 137.5, 130.5,

130.0, 129.2, 128.6, 128.3, 127.2, 126.8, 120.4 (d, J = 27.9 Hz), 52.7, 28.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₁FNO₃S 362.1221; found 362.1223.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)-5-fluorophenyl)ethene-1-sulfonyl fluoride (3e). Yellow solid (40 mg, 66% yield), ethyl acetate/petroleum ether = 1:10. mp 101-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 15.6 Hz, 1H), 7.53 (dd, *J* = 8.4, 5.6 Hz, 1H), 7.29-7.26 (m, 1H), 7.21 (td, *J* = 8.0, 2.0 Hz, 1H), 6.85 (dd, *J* = 15.6, 1.6 Hz, 1H), 5.67 (s, 1H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 163.2 (d, *J* = 250.8 Hz), 145.5, 135.3 (d, *J* = 3.5 Hz), 131.9 (d, *J* = 7.7 Hz), 130.0 (d, *J* = 8.5 Hz), 121.4 (d, *J* = 28.6 Hz), 118.9 (d, *J* = 21.4 Hz), 114.8 (d, *J* = 22.7 Hz), 52.8, 28.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₆F₂NO₃S 304.0813; found 304.0815.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)-5-chlorophenyl)ethene-1-sulfonyl fluoride (**3***f*). White solid (48 mg, 75% yield), ethyl acetate/petroleum ether = 1:10. mp 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 15.6 Hz, 1H), 7.55 (s, 1H), 7.50-7.44 (m, 2H), 6.87 (dd, *J* = 15.6, 1.6 Hz, 1H), 5.73 (s, 1H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 145.3 (d, *J* = 3.1 Hz), 140.4, 138.2, 130.6, 129.3, 128.0, 127.6 (d, *J* = 1.4 Hz), 120.5 (d, *J* = 28.5 Hz, 1H), 52.9, 28.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₆ClFNO₃S 320.0518; found 320.0512.

(*E*)-2-(5-Bromo-2-(tert-butylcarbamoyl)phenyl)ethene-1-sulfonyl fluoride (**3g**). White solid (40 mg, 55% yield), ethyl acetate/petroleum ether = 1:10. mp 85-87 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 15.2 Hz, 1H), 7.61 (d, *J* = 7.2 Hz, 1H), 7.60 (s, 1H), 7.44 (d, *J* = 8.8 Hz, 1H), 6.86 (dd, *J* = 15.2, 1.6 Hz, 1H), 5.83 (s, 1H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 145.3 (d, *J* = 2.8 Hz), 140.4, 133.5, 130.8, 129.3, 128.0, 126.4, 120.5 (d, *J* = 28.4 Hz), 52.9, 28.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₆BrFNO₃S 364.0013; found 364.0014.

Methyl (E)-4-(tert-butylcarbamoyl)-3-(2-(fluorosulfonyl)vinyl)benzoate (3h). Yellow solid

(50 mg, 73% yield), ethyl acetate/petroleum ether = 1:10. mp 187-188 °C. ¹H NMR (400 MHz,CDCl₃) δ 8.23 (s, 1H), 8.15 (d, *J* = 16.0 Hz, 1H), 8.14 (d, *J* = 5.2 Hz, 1H), 7.57 (d, *J* = 7.2 Hz, 1H), 6.97 (d, *J* = 15.6 Hz, 1H), 5.77 (s, 1H), 3.97 (s, 3H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 165.3, 145.5 (d, *J* = 3.4 Hz), 142.5, 132.7, 132.1, 129.6, 129.1, 128.0, 121.5 (d, *J* = 27.9 Hz), 53.0, 52.9, 28.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₉FNO₅S 344.0962; found 344.0962.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)-5-hydroxyphenyl)ethene-1-sulfonyl fluoride (**3i**). White solid (46 mg, 76% yield), ethyl acetate/petroleum ether = 1:3. mp 105-106 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.17 (s, 1H), 8.15 (d, J = 15.2 Hz, 1H), 8.00 (s, 1H), 7.79 (d, J = 15.2 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.25 (s, 1H), 6.98 (d, J = 8.4 Hz, 1H), 1.36 (s, 9H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.3, 158.5, 147.4 (d, J = 2.8 Hz), 131.1, 130.5, 130.1, 119.2 (d, J = 25.3Hz), 118.8, 113.9, 51.1, 28.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₇FNO₄S 302.0857; found 302.0858.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)-6-methylphenyl)ethene-1-sulfonyl fluoride (**3***j*). Yellow solid (40 mg, 67% yield), ethyl acetate/petroleum ether = 1:5. mp 121-122 °C.¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 15.6 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.30-7.27 (m, 2H), 6.81 (dd, *J* = 15.6, 2.0 Hz, 1H), 5.68 (s, 1H), 2.42 (s, 3H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 146.6 (d, *J* = 2.8 Hz), 143.2, 139.3, 131.2, 128.4, 128.0, 126.3, 118.9 (d, *J* = 27.9 Hz), 52.6, 28.8, 21.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₉FNO₃S 300.1064; found 300.1066.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)-6-chlorophenyl)ethene-1-sulfonyl fluoride (**3k**). White solid (39 mg, 61% yield), ethyl acetate/petroleum ether = 1:10. mp 120-121 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 15.6 Hz, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.47-7.45 (m, 2H), 6.85 (dd, *J* =

15.2, 1.6 Hz, 1H), 5.77 (s, 1H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 145.3 (d, *J* = 2.8 Hz), 137.2, 136.7, 131.8, 131.2, 129.1, 127.9, 121.4 (d, *J* = 28.6 Hz), 52.8, 28.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₆CIFNO₃S 320.0518; found 320.0518.

(*E*)-2-(2-Bromo-6-(*tert-butylcarbamoyl*)phenyl)ethene-1-sulfonyl fluoride (31). White solid (39 mg, 54% yield), ethyl acetate/petroleum ether = 1:10. mp 99-101 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 15.2 Hz, 1H), 7.63-7.62 (m, 2H), 7.45 (d, *J* = 8.8 Hz, 1H), 6.86 (dd, *J* = 15.6 Hz, 1.2 Hz, 1H), 5.74 (s, 1H). 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 145.4 (d, *J* = 2.8 Hz), 140.5, 133.6, 130.9, 129.4, 128.1, 126.5, 120.6 (d, *J* = 28.5 Hz), 53.0, 28.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₆BrFNO₃S 364.0013; found 364.0014.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)-3-methylphenyl)ethene-1-sulfonyl fluoride (**3m**). White solid (41 mg, 68% yield), ethyl acetate/petroleum ether = 1:10. mp 168-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 15.2 Hz, 1H), 7.41-7.39 (m, 1H), 7.36-7.33 (m, 2H), 6.89 (dd, *J* = 15.6, 2.0 Hz, 1H), 5.62 (s, 1H), 2.38 (s, 3H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 146.3 (d, *J* = 3.0 Hz), 139.6, 135.9, 134.2, 129.3, 127.8 (d, *J* = 1.4 Hz), 124.9, 120.0 (d, *J* = 28.0 Hz), 52.7, 28.7, 18.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₉FNO₃S 300.1064; found 300.1065.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)-3-chlorophenyl)ethene-1-sulfonyl fluoride (**3n**). White solid (25 mg, 39% yield), ethyl acetate/petroleum ether = 1:5. mp 177-179 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 15.6 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.8 Hz, 1H), 6.96 (dd, *J* = 15.6, 2.0 Hz, 1H), 5.66 (s, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 144.9 (d, *J* = 3.2 Hz), 138.4, 133.0, 132.2, 130.4, 130.2 (d, *J* = 1.5 Hz), 126.1, 121.8 (d, *J* = 28.7 Hz), 53.1, 28.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₆ClFNO₃S 320.0518; found 320.0519.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)-4,5-dimethoxyphenyl)ethene-1-sulfonyl fluoride (**30**). Yellow solid (57 mg, 83% yield), ethyl acetate/petroleum ether = 1:10. mp 114-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 15.6 Hz, 1H), 6.97 (s, 2H), 6.75 (dd, *J* = 15.2, 1.6 Hz, 1H), 5.64 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 152.4, 150.4, 146.2 (d, *J* = 3.3 Hz), 134.1, 121.4, 117.4 (d, *J* = 27.8 Hz), 110.4, 109.1, 56.4, 56.3, 52.8, 28.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₂₁FNO₅S 346.1119; found 346.1120.

(*E*)-2-(2-(*Tert-butylcarbamoyl*)-4,5-dichlorophenyl)ethene-1-sulfonyl fluoride (**3***p*). Yellow solid (36 mg, 51% yield), ethyl acetate/petroleum ether = 1:10. 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 15.6 Hz, 1H), 7.67 (s, 1H), 7.59 (s, 1H), 6.87 (d, *J* = 15.6 Hz, 1H), 5.70 (s, 1H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 144.1 (d, *J* = 3.3 Hz), 138.0, 136.2, 135.0, 129.6, 129.1 (d, *J* = 1.5 Hz), 121.6 (d, *J* = 29.0 Hz), 53.0, 28.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₅Cl₂FNO₃S 354.0128; found 354.0131.

(*E*)-2-(3-(*Tert-butylcarbamoyl*)naphthalen-2-yl)ethene-1-sulfonyl fluoride (**3q**). White solid (55 mg, 82% yield), ethyl acetate/petroleum ether = 1:10. mp 127-129 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 15.2 Hz, 1H), 8.00 (s, 1H), 7.92 (s, 1H), 7.88-7.86 (m, 2H), 7.64-7.61 (m, 2H), 6.93 (dd, *J* = 15.6, 2.0 Hz, 1H), 5.93 (s, 1H), 1.52 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 147.4 (d, *J* = 3.2 Hz), 135.1, 133.8, 133.1, 129.7, 129.1, 128.7, 128.4, 128.2, 127.6, 126.9 (d, *J* = 1.5 Hz), 119.6 (d, *J* = 27.8 Hz), 52.6, 28.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₉FNO₃S 336.1064; found 336.1064.

(*E*)-2-(2-(*Benzylcarbamoyl*)*phenyl*)*ethene-1-sulfonyl fluoride* (**3s**). White solid (29 mg, 45% yield), ethyl acetate/petroleum ether = 1:5. mp 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.33

(d, J = 15.6 Hz, 1H), 7.63-7.61 (m, 1H), 7.57-7.52 (m, 3H), 7.40-7.32 (m, 5H), 6.83 (d, J = 15.6 Hz, 1H), 6.25 (s, 1H), 4.64 (d, J = 5.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 146.8 (d, J = 2.8 Hz), 137.5, 137.3, 132.0, 131.1, 130.1, 129.1, 128.2, 128.1, 128.1, 127.8, 120.3 (d, J = 28.2 Hz), 44.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₅FNO₃S 320.0751; found 320.0752.

General Procedure for the Synthesis of Compound 5. Arylnitrones 4 (0.2 mmol, 1.0 equiv), ethenesulfonyl fluoride 2 (0.4 mmol, 2.0 equiv), $[RuCl_2(p-cymene)]_2$ (0.02 mmol, 0.1 equiv), AgSbF₆ (0.06 mmol, 0.3 equiv), Cu(OAc)₂·H₂O (0.4 mmol, 2.0 equiv), 1,4-benzoquinone (0.4 mmol, 2.0 equiv), and trifluoroethanol (2.0 mL) were placed in a 15 mL pressure tube under the air atmosphere. The tube was then sealed and the reaction mixture was stirred at 120 °C on a heating block for 6 h. After completion of the reaction, the resulting mixture was cooled to room temperature and filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel to provide compound 5.

(2-*Methyl-3-oxoisoindolin-1-yl)methanesulfonyl fluoride* (**5***a*). Yellow solid (28 mg, 58% yield), ethyl acetate/petroleum ether = 1:10. mp 141-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.6 Hz, 1H), 7.64-7.63 (m, 2H), 7.59-7.54 (m, 1H), 4.96 (t, *J* = 5.2 Hz, 1H), 3.94 (dt, *J* = 15.2, 3.6 Hz, 1H), 3.86 (dt, *J* = 15.2, 4.8 Hz, 1H), 3.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 141.7, 132.5, 131.7, 129.8, 124.2, 122.7 (d, *J* = 1.5 Hz), 57.1, 53.2 (d, *J* = 15.7 Hz), 28.1 (d, *J* = 1.3 Hz). HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₁FNO₃S 244.0438; found 244.0433.

(6-Methoxy-2-methyl-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (5b). Yellow solid (39 mg, 71% yield), ethyl acetate/petroleum ether = 1:5. mp 156-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.4 Hz, 1H), 7.10 (s, 1H), 7.05 (dd, *J* = 8.4, 2.0 Hz, 1H), 4.89 (t, *J* = 5.2

Hz, 1H), 3.91 (dt, J = 14.8, 3.2 Hz, 1H), 3.89 (s, 3H), 3.81 (dt, J = 15.2, 4.8 Hz, 1H), 3.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 163.5, 144.1, 125.6, 124.1, 116.0, 107.8 (d, J = 1.5 Hz), 56.8, 55.9, 53.4 (d, J = 15.6 Hz), 28.1 (d, J = 1.0 Hz). HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₃FNO₄S 274.0544; found 274.0552.

(2-Methyl-6-(methylthio)-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (5c). Yellow solid (36 mg, 62% yield), ethyl acetate/petroleum ether = 1:5. mp 164-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 1H), 7.44 (s, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 4.91 (t, *J* = 4.8 Hz, 1H), 3.93 (dt, *J* = 15.2, 2.8 Hz, 1H), 3.83 (dt, *J* = 15.2, 4.4 Hz, 1H), 3.19 (s, 3H), 2.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 145.6, 142.7, 128.1, 126.8, 124.2, 119.2 (d, *J* = 1.6 Hz), 56.8, 53.1 (d, *J* = 15.7 Hz), 28.1 (d, *J* = 1.0 Hz), 15.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₃FNO₃S₂ 290.0315; found 290.0327.

(6-Fluoro-2-methyl-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (5d). White solid (25 mg, 49% yield), ethyl acetate/petroleum ether = 1:5. mp 174-176 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, *J* = 8.4, 4.8 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.28-7.24 (m, 1H), 4.94 (t, *J* = 4.8 Hz, 1H), 3.95 (dt, *J* = 15.2, 3.6 Hz, 1H), 3.83 (dq, *J* = 15.2, 4.0 Hz, 1H), 3.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 165.5 (d, *J* = 252.3 Hz), 144.0 (d, *J* = 10.2 Hz), 127.8 (d, *J* = 2.6 Hz), 126.3 (d, *J* = 9.8 Hz), 117.6 (d, *J* = 23.2 Hz), 110.6 (d, *J* = 26.9 Hz), 56.7 (d, *J* = 3.1 Hz), 52.7 (d, *J* = 16.2 Hz), 28.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₀F₂NO₃S 262.0344; found 262.0346.

(5-Methoxy-2-methyl-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (5e). Yellow solid (25 mg, 46% yield), ethyl acetate/petroleum ether = 1:5. mp 203-205 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.4 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 7.16 (dd, J = 8.4, 2.4 Hz, 1H), 4.90

(t, J = 4.8 Hz, 1H), 3.91 (dt, J = 15.2, 3.6 Hz, 1H), 3.88 (s, 3H), 3.80 (dt, J = 15.2, 4.0 Hz, 1H), 3.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 161.1, 133.5, 133.2, 123.6 (d, J = 1.6 Hz), 120.4, 107.0, 56.6, 55.6, 53.1 (d, J = 15.2 Hz), 28.1 (d, J = 1.2 Hz). HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₃FNO₄S 274.0544; found 274.0546.

(5-*Chloro-2-methyl-3-oxoisoindolin-1-yl*)*methanesulfonyl fluoride* (**5***f*). White solid (20 mg, 36% yield), ethyl acetate/petroleum ether = 1:5. mp 156-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.61-7.57 (m, 2H), 4.94 (t, *J* = 5.6 Hz, 1H), 3.96 (dt, *J* = 15.2, 3.6 Hz, 1H), 3.82 (dq, *J* = 15.6, 3.6 Hz, 1H), 3.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 139.7, 136.3, 133.6, 132.6, 124.4, 124.1 (d, *J* = 1.5 Hz), 56.8, 52.6 (d, *J* = 16.0 Hz), 28.1 (d, *J* = 1.2 Hz). HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₀ClFNO₃S 278.0048; found 278.0050.

(2,4-Dimethyl-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (**5***g*). Yellow solid (16 mg, 31% yield), ethyl acetate/petroleum ether = 1:5. mp 109-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (t, *J* = 7.6 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 4.90 (t, *J* = 4.8 Hz, 1H), 3.91-3.81 (m, 2H), 3.19 (s, 3H), 2.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 142.3, 138.4, 131.9, 131.7, 128.7, 119.9 (d, *J* = 1.4 Hz), 56.5, 53.6 (d, *J* = 15.3 Hz), 28.0 (d, *J* = 1.4 Hz), 17.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₃FNO₃S 258.0595; found 258.0595.

(2-Methyl-3-oxo-2,3-dihydro-1H-benzo[f] isoindol-1-yl)methanesulfonyl fluoride (5h). Yellow solid (36 mg, 61% yield), ethyl acetate/petroleum ether = 1:5. mp 198-200 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.07 (s, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.66-7.59 (m, 2H), 5.13 (t, *J* = 5.2 Hz, 1H), 4.00 (dt, *J* = 15.6, 3.6 Hz, 1H), 3.92 (dt, *J* = 15.2, 4.4 Hz, 1H), 3.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 136.7, 135.2, 133.4, 129.7, 128.7, 128.5, 128.4, 127.3, 124.7, 122.2, 56.9, 53.8 (d, *J* = 15.2 Hz), 28.3. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₄H₁₃FNO₃S 294.0595; found 294.0597.

Scale Synthesis of 1.0 mmol 3a. *N-Tert*-butyl- α -phenylnitrone 1a (177 mg, 1.0 mmol), ethenesulfonyl fluoride 2 (166 µL, 2.0 mmol), [RuCl₂(*p*-cymene)]₂ (61.2 mg, 0.1 mmol), AgSbF₆ (103 mg, 0.3 mmol), Cu(OAc)₂·H₂O (363 mg, 2.0 mmol), 1,4-benzoquinone (216 mg, 2.0 mmol), and 1,2-dichloroethane (10 mL) were placed in a 38 mL pressure tube under the air atmosphere. The tube was then sealed and the reaction mixture was stirred at 100 °C on a heating block for 1 h. After completion of the reaction, the resulting mixture was cooled to room temperature and filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel to afford **3a** as a white solid (199 mg, 70% yield).

Procedure for the Synthesis of Compound 6. *N-Tert*-butyl-*a*-phenylnitrone **1a** (35.4 mg, 0.2 mmol), ethenesulfonyl fluoride **2** (33 μ L, 0.4 mmol), [RuCl₂(*p*-cymene)]₂ (12 mg, 0.02 mmol), AgSbF₆ (20.6 mg, 0.06 mmol), Cu(OAc)₂·H₂O (72.6 mg, 0.4 mmol), 1,4-benzoquinone (43 mg, 0.4 mmol), and 1,2-dichloroethane (2.0 mL) were placed in a 15 mL pressure tube under the air atmosphere. The tube was then sealed and the reaction mixture was stirred at 100 °C on a heating block for 1 h. Then, 1,8-diazabicyclo[5.4.0]undec-7-ene (15 μ L, 0.1 mmol) was added to the reaction mixture. The resulting mixture was stirred at 100 °C on a heating block for 14 h. After completion of the reaction, the resulting mixture was cooled to room temperature and filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel to afford the compound **6**.

(2-(*Tert-butyl*)-3-oxoisoindolin-1-yl)methanesulfonyl fluoride (**6**). Yellow solid (38 mg, 67% yield), ethyl acetate/petroleum ether = 1:5. mp 99-100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H),

5.23 (d, *J* = 8.4 Hz, 1H), 4.18 (dt, *J* = 15.2, 1.2 Hz, 1H), 3.65 (ddd, *J* = 11.2, 8.4, 2.8 Hz, 1H), 1.64 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 142.7, 132.7, 132.3, 129.6, 123.8, 122.6 (d, *J* = 2.4 Hz), 56.1, 55.9 (d, *J* = 13.2 Hz), 55.0, 28.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₇FNO₃S 286.0908; found 286.0901.

Procedure for the Synthesis of Compound 7. Compound **1u** (38.6 mg, 0.2 mmol), ethenesulfonyl fluoride **2** (33 μ L, 0.4 mmol), [RuCl₂(*p*-cymene)]₂ (12 mg, 0.02 mmol), AgSbF₆ (20.6 mg, 0.06 mmol), Cu(OAc)₂·H₂O (72.6 mg, 0.4 mmol), 1,4-benzoquinone (43 mg, 0.4 mmol), and 1,2-dichloroethane (2.0 mL) were placed in a 15 mL pressure tube under the air atmosphere. The tube was then sealed and the reaction mixture was stirred at 100 °C on a heating block for 8 h. After completion of the reaction, the resulting mixture was cooled to room temperature and filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel to afford the compound **7**.

N-(Tert-butyl)benzo[e][1,2]oxathiine-5-carboxamide 2,2-dioxide (7). White solid (22 mg, 40% yield), ethyl acetate/petroleum ether = 1:5. mp 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 10.4 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 6.82 (d, *J* = 10.4 Hz, 1H), 5.79 (s, 1H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 152.1, 137.5, 133.6, 131.9, 124.1, 122.9, 120.8, 117.4, 52.7, 28.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₆NO₄S 282.0795; found 282.0794.

Procedure for the Synthesis of Compound 8. To a solution of compound **3a** (28.5 mg, 0.1 mmol) and *p*-xylene (280 μ L, 2.3 mmol) in dichloromethane (1.0 mL) was added AlCl₃ (53 mg, 0.4 mmol) at -20 °C. The resulting mixture was allowed to reach room temperature and stirred for 4 h. After completion of the reaction, the mixture was quenched with saturated NaHCO₃

(10 mL) and extracted with dichloromethane (3×5 mL). The combined organic layers were dried, concentrated, and the residue was purified by flash chromatography on silica gel to afford the compound **8**.

(*E*)-*N*-(*Tert-butyl*)-2-(2-((2,5-dimethylphenyl)sulfonyl)vinyl)benzamide (**8**). White solid (30 mg, 82% yield), ethyl acetate/petroleum ether = 1:5. mp 99-101 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 15.6 Hz, 1H), 7.89 (s, 1H), 7.51-7.39 (m, 4H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 6.81 (d, *J* = 15.6 Hz, 1H), 5.65 (s, 1H), 2.60 (s, 3H), 2.39 (s, 3H), 1.46 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 140.1, 138.9, 137.5, 136.7, 135.4, 134.5, 132.7, 130.7, 130.4, 130.1, 129.9, 129.3, 127.7, 127.6, 52.4, 28.7, 20.9, 20.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₆NO₃S 372.1628; found 372.1632.

Mechanistic Studies

(a) Control experiment. *N-Tert*-butylbenzamide 9 (35.4 mg, 0.2 mmol), ethenesulfonyl fluoride 2 (33 μ L, 0.4 mmol), [RuCl₂(*p*-cymene)]₂ (12 mg, 0.02 mmol), AgSbF₆ (20.6 mg, 0.06 mmol), Cu(OAc)₂·H₂O (72.6 mg, 0.4 mmol), 1,4-benzoquinone (43 mg, 0.4 mmol), and 1,2-dichloroethane (2.0 mL) were placed in a 15 mL pressure tube under the air atmosphere. The tube was then sealed and the reaction mixture was stirred at 100 °C on a heating block for 1 h. After completion of the reaction, the resulting mixture was cooled to room temperature and filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel to afford the compound **3a** in ca. 10% yield.

(c) ¹⁸O-Incorporation experiment. Compound 1a (35.4 mg, 0.2 mmol), ethenesulfonyl fluoride 2 (33 μL, 0.4 mmol), [RuCl₂(*p*-cymene)]₂ (12 mg, 0.02 mmol), AgSbF₆ (20.6 mg, 0.06 mmol), Cu(OAc)₂·H₂O (72.6 mg, 0.4 mmol), 1,4-benzoquinone (43 mg, 0.4 mmol), 1,2-

dichloroethane (2.0 mL), and $H_2^{18}O$ (40 µL) were placed in a 15 mL pressure tube under the air atmosphere. The tube was then sealed and the reaction mixture was stirred at 100 °C on a heating block for 1 h. After completion of the reaction, the resulting mixture was cooled to room temperature and filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel to afford the mixture products of compounds **3a** and **3a**-¹⁸O.

(d) H/D exchange experiment with $[RuCl_2(p-cymene)]_2$. Compound 1a (35.4 mg, 0.2 mmol), $[RuCl_2(p-cymene)]_2$ (12 mg, 0.02 mmol), AgSbF₆ (20.6 mg, 0.06 mmol), Cu(OAc)₂·H₂O (72.6 mg, 0.4 mmol), 1,4-benzoquinone (43 mg, 0.4 mmol), 1,2-dichloroethane (2.0 mL), and CD₃OD (80 µL) were placed in a 15 mL pressure tube under the air atmosphere. The tube was then sealed and the reaction mixture was stirred at 100 °C on a heating block for 1 h. After completion of the reaction, the resulting mixture was cooled to room temperature and filtered. The filtrate was concentrated and the residue was purified by flash chromatography on

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃) of 1a and 1a-d

silica gel to recover the compound **1a** in 36% yield. And H/D exchange at the *ortho*-position (40% D) of **1a** was observed by ¹H NMR analysis (**Figure S1**).

(c) Deuterium-labelling experiment of 1a and 2. Compound 1a (35.4 mg, 0.2 mmol), ethenesulfonyl fluoride 2 (33 µL, 0.4 mmol), [RuCl₂(*p*-cymene)]₂ (12 mg, 0.02 mmol), AgSbF₆ (20.6 mg, 0.06 mmol), Cu(OAc)₂·H₂O (72.6 mg, 0.4 mmol), 1,4-benzoquinone (43 mg, 0.4 mmol), 1,2-dichloroethane (2.0 mL), and CD₃OD (80 µL) were placed in a 15 mL pressure tube under the air atmosphere. The tube was then sealed and the reaction mixture was stirred at 100 °C on a heating block for 1 h. After completion of the reaction, the resulting mixture was cooled to room temperature and filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel to afford the compound **3a-***d* in 77% yield. And H/D exchanges at the α -position (42% D) of sulfonyl fluoride was observed by ¹H NMR analysis (Figure S2).

Figure S2 ¹H NMR spectrum (400 MHz, CDCl₃) of 3a-d

(f) Intermolecular competition experiment between 1b and 1e. Compound 1b (41.4 mg,

0.2 mmol), compound **1e** (39 mg, 0.2 mmol), ethenesulfonyl fluoride **2** (33 μ L, 0.4 mmol), [RuCl₂(*p*-cymene)]₂ (12 mg, 0.02 mmol), AgSbF₆ (20.6 mg, 0.06 mmol), Cu(OAc)₂·H₂O (72.6 mg, 0.4 mmol), 1,4-benzoquinone (43 mg, 0.4 mmol), and 1,2-dichloroethane (2.0 mL) were placed in a 15 mL pressure tube under the air atmosphere. The tube was then sealed and the reaction mixture was stirred at 100 °C on a heating block for 1 h. After completion of the reaction, the resulting mixture was cooled to room temperature and filtered. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel to afford the compounds **3b** (26 mg, 0.412 mmol) and **3e** (3.0 mg, 0.049 mmol). The molar ratio of **3b** and **3e** was thus calculated as 8.5:1.

Scheme S1. Proposed Reaction Mechanism

Scheme S2. Proposed Reaction Mechanism for the Formation of 7

Table S1. Optimization of the Reaction Conditions^a

entry	additive (mol%)	oxidant (equiv)	solvent	temp (°C)	yield(%) ^b
1	$AgSbF_6(20)$	Cu(OAc) ₂ H ₂ O (2)	DCE	100	63
2	AgBF ₄ (20)	Cu(OAc) ₂ H ₂ O (2)	DCE	100	30
3	AgOTf (20)	Cu(OAc) ₂ H ₂ O (2)	DCE	100	54
4	AgNTf ₂ (20)	Cu(OAc) ₂ H ₂ O (2)	DCE	100	61
5	AgOAc (20)	Cu(OAc) ₂ H ₂ O (2)	DCE	100	-
6	$AgSbF_6(30)$	Cu(OAc) ₂ H ₂ O (2)	DCE	100	68
7	$AgSbF_6(30)$	Ag ₂ O (2)	DCE	100	23
8	$AgSbF_6(30)$	BQ (2)	DCE	100	61
9	$AgSbF_6(30)$	Cu(OAc) ₂ H ₂ O (3)	DCE	100	56
10 ^c	$AgSbF_6(30)$	$Cu(OAc)_2 H_2O(2) + BQ(2)$	DCE	100	79
11	AgSbF ₆ (30)	$Cu(OAc)_2 H_2O(2) + BQ(2)$	DCE	120	49
12	AgSbF ₆ (30)	$Cu(OAc)_2 H_2O(2) + BQ(2)$	DCE	80	46
13	AgSbF ₆ (30)	$Cu(OAc)_2 H_2O(0.5)$ + BQ (2)	DCE	100	52
14 ^d	$AgSbF_6(30)$	$Cu(OAc)_2 H_2O(2) + BQ(2)$	DCE	100	77
15	$AgSbF_6(30)$	Cu(OAc) ₂ H ₂ O (2) + BQ (2)	1,4- dioxane	100	49
16	AgSbF ₆ (30)	$Cu(OAc)_2 H_2O(2) + BQ(2)$	TFE	100	65

17	$AgSbF_6(30)$	$Cu(OAc)_2 H_2O(2) + BQ(2)$	MeCN	100	28
18	$AgSbF_6(30)$	$Cu(OAc)_2 H_2O(2) + BQ(2)$	DCM	100	46
19	$AgSbF_6(30)$	$Cu(OAc)_2 H_2O(2) + BQ(2)$	МеОН	100	trace

^{*a*}Unless otherwise noted, reactions were conducted with **1a** (0.2 mmol), **2** (0.4 mmol), and $[RuCl_2(p-cymene)]_2$ (10 mol %), additive and oxidant in a solvent (2.0 mL) for 1 h. ^{*b*}Isolated yields. ^{*c*}BQ might be contribute to stabilization of the Ru species present in the catalytic cycle as a ligand similarly to the Pd-catalyzed reactions.² ^{*d*}under N₂.

References

 Morales, S.; Guijarro, F. G.; Alonso, I.; García Ruano, J. L.; Cid, M. B. Dual Role of Pyrrolidine and Cooperative Pyrrolidine/Pyrrolidinium Effect in Nitrone Formation. *ACS Catal.* 2016, 6, 84-91.

(2) (a) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. Selective Pd-Catalyzed Oxidative Coupling of Anilides with Olefins through C-H Bond Activation at Room Temperature. *J. Am. Chem. Soc.* 2002, *124*, 1586-1587. (b) Chu, J.-H.; Lin, P.-S.; Lee, Y.-M.; Shen, W.-T.; Wu, M.-J. Palladium(II)-Catalyzed One-Pot Syntheses of 9-(Pyridin-2-yl)-9H-carbazoles through a Tandem C-H Activation/C-X (X=C or N) Formation Process. *Chem. Eur. J.* 2011, *17*, 13613-13620.

 ^{13}C NMR Spectrum (100 MHz, CDCl₃) of Compound 3a

 ^{13}C NMR Spectrum (100 MHz, CDCl_3) of Compound 3b

 ^{13}C NMR Spectrum (100 MHz, CDCl_3) of Compound 3c

 ^{13}C NMR Spectrum (100 MHz, CDCl_3) of Compound 3d

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3e**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3f**

 ^{13}C NMR Spectrum (100 MHz, CDCl_3) of Compound 3g

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3h**

¹³C NMR Spectrum (100 MHz, DMSO-*d*₆) of Compound **3i**

 ^{13}C NMR Spectrum (100 MHz, CDCl₃) of Compound 3j

 ^{13}C NMR Spectrum (100 MHz, CDCl_3) of Compound 3k

 ^{13}C NMR Spectrum (100 MHz, CDCl₃) of Compound 3l

 ^{13}C NMR Spectrum (100 MHz, CDCl₃) of Compound 3m

 ^{13}C NMR Spectrum (100 MHz, CDCl₃) of Compound 3n

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **30**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3p**

 ^{13}C NMR Spectrum (100 MHz, CDCl_3) of Compound 3q

 ^{13}C NMR Spectrum (100 MHz, CDCl₃) of Compound 3s

 ^{13}C NMR Spectrum (100 MHz, CDCl₃) of Compound 5a

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **5b**

 ^{13}C NMR Spectrum (100 MHz, CDCl₃) of Compound 5c

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 5d

¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 5e/5e'

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 5e/5e'

 $^{13}\mathrm{C}$ NMR Spectrum (100 MHz, CDCl₃) of Compound 5f

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 5g

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **5h**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 6

 $^{13}\mathrm{C}$ NMR Spectrum (100 MHz, CDCl_3) of Compound 7

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 8

Crystal Structure of Compound 3a

Single crystal of **3a** suitable for X-ray crystallography was obtained from dichloromethane by slow evaporation under room temperature under air. The crystal data was collected on an Agilent Gemini E diffractometer (Mo, 50kV 40Ma) and reduced by CrysAlisPro (Rigaku). The structures were solved by direct methods using SHELXS-97. Refinements were performed with SHELXL-2013 using fullmatrix least-squares calculations on F2, with anisotropic displacement parameters for all the nonhydrogen atoms. Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as deposition number CCDC 2169397.

Figure S3. Crystal Structure of 3a (35% probability level for the thermal ellipsoids)

Formula	C ₁₃ H ₁₆ FNO ₃ S
Formula weight	285.33
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	$P2_1/c$
Unit cell dimensions	$a = 10.7846 (12)$ Å, $\alpha = 90$ deg.
	$b = 16.6680 (18) \text{ Å}, \beta = 98.592 (11) \text{ deg.}$
	$c = 16.942$ (2) Å, $\gamma = 90$ deg.
Volume	3011.3(6)
Ζ	8
Density (calculated)	1.259 g / cm ³
Absorption coefficient	0.228 mm ⁻¹
F(000)	1200.0
Crystal	$0.21\times0.14\times0.12~mm$
Theta range for data collection	3.82 to 49 deg
Limiting indices	$-10 \le h \le 12, -18 \le k \le 19, -19 \le l \le 19$
Reflections collected	13084
Independent reflections	5015 [$R_{int} = 0.0362$, $R_{sigma} = 0.0514$]
Data / restraints / parameters	5015/3/349
Goodness-of-fit on F^2	1.016
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0715, wR_2 = 0.1632$
R indices (all data)	$R_1 = 0.1330, wR_2 = 0.1998$
Largest diff. peak and hole	0.38 and -0.34 e. Å ⁻³