## Supplementary Information

# Regioselective Allenylation and Propargylation of Various para-Quinone Methides Using Alkynyl Azaarenes as Pronucleophile 

Amritha Rayaroth, Afna Elikkottil, Chithra Mohan Jayakumari, Kalyanakrishnan Arayil Vennoli, Sivaranjana Reddy Vennapusa, Alagiri Kaliyamoorthy*

School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India<br>*Email: alagiri@iisertvm.ac.in

Entry Table of contents Page No.
1 General information ..... 2
2 General procedure for synthesis of starting materials ..... 2
3 General procedure for the regioselective allenylation of $p$-QM ..... 3
4 Optimization of the regioselective propargylation of $p$ - QM ..... 3
5 General procedure for the regioselective propargylation of $p-\mathrm{QM}$ ..... 4
6 Characterization data for starting materials ..... 4
$7 \quad$ Characterization data for products ..... 7
8 Experimental procedure for gram-scale synthesis and synthetic ..... 20
manipulations
9 Scheme 1-Gram-scale synthesis and synthetic manipulations ..... 21
10 Competitive Reactions ..... 26
11 Crystal data for compounds 3da and 4aa ..... 27
12 Plausible reaction mechanism ..... 29
13 Computational study ..... 30
14 p Ka calculation ..... 33
15 References ..... 47
$16 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F},{ }^{11} \mathrm{~B}$ spectra ..... 49

General Information. All reactions were conducted under nitrogen atmosphere using flame dried glassware. Chemicals were obtained from Sigma Aldrich, TCI, Merck, Alfa Aesar, Avra, and Spectrochem. All solvents were dried as per standard purification techniques and then stored under appropriate conditions. Analytical thin-layer chromatography was performed using aluminum TLC sheets of 0.25 mm silica gel $60-\mathrm{F} 254$. Visualization was carried out under UV light. Column chromatography was carried out with silica gel 230-400 mesh (Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured using $\mathrm{CDCl}_{3}$ as solvent in Bruker 500 MHz NMR instruments. Chemical shifts were set in parts per million (ppm) to 0.0 ppm for TMS or 7.26 ppm for $\mathrm{CDCl}_{3}$. The multiplicities of spectra were denoted by $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{td}=$ triplet of doublet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and bs $=$ broad singlet. Coupling constants $(J)$ are reported in hertz (Hz). Mass spectra were measured using Thermo Scientific Q-Exactive HRMS and Xevo G2-XS QTof Mass Spectrometry. FT-IR spectra were recorded using a Bruker Alpha II spectrometer. The crystal structure was determined using a Bruker AXS Kappa Apex II ScXRD instrument. Melting points for compounds was recorded using Stuart SMP30 instrument. Literature procedures were followed for the synthesis of para-quinone methides. ${ }^{1-6}$ The following compounds were prepared according to the reported literature. 2-(2,2-dibromovinyl)quinoline, ${ }^{7}$ pyrazine-2-carbaldehyde, ${ }^{8} \quad 3$-methylpicolinaldehyde, ${ }^{9}$ 2-ethynyl-6-methoxypyridine, ${ }^{10}$ 1-methyl-1H-benzo[d]imidazole-2-carbaldehyde, ${ }^{11}$ benzoxazole-2-carbaldehyde, ${ }^{12}$ benzothiazole-2-carbaldehyde. ${ }^{13}$

## A. General Procedure for the Synthesis of 2,2-Dibromovinyl Hetero Aryl Derivatives ${ }^{14}$

A flame-dried round-bottom flask equipped with a magnetic stirring bar was charged with $\mathrm{CBr}_{4}$ (1.3 equiv) and $\mathrm{PPh}_{3}$ ( 2.6 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.2 \mathrm{M}\right.$ ), the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Then, heterocyclic aldehyde ( 1 equiv) was added portion-wise and stirred for 30 min . The reaction mixture was brought to room temperature and then further stirred for 30 min . After completion of the reaction (monitored by TLC), hexane was added to the reaction mixture to precipitate out the triphenylphosphine oxide formed in the reaction mixture. The filtrate was evaporated under reduced pressure to afford a crude residue. The crude product was purified by silica gel column chromatography using ethyl acetate/hexane (1:20) to afford the desired product.

## B. General Procedure for the Synthesis of Alkynyl Azaarenes ${ }^{15}$

To a stirred solution of dibromoalkene ( 1 equiv) in THF ( 0.25 M ), $n$ - BuLi ( 2 equiv, 2.5 M in hexane) was added dropwise at $-78^{\circ} \mathrm{C}$. After stirring for $30 \mathrm{~min}, \mathrm{CH}_{3} \mathrm{I}$ ( 1.5 equiv) was added, and the mixture was stirred for an additional $1 \mathrm{~h}\left(30 \mathrm{~min}\right.$ at $-78^{\circ} \mathrm{C}$ and 30 min at $\left.0^{\circ} \mathrm{C}\right)$. Then, the reaction was quenched with water at $0^{\circ} \mathrm{C}$. The organic phase was extracted with ethyl acetate, and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford a crude residue. The crude product was purified by silica gel column chromatography using ethyl acetate/hexane (1:10) to afford the desired product.

## C. Typical Experimental Procedure for the Synthesis of 2-Methoxy-6-(prop-1-yn-1yl)pyridine

To a stirred solution of the corresponding 2-ethynyl-6-methoxypyridine (1 equiv) in THF ( 0.25 M), $n$ - BuLi ( 1.2 equiv) was added dropwise at $-78^{\circ} \mathrm{C}$. After stirring for $30 \mathrm{~min}, \mathrm{CH}_{3} \mathrm{I}(1.5$ equiv) was added, and the mixture was stirred for an additional $1 \mathrm{~h}\left(30 \mathrm{~min}\right.$ at $-78^{\circ} \mathrm{C}$ and 30 $\min$ at $0{ }^{\circ} \mathrm{C}$ ). Then, the reaction was quenched with water at $0{ }^{\circ} \mathrm{C}$. The organic phase was
extracted with ethyl acetate, and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford a crude residue. The crude product was purified by silica gel column chromatography using ethyl acetate/hexane (1:10) to afford the desired product.

## D. General Procedure for the Synthesis of Allenyl Derivatives using Various Alkynyl

 AzaarenesTo a flame-dried reaction tube charged with a magnetic stir bar, para-quinone methide 2as $(0.30 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(0.30 \mathrm{mmol})$ were added under the argon atmosphere. To the reaction mixture, alkynyl azaarene $\mathbf{1 a - i}(0.20 \mathrm{mmol})$ in toluene $(0.1 \mathrm{M})$ was added, and then, stirred at room temperature for 1 h . The reaction progress was monitored by TLC analysis. After completion of the reaction, the reaction mixture was quenched with water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude reaction mixture was purified by silica gel column chromatography using ethyl acetate/hexane (1:20) as the eluent and afforded the desired product.
Table 1. Optimization of the reaction conditions for the propargylation of para-quinone methides ${ }^{a}$

${ }^{\text {a }}$ Isolated yield. ${ }^{\mathrm{b}} 1 \mathrm{H}$ NMR yield and was calculated using tetrachloroethane as an internal standard.
${ }^{\text {c }}$ The reaction was performed under an open-air. ${ }^{d}$ Reaction was done using NaTMP as base. n.d $=$ not detected.

During the optimization of reaction conditions for the allenylation of $p$-QM, we found out that the use of $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ( 1.5 equiv) as a Brønsted base with $\mathbf{1 a}$ ( 1 equiv) and $\mathbf{2 a}$ ( 1.5 equiv) led to the formation of propargylated product (4aa) in $38 \%$ yield along with allenylated product (3aa) in $9 \%$ yield (Table 1, entry 1). Further increasing the loading of the base to 2 equivalents improved the yields of $\mathbf{4 a} \mathbf{a}$ to $49 \%$ (entry 2). In addition, raising the equivalents of $\mathbf{2 a}$ to 2 equivalents increased the yield of $\mathbf{4 a a}$ to $57 \%$ with a lesser amount of $\mathbf{3 a}$ (entry 3). The same reaction under an open-air atmosphere delivered the associated product in a $41 \%$ yield (entry 4). Reducing the quantity of $\mathbf{2 a}$ from 2 to 1 equivalent decreased the yield of $\mathbf{4 a a}$ (entry 5 ). Further increasing or decreasing the loading of $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ had a detrimental effect on the reaction outcome (entries 6 to 9 ). Besides, the use of a bulkier base such as NaTMP in place of $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ did not improve the yield of $4 \mathbf{a a}$ (entry 10). Furthermore, replacing toluene with other solvents such as THF, 1,4-dioxane, and DMF had a negative impact on the reaction output (entries 11 to 13 ). In addition, performing the reaction at various temperatures also did not give any beneficial results. It is important to note that, in all cases, the formation of a few unidentifiable by-products was observed; however, our efforts to improve the yield of 4aa were not fruitful. Therefore, the optimized reaction conditions for the regioselective propargylation of $p$-QM consist of 1a (1 equiv), 2a ( 2 equiv), $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ( 2 equiv), and toluene as the solvent in room temperature.

## E. General Procedure for the Synthesis of Propargylic Derivatives using Various Alkynyl

 AzaarenesTo a flame-dried reaction tube charged with a magnetic stir bar, para-quinone methide 2as $(0.40 \mathrm{mmol})$ and $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}(0.40 \mathrm{mmol})$ were added under the argon atmosphere. To the reaction mixture, alkynyl azaarene 1a-j $(0.200 \mathrm{mmol})$ in toluene $(0.1 \mathrm{M})$ was added and then, stirred at room temperature for 1 h . The reaction progress was monitored by TLC analysis. After completion of the reaction, the mixture was quenched with water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude reaction mixture was purified by silica gel column chromatography using ethyl acetate/hexane (1:10) as the eluent and afforded the desired product.

## SPECTRAL DATA

## 2-(prop-1-yn-1-yl)pyridine (1a) ${ }^{22}$



The title compound was prepared as described in general procedure $\mathbf{B}$ using 2-(2,2-dibromovinyl)pyridine ( 1 equiv, 18.6359 mmol ) as starting material. Yield: $1.62 \mathrm{~g}, 74 \%$, brown oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $8.53(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$.

## 2-(Prop-1-yn-1-yl-d3)pyridine (1a')



The title compound was prepared as described in general procedure $\mathbf{B}$ using 2-(2,2-dibromovinyl)pyridine ( 1 equiv, 1.9016 mmol ) and $\mathrm{CD}_{3} \mathrm{OTs}$ (instead of $\mathrm{CH}_{3} \mathrm{I}$ ) as starting material. Yield: $107 \mathrm{mg}, 47 \%$, colourless oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.52(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{td}$, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$

NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 149.9,144.0,136.2,126.7,122.4,86.7,79.7,3.9,3.8,3.6$. IR ( $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$ ): 2938, 1725, 1468, 1192, 974. HRMS (ESI) m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{D}_{3} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}: 121.0840$, found:121.0842.
2-(Prop-1-yn-1-yl)quinoline (1b)


The title compound was prepared as described in general procedure B using 2-(2,2-dibromovinyl)quinoline (1 equiv, 1.7665 mmol ) as starting material. Yield: $174.3 \mathrm{mg}, 59 \%$, brown solid. Mp: 58.4$62.6^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.08-8.05(\mathrm{~m}, 2 \mathrm{H})$, $7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.43$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 148.3,144.3,136.3$, 130.1, 129.4, 127.7, 127.2, 127.0, 124.2, 87.8, 80.6, 4.7. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3305,3073,2238$, 1601, 832, 758. HRMS (ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 168.0808$, found: 168.0808.

## 2-Methoxy-6-(prop-1-yn-1-yl)pyridine (1c)



The title compound was prepared as described in general procedure C from 2-ethynyl-6-methoxypyridine ( 1 equiv, 0.7510 mmol ). Yield: $62.0 \mathrm{mg}, 56 \%$, yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 7.48 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ (d, $J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 164.0,140.9$, 138.6, 120.3, 110.7, 86.1, 79.8, 53.6, 4.6. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2937,2243,1750,1580,1469$, 1327, 1253, 1058, 807. HRMS (ESI) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 148.0757, found: 148.0756.

## 2-(2,2-Dibromovinyl)-3-methylpyridine (1d-Int-1)



The title compound was prepared as described in general procedure $\mathbf{A}$ using 3-methylpicolinaldehyde (1 equiv, 6.2738 mmol ) as starting material. Yield: $976.8 \mathrm{mg}, 56 \%$, brown oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $8.48(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 153.5,147.0,138.1,135.4,132.0$, 123.3, 94.9, 18.7. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3067.22,1725,1444.21,1169.81,1124.55,726.26$. HRMS (ESI) m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 277.8998$, found: 277.8995.
3-Methyl-2-(prop-1-yn-1-yl)pyridine (1d)


The title compound was prepared as described in general procedure B using 2-(2,2-dibromovinyl)-3-methylpyridine ( 1 equiv, 3.3868 mmol ) as starting material. Yield: $285.8 \mathrm{mg}, 64 \%$, yellow gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.35(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 147.2,143.7,136.9,135.4,122.3,90.4,78.5,19.5,4.6$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ : 3382, 2936, 2239, 1589, 1572, 1121, 799. HRMS (ESI) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 132.0808, found: 132.0808 .

## 2-(2,2-Dibromovinyl)pyrazine (1f-Int-1)



1f-Int-1

The title compound was prepared as described in general procedure $\mathbf{A}$ using pyrazine-2-carbaldehyde (1 equiv, 5.0879 mmol ) as starting material. Yield: $639.2 \mathrm{mg}, 48 \%$, off-white gummy oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.60-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.64$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 150.1,144.9,144.3,143.5$, 134.2, 96.0. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2334,1617,1401,1147,891,804$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 264.8794$, found: 264.8792 .

## 2-(Prop-1-yn-1-yl)pyrazine (1f)



The title compound was prepared as described in general procedure B using 2-(2,2-dibromovinyl)pyrazine ( 1 equiv, 2.3871 mmol ) as starting material. Yield: $122.4 \mathrm{mg}, 43 \%$, yellow solid. Mp: 70.2-74.9 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.60-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.49-8.48(\mathrm{~m}, 1 \mathrm{H})$, 8.43-8.42 (m, 1H), $2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ : 147.7, 144.4, 142.6, 140.9, 91.4, 77.1, 4.6. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3357,2287,2241,1477,1410$, 1144, 860. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 119.0604$, found:119.0606.

## 2-(2,2-Dibromovinyl)-1-methyl-1H-benzo[d]imidazole (1g-Int-1)



The title compound was prepared as described in general procedure $\mathbf{A}$ using 1 -methyl-1H-benzo[d]imidazole-2-carbaldehyde (1 equiv, 3.4337 mmol ) as starting material. Yield: $423.0 \mathrm{mg}, 39 \%$, brown solid. Mp: 123.9-127.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 7.85-7.83$ $(\mathrm{m}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 147.7,143.0,135.1,125.0,123.8,122.9,120.6,109.6,99.2$, 30.4. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2972,1750,1471,1391,749$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 316.9107$, found: 316.9102.

## 1-Methyl-2-(prop-1-yn-1-yl)-1H-benzo[d]imidazole (1g)



The title compound was prepared as described in general procedure B using 2-(2,2-dibromovinyl)-1-methyl-1H-benzo[d]imidazole (1 equiv, 1.2658 mmol ) as starting material. Mp: $94.6-98.7^{\circ} \mathrm{C}$. Yield: $192.2 \mathrm{mg}, 89 \%$, brown solid. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm})$ : $7.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 142.9,138.2,134.8,123.6,122.8,120.2,109.4,93.0$, 70.0, 30.7, 4.7. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2250,1749,1469,1397,758$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 171.0917$, found: 171.0916 .

## 2-(2,2-Dibromovinyl)benzoxazole (1h-Int-1)



The title compound was prepared as described in general procedure $\mathbf{A}$ using benzoxazole-2-carbaldehyde ( 1 equiv, 2.03 mmol ) as starting material. Mp: 88.5-92.3 ${ }^{\circ} \mathrm{C}$. Yield: $140 \mathrm{mg}, 23 \%$, brown powder. ${ }^{1} \mathbf{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.80-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.63(\mathrm{~m}$, $1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 159.0,149.9,141.4,126.4,125.2,124.4,120.8,110.9,100.7$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$,
$\mathrm{cm}^{-1}$ ): 3022, 2939, 1627, 1601, 1457, 1252, 821, 752. HRMS (ESI) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 303.8790$, found: 303.8788 .
2-(prop-1-yn-1-yl)benzo[d]oxazole (1h) ${ }^{23}$


The title compound was prepared as described in general procedure B using 2-(2,2-dibromovinyl)benzoxazole ( 1 equiv, 2.3106 mmol ) as starting material. Yield: $119.7 \mathrm{mg}, 33 \%$, yellow solid. ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.72-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.40-$ 7.33 (m, 2H), 2.18 ( $\mathrm{s}, 3 \mathrm{H}$ ).

## 2-(2,2-Dibromovinyl)benzothiazole (1i-Int-1)



The title compound was prepared as described in general procedure $\mathbf{A}$ using benzothiazole-2-carbaldehyde ( 1 equiv, 6.1277 mmol ) as starting material. Yield: $620 \mathrm{mg}, 32 \%$, brown solid. Mp: $98.8-102.4{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.07-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 162.2,152.0,134.6,133.1,126.9,126.3,123.7,121.6,97.7$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{cm}^{-1}$ ): 3076, 2940, 1461, 1205, 843, 761. HRMS (ESI) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}$: 319.8562, found: 319.8561 .

## 2-(Prop-1-yn-1-yl)benzothiazole (1i)



The title compound was prepared as described in general procedure B using 2-(2,2-dibromovinyl)benzothiazole (1 equiv, 1.9435 $\mathrm{mmol})$ as starting material. Yield: $120 \mathrm{mg}, 36 \%$, yellow oil. ${ }^{1} \mathbf{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CCl}_{4}(5: 1)\right) \delta(\mathrm{ppm}): 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CCl}_{4}\right) \delta(\mathrm{ppm}): 152.9,149.3,135.2,126.6,126.1,123.6,121.4,94.5,74.1$, 4.9. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2972,2939,2249,1495,1203,765$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}: 174.0372$, found: 174.0374 .
4-(prop-1-yn-1-yl)pyridine (1j)


The title compound was prepared as described in general procedure $\mathbf{B}$ using 4-(2,2-dibromovinyl)pyridine ( 1 equiv, 1.9435 mmol ) as starting material. Yield: $229.7 \mathrm{mg}, 64 \%$, yellow oil. ${ }^{1} \mathbf{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.49(\mathrm{~s}, 2 \mathrm{H})$, $7.20(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CCl}_{4}\right) \delta$ (ppm): 149.7, 132.3, 125.8, 91.5, 77.7, 4.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2937,2278$, 2236, 1599, 1414, 826. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}:$118.0651, found: 118.0655.

## 2,6-Di-tert-butyl-4-(1-phenyl-2(pyridin-2-yl)buta-2,3-dien-1-yl)phenol (3aa)



The title compound was prepared as described in procedure $\mathbf{D}$ using $\mathbf{1 a}(0.200 \mathrm{mmol})$ and $\mathbf{2 a}(0.300 \mathrm{mmol})$. Yield: $78.1 \mathrm{mg}, 95 \%$, off-white gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.52(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.00(\mathrm{~m}$, $1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13}$ C NMR ( 125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 212.6,155.5,152.2,149.1,144.0,136.2,135.2$, $133.4,129.1,128.1,126.04,125.95,122.6,121.3,112.0,80.6,49.8$,
34.5, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3630$, 2967, 1948, 1439, 1239, 853, 704. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 412.2635$, found: 412.2624 .

## 2,6-Di-tert-butyl-4-(1-(naphthalen-1-yl)-2(pyridin-2-yl)buta-2,3-dien-1-yl)phenol (3ab)



The title compound was prepared as described in procedure $\mathbf{D}$ using $\mathbf{1 a}(0.200 \mathrm{mmol})$ and $\mathbf{2 b}(0.300 \mathrm{mmol})$. Yield: $83.1 \mathrm{mg}, 90 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.55(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.17$ ( $\mathrm{s}, 2 \mathrm{H}$ ), 7.12 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.55$ $(\mathrm{s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=12.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=$ $12.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 212.7, 155.4, 152.3, 149.4, 140.6, 136.2, 135.3, 133.9, $132.3,132.2,128.6,126.8,126.4,126.3,126.0,125.30,125.26,124.6,122.5,121.3,111.9$, 80.1, 46.1, 34.5, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3654,2970,1948,1439,789,738$. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 462.2793$, found: 462.2797 .

## 4-(1-([1,1'-Biphenyl]-4-yl)-2-(pyridin-2-yl)buta-2,3-dien-1-yl)-2,6-di-tert-butylphenol (3ac)

The title compound was prepared as described in procedure $\mathbf{D}$ using 1a ( 0.200 mmol ) and $\mathbf{2 c}(0.300 \mathrm{mmol})$. Yield: 94.0 mg , $96 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ : $8.54(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H})$, 7.31-7.29 (m, 1H), $7.12(\mathrm{~s}, 2 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H})$, 5.11-5.04 (m, 3H), $1.39(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 212.5,155.5,152.2,149.2,143.3,141.2,138.7,136.1$, 135.3, 133.4, 129.4, 128.8, 127.1, 126.8, 126.0, 122.6, 121.3, 112.0, 80.7, 49.4, 34.5, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3620,2971$, 1947, 1595, 1438, 1158, 853, 741. HRMS (ESI) m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 488.2948$, found: 488.2945.

## 2,6-Di-tert-butyl-4-(2-(pyridin-2-yl)-1-(o-tolyl)buta-2,3-dien-1-yl)phenol (3ad)



The title compound was prepared as described in procedure $\mathbf{D}$ using 1a ( 0.200 mmol ) and 2d ( 0.300 mmol ). Yield: $84.0 \mathrm{mg}, 99 \%$, offwhite solid. Mp:120.4-124.1 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (ppm): $8.51(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.02-7.00$ $(\mathrm{m}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.01-4.94(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 212.4,155.6,152.1,149.3$, 142.3, 136.8, 136.1, 135.1, 132.2, 130.1, 128.4, 126.2, 126.0, 125.5, 122.3, 121.2, 111.8, 80.1, 46.7, 34.4, 30.5, 20.0. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ : 3673, 2970, 1950, 1594, 1439, 1159, 853, 741. HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 426.2791, found: 426.2781 .

## 2,6-Di-tert-butyl-4-(2-(pyridin-2-yl)-1-(p-tolyl)buta-2,3-dien-1-yl)phenol (3ae)



The title compound was prepared as described in procedure D using $\mathbf{1 a}(0.200 \mathrm{mmol})$ and $\mathbf{2 e}(0.300 \mathrm{mmol})$. Yield: $80.7 \mathrm{mg}, 95 \%$, yellow gummy oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.53-$ 8.52 (m, 1H), 7.56-7.52 (m, 1H), 7.49 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 3 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.08-$ $5.01(\mathrm{~m}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 212.5,155.7,152.1,149.2,141.0,136.1,135.4$, 135.1, 133.6, 128.9, 128.8, 125.9, 122.5, 121.2, 112.2, 80.5, 49.4, 34.5, 30.5, 21.2. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3631,2975,1947,1439,1159$, 852, 741. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 426.2791$, found: 426.2785 .

## 2,6-Di-tert-butyl-4-(1-(4-methoxyphenyl)-2-(pyridin-2-yl)buta-2,3-dien-1-yl)phenol (3af)



The title compound was prepared as described in procedure $\mathbf{D}$ using 1a ( 0.200 mmol ) and $\mathbf{2 f}(0.300 \mathrm{mmol})$. Yield: 84.6 mg , $96 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm})$ : $8.52(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (s, 2H), 7.03-7.00 (m, 1H), 6.78 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 3 \mathrm{H}), 3.76$ (s, 3H), $1.37(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm})$ : $212.5,157.8,155.6,152.1,149.2,136.2,136.1,135.1,133.7$, $130.0,125.8,122.5,121.2,113.4,112.3,80.5,55.3,49.0,34.4$, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ : 3627, 2970, 1947, 1516, 1249, 846, 740. HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 442.2741$, found: 442.2735 .

## 2,6-Di-tert-butyl-4-(1-(3,4-dimethoxyphenyl)-2-(pyridin-2-yl)buta-2,3-dien-1-yl)phenol

 (3ag)

The title compound was prepared as described in procedure $\mathbf{D}$ using 1a ( 0.200 mmol ) and $\mathbf{2 g}(0.300 \mathrm{mmol})$. Yield: 68.8 mg , $73 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm})$ : 8.53 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.83-$ $6.81(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.06-4.99$ $(\mathrm{m}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 212.4,155.6,152.2,149.2,148.5,147.3$, 136.6, 136.2, 135.2, 133.5, 125.8, 122.5, 121.3, 121.0, 112.7, $112.3,110.7,80.5,55.90,55.88,49.4,34.5,30.5$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3650,2970,1949,1720$, 1597, 1267, 1148, 1033, 742. HRMS (ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 472.2846$, found: 472.2846.

4-(1-(4-(Allyloxy)phenyl)-2-(pyridin-2-yl)buta-2,3-dien-1-yl)-2,6-di-tert-butylphenol (3ah)


The title compound was prepared as described in procedure $\mathbf{D}$ using $\mathbf{1 a}(0.200 \mathrm{mmol})$ and $\mathbf{2 h}(0.300 \mathrm{mmol})$. Yield: $82.7 \mathrm{mg}, 88 \%$, brown gummy oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.52(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.52$ (m, 1H), 7.47 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.06(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.08-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=17.3,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), \quad 1.37(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 212.5,156.9,155.6,152.1,149.2,136.4,136.1,135.2,133.72,133.67,130.0$, $125.8,122.5,121.2,117.6,114.3,112.3,80.5,68.9,49.0,34.5,30.5$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3617$, 2957, 1938, 1505, 1431, 1231, 842, 740. HRMS (ESI) m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 468.2897, found: 468.2896.

## 4-(1-(4-(Benzyloxy)phenyl)-2-(pyridin-2-yl)buta-2,3-dien-1-yl)-2,6-di-tert-butylphenol

 (3ai)

The title compound was prepared as described in procedure $\mathbf{D}$ using 1a ( 0.200 mmol ) and $\mathbf{2 i}(0.300 \mathrm{mmol})$. Yield: 93.3 mg , $90 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm})$ : $8.53(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.35$ (m, 2H), 7.32-7.31 (m, $1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H})$, 6.87 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 5 \mathrm{H}), 1.38$ $(\mathrm{s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 212.5,157.1$, $155.6,152.1,149.2,137.4,136.5,136.1,135.2,133.7,130.0$, 128.6, 128.0, 127.7, 125.8, 122.5, 121.2, 114.4, 112.3, 80.5, 70.1, 49.0, 34.5, 30.5. IR ( $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{cm}^{-1}$ ): 3647, 2976, 1947, 1515, 1440, 1239, 1028. HRMS (ESI) m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 518.3054$, found: 518.3052.

## 2,6-Di-tert-butyl-4-(1-(4-(dimethylamino)phenyl)-2-(pyridin-2-yl)buta-2,3-dien-1yl)phenol (3aj)



The title compound was prepared as described in procedure $\mathbf{D}$ using 1a ( 0.200 mmol ) and $\mathbf{2 j}$ ( 0.300 mmol ). Yield: 80.1 mg , $88 \%$, brown gummy oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ : $8.53(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{t}, \mathrm{J}=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.07-4.99$ $(\mathrm{m}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 212.6,155.9,152.0,149.2,149.0,136.1$, $135.0,134.1,132.3,129.6,125.8,122.4,121.1,112.6,112.4$, 80.4, 49.0, 40.9, 34.4, 30.5. IR ( $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3643,2968,1949,1526,1440,1163,740$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 455.3062$, found: 455.3058 .


The title compound was prepared as described in procedure D using 1a ( 0.200 mmol ) and $\mathbf{2 k}(0.300 \mathrm{mmol})$. Yield: 85.3 mg , $99 \%$, yellowish brown gummy oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 8.51 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.54$ (m, 1H), 7.49 (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 212.4,161.4(\mathrm{~d}, J=242.5 \mathrm{~Hz}, 1 \mathrm{C}), 155.3$, 152.2, 149.2, 139.8 (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{C}$ ), 136.1, 135.3, 133.3, 130.5 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{C}), 125.8,122.6,121.3,114.8(\mathrm{~d}, J=21.3 \mathrm{~Hz}, 1 \mathrm{C})$, 112.1, 80.7, 48.9, 34.5, 30.5. ${ }^{19} \mathbf{F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta(\mathrm{ppm})-117.6$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{cm}^{-1}$ ): 3680, 2790, 1949, 1513, 1231, 850, 744. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{FNO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 430.2541$, found: 430.2537 .

## 2,6-Di-tert-butyl-4-(1-(2-chlorophenyl)-2-(pyridin-2-yl)buta-2,3-dien-1-yl)phenol (3al)



The title compound was prepared as described in procedure $\mathbf{D}$ using 1a ( 0.200 mmol ) and $\mathbf{2 1}(0.300 \mathrm{mmol})$. Yield: $88.3 \mathrm{mg}, 99 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.53$ (d, $J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.34(\mathrm{~m}$, $1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 5 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H})$, 5.03-4.97 (m, 2H), $1.38(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (ppm): 212.2, 155.2, 152.4, 149.4, 141.8, 136.1, 135.3, 134.5, 131.2, 130.2, 129.4, 127.4, 126.3, 126.2, 122.0, 121.2, 111.1, 80.5, 47.2, 34.5, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3620,2969,1948,1439,1159,853$, 742. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}: 446.2251$, found: 446.2247 4-(1-(2-Bromophenyl)-2-(pyridin-2-yl)buta-2,3-dien-1-yl)-2,6-di-tert-butylphenol (3am)
 The title compound was prepared as described in procedure $\mathbf{D}$ using $\mathbf{1 a}$ ( 0.200 mmol ) and $\mathbf{2 m}(0.300 \mathrm{mmol})$. Yield: $96.5 \mathrm{mg}, 98 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.53(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56-7.53$ (m, 2H), 7.44 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H})$, $7.08(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 5.02-4.95$ (m, 2H), 1.37 (s, 18H). ${ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 212.3$, 155.3, 152.4, 149.4, 143.5, 136.1, 135.3, 132.8, 131.2, 130.5, 127.7, $127.0,126.3,125.6,122.0,121.2,111.2,80.5,49.9,34.5,30.5$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3628,2970,1949,1596,1440,1160,748$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 490.1740$, found: 490.1744 .


The title compound was prepared as described in procedure $\mathbf{D}$ using 1a ( 0.200 mmol ) and 2n ( 0.300 mmol ). Yield: 88.9 mg , $91 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (ppm): 8.50 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.02$ $(\mathrm{m}, 3 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.07-5.00(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (ppm): 212.3, 155.2, 152.3, 149.2, 143.3, 136.2, 135.3, 132.8, 131.1, 130.9, 125.8, 122.6, 121.4, 119.8, 111.7, 80.9, 49.1, 34.5, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3618,2972$, 1951, 1441, 1241, 854, 787. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 490.1740$, found: 490.1743 .
4-(1-(3,5-Di-tert-butyl-4-hydroxyphenyl)-2-(pyridin-2-yl)buta-2,3-dien-1-yl)benzonitrile (3ao)


The title compound was prepared as described in procedure $\mathbf{D}$ using 1a ( 0.200 mmol ) and $\mathbf{2 0}(0.300 \mathrm{mmol})$. Yield: 70.4 mg , $81 \%$, white solid. Mp: $182.8-186.3^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.49-8.48(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.53-$ $7.52(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.02$ ( $\mathrm{s}, 2 \mathrm{H}$ ), $5.88(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 5.06-5.05(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}$, $18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 212.3,154.7$, 152.6, 150.2, 149.1, 136.3, 135.6, 132.0, 129.8, 125.9, 122.6, $121.5,119.4,111.2,109.7,81.2,49.6,34.5,30.5$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{cm}^{-1}$ ): 3631, 2970, 2239, 1950, 1594, 1440, 1240, 858, 745. HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 437.2587$, found: 437.2580.
2,6-Di-tert-butyl-4-(1-(4-nitrophenyl)-2-(pyridin-2-yl)buta-2,3-dien-1-yl)phenol (3ap)


The title compound was prepared as described in procedure D using 1a ( 0.200 mmol ) and $\mathbf{2 p}$ ( 0.300 mmol ). Yield: 42.8 mg , $47 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ : $8.48(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}$, 2 H ), 7.42 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.05-7.03(m, 3H), 5.93 ( $\mathrm{s}, 1 \mathrm{H}$ ), 5.08-5.06 (m, 3H), $1.36(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 212.2,154.6,152.6,152.4,149.1,146.4,136.2,135.7$, $131.8,129.8,125.9,123.4,122.6,121.6,111.2,81.3,49.4,34.5$, 30.4. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2974,1947,1599,1526,1350,860$, 740. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 457.2491$, found: 457.2489 .

## 2,6-Di-tert-butyl-4-(2-(pyridin-2-yl)-1-(thiophen-2-yl)buta-2,3-dien-1-yl)phenol (3aq)



The title compound was prepared as described in procedure $\mathbf{D}$ using 1a $(0.200 \mathrm{mmol})$ and $\mathbf{2 q}(0.300 \mathrm{mmol})$. Yield: $71.4 \mathrm{mg}, 85 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.55(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{~d}$, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.81(\mathrm{~m}$, $1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.20-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 212.0,154.9,152.5,149.1,149.0$, 136.1, 135.3, 133.4, 126.3, 125.6, 125.5, 123.7, 122.6, 121.4, 112.7, 81.5, 44.8, 34.5, 30.5. IR ( $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3612,2971,1948,1439$, 1238, 856, 699. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 418.2199$, found: 418.2186. 2,6-Diisopropyl-4-(1-phenyl-2-(pyridin-2-yl)buta-2,3-dien-1-yl)phenol (3ar)


The title compound was prepared as described in procedure $\mathbf{D}$ using 1a $(0.200 \mathrm{mmol})$ and $\mathbf{2 r}(0.300 \mathrm{mmol})$. Yield: $57.2 \mathrm{mg}, 75 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.52(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}$, 4H), 7.17-7.14 (m, 1H), 7.03-7.01 (m, 1H), 6.96 (s, 2H), 5.79 (s, 1H), 5.06-5.00 (m, 2H), $4.69(\mathrm{~s}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 212.4,155.5,149.1$, $148.4,143.8,136.3,134.7,133.1,129.1,128.1,126.1,124.5,122.5$, 121.3, 111.9, 80.7, 49.8, 27.4, 22.9, 22.8. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2975,1948,1597,1474,1206$, 854, 705. HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 384.2327$, found: 384.2323.

## 2,6-Di-tert-butyl-4-(1-phenyl-2-(pyridin-2-yl)buta-2,3-dien-1-yl-4,4-d2)phenol (3a'a)



The title compound was prepared as described in procedure $\mathbf{D}$ using 1a' $(0.200 \mathrm{mmol})$ and 2a $(0.300 \mathrm{mmol})$. Yield: $80.8 \mathrm{mg}, 98 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.53$ (d, $J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24$ (m, $2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H})$, $5.04(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm})$ : 212.61, 212.58, 212.54, 155.5, 152.2, 149.2, 144.1, 136.1, 135.2, $133.4,129.1,128.0,126.0,125.9,122.5,121.3,112.21,112.13$, 112.08, 80.6, 80.4, 80.2, 49.7, 34.5, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2972$, 1943, 1746, 1441, 1242, 704. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{D}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 414.2760$ found: 414.2750 .

## 2,6-Di-tert-butyl-4-(1-phenyl-2-(quinolin-2-yl)buta-2,3-dien-1-yl)phenol (3ba)



The title compound was prepared as described in procedure $\mathbf{D}$ using 1b ( 0.200 mmol ) and 2a ( 0.300 mmol ). Yield: $86.6 \mathrm{mg}, 94 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.04(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.71$ (m, 2H), 7.67-7.64 (m, $1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.22-5.16(\mathrm{~m}$, $2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (ppm): 213.8, 154.9, 152.2, 148.0, 144.5, 135.5, 135.2, 133.7, 129.8, 129.2, 129.1, 128.0, 127.4, 126.9, 126.1, 126.0, 125.9, 120.8, 113.2, 81.3, 49.0, 34.5, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3659,2972,1944,1742$, 1606, 1439, 1238, 837, 703. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 462.2797$, found: 462.2797.

## 2,6-Di-tert-butyl-4-(2-(6-methoxypyridin-2-yl)-1-phenylbuta-2,3-dien-1-yl)phenol (3ca)

 The title compound was prepared as described in procedure $\mathbf{D}$ using 1c ( 0.1359 mmol ) and 2a ( 0.2039 mmol ). Yield: $41.3 \mathrm{mg}, 69 \%$, yellow gummy oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): ~ 7.46-7.43$ $(\mathrm{m}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 6.46(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.05-4.99(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.38$ ( $\mathrm{s}, 18 \mathrm{H}$ ). ${ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 212.3,163.4,152.9$, $152.1,144.4,138.5,135.2,133.6,129.0,128.0,125.9,125.8,115.1$, 111.9, 107.7, 80.5, 53.3, 50.1, 34.4, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2983$, 2959, 1949, 1752, 1588, 1469, 1242, 811, 706. HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 442.2741$, found: 442.2737 .
2,6-Di-tert-butyl-4-(2-(3-methylpyridin-2-yl)-1-phenylbuta-2,3-dien-1-yl)phenol (3da)


The title compound was prepared as described in procedure $\mathbf{D}$ using $\mathbf{1 d}(0.200 \mathrm{mmol})$ and $\mathbf{2 a}(0.300 \mathrm{mmol})$. Yield: $41.1 \mathrm{mg}, 48 \%$, yellow solid. Mp: $161.1-164.3^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm})$ : 8.43 (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (d, $J=7.5 \mathrm{~Hz}$, 2H), 7.26-7.23 (m, 2H), 7.15-7.12 (m, 1H), 7.10 (s, 2H), 6.98 (dd, $J$ $=7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.80-4.75(\mathrm{~m}, 2 \mathrm{H}), 2.37$ $(\mathrm{s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 209.7$, 154.6, 152.2, 146.8, 143.8, 138.6, 135.2, 132.7, 132.4, 129.2, 127.9, 126.0, 125.9, 121.6, 109.5, 79.1, 53.1, 34.5, 30.5, 20.4. IR ( $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{cm}^{-1}$ ): 2970, 2935, 2884, 1956, 1588, 1442, 1238, 1161, 848, 704. HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 426.2791$, found: 426.2789 .

## 2,6-Di-tert-butyl-4-(1-phenyl-2-(pyrazin-2-yl)buta-2,3-dien-1-yl)phenol (3fa)



The title compound was prepared as described in procedure $\mathbf{D}$ using 1f $(0.200 \mathrm{mmol})$ and $\mathbf{2 a}(0.300 \mathrm{mmol})$. Yield: $56.6 \mathrm{mg}, 69 \%$, yellow gummy oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.44-$ $8.43(\mathrm{~m}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.14$ $(\mathrm{m}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.16-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H})$, $1.37(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 212.3,152.3$, 151.5, 144.6, 143.6, 143.3, 141.4, 135.4, 132.7, 129.0, 128.2, 126.3, 125.8, 109.7, 81.4, 49.4, 34.5, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3665,2973$, 1945, 1736, 1441, 1241, 855, 704. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 413.2587$, found: 413.2583.
2,6-Di-tert-butyl-4-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)-1-phenylbuta-2,3-dien-1yl)phenol (3ga)


The title compound was prepared as described in procedure $\mathbf{D}$ using $\mathbf{1 g}(0.200 \mathrm{mmol})$ and $\mathbf{2 a}(0.300 \mathrm{mmol})$. Yield: $85.5 \mathrm{mg}, 92 \%$, brown solid. Mp: $189.7-194.6^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm})$ : 7.76-7.74 (m, 1H), 7.31 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.17-$ $7.12(\mathrm{~m}, 3 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.05-5.02(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}$, $18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 211.3,152.5,149.8$, $143.1,143.0,136.3,135.4,132.0,129.1,128.1,126.4,125.8,122.6$, 122.1, 119.7, 109.3, 102.9, 81.1, 52.7, 34.5, 31.5, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{cm}^{-1}$ ): 2970, 2934, 1952, 1737, 1443, 1240, 744. HRMS (ESI) m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 465.2900$, found: 465.2899 .
4-(2-(Benzo[d]oxazol-2-yl)-1-phenylbuta-2,3-dien-1-yl)-2,6-di-tert-butylphenol (3ha)


The title compound was prepared as described in procedure $\mathbf{D}$ using 1h ( 0.200 mmol ) and 2a ( 0.300 mmol ). Yield: $61.5 \mathrm{mg}, 68 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm})$ : 7.68-7.66 (m, 1H), 7.48-7.44 (m, 1H), $7.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}$, $3 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.33-5.26(\mathrm{~m}$, $2 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (ppm): 213.9, 161.6, 152.6, 150.9, 142.8, 142.3, 135.5, 132.2, $128.8,128.3,126.5,125.7,124.9,124.3,120.0,110.4,102.2,82.2$, $50.3,34.5,30.5$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2971,2934,1964,1620,1442$, 1246, 1161, 749. HRMS (ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 452.2584, found: 452.2585 .


The title compound was prepared as described in procedure $\mathbf{D}$ using $\mathbf{1 i}(0.200 \mathrm{mmol})$ and $\mathbf{2 a}(0.300 \mathrm{mmol})$. Yield: $56.1 \mathrm{mg}, 60 \%$, brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 7.92(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 2 \mathrm{H})$, $5.75(\mathrm{~s}, 1 \mathrm{H}), 5.26-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 213.5,166.8,154.1,152.5,143.2$, 135.6, 135.4, 132.5, 128.9, 128.2, 126.4, 125.8, 125.0, 123.2, 121.4, 109.1, 82.4, 50.8, 34.5, 30.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3624,2971,1951$, 1742, 1441, 1240, 735. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{31} \mathrm{H}_{33}$ NOS $[\mathrm{M}+\mathrm{H}]^{+}: 468.2356$, found: 468.2347.

## 2,6-Di-tert-butyl-4-(1-phenyl-4-(pyridin-2-yl)but-3-yn-1-yl)phenol (4aa)



The title compound was prepared as described in the procedure $\mathbf{E}$ using $1 \mathbf{1 a}$ ( 0.200 mmol ). Yield: $47.1 \mathrm{mg}, 57 \%$, pale yellow solid. Mp: 120.2-122.4 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.50$ (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H})$, 7.23-7.20 (m. 1H), 7.17-7.12 (m, 2H), 7.08 (s, 2H), $5.09(\mathrm{~s}, 1 \mathrm{H})$, $4.28(\mathrm{t}, \quad J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.08(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 152.4,149.8,143.93,143.87$, 136.0, 135.7, 134.2, 128.4, 128.2, 127.0, 126.5, 124.6, 122.4, 90.0, 82.0, 50.0, 34.5, 30.4, 27.1. IR ( $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$ ): 3661, 3646, 2968, 2926, 2240, 1592, 1472, 1440, 1240, 1160, 782, 705. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 412.2635$, found: 412.2632.

## 2,6-Di-tert-butyl-4-(1-(naphthalen-2-yl)-4-(pyridin-2-yl)but-3-yn-1-yl)phenol (4ab)



The title compound was prepared as described in the procedure E using 1b ( 0.200 mmol ). Yield: $46.3 \mathrm{mg}, 50 \%$, pale brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.49(\mathrm{~d}, J=$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 7.75$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 4 \mathrm{H}), 5.11$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.31-3.20(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}$, $18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 152.4,149.8$, $143.9,139.5,136.0,135.7,134.1,133.9,132.0,128.9,127.3,127.0,126.0,125.5,125.4,124.8$, 124.6, 124.0, 122.4, 90.0, 82.0, 45.4, 34.5, 30.4, 27.3. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3656,3641,2971$, 2937, 2885, 2239, 1591, 1472, 1437, 1240, 1157, 780. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 462.2791$, found: 462.2793 .

## 2,6-Di-tert-butyl-4-(4-(pyridin-2-yl)-1-(o-tolyl)but-3-yn-1-yl)phenol (4ad)



The title compound was prepared as described in the procedure $\mathbf{E}$ using 1a ( 0.200 mmol ) and 2d ( 0.400 mmol ). Yield: $39.7 \mathrm{mg}, 47 \%$, brown oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.50(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.12(\mathrm{~m}$, $5 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.09$ $(\mathrm{m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 152.3,149.8,143.9,141.9,136.4,136.0,135.6,133.7$, 130.6, 127.0, 126.6, 126.3, 126.0, 124.7, 122.4, 90.1, 81.7, 45.9, 34.4, 30.4, 27.0, 20.1. IR
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3656,3068,2968,2938,2240,1592,1471,1438,1240,1159,781$ HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 426.2791$, found: 426.2780.

## 4-(1-(4-(Benzyloxy)phenyl)-4-(pyridin-2-yl)but-3-yn-1-yl)-2,6-di-tert-butylphenol (4ai)



The title compound was prepared as described in the procedure $\mathbf{E}$ using $\mathbf{1 a}(0.200 \mathrm{mmol})$ and $\mathbf{2 i}(0.400 \mathrm{mmol})$. Yield: $43.0 \mathrm{mg}, 42 \%$, pale brown gummy oil. ${ }^{1} \mathbf{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.50(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51$ (m, 1H), 7.42 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H})$, $7.05(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) 5.06(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}$, $2 \mathrm{H}), 4.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 157.4,152.4,149.8,144.0,137.3,136.4,136.0,135.7,134.6,129.1,128.7$, 128.0, 127.6, 127.0, 124.5, 122.4, 114.8, 90.1, $82.0,70.2,49.2,34.5,30.5,27.3$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\left.\mathrm{cm}^{-1}\right): 3650,2968,2933,2885,2239,1617,1591,1517,1470,1439,1244,1184,781,742$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 518.3054$, found: 518.3057.
2,6-Di-tert-butyl-4-(1-(4-fluorophenyl)-4-(pyridin-2-yl)but-3-yn-1-yl)phenol (4ak)


The title compound was prepared as described in the procedure E using 1a ( 0.200 mmol ) and $\mathbf{2 k}(0.400 \mathrm{mmol})$. Yield: 39.2 mg , $46 \%$, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.51$ $(\mathrm{d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.18-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 4 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 161.6(\mathrm{~d}, J=242.5 \mathrm{~Hz}, 1 \mathrm{C}), 152.5$, $149.9,143.8,139.5$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{C}), 136.0,135.8,134.1,129.7$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{C}), 127.0$, $124.5,122.5,115.2(\mathrm{~d}, J=21.3 \mathrm{~Hz}, 1 \mathrm{C}), 89.5,82.2,49.2,34.5,30.4,27.2 .{ }^{19}$ F NMR (470 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):-116.9$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3653,2969,2933,2884,2239,1592,1516$, 1472, 1232, 1161, 780. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}: 430.2541$, found: 430.2530 .

## 2,6-Di-tert-butyl-4-(1-(2-chlorophenyl)-4-(pyridin-2-yl)but-3-yn-1-yl)phenol (4al)



The title compound was prepared as described in the procedure $\mathbf{E}$ using 1a ( 0.200 mmol ) and $\mathbf{2 1}(0.400 \mathrm{mmol})$. Yield: $58.4 \mathrm{mg}, 66 \%$, pale brown gummy oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.49$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.26-7.23 (m, 1H), 7.17-7.12 (m, 5H), $5.09(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.18-3.09(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 152.5,149.8,143.8,141.4,136.0,135.7,134.3$, 132.7, 129.8, 128.9, 127.7, 127.1, 126.9, 124.8, 122.4, 89.3, 82.0, 45.7, 34.5, 30.4, 26.0. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3657,3085,2968,2885,2244,1593,1474,1440,1241,782$. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}: 446.2245$, found: 446.2238 .


The title compound was prepared as described in the procedure E using 1a ( 0.200 mmol ) and $\mathbf{2 n}(0.400 \mathrm{mmol})$. Yield: 55.4 mg , $57 \%$, pale brown gummy oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $8.51(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $(\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~s}$, 1 H ), 4.23 (t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.08 (d, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.40 ( s , $18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 152.6,149.9$, 143.7, 142.9, 136.1, 135.9, 133.7, 131.5, 130.0, 127.0, 124.5, 122.5, 120.3, 89.3, 82.2, 49.4, 34.5, 30.4, 26.9. IR ( $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}-1\right): 3649,3489,3258,3025,2976,2940,2871,2238,1741$, 1594, 1473, 1442, 1243, 783. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 490.1740$, found: 490.1743 .

## 2,6-Di-tert-butyl-4-(4-(pyridin-2-yl)-1-(thiophen-2-yl)but-3-yn-1-yl)phenol (4aq)



The title compound was prepared as described in the procedure $\mathbf{E}$ using $\mathbf{1 a}(0.200 \mathrm{mmol})$ and $\mathbf{2 q}(0.400 \mathrm{mmol})$. Yield: $27.2 \mathrm{mg}, 33 \%$, brown oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.52(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.14$ (m. $4 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-$ $3.06(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ 152.8, 149.9, 148.0, 143.9, 136.1, 135.8, 133.9, 127.1, 126.6, 124.7, 124.4, 124.0, 122.5, 89.4, 82.3, 46.0, 34.5, 30.4, 29.0. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3650,3322,3083$, 2972, 2882, 2238, 1593, 1472, 1441, 1242, 782. HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NOS}$ $[\mathrm{M}+\mathrm{H}]^{+}: 418.2199$, found: 418.2190 .

## 2,6-Di-tert-butyl-4-(1-phenyl-4-(quinolin-2-yl)but-3-yn-1-yl)phenol (4ba)



The title compound was prepared as described in the procedure $\mathbf{E}$ using 1b ( 0.200 mmol ) and 2a ( 0.400 mmol ). Yield: $42.3 \mathrm{mg}, 46 \%$, colourless gummy oil. ${ }^{1} \mathbf{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.05-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 4 \mathrm{H})$, 7.24-7.21 (m, 2H), $7.10(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H})$, 3.22-3.13 (m, 2H), $1.40(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( 125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 152.5,148.2,144.1,143.9,136.0,135.7,134.2,130.0,129.3,128.5$, $128.2,127.5,127.1,126.9,126.5,124.7,124.4,90.9,82.8,50.0,34.5,30.5,27.3$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{cm}^{-1}$ ) $3656,2979,2942,2230,1507,1244,1159,836,790,756,738$. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 462.2791$, found: 462.2791 .

## 2,6-Di-tert-butyl-4-(4-(6-methoxypyridin-2-yl)-1-phenylbut-3-yn-1-yl)phenol (4ca)



The title compound was prepared as described in the procedure $\mathbf{E}$ using $\mathbf{1 c}(0.1359 \mathrm{mmol})$ and $\mathbf{2 a}(0.2718 \mathrm{mmol})$. Yield: $34.2 \mathrm{mg}, 57 \%$, pale yellow gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ : 7.43-7.40 (m, 1H), 7.34-7.31 (m, 4H), 7.24-7.20 (m, 1H), 7.09 (s, 2H), 6.78 (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.07(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 163.8,152.4,144.0$,
$140.8,138.4,135.6,134.2,128.4,128.2,126.5,124.7,120.5,110.6,89.3,82.2,53.6,50.0$, 34.5, 30.4, 27.3. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2968,2934,2240,1579,1438,1247,1157,806,703$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 442.2741$, found: 442.2740 .

## 2,6-Di-tert-butyl-4-(4-(3-methylpyridin-2-yl)-1-phenylbut-3-yn-1-yl)phenol (4da)



The title compound was prepared as described in the procedure $\mathbf{E}$ using $\mathbf{1 d}(0.200 \mathrm{mmol})$ and $\mathbf{2 a}(0.400 \mathrm{mmol})$. Yield: $52.4 \mathrm{mg}, 62 \%$, pale yellow gummy oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.32$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (s, 2H), 7.05-7.02 (m, 1H), 7.36-7.31 (m, 4H), 7.24-7.21 (m, 2H), $7.10(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 152.5,147.1,144.0,143.6,136.8,135.9,135.8,134.1,128.5,128.1,126.5,124.5$, 122.3, 93.6, 80.5, 50.5, 34.5, 30.4, 27.2, 19.1. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3661,3644,3223,2972$, 2930, 2241, 1591, 1441, 1122, 704. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 426.2791$, found: 426.2783.

## 2,6-Di-tert-butyl-4-(4-(1-methyl-1H-benzo[d]imidazol-2-yl)-1-phenylbut-3-yn-1yl)phenol (4ga)



The title compound was prepared as described in the procedure $\mathbf{E}$ using $\mathbf{1 g}(0.200 \mathrm{mmol})$ and $\mathbf{2 a}(0.400 \mathrm{mmol})$. Yield: $21.4 \mathrm{mg}, 23 \%$, pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28-$ 7.19 (m, 4H), 7.09 (s, 2H), 5.13 (s, 1H), 4.30 (t, $J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.22(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 152.6,143.5,142.7,137.9,136.0$, 134.8, 133.7, 128.7, 126.7, 123.5, 122.7, 120.1, 109.3, 96.1, 72.0, 50.1, 34.5, 30.4, 30.1, 27.1. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2970,2937,2256,1745,1442,1244,745$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 465.2900$, found:465.2898.
4-(4-(Denzo[d]oxazol-2-yl)-1-phenylbut-3-yn-1-yl)-2,6-di-tert-butylphenol (4ha)


The title compound was prepared as described in the procedure $\mathbf{E}$ using $\mathbf{1 h}(0.200 \mathrm{mmol})$ and $\mathbf{2 a}(0.400 \mathrm{mmol})$. Yield: $17.4 \mathrm{mg}, 19 \%$, pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H})$, $5.11(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 2 \mathrm{H}), 1.41$ (s, 18 H ). ${ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 152.7$, 150.2, 147.7, 143.2, 141.0, 135.9, 133.6, 128.6, 128.0, 126.8, 126.1, 124.9, 124.6, 120.4, 110.6, 95.1, 71.1, 49.5, 34.5, 30.4, 27.1. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2968$, 2938, 2254, 1610, 1553, 1441, 1244, 749, 704. HRMS (ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 452.2584, found: 452.2585 .

## 4-(4-(Benzo[d]thiazol-2-yl)-1-phenylbut-3-yn-1-yl)-2,6-di-tert-butylphenol (4ia)

The title compound was prepared as described in the
 procedure $\mathbf{E}$ using $\mathbf{1 i}(0.200 \mathrm{mmol})$ and $\mathbf{2 a}(0.400 \mathrm{mmol})$. Yield: $29.2 \mathrm{mg}, 31 \%$, pale yellow solid. Mp: 132.6-138.8 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 7.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.39$ (m, 1H), 7.32 (s, 4H), 7.26-7.23 (m, 1H), 7.08 (s, 2H), 5.11 ( $\mathrm{s}, 1 \mathrm{H}$ ), $4.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}$, $18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 152.9,152.6$, $149.2,143.5,135.8,135.3,133.8,128.6,128.1,126.7,126.6,126.1,124.6,123.6,121.3,97.6$, $76.3,49.7,34.5,30.5,27.5$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2971,2886,2242,1608,1441,1240,1160,763$, 704. HRMS (ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 468.2356$, found: 468.2354 .

## 2,6-di-tert-butyl-4-(1-phenyl-4-(pyridin-4-yl)but-3-yn-1-yl)phenol (4ja)



The title compound was prepared as described in the procedure E using $\mathbf{1 j}$ ( 0.200 mmol ) and $\mathbf{2 a}(0.400 \mathrm{mmol})$. Yield: 36.1 mg , $44 \%$, off-white gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (ppm): 8.47 (d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.21$ $(\mathrm{m}, 1 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 4 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1 H ), 3.14-3.05 (m, 2H), 1.40 ( $\mathrm{s}, 18 \mathrm{H}$ ). ${ }^{13} \mathbf{C}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 152.5,149.6,143.8,135.8,134.0,132.3$, $128.5,128.2,126.6,125.8,124.6,94.8,80.3,50.0,34.5,30.4,27.2$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2931$, 2239, 1752, 1603, 1445, 1242, 827. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 412.2635$, found: 412.2642.

## F. Typical Experimental Procedure for a Gram Scale Allenylation Reaction

To a flame-dried round bottom flask charged with a magnetic stir bar, para-quinone methide $2 \mathrm{a}(12.8039 \mathrm{mmol})$ and $\mathrm{KO}^{\prime} \mathrm{Bu}(12.8039 \mathrm{mmol})$ were added under the argon atmosphere. To the reaction mixture, alkynyl azaarene 1a ( 8.5360 mmol ) in toluene ( 0.1 M ) was added, and then, stirred at room temperature for 1 h . The reaction progress was monitored by TLC analysis. After completion of the reaction, the reaction mixture was quenched with water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude reaction mixture was purified by
A. Gram-scale synthesis


Reaction conditions: a) 2a( 1.5 equiv), $\mathrm{KO}^{t} \mathrm{Bu}$ ( 1.5 equiv), toluene ( 0.1 M ), $\mathrm{rt}, 1 \mathrm{~h}$.
b) 2a ( 2.0 equiv), $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ (2 equiv), toluene ( 0.1 M ), rt, 1 h .
B. Synthetic manipulations of allenylated product (3aa)


Reaction conditions: a) $\mathrm{CuCl}\left(10 \mathrm{~mol} \%\right.$ ), $\mathrm{SIMes} . \mathrm{HCl}(10 \mathrm{~mol} \%), \mathrm{NaOtBu}$ ( 0.4 equiv), $\mathrm{B}_{2} \mathrm{pin}_{2}$ (1.1 equiv), MeOH ( 6 equiv), THF, rt, 14 h. b) $\mathrm{CuCl}\left(10 \mathrm{~mol} \%\right.$ ), pinB- $\mathrm{SiMe}_{2} \mathrm{Ph}$ ( 1.1 equiv), $\mathrm{NaO}{ }^{\text {Bu }}$ ( 1.1 equiv), THF, rt, $1 \mathrm{~h} . \mathrm{c}$ ) DMF: $\mathrm{H}_{2} \mathrm{O}(3: 1), 130^{\circ} \mathrm{C}, 15 \mathrm{~h}$.
C. Synthetic manipulations of propargylated product (4aa)


Reaction conditions: a) $\mathrm{AlCl}_{3}$ (6 equiv), toluene/ $\mathrm{MeNO}_{2}, 60^{\circ} \mathrm{C}, 15 \mathrm{~min}, 71 \%$ (6a). b) $\mathrm{NaH}(1.1$ equiv), Mel ( 1.2 equiv), THF, rt, $15 \mathrm{~h}, 64 \%$. c) $\mathrm{Pd} / \mathrm{C}\left(5 \mathrm{~mol} \%\right.$ ), $\mathrm{H}_{2}$ (balloon), EtOH, rt, 18 h , 95\%

Scheme 1. Gram-scale synthesis and synthetic manipulations
silica gel column chromatography using ethyl acetate/hexane (1:20) as the eluent and afforded the desired product. 3aa was obtained as a gummy oil. Yield: $2.60 \mathrm{~g}, 74 \%$.

## G. Typical Experimental Procedure for a Gram Scale Propargylation Reaction

To a flame-dried round bottom flask charged with a magnetic stir bar, para-quinone methide 2a $(17.0720 \mathrm{mmol})$ and $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}(17.0720 \mathrm{mmol})$ were added under the argon atmosphere. To the reaction mixture, alkynyl azaarene $\mathbf{1 a}(8.5360 \mathrm{mmol})$ in toluene $(0.1 \mathrm{M})$ was added and then, stirred at room temperature for 1 h and then the mixture was quenched with water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude reaction mixture was purified by silica gel column chromatography using ethyl acetate/hexane (1:10) as the eluent and afforded the desired product. $4 \mathbf{a a}$ was obtained as an off-white solid. Yield: $1.29 \mathrm{~g}, 36 \%$.

## H. General Procedure for the De-tert Butylation Reaction ${ }^{16}$

To a solution of appropriate phenol ( 1.0 equiv) in toluene $(0.02 \mathrm{M})$ at room temperature was added a solution of $\mathrm{AlCl}_{3}$ ( 6.0 equiv) in $\mathrm{MeNO}_{2}(2.25 \mathrm{M}$ ) in one portion. The mixture was immediately heated to $60^{\circ} \mathrm{C}$ by using a pre-heated oil bath and maintained at this temperature for 15 min . Subsequently, the reaction mixture was cooled to room temperature, poured into a separating funnel containing ice and ethyl acetate, and then extracted with ethyl acetate. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography using ethyl acetate/hexane (1:5) to afford the desired product.

## I. General Procedure for $\boldsymbol{O}$-Methylation Reaction ${ }^{17}$

To a suspension of sodium hydride ( 1.1 equiv, $70 \%$ dispersion in mineral oils) in THF, appropriate phenol (1 equiv) in THF was added dropwise at $0{ }^{\circ} \mathrm{C}$ under the nitrogen atmosphere. The mixture was stirred for 1 h , and then, methyl iodide ( 1.2 equiv) in THF was added. The mixture was stirred at room temperature for 15 h , quenched by saturated aq. ammonium chloride, diluted with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography using ethyl acetate/hexane (1:10) to afford the desired product.

## J. Typical Experimental Procedure for the Borylation of $\mathbf{5 b}{ }^{\mathbf{1 8}}$

A flame dried reaction tube containing a magnetic stir bar was charged with $\mathrm{NaO}^{t} \mathrm{Bu}(0.4$ equiv), $\mathrm{CuCl}(10 \mathrm{~mol} \%)$, SIMes $\cdot \mathrm{HCl}(10 \mathrm{~mol} \%)$. Then, THF ( 0.15 mL ) was added and stirred for 1.5 h followed by addition of $\mathrm{B}_{2} \mathrm{pin}_{2}$ ( 1.1 equiv), which made the mixture turn to black immediately. After 30 minutes, MeOH ( 6 equiv) and allenylated product ( $\mathbf{5 b}, 0.10 \mathrm{mmol}, 1$ equiv) were added. The reaction was allowed to stir for 14 h at room temperature. The reaction mixture was then passed through a plug of Celite ${ }^{\circledR}$ eluting with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography using ethyl acetate/hexane (1:5) to afford the desired product.

## K. Typical Experimental Procedure for the Silylation of 5b ${ }^{\mathbf{1 9}}$

A flame dried reaction tube containing a magnetic stir bar was charged with $\mathrm{CuCl}(0.01 \mathrm{mmol}$, $10 \mathrm{~mol} \%), \mathrm{NaO}^{t} \mathrm{Bu}(0.11 \mathrm{mmol}, 1.1$ equiv) and THF ( 0.5 mL ). The mixture was stirred for 15 min at ambient temperature. Then, pinB- $\mathrm{SiMe}_{2} \mathrm{Ph}(0.11 \mathrm{mmol}, 1.1$ equiv) was added, and the mixture was stirred for additional 5 min . Subsequently, allenylated product ( $\mathbf{5 b}, 0.1 \mathrm{mmol}, 1.0$ equiv) was added to the tube. After stirring for 1 h , the reaction mixture was filtered through a
pad of silica gel and the solution was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography using ethyl acetate/hexane (1:20) to afford the desired product.

## L. Typical Experimental Procedure for the Cycloisomerization of $\mathbf{5 b}^{\mathbf{2 0}}$

To a solution of allenylated product ( $\mathbf{5 b}, 31.3 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) in DMF ( 1.5 mL ) was added $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{~mL})$ at room temperature. Then, the reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 15 h . The resulting mixture was quenched with water, extracted with ethyl acetate, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure, and the crude product was purified by silica gel column chromatography using ethyl acetate/hexane (1:10) to afford the desired product.

## M. Typical Experimental Procedure for the Reduction of $\mathbf{6} \mathbf{b}^{\mathbf{2 1}}$

To a solution of $\mathbf{6 b}$ ( 1 equiv, 0.04786 mmol ) in ethanol ( 0.5 mL ), palladium on carbon ( 5 mol\%) was added, and the reaction mixture was stirred under the hydrogen (balloon) atmosphere at room temperature for 18 h . The mixture was filtered through a pad of Celite ${ }^{\circledR}$, and the solvent was evaporated. The crude product was purified by silica gel column chromatography using ethyl acetate/hexane $(1: 10)$ to afford the desired product.

## 4-(1-Phenyl-2-(pyridin-2-yl)buta-2,3-dien-1-yl)phenol (5a)



The title compound was prepared as described in the procedure $\mathbf{H}$ using 3aa ( 1.2148 mmol ). Yield: $276.1 \mathrm{mg}, 76 \%$, brown solid. Mp: 134.6-146.1 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.50-8.49(\mathrm{~m}$, $1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 4 \mathrm{H})$, 7.18-7.14 (m, 1H), 7.12-7.08 (m, 2H), 7.04-7.02 (m, 1H), 6.71-6.66 $(\mathrm{m}, 2 \mathrm{H}), 5.79-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 212.3,155.3,154.4,149.1,143.5,136.4$, $134.8,130.4,129.2,128.1,126.3,122.6,121.5,115.1,111.5,81.0$, 49.2. IR ( $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right):$ 2939, 1950, 1745, 1598, 1518, 1241, 742. HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 300.1383$, found: 300.1378 .

## 2-(1-(4-Methoxyphenyl)-1-phenylbuta-2,3-dien-2-yl)pyridine (5b)



The title compound was prepared as described in the procedure I using 5a ( 1.2827 mmol ). Yield: $338.1 \mathrm{mg}, 84 \%$, brown solid. Mp: 93.5-98.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.50-8.49(\mathrm{~m}$, $1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.02-$ $6.99(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, 2 H ), 3.75 (s, 3H). ${ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 212.3$, 158.1, 155.2, 149.2, 143.6, 136.1, 135.3, 130.2, 129.2, 128.1, 126.2, 122.4, 121.3, 113.5, 111.7, 80.9, 55.3, 49.0. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3040$, 2848, 1948, 1516, 1251, 1038, 783. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 314.1539$, found: 314.1536.

2-(1-(4-Methoxyphenyl)-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-en-2-yl)pyridine (5c)


The title compound was prepared as described in the procedure $\mathbf{J}$ using 5b ( 0.2553 mmol ). Yield: $57.8 \mathrm{mg}, 51 \%$, off-white gummy oil. ${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.46$ (d, $J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.18$ $(\mathrm{m}, 3 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}$, $12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 159.2,158.3$, 142.3, 142.0, 141.8, 135.1, 133.5, 130.2, 129.2, 128.5, 126.5, $120.0,118.7,113.9,80.0,55.4,47.5,27.7,15.6 .{ }^{11} \mathbf{B}$ NMR ( $160 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 11.51$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2939,1757,1469,1256,1044,757$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{BNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 442.2548$, found: 442.2550 .
(2-(3-(Dimethyl(phenyl)silyl)-1-(4-methoxyphenyl)-1-phenylbut-2-en-2-yl)pyridine (5d)


The title compound was prepared as described in the procedure $\mathbf{K}$ using $\mathbf{5 b}$ ( 0.1 mmol ). Yield: $25.6 \mathrm{mg}, 57 \%$, off-white gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.38-8.37(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.07(\mathrm{~m}, 8 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.73-$ $6.71(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.76$ $(\mathrm{s}, 3 \mathrm{H}),-0.77(\mathrm{~d}, \mathrm{~J}=-2.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 160.5, 156.8, 152.0, 147.3, 142.3, 139.0, 134.8, 134.0, 133.7, 132.9, 129.8, 128.8, 127.6, 127.0, 126.7, 124.9, 124.8, 120.4, 112.4, 54.3, 54.2, 18.2, -2.72, -2.75. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ : 2937, 1740, 1591, 1517, 1255, 824, 705. HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}: 450.2248$, found: 450.2243.

## 1-((4-Methoxyphenyl)(phenyl)methyl)indolizine (5e)



The title compound was prepared as described in the procedure $\mathbf{L}$ using $\mathbf{5 b}$ ( 0.1 mmol ). Yield: $31.0 \mathrm{mg}, 99 \%$, yellow gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.50-6.47(\mathrm{~m}, 1 \mathrm{H}), ~ 6.41-6.36(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~s}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 158.0,145.3$, 137.2, 130.0, 129.7, 129.0, 128.3, 126.1, 125.3, 117.8, 116.1, 115.9, 114.7, 113.7, 111.5, 110.2, 55.3, 48.0. IR ( $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2944,1744$, 1619, 1517, 1256, 1041, 743. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 314.1539$, found: 314.1535 .

## 4-(1-Phenyl-4-(pyridin-2-yl)but-3-yn-1-yl)phenol (6a)



The title compound was prepared as described in the procedure H using 4aa ( 0.24296 mmol ). Yield: $51.5 \mathrm{mg}, 71 \%$, brown solid. Mp: 133.6-139.8 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.44$ (d, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.17-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ (ppm): 155.5, 149.2, 143.9, 143.3, 136.8, 134.7, 128.9, 128.5, 128.0, 127.4, 126.5, 122.7, 115.9, 91.0, 81.3, 49.1, 26.6. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ : 2937, 2240, 1596, 1253, 781. HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 300.1383, found: 300.1380 .

## 2-(4-(4-Methoxyphenyl)-4-phenylbut-1-yn-1-yl)pyridine (6b)



The title compound was prepared as described in the procedure I using $\mathbf{6 a}$ ( 0.8027 mmol ). Yield: $161.6 \mathrm{mg}, 64 \%$, brown solid. Mp: 94.8-99.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.51-$ $8.50(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.22-$ 7.18 (m, 4H), 7.15-7.13 (m, 1H), 6.85 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.32$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 158.3,149.8,143.84$, 143.76, 136.1, 135.7, 129.0, 128.5, 128.0, 127.1, 126.6, 122.5,
113.9, 89.4, 82.0, 55.3, 49.2, 26.6. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2940,2243,1744,1471,1257,783$.

HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 314.1539$, found: 314.1535.

## 2-(4- (4-Methoxyphenyl)-4-phenylbutyl)pyridine (6c)



The title compound was prepared as described in the procedure $\mathbf{M}$ using 6b ( 0.04786 mmol ). Yield: $14.5 \mathrm{mg}, 95 \%$, off-white gummy oil. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta(\mathrm{ppm}): 8.50-8.48(\mathrm{~m}$, $1 \mathrm{H}), 7.55(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.23$ (m, 2H), 7.21-7.19 $(\mathrm{m}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), ~ 6.82-6.79(\mathrm{~m}$, $2 \mathrm{H}), 3.88(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.07(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( 125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 162.1,158.0,149.2,145.6,137.3,136.4$, 128.8, 128.5, 127.9, 126.1, 122.8, 121.1, 113.9, 55.3, 50.5, 38.4, 35.6, 28.4. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ : 2939, 1736, 1599, 1518, 1254, 1042, 704. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 318.1852, found: 318.1849.

## Competitive Reactions

The competitive reaction was using 1.0 equivalent of 2 -alkynyl pyridine with 1.5 equivalents of $p$-quinone methide in the presence of 1.0 equivalent of both $\mathrm{KO}^{t} \mathrm{Bu}$ and $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$. In this reaction, the allenylated product was formed predominantly (52\%), while the corresponding propargylated product was produced at a lesser yield (11\%).


The predominant formation of allenyl product (in the presence of $\mathrm{KO}^{t} \mathrm{Bu}$ ) rather than propargyl product (in the presence of $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ) may be because of the increased ionic character of $\mathrm{K}-\mathrm{C}$ bond rather than $\mathrm{Na}-\mathrm{C}$ bond in the respective allenyl/propargyl metal species. The nucleophilicity/basicity of the anionic metal species is directly attributed to the increased ionic character of the metal-carbon/metal-heteroatom bond and also to the periodic properties of the metal ion. ${ }^{24}$ Hence, the K -allenyl/propargyl metal species might reacts with the $p$-quinone methide faster than the K-allenyl/propargyl metal species.

## Crystal data for 3da

Table 1. Crystal data and structure refinement for 3da.

| Identification code | shelx |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}$ |
| Formula weight | 425.59 |
| Temperature | 296(2) K |
| Wavelength | 0.71073 £ |
| Crystal system | Monoclinic |
| Space group | P 21/c |
| Unit cell dimensions | $\begin{array}{ll} a=11.4653(8) \AA & a=90^{\circ} . \\ b=17.7458(13) \AA & b=107.437(3)^{\circ} . \\ c=12.8064(10) \AA & g=90^{\circ} . \end{array}$ |
| Volume | 2485.9(3) $\AA^{3}$ |
| Z | 4 |
| Density (calculated) | $1.137 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.067 \mathrm{~mm}^{-1}$ |
| F(000) | 920 |
| Crystal size | $0.090 \times 0.060 \times 0.045 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 2.295 to $24.999^{\circ}$. |
| Index ranges | $-13<=\mathrm{h}<=12,-21<=\mathrm{k}<=21,-15<=\mathrm{l}<=15$ |
| Reflections collected | 29393 |
| Independent reflections | 4372 [R(int) $=0.0475]$ |
| Completeness to theta $=24.999^{\circ}$ | 99.9 \% |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | 0.997 and 0.994 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | 4372 / 2 / 305 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.016 |
| Final R indices [ $1>2$ sigma(I)] | $\mathrm{R} 1=0.0427, \mathrm{wR} 2=0.0954$ |
| R indices (all data) | $\mathrm{R} 1=0.0721, \mathrm{wR} 2=0.1114$ |
| Extinction coefficient | n/a |
| Largest diff. peak and hole | 0.195 and -0.146 e. $\AA^{-3}$ |

Figure 1: X-ray crystal structure of compound 3da (2172750). The thermal ellipsoids are shown at $50 \%$ probability. The crystal was grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ : Hexane combination (1:2) in open atmosphere.


## Crystal data for 4aa

Table 1. Crystal data and structure refinement for 4aa.

| Identification code | shelx |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}$ |
| Formula weight | 411.56 |
| Temperature | 296(2) K |
| Wavelength | 0.71073 £ |
| Crystal system | Triclinic |
| Space group | P -1 |
| Unit cell dimensions | $\begin{array}{ll} \mathrm{a}=9.5519(12) \AA & \mathrm{a}=92.316(4)^{\circ} . \\ \mathrm{b}=10.6336(13) \AA & \mathrm{b}=109.059(4)^{\circ} . \\ \mathrm{c}=14.3558(18) \AA & \mathrm{g}=113.435(4)^{\circ} . \end{array}$ |
| Volume | $1239.9(3) \AA^{3}$ |
| Z | 2 |
| Density (calculated) | $1.102 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.066 \mathrm{~mm}^{-1}$ |
| F(000) | 444 |
| Crystal size | $0.060 \times 0.048 \times 0.035 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 2.129 to $24.994^{\circ}$. |
| Index ranges | $-11<=\mathrm{h}<=11,-12<=\mathrm{k}<=12,-17<=\mathrm{l}<=17$ |
| Reflections collected | 27075 |
| Independent reflections | 4369 [R(int) $=0.0363]$ |
| Completeness to theta $=24.999^{\circ}$ | 100.0 \% |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | 0.998 and 0.996 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | 4369 / 0 / 288 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.023 |
| Final R indices [ $\mathrm{I}>2$ sigma(I)] | $\mathrm{R} 1=0.0487, \mathrm{wR} 2=0.1254$ |
| R indices (all data) | $\mathrm{R} 1=0.0741, \mathrm{wR} 2=0.1490$ |
| Extinction coefficient | 0.022(3) |
| Largest diff. peak and hole | 0.411 and -0.196 e. $\AA^{-3}$ |

Figure 1: X-ray crystal structure of compound 4aa (2172751). The thermal ellipsoids are shown at $50 \%$ probability. The crystal was grown from MeOH: Hexane combination (1:2) in open atmosphere.

A. KOtBu-mediated allenylation of $p-\mathrm{QM}$ using alkynyl azaarene as the pronucleophile


$\mathrm{S}_{\mathrm{E}}$ 2' addition $^{\prime}$


$\mathrm{S}_{\mathrm{E}} 2$ addition
B. $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$-mediated propargylation of $p$-QM using alkynyl azaarene as the pronucleophile




Scheme 1. Plausible reaction mechanism
To gain insights into the reaction mechanism, we performed a few NMR studies and trapping experiments (such as silylation and deuterium quenching) to entrap the intermediates formed in the reaction medium. However, no fruitful results were obtained. Based on the literature precedence, ${ }^{25,26}$ we delineated a hypothetical reaction mechanism in scheme 1 . The $\mathrm{p} K$ a value of the $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bond of alkynyl azaarene (1a) was theoretically calculated and is
approximately $27 .{ }^{27}$ We speculate that the coordination of an alkali metal ion (of the Brønsted base) with the nitrogen atom and the triple bond of the alkynyl azaarenes could significantly bring down the $\mathrm{p} K$ a of the propargylic $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bond, and then the activated propargylic C H bond can be readily deprotonated by the counter ion of the base to generate an active allenyl/propargyl metal nucleophile(s). Since allenyl and propargyl metal species are class of ambident nucleophiles, the $\mathrm{C}-\mathrm{C}$ bond-formation with the electrophiles can occur either at $\alpha$ position or $\gamma$-position (of the nucleophile). ${ }^{26}$ As shown in scheme 1A, the allenyl product formation can take place through either $\gamma$-attack of the K-propargyl species to the $p$-QM (i.e. $\mathrm{S}_{\mathrm{E}} 2^{\prime}$ addition) or an $\alpha$-attack of the K -allenyl species to the $p$ - QM (i.e. $\mathrm{S}_{\mathrm{E}} 2$ addition). On the other hand, the propargyl product formation (Scheme 1B) can occur through either $\gamma$-attack of the Na-allenyl species to the $p$-QM (i.e. $\mathrm{S}_{\mathrm{E}} 2^{\prime}$ addition) or an $\alpha$-attack of Na-propargyl species to the $p-\mathrm{QM}$ (i.e. $\mathrm{S}_{\mathrm{E}} 2$ addition).

## Computational Study

(The geometry optimization of all the stationary points (reactants, transition states and products) were performed within the density functional theory (DFT) at B3LYP/6-31+G(d,p) level of theory. Single point energy calculations were performed for all the optimized structures at the M06-2X level, using the same basis set. Solvent effects were included in these calculations using SMD formalism. All the calculations were carried out using the Gaussian 16 software package.)


Figure 1: Relative free energy profile for the a) $\alpha$-attack by K-allenyl species and b) $\gamma$-attack by K-propargyl species

The DFT calculations predicted the addition of K-allenyl species to $p$-QM requires an energy barrier of $7.5 \mathrm{kcal} \mathrm{mol}^{-1}$, whereas the addition of K-propargyl species has a barrier of about $13.3 \mathrm{kcal} \mathrm{mol}^{-1}$. This shows that the $\alpha$-attack of the K -allenyl species to the $p-\mathrm{QM}$ is an energetically more favourable process, i.e., the reaction might proceed via the $\mathrm{S}_{\mathrm{E}} 2$ pathway. In the case of propargyl product formation, the $\gamma$-attack of the Na-allenyl species to the $p$-QM (energy barrier of $6.9 \mathrm{kcal} \mathrm{mol}^{-1}$ ) is energetically more favourable than the $\alpha$-attack of Napropargyl species (energy barrier of $9.9 \mathrm{kcal} \mathrm{mol}^{-1}$ ). Therefore, this reaction might proceed through the $\mathrm{S}_{\mathrm{E}} 2$ ' pathway.


Figure 2: Relative free energy profile for the a) $\alpha$-attack by Na-propargyl species and b) $\gamma$ attack by Na-allenyl species

Besides, the calculation of relative free energy for the formation of K-allenyl and K-propargyl species from alkynyl azaarene and $\mathrm{KO}^{t} \mathrm{Bu}$ revealed that the formation of K -allenyl species (the relative free energy is $5.6 \mathrm{kcal} \mathrm{mol}^{-1}$ ) is more facile than the K-propargyl species (the relative free energy is $8.8 \mathrm{kcal} \mathrm{mol}^{-1}$ ). These results suggest that the treatment of alkynyl azaarene with $\mathrm{KO}^{t} \mathrm{Bu}$ predominantly forms the K-allenyl species, which further undergoes a regioselective $\mathrm{S}_{\mathrm{E}} 2$ addition to the $p-\mathrm{QM}$ to give the corresponding allenylated product. In contrast, the calculation of relative free energy for the formation of Na -allenyl and Na-propargyl species from alkynyl azaarene and $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ implied that both species have almost equal relative free energy ( $3.5 \mathrm{kcal} \mathrm{mol}^{-1}$ for Na -allenyl species and $3.5 \mathrm{kcal} \mathrm{mol}^{-1}$ for Na-propargyl species). This likely accounts for the experimentally observed inferior regioselective outcome in $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$-mediated propargylation of $p$-QMs.

## 1. Formation of K -allenyl and K -propargyl species (from alkynyl azaarene and $\mathrm{KO}^{t} \mathbf{B u}$ )

Alkyne + KO'Bu ------------>> K-allenyl /K-propargyl

Relative free energy $\left(\right.$ in kcalmol $\left.{ }^{-1}\right)=\left[\Delta \mathrm{G}_{\text {allenylpropargyl }}-\left(\Delta \mathrm{G}_{\text {alkyne }}+\Delta \mathrm{G}_{\text {KOtBu }}-\Delta \mathrm{G}_{\text {tBuOH }}\right)\right] * 630$
Note : $1 \mathrm{Ha}=630$ kcalmol $^{-1}$

## Attack by $\mathrm{KO}^{\mathrm{t}}{ }^{\mathbf{B}} \mathbf{u}$

## 2. Formation of Na-allenyl and Na-propargyl species (from alkynyl azaarene and NaHMDS)

Alkyne + NaHMDS ------------> Na-allenyl /Na-propargyl

Relative free energy $\left(\right.$ in kcalmol $\left.{ }^{-1}\right)=\left[\Delta \mathrm{G}_{\text {allenyl/propargyl }}-\left(\Delta \mathrm{G}_{\text {alkyne }}+\Delta \mathrm{G}_{\text {NaHMDS }}-\Delta \mathrm{G}_{\text {HMDS }}\right)\right]^{*} 630$

|  | Free energy (au) | Relative energy ( $\mathrm{kcalmol}^{-1}$ ) |
| :---: | :---: | :---: |
| Alkyne | -363.5333122 | - |
| $\mathrm{KO}^{\text {t }} \mathrm{Bu}$ | -832.7929499 | - |
| Reactants (Alkyne $+\mathrm{KO}{ }^{\text {t }} \mathrm{Bu}$ ) | -1196.3262621 | 0 |
| ${ }^{\text {t }} \mathrm{BuOH}$ | -233.4752115 | - |
| Reactants - 'BuOH | -962.8510506 | - |
| K-allenyl species | -962.8421444 | 5.6 |
| Alpha-TS | -1853.2477871 | 7.5 |
| Product | -1853.302016 | -26.5 |
| K-propargyl species | -962.8370802 | 8.8 |
| Gamma-TS | -1853.2385229 | 13.3 |
| Product | -1853.302016 | -26.5 |
|  | Free energy (au) | Relative energy ( $\mathrm{kcalmol}^{-1}$ ) |
| Alkyne | -363.5333122 | - |
| NaHMDS | -1035.2350647 | - |
| Reactants (Alkyne +NaHMDS) | -1398.7683769 | 0 |
| HMDS | -873.5464989 | - |
| Reactants-HMDS | -525.221878 | - |
| Na-propargyl species | -525.2162429 | 3.5 |
| Alpha-TS | -1415.6147629 | 9.9 |
| Product | -1415.6694467 | -24.4 |
| Na-allenyl species | -525.2162497 | 3.5 |
| Gamma-TS | -1415.6195178 | 6.9 |
| Product | -1416.1363837 | -24.4 |

## Calculation of $\mathrm{p} K_{\mathrm{a}}$ in DMSO

The pKa value of the $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bond of alkynyl azaarene (1a) was theoretically calculated according to the literature report. ${ }^{26}$


Scheme 2. Isodesmic reaction fort he pKa calculation in solution
Based on the above scheme,

$$
\begin{align*}
& \Delta \mathrm{G}_{\text {sol }}^{0}=\Delta \mathrm{G}^{0}{ }_{\text {gas }}-\Delta \mathrm{G}^{0}(\mathrm{R}-\mathrm{H})_{\text {solv }}-\Delta \mathrm{G}^{0}\left(\text { Ref }^{\prime}\right)_{\text {solv }}+\Delta \mathrm{G}^{0}\left(\mathrm{R}^{-}\right)_{\text {solv }}+\Delta \mathrm{G}^{0}(\text { Ref-H })_{\text {sol }}  \tag{1}\\
& \mathrm{p} K_{\mathrm{a}}(\mathrm{R}-\mathrm{H})=\mathrm{p} K_{\mathrm{a}}(\text { Ref-H })+\left(\Delta \mathrm{G}_{\text {sol }}^{0} / 2.303 \cdot \mathrm{R} \cdot \mathrm{~T}\right) \tag{2}
\end{align*}
$$



R-H


Ref-H (DMSO)

Finding each term in equation (1) :

1) $\Delta G^{0}{ }_{\text {gas }}=G^{0}\left(R^{-}\right)_{\text {gas }}+G^{0}(\text { Ref-H })_{\text {gas }}-G^{0}(R-H)_{\text {gas }}-G^{0}\left(\text { Ref }^{-}\right)_{\text {gas }}$

$$
=-12.8432391 \mathrm{kcalmol}^{-1}
$$

2) $\Delta G^{0}(R-H)_{\text {solv }}=G^{0}(R-H)_{\text {solv }}-G^{0}(R-H)_{\text {gas }}$
$=-6.54304268 \mathrm{kcalmol}^{-1}$
3) $\Delta G^{0}\left(\text { Ref }^{\prime}\right)_{\text {solv }}=G^{0}\left(\text { Ref }^{f}\right)_{\text {solv }}-G^{0}\left(\text { Ref }^{f}\right)_{\text {gas }}$

$$
=-56.1928579 \mathrm{kcalmol}^{-1}
$$

4) $\Delta G^{0}\left(R^{-}\right)_{\text {solv }}=G^{0}\left(R^{-}\right)_{\text {solv }}-G^{0}\left(R^{-}\right)_{\text {gas }}$

$$
=-52.1422834 \mathrm{kcalmol}^{-1}
$$

5) $\Delta \mathrm{G}^{0}(\text { Ref-H })_{\text {solv }}=\mathrm{G}^{0}(\text { Ref-H })_{\text {solv }}-\mathrm{G}^{0}($ Ref-H $)$ gas

$$
=-8.6728 \mathrm{kcalmol}^{-1}
$$

Substituting 1-5 in equation (2), we get,

$$
\Delta \mathrm{G}_{\text {sol }}^{0}=-10.92242192 \mathrm{kcalmol}^{-1}
$$

We have, $\mathrm{T}=298.15 \mathrm{~K} ; \mathrm{R}=1.9858775^{*} 10^{-3} \mathrm{kcalK}^{-1} \mathrm{~mol}^{-1} ; \mathrm{p} K_{\mathrm{a}}($ Ref- H$)=+35.1$
Now, using equation (3),
$\mathrm{p} K_{a}(\mathrm{R}-\mathrm{H})=+27.1$
Ground-state optimized geometries of all the molecules under study

## Alkynyl azaarene

| C | -0.065994 | -0.012709 | 0.000001 |
| :--- | ---: | ---: | ---: |
| C | -0.770405 | 1.207360 | 0.000000 |
| C | -2.162106 | 1.181671 | -0.000001 |
| C | -2.812985 | -0.053251 | -0.000002 |
| C | -2.029385 | -1.210762 | -0.000001 |
| N | -0.692738 | -1.209165 | 0.000000 |
| H | -2.728035 | 2.108851 | -0.000002 |
| H | -0.222562 | 2.143590 | 0.000001 |
| H | -3.896114 | -0.123120 | -0.000003 |
| H | -2.499601 | -2.192262 | -0.000001 |
| C | 1.368191 | -0.015583 | 0.000003 |
| C | 2.581393 | -0.001489 | 0.000004 |
| C | 4.040470 | -0.004718 | -0.000001 |
| H | 4.435892 | 0.506417 | -0.885161 |
| H | 4.435898 | 0.506414 | 0.885158 |
| H | 4.428609 | -1.028841 | -0.000004 |

## $\mathrm{KO}^{t} \mathrm{Bu}$

| O | -0.050284 | -0.290506 | 0.000000 |
| :--- | ---: | ---: | ---: |
| C | 0.185117 | 1.070751 | 0.000000 |
| C | -0.440094 | 1.724215 | -1.260034 |
| C | -0.440094 | 1.724215 | 1.260034 |
| C | 1.710336 | 1.352379 | 0.000000 |
| H | -1.520352 | 1.534571 | -1.273728 |
| H | -0.278359 | 2.810299 | -1.304884 |
| H | -0.006503 | 1.272550 | -2.160668 |
| H | -0.006503 | 1.272550 | 2.160668 |
| H | -1.520352 | 1.534571 | 1.273728 |
| H | -0.278359 | 2.810299 | 1.304884 |
| H | 2.167334 | 0.896826 | -0.886996 |
| H | 1.948235 | 2.425291 | 0.000000 |
| H | 2.167334 | 0.896826 | 0.886996 |
| K | -0.440094 | -2.545215 | 0.000000 |

## NaHMDS

|  | $r$ |  |  |
| :--- | ---: | ---: | ---: |
| Si | 0.000000 | -1.592386 | -0.244941 |
| Si | 0.000000 | 1.592386 | -0.244941 |
| N | 0.000000 | 0.000000 | 0.332299 |
| C | 0.000000 | -2.745923 | 1.298910 |
| C | -1.529733 | -2.080756 | -1.269030 |
| C | 1.529733 | -2.080756 | -1.269030 |
| C | 1.529733 | 2.080756 | -1.269030 |


| C | -1.529733 | 2.080756 | -1.269030 |
| :--- | ---: | ---: | ---: |
| C | 0.000000 | 2.745923 | 1.298910 |
| H | -0.895490 | -2.587353 | 1.920710 |
| H | 0.000000 | -3.809116 | 1.029717 |
| H | 0.895490 | -2.587353 | 1.920710 |
| H | -1.508389 | -3.138513 | -1.561253 |
| H | -2.454791 | -1.903055 | -0.707289 |
| H | -1.588326 | -1.484551 | -2.187872 |
| H | 2.454791 | -1.903055 | -0.707288 |
| H | 1.508389 | -3.138513 | -1.561253 |
| H | 1.588326 | -1.484551 | -2.187871 |
| H | 2.454791 | 1.903055 | -0.707289 |
| H | 1.588326 | 1.484551 | -2.187872 |
| H | 1.508389 | 3.138513 | -1.561253 |
| H | -1.588326 | 1.484551 | -2.187871 |
| H | -2.454791 | 1.903055 | -0.707288 |
| H | -1.508389 | 3.138513 | -1.561253 |
| H | -0.895490 | 2.587353 | 1.920710 |
| H | 0.895490 | 2.587353 | 1.920710 |
| H | 0.000000 | 3.809116 | 1.029717 |
| Na | 0.000000 | 0.000000 | 2.498676 |


| $\boldsymbol{p}$-QM |  |  |  |
| :--- | ---: | ---: | ---: |
| C | -0.555601 | -0.838550 | -0.057552 |
| C | 0.679170 | -1.602590 | -0.039941 |
| C | 1.911716 | -1.037761 | 0.025197 |
| C | 2.003895 | 0.453498 | 0.058481 |
| C | 0.747130 | 1.258403 | -0.067356 |
| C | -0.444528 | 0.606619 | -0.107330 |
| H | 0.570765 | -2.682024 | -0.052672 |
| H | -1.361560 | 1.166952 | -0.226645 |
| C | 3.203618 | -1.872926 | 0.075332 |
| C | 4.114301 | -1.515455 | -1.127348 |
| C | 3.958689 | -1.604855 | 1.402678 |
| C | 2.908484 | -3.385434 | 0.002833 |
| H | 3.602330 | -1.716129 | -2.075785 |
| H | 4.410390 | -0.466177 | -1.104877 |
| H | 5.020085 | -2.132486 | -1.098663 |
| H | 3.335758 | -1.871977 | 2.264349 |
| H | 4.865239 | -2.220414 | 1.440788 |
| H | 4.247230 | -0.557010 | 1.491263 |
| H | 3.854280 | -3.936108 | 0.031687 |
| H | 2.304031 | -3.730368 | 0.849394 |
| H | 2.396189 | -3.662350 | -0.925676 |
| C | 0.848655 | 2.791679 | -0.158519 |
| C | 1.475670 | 3.359087 | 1.141568 |
| C | 1.714563 | 3.197550 | -1.378873 |
| C | -0.536731 | 3.447833 | -0.333074 |
| H | 0.864056 | 3.098588 | 2.013398 |
| H | 2.484930 | 2.976591 | 1.295879 |


|  |  |  |  |
| :--- | ---: | ---: | ---: |
| H | 1.522094 | 4.452805 | 1.079656 |
| H | 1.276887 | 2.817919 | -2.309582 |
| H | 1.757616 | 4.290631 | -1.450874 |
| H | 2.732734 | 2.817495 | -1.290242 |
| H | -0.411639 | 4.533320 | -0.401230 |
| H | -1.039590 | 3.117192 | -1.248841 |
| H | -1.199102 | 3.249265 | 0.517142 |
| O | 3.101750 | 1.015581 | 0.167908 |
| C | -1.743332 | -1.526447 | -0.066283 |
| H | -1.661400 | -2.608488 | -0.169270 |
| C | -3.119591 | -1.039203 | 0.020208 |
| C | -3.504965 | 0.089717 | 0.774198 |
| C | -4.131414 | -1.771592 | -0.638159 |
| C | -4.839618 | 0.489842 | 0.828090 |
| H | -2.763463 | 0.627554 | 1.354137 |
| C | -5.462453 | -1.363378 | -0.592901 |
| H | -3.858850 | -2.659551 | -1.202635 |
| C | -5.822152 | -0.225996 | 0.137369 |
| H | -5.115391 | 1.355739 | 1.422959 |
| H | -6.220278 | -1.935088 | -1.120512 |
| H | -6.860360 | 0.089218 | 0.181882 |

## K-propargyl species

| C | 0.369138 | 1.212199 | -0.263504 |
| :--- | ---: | ---: | ---: |
| C | 1.216271 | 2.248281 | 0.212451 |
| C | 0.729543 | 3.543857 | 0.302001 |
| C | -0.594189 | 3.807757 | -0.075996 |
| C | -1.357775 | 2.732777 | -0.533619 |
| N | -0.911195 | 1.476578 | -0.647034 |
| H | 1.368335 | 4.341988 | 0.672573 |
| H | 2.231148 | 2.006484 | 0.511241 |
| H | -1.017742 | 4.805336 | -0.019467 |
| H | -2.392521 | 2.891058 | -0.837082 |
| C | 0.841949 | -0.126068 | -0.420489 |
| C | 1.236565 | -1.192196 | 0.135908 |
| C | 1.630069 | -2.455155 | 0.456261 |
| H | 2.654850 | -2.648577 | 0.766254 |
| H | 0.891955 | -3.189743 | 0.777668 |
| K | 0.737858 | -2.028111 | -2.449706 |

K-allenyl species

| C | 0.390138 | 0.458964 | -0.145863 |
| :--- | ---: | ---: | ---: |
| C | 1.398426 | 1.425177 | -0.439924 |
| C | 2.730081 | 1.118244 | -0.238477 |
| C | 3.087284 | -0.153766 | 0.248661 |
| C | 2.056930 | -1.051724 | 0.500497 |
| N | 0.753159 | -0.789717 | 0.308395 |
| H | 3.496326 | 1.861185 | -0.446337 |
| H | 1.092601 | 2.399307 | -0.806174 |
| H | 4.121104 | -0.432629 | 0.421164 |


| H | 2.285121 | -2.049064 | 0.876388 |
| :--- | ---: | ---: | ---: |
| C | -0.987058 | 0.710065 | -0.388378 |
| C | -1.968065 | 1.384666 | 0.075458 |
| C | -3.050785 | 2.050267 | 0.493429 |
| H | -3.255783 | 3.059856 | 0.148060 |
| H | -3.737025 | 1.630726 | 1.224816 |
| K | -1.642956 | -1.925932 | -0.221531 |

## K-alpha TS

| C | 0.126129 | -0.616580 | 2.113400 |
| :--- | ---: | ---: | ---: |
| C | -1.199777 | -0.968117 | 1.644266 |
| C | -2.331439 | -0.297754 | 2.004697 |
| C | -2.209171 | 0.836554 | 2.966366 |
| C | -0.854975 | 1.185753 | 3.494572 |
| C | 0.226162 | 0.474239 | 3.060514 |
| H | -1.255137 | -1.799547 | 0.949737 |
| H | 1.205431 | 0.689557 | 3.465201 |
| C | -3.719067 | -0.663802 | 1.444220 |
| C | -4.668516 | -1.084893 | 2.595343 |
| C | -4.318516 | 0.552155 | 0.692010 |
| C | -3.643436 | -1.839077 | 0.447969 |
| H | -4.292628 | -1.983817 | 3.102132 |
| H | -4.790434 | -0.284025 | 3.325816 |
| H | -5.655268 | -1.334930 | 2.189438 |
| H | -3.666930 | 0.854359 | -0.135811 |
| H | -5.291975 | 0.278671 | 0.268891 |
| H | -4.456995 | 1.404668 | 1.357562 |
| H | -4.649966 | -2.059964 | 0.078762 |
| H | -3.020520 | -1.603178 | -0.421873 |
| H | -3.258047 | -2.754423 | 0.911315 |
| C | -0.722783 | 2.327382 | 4.520954 |
| C | -1.237245 | 3.652040 | 3.900040 |
| C | -1.536984 | 1.996280 | 5.798410 |
| C | 0.742783 | 2.549251 | 4.948845 |
| H | -0.662746 | 3.907702 | 3.002199 |
| H | -2.292218 | 3.585489 | 3.633096 |
| H | -1.110282 | 4.467492 | 4.621353 |
| H | -1.145145 | 1.094511 | 6.287151 |
| H | -1.443196 | 2.816678 | 6.518790 |
| H | -2.595347 | 1.857225 | 5.573659 |
| H | 0.781869 | 3.369466 | 5.672613 |
| H | 1.175456 | 1.667065 | 5.433371 |
| H | 1.380532 | 2.830792 | 4.103342 |
| O | -3.216930 | 1.451827 | 3.352410 |
| C | 1.193050 | -1.375145 | 1.676770 |
| H | 0.929688 | -2.266730 | 1.108199 |
| C | 2.624644 | -1.198266 | 1.872784 |
| C | 3.253479 | 0.060995 | 1.996021 |
| C | 3.437652 | -2.354601 | 1.883312 |
|  |  |  |  |


| C | 4.633586 | 0.151982 | 2.160944 |
| :--- | ---: | ---: | ---: |
| H | 2.666647 | 0.968682 | 1.911144 |
| C | 4.814388 | -2.259175 | 2.066358 |
| H | 2.971230 | -3.330130 | 1.777288 |
| C | 5.417986 | -1.005541 | 2.209244 |
| H | 5.101230 | 1.128934 | 2.239982 |
| H | 5.418062 | -3.161326 | 2.092946 |
| H | 6.493130 | -0.929517 | 2.341276 |
| C | 0.524882 | -4.660972 | 4.365727 |
| C | 1.548897 | -5.448961 | 3.743895 |
| C | 1.273663 | -6.137164 | 2.580868 |
| C | -0.014774 | -6.062638 | 2.009405 |
| C | -0.955675 | -5.269122 | 2.659777 |
| N | -0.728284 | -4.569870 | 3.781347 |
| H | 2.044711 | -6.747355 | 2.116351 |
| H | 2.521840 | -5.508737 | 4.220381 |
| H | -0.274377 | -6.605539 | 1.107258 |
| H | -1.962850 | -5.180429 | 2.251697 |
| C | 0.741072 | -3.969790 | 5.552280 |
| C | 0.844001 | -3.160988 | 6.505997 |
| C | 0.920681 | -2.253273 | 7.506404 |
| H | 1.874017 | -1.978910 | 7.946989 |
| H | 0.027271 | -1.881883 | 8.003550 |
| K | -1.260603 | -2.040935 | 4.788252 |

## K-gamma TS

| C | -0.659900 | 2.022748 | -0.368082 |
| :--- | ---: | ---: | ---: |
| C | 0.457859 | 1.240365 | -0.870739 |
| C | 1.740214 | 1.410723 | -0.461478 |
| C | 2.020384 | 2.475370 | 0.551794 |
| C | 0.902208 | 3.375091 | 0.983836 |
| C | -0.354917 | 3.114215 | 0.537358 |
| H | 0.213046 | 0.471817 | -1.596846 |
| H | -1.168012 | 3.767080 | 0.820330 |
| C | 2.900891 | 0.550086 | -0.990335 |
| C | 3.971998 | 1.454160 | -1.653214 |
| C | 3.539624 | -0.253607 | 0.171682 |
| C | 2.423470 | -0.461756 | -2.052597 |
| H | 3.541792 | 2.019231 | -2.488250 |
| H | 4.398296 | 2.157753 | -0.937540 |
| H | 4.781609 | 0.831893 | -2.051771 |
| H | 2.800796 | -0.915427 | 0.639048 |
| H | 4.350863 | -0.879983 | -0.217370 |
| H | 3.948371 | 0.408121 | 0.935767 |
| H | 3.282447 | -1.040423 | -2.406944 |
| H | 1.695610 | -1.174779 | -1.648336 |
| H | 1.979089 | 0.032376 | -2.924106 |
| C | 1.214089 | 4.564010 | 1.909251 |
| C | 1.746025 | 4.046652 | 3.271689 |


|  |  |  |  |
| :--- | ---: | ---: | ---: |
| C | 2.269771 | 5.488275 | 1.248940 |
| C | -0.041495 | 5.415152 | 2.190088 |
| H | 1.000850 | 3.411766 | 3.763956 |
| H | 2.669196 | 3.479183 | 3.150289 |
| H | 1.944679 | 4.898825 | 3.931802 |
| H | 1.905146 | 5.872867 | 0.289129 |
| H | 2.460062 | 6.347665 | 1.901928 |
| H | 3.213086 | 4.967262 | 1.082425 |
| H | 0.235640 | 6.253733 | 2.836665 |
| H | -0.468310 | 5.836613 | 1.272642 |
| H | -0.821412 | 4.850810 | 2.711961 |
| O | 3.159682 | 2.621996 | 1.009638 |
| C | -1.918202 | 1.701196 | -0.822991 |
| H | -1.940921 | 0.951636 | -1.615304 |
| C | -3.244198 | 2.198334 | -0.457906 |
| C | -3.579426 | 2.765394 | 0.794675 |
| C | -4.287501 | 2.033497 | -1.402295 |
| C | -4.885370 | 3.167120 | 1.079523 |
| H | -2.843276 | 2.862456 | 1.585271 |
| C | -5.585889 | 2.454374 | -1.125136 |
| H | -4.060295 | 1.587424 | -2.367449 |
| C | -5.890081 | 3.025441 | 0.117006 |
| H | -5.087550 | 3.558512 | 2.073219 |
| H | -6.362670 | 2.330956 | -1.874315 |
| H | -6.905449 | 3.339844 | 0.339075 |
| C | -3.547347 | 2.522392 | 4.919767 |
| C | -2.824531 | 2.540667 | 6.143992 |
| C | -2.452943 | 3.752147 | 6.704678 |
| C | -2.794287 | 4.945747 | 6.051621 |
| C | -3.494770 | 4.840866 | 4.851120 |
| N | -3.857503 | 3.684621 | 4.278941 |
| H | -1.910133 | 3.773315 | 7.646503 |
| H | -2.586361 | 1.599862 | 6.629462 |
| H | -2.526360 | 5.916670 | 6.455265 |
| H | -3.779289 | 5.741848 | 4.307676 |
| C | -3.914637 | 1.287585 | 4.300171 |
| C | -4.679284 | 0.280204 | 4.385958 |
| C | -5.396033 | -0.862136 | 4.229866 |
| H | -5.186454 | -1.733511 | 4.846854 |
| H | -6.379161 | -0.833383 | 3.761622 |
| K | -3.528108 | -0.202325 | 1.891607 |
|  |  |  |  |

## Allenylated product

| C | -0.556135 | -0.298006 | -0.258909 |
| :--- | ---: | ---: | ---: |
| C | -0.004482 | 0.102801 | 0.960833 |
| C | 1.374158 | 0.232219 | 1.163343 |
| C | 2.273400 | -0.056587 | 0.076062 |
| C | 1.711309 | -0.461147 | -1.188546 |
| C | 0.323797 | -0.565472 | -1.312142 |


|  |  |  |  |
| :--- | :---: | :---: | :---: |
| H | -0.684991 | 0.323619 | 1.774912 |
| H | -0.109782 | -0.866160 | -2.260234 |
| C | 1.925740 | 0.686630 | 2.534616 |
| C | 2.839572 | -0.411739 | 3.134995 |
| C | 2.716327 | 2.010711 | 2.379967 |
| C | 0.813053 | 0.953568 | 3.571488 |
| H | 2.260571 | -1.318249 | 3.345168 |
| H | 3.633082 | -0.677133 | 2.432876 |
| H | 3.286016 | -0.070755 | 4.079310 |
| H | 2.050460 | 2.816748 | 2.051507 |
| H | 3.161704 | 2.310135 | 3.338798 |
| H | 3.504623 | 1.902517 | 1.631658 |
| H | 1.268079 | 1.271253 | 4.517299 |
| H | 0.133268 | 1.749285 | 3.248455 |
| H | 0.218097 | 0.057047 | 3.776584 |
| C | 2.630830 | -0.766737 | -2.393312 |
| C | 3.453323 | 0.491782 | -2.770277 |
| C | 3.578634 | -1.945912 | -2.056269 |
| C | 1.847355 | -1.177817 | -3.658951 |
| H | 2.789691 | 1.290057 | -3.120923 |
| H | 3.997231 | 0.871902 | -1.902250 |
| H | 4.162731 | 0.264298 | -3.578133 |
| H | 3.003688 | -2.866188 | -1.904296 |
| H | 4.285873 | -2.122756 | -2.878532 |
| H | 4.131314 | -1.745735 | -1.135251 |
| H | 2.553863 | -1.379337 | -4.473163 |
| H | 1.258408 | -2.087330 | -3.500286 |
| H | 1.170078 | -0.386630 | -3.997452 |
| O | 3.574551 | 0.052514 | 0.229438 |
| C | -2.057148 | -0.492086 | -0.469629 |
| C | -2.574143 | -1.896376 | -0.142855 |
| C | -3.765184 | -2.339463 | -0.741484 |
| C | -1.906369 | -2.769020 | 0.724477 |
| C | -4.278986 | -3.609650 | -0.476774 |
| H | -4.293556 | -1.677048 | -1.423833 |
| C | -2.418598 | -4.042616 | 0.995650 |
| H | -0.973517 | -2.453752 | 1.180247 |
| C | -3.606256 | -4.469165 | 0.398440 |
| H | -5.200018 | -3.930730 | -0.956506 |
| H | -1.882414 | -4.703068 | 1.672353 |
| H | -4.001028 | -5.460119 | 0.605593 |
| H | -2.242003 | -0.329910 | -1.536922 |
| C | -2.875590 | 0.606833 | 0.228942 |
| C | -3.514396 | 0.396195 | 1.362343 |
| C | -4.173142 | 0.168431 | 2.469390 |
| H | -3.712590 | 0.304778 | 3.446710 |
| H | -5.203522 | -0.183585 | 2.454134 |
| C | -2.917385 | 1.953640 | -0.417646 |
| C | -3.215314 | 3.115471 | 0.320151 |
| N | -2.668779 | 2.002156 | -1.738010 |
|  |  |  |  |


| C | -3.266458 | 4.340987 | -0.333893 |
| :--- | ---: | ---: | ---: |
| H | -3.396770 | 3.043930 | 1.387077 |
| C | -2.717362 | 3.188597 | -2.355396 |
| C | -3.012352 | 4.387966 | -1.707756 |
| H | -3.493151 | 5.248106 | 0.219694 |
| H | -2.508995 | 3.175297 | -3.423797 |
| H | -3.035999 | 5.322474 | -2.259461 |
| K | 5.904495 | 0.203558 | 0.384110 |

## Na-propargyl species

|  | 0.024423 | -0.058007 | -0.000310 |
| :--- | ---: | ---: | ---: |
| C | 0.04754 |  |  |
| C | 0.463451 | -1.404754 | -0.000641 |
| C | 1.817816 | -1.699316 | -0.000326 |
| C | 2.748856 | -0.650084 | 0.000348 |
| C | 2.256412 | 0.649758 | 0.000665 |
| N | 0.946870 | 0.951244 | 0.000306 |
| H | 2.154169 | -2.733212 | -0.000588 |
| H | -0.284066 | -2.191807 | -0.001077 |
| H | 3.818001 | -0.834787 | 0.000568 |
| H | 2.940136 | 1.496787 | 0.001189 |
| C | -1.384871 | 0.352435 | -0.000728 |
| C | -2.373953 | -0.490661 | 0.000038 |
| C | -3.432049 | -1.290274 | 0.000742 |
| H | -3.887189 | -1.631480 | -0.926652 |
| H | -3.887213 | -1.629459 | 0.928880 |
| Na | -0.745676 | 2.582787 | -0.000290 |

## Na-allenyl species

| C | 0.024410 | -0.057738 | -0.000419 |
| :--- | ---: | ---: | ---: |
| C | 0.463104 | -1.404651 | -0.000130 |
| C | 1.817393 | -1.699531 | 0.000279 |
| C | 2.748659 | -0.650467 | 0.000316 |
| C | 2.256495 | 0.649473 | -0.000152 |
| N | 0.947000 | 0.951243 | -0.000547 |
| H | 2.153509 | -2.733508 | 0.000578 |
| H | -0.284620 | -2.191504 | -0.000134 |
| H | 3.817784 | -0.835310 | 0.000662 |
| H | 2.940423 | 1.496341 | -0.000346 |
| C | -1.384923 | 0.352643 | -0.000389 |
| C | -2.373942 | -0.490455 | -0.000030 |
| C | -3.431741 | -1.290511 | 0.000166 |
| H | -3.886759 | -1.630901 | -0.927584 |
| H | -3.886477 | -1.630835 | 0.928078 |
| Na | -0.745417 | 2.583131 | 0.000429 |

## Na-alpha TS

| C | 1.619670 | 6.645911 | 0.357205 |
| :--- | :--- | :--- | :--- |
| C | 1.986105 | 6.312125 | 1.684395 |


|  |  |  |  |
| :--- | ---: | ---: | ---: |
| C | 2.711618 | 7.208258 | 2.454393 |
| C | 3.075982 | 8.446956 | 1.907150 |
| C | 2.676766 | 8.720144 | 0.603307 |
| N | 1.964434 | 7.868326 | -0.152606 |
| H | 2.999254 | 6.949709 | 3.470246 |
| H | 1.693718 | 5.343308 | 2.075799 |
| H | 3.641582 | 9.177980 | 2.475076 |
| H | 2.928941 | 9.671848 | 0.139043 |
| C | 0.830168 | 5.779531 | -0.515596 |
| C | 0.720075 | 4.492847 | -0.398022 |
| C | 0.558854 | 3.175132 | -0.351472 |
| H | 1.166631 | 2.502872 | -0.952933 |
| H | -0.222068 | 2.724140 | 0.257095 |
| Na | 0.612071 | 7.522499 | -2.044254 |
| C | 4.256600 | 0.168683 | 0.543460 |
| C | 3.086756 | -0.620933 | 0.882697 |
| C | 3.071959 | -1.979036 | 0.886630 |
| C | 4.319703 | -2.700425 | 0.497090 |
| C | 5.499746 | -1.903127 | 0.036551 |
| C | 5.431871 | -0.546414 | 0.086580 |
| H | 2.203379 | -0.060661 | 1.169814 |
| H | 6.262270 | 0.047793 | -0.269076 |
| C | 1.826426 | -2.791540 | 1.284796 |
| C | 1.392257 | -3.707864 | 0.112105 |
| C | 2.131386 | -3.653058 | 2.537121 |
| C | 0.632830 | -1.875918 | 1.626775 |
| H | 1.153714 | -3.113053 | -0.777397 |
| H | 2.174385 | -4.423207 | -0.144610 |
| H | 0.490813 | -4.264731 | 0.394315 |
| H | 2.418981 | -3.018392 | 3.383576 |
| H | 1.233604 | -4.212066 | 2.827151 |
| H | 2.93556 | -4.363869 | 2.343976 |
| H | -0.228711 | -2.496531 | 1.894348 |
| H | 0.843532 | -1.223130 | 2.481353 |
| H | 0.335642 | -1.249803 | 0.778025 |
| C | 6.742946 | -2.644592 | -0.488063 |
| C | 7.355145 | -3.516253 | 0.639060 |
| C | 6.360808 | -3.540759 | -1.694070 |
| C | 7.835451 | -1.665379 | -0.965460 |
| H | 7.651810 | -2.894699 | 1.492163 |
| H | 6.647913 | -4.270355 | 0.985436 |
| H | 8.252828 | -4.023433 | 0.265507 |
| H | 5.942116 | -2.937931 | -2.508501 |
| H | 7.25616 | -4.044299 | -2.076485 |
| H | 5.631861 | -4.300633 | -1.410767 |
| H | 8.691823 | -2.238336 | -1.335956 |
| H | 7.488779 | -1.025526 | -1.784747 |
| H | 8.198961 | -1.023370 | -0.155075 |
| O | 4.372774 | -3.938340 | 0.532945 |
| C | 4.163085 | 1.535969 | 0.637704 |
|  |  |  |  |


|  |  |  |  |
| :--- | ---: | ---: | ---: |
| H | 3.168951 | 1.930917 | 0.846736 |
| C | 5.186974 | 2.566454 | 0.473782 |
| C | 6.545384 | 2.388562 | 0.814447 |
| C | 4.780910 | 3.835441 | 0.004186 |
| C | 7.464294 | 3.423581 | 0.646600 |
| H | 6.872238 | 1.452943 | 1.253968 |
| C | 5.704048 | 4.864033 | -0.172025 |
| H | 3.732971 | 4.003687 | -0.228528 |
| C | 7.051802 | 4.660885 | 0.141712 |
| H | 8.502914 | 3.268283 | 0.924443 |
| H | 5.368622 | 5.828030 | -0.543034 |
| H | 7.770709 | 5.464944 | 0.013429 |


| Na-gamma TS |  |  |  |
| :--- | ---: | ---: | ---: |
| C | 0.877385 | 3.265226 | 0.228503 |
| C | 2.168842 | 2.609965 | 0.218753 |
| C | 3.110212 | 2.805968 | -0.750955 |
| C | 2.791084 | 3.733478 | -1.876122 |
| C | 1.440085 | 4.368997 | -1.913487 |
| C | 0.571552 | 4.139027 | -0.882485 |
| H | 2.373499 | 1.942688 | 1.049636 |
| H | -0.416830 | 4.578654 | -0.905798 |
| C | 4.490835 | 2.125018 | -0.704799 |
| C | 4.701571 | 1.255396 | -1.970874 |
| C | 5.602231 | 3.203072 | -0.619874 |
| C | 4.635847 | 1.204081 | 0.524400 |
| H | 3.945478 | 0.462751 | -2.028165 |
| H | 4.655078 | 1.856106 | -2.879804 |
| H | 5.683613 | 0.770837 | -1.924559 |
| H | 5.479496 | 3.816826 | 0.279989 |
| H | 6.582006 | 2.715007 | -0.560960 |
| H | 5.591677 | 3.855738 | -1.493355 |
| H | 5.628761 | 0.743446 | 0.509084 |
| H | 4.547356 | 1.755582 | 1.467138 |
| H | 3.899714 | 0.392427 | 0.525701 |
| C | 1.072146 | 5.275368 | -3.103615 |
| C | 2.037558 | 6.488459 | -3.155025 |
| C | 1.161874 | 4.480431 | -4.431477 |
| C | -0.363869 | 5.826867 | -2.986214 |
| H | 1.975700 | 7.072589 | -2.229574 |
| H | 3.069942 | 6.168934 | -3.298967 |
| H | 1.755765 | 7.146129 | -3.985520 |
| H | 0.452736 | 3.642702 | -4.433573 |
| H | 0.898100 | 5.133669 | -5.271032 |
| H | 2.167497 | 4.093123 | -4.598214 |
| H | -0.576038 | 6.456966 | -3.855772 |
| H | -1.117484 | 5.031145 | -2.968990 |
| H | -0.497856 | 6.448066 | -2.093701 |
| O | 3.620340 | 3.952412 | -2.773859 |
|  |  |  |  |


| C | -0.034439 | 2.921434 | 1.213794 |
| :--- | ---: | ---: | ---: |
| H | 0.241930 | 2.082156 | 1.849434 |
| C | -1.306509 | 3.548013 | 1.547604 |
| C | -1.527940 | 4.938583 | 1.421844 |
| C | -2.336302 | 2.751655 | 2.095052 |
| C | -2.739400 | 5.502656 | 1.813759 |
| H | -0.728062 | 5.581152 | 1.069687 |
| C | -3.549937 | 3.320121 | 2.474064 |
| H | -2.180936 | 1.681056 | 2.181399 |
| C | -3.757338 | 4.695511 | 2.334270 |
| H | -2.885530 | 6.575447 | 1.727818 |
| H | -4.336401 | 2.688056 | 2.874883 |
| H | -4.701741 | 5.138299 | 2.636849 |
| C | -0.325058 | -1.250134 | -0.281730 |
| C | -0.455360 | -2.460170 | 0.453662 |
| C | 0.458173 | -3.482108 | 0.262810 |
| C | 1.512418 | -3.311574 | -0.650882 |
| C | 1.590030 | -2.097486 | -1.323962 |
| N | 0.723990 | -1.086370 | -1.151245 |
| H | 0.352785 | -4.415004 | 0.810765 |
| H | -1.285156 | -2.566220 | 1.144014 |
| H | 2.247357 | -4.089062 | -0.827865 |
| H | 2.391970 | -1.915367 | -2.037237 |
| C | -1.208763 | -0.139724 | -0.103394 |
| C | -2.436157 | 0.134469 | -0.339429 |
| C | -3.700741 | 0.512838 | -0.539141 |
| H | -4.009235 | 1.024362 | -1.446469 |
| H | -4.474673 | 0.282484 | 0.187860 |
| Na | 0.379169 | 1.203189 | -1.422969 |

## Propargylated product

| C | 0.646635 | 0.907792 | 0.989367 |
| :--- | :---: | :---: | :---: |
| C | 0.516885 | -0.479232 | 0.919567 |
| C | 1.537141 | -1.304153 | 0.426167 |
| C | 2.766774 | -0.719096 | -0.037154 |
| C | 2.913327 | 0.712387 | 0.043027 |
| C | 1.856082 | 1.467469 | 0.549520 |
| H | -0.408146 | -0.935685 | 1.246750 |
| H | 1.956069 | 2.546630 | 0.607152 |
| C | 1.341868 | -2.835387 | 0.371932 |
| C | 1.391804 | -3.316768 | -1.108354 |
| C | 2.422593 | -3.535985 | 1.247584 |
| C | -0.020274 | -3.308216 | 0.925758 |
| H | 0.443488 | -3.091293 | -1.605946 |
| H | 2.159640 | -2.792993 | -1.687415 |
| H | 1.531571 | -4.407908 | -1.174143 |
| H | 2.157315 | -3.452079 | 2.306208 |
| H | 2.486674 | -4.612844 | 1.022906 |
| H | 3.404526 | -3.061489 | 1.152203 |


|  |  |  |  |
| :--- | ---: | ---: | ---: |
| H | -0.080746 | -4.401857 | 0.858021 |
| H | -0.145826 | -3.038086 | 1.979121 |
| H | -0.867002 | -2.897354 | 0.368727 |
| C | 4.220265 | 1.391686 | -0.424056 |
| C | 5.419777 | 0.864459 | 0.402798 |
| C | 4.456932 | 1.109637 | -1.929149 |
| C | 4.187767 | 2.925131 | -0.249669 |
| H | 5.293257 | 1.112931 | 1.463283 |
| H | 5.504847 | -0.219400 | 0.308865 |
| H | 6.353403 | 1.327699 | 0.057128 |
| H | 3.643925 | 1.532808 | -2.530792 |
| H | 5.396851 | 1.571127 | -2.259834 |
| H | 4.503466 | 0.035476 | -2.115874 |
| H | 5.138443 | 3.346680 | -0.596114 |
| H | 3.388000 | 3.390981 | -0.835747 |
| H | 4.060767 | 3.218441 | 0.798506 |
| C | -0.434605 | 1.845889 | 1.521110 |
| C | -1.035092 | 2.769017 | 0.459691 |
| C | -1.369992 | 4.090271 | 0.790613 |
| C | -1.295158 | 2.325153 | -0.844861 |
| C | -1.955826 | 4.945385 | -0.147138 |
| H | -1.162684 | 4.457708 | 1.793962 |
| C | -1.882388 | 3.174623 | -1.785268 |
| H | -1.023430 | 1.311943 | -1.123514 |
| C | -2.216454 | 4.488141 | -1.441304 |
| H | -2.199631 | 5.967275 | 0.131025 |
| H | -2.074024 | 2.810948 | -2.791357 |
| H | -2.666436 | 5.149959 | -2.176155 |
| C | -1.564955 | 1.145595 | 2.344363 |
| H | -1.095309 | 0.508525 | 3.104622 |
| H | -2.116462 | 1.926346 | 2.882787 |
| C | -2.530528 | 0.354492 | 1.582054 |
| C | -3.342862 | -0.300317 | 0.961484 |
| C | -4.306947 | -1.047646 | 0.210496 |
| C | -5.461342 | -0.409965 | -0.286679 |
| N | -4.062104 | -2.361017 | 0.002857 |
| C | -6.384465 | -1.156121 | -1.012961 |
| H | -5.610602 | 0.647629 | -0.098285 |
| C | -4.962799 | -3.058363 | -0.696881 |
| C | -6.136023 | -2.513550 | -1.225909 |
| H | -7.281544 | -0.686335 | -1.406132 |
| H | -4.733462 | -4.112429 | -0.842980 |
| H | -6.827358 | -3.135908 | -1.785268 |
| O | 3.738084 | -1.465610 | -0.520746 |
| H | 0.050910 | 2.502612 | 2.256440 |
| Na | 4.243757 | -3.405639 | -0.954461 |
|  |  |  |  |

## ${ }^{\text {'BuOH }}$

| O | 0.019290 | 0.000088 | 1.455512 |
| :--- | ---: | ---: | ---: |
| C | -0.005496 | 0.000019 | 0.011581 |


| C | 0.685386 | -1.267744 | -0.512948 |
| ---: | ---: | ---: | ---: |
| C | -1.491750 | 0.004734 | -0.353427 |
| C | 0.693614 | 1.263183 | -0.513274 |
| H | 0.201175 | -2.160292 | -0.104876 |
| H | 0.643951 | -1.318201 | -1.606677 |
| H | 1.742467 | -1.286669 | -0.219371 |
| H | -1.980612 | 0.892843 | 0.058522 |
| H | -1.986323 | -0.880006 | 0.058973 |
| H | -1.624395 | 0.004869 | -1.440128 |
| H | 1.750851 | 1.275175 | -0.219840 |
| H | 0.652388 | 1.313723 | -1.607007 |
| H | 0.215334 | 2.158931 | -0.105261 |
| H | 0.940325 | -0.002225 | 1.749980 |

## HMDS

| Si | 0.000000 | 1.614713 | 0.078449 |
| :--- | ---: | ---: | ---: |
| Si | 0.000000 | -1.614713 | 0.078449 |
| N | 0.000000 | 0.000000 | 0.767640 |
| C | -0.582635 | 2.800397 | 1.431718 |
| C | 1.727959 | 2.134368 | -0.495845 |
| C | -1.170534 | 1.691167 | -1.405802 |
| C | -1.727959 | -2.134368 | -0.495845 |
| C | 1.170534 | -1.691167 | -1.405802 |
| C | 0.582635 | -2.800397 | 1.431718 |
| H | 0.071587 | 2.756405 | 2.311155 |
| H | -0.577633 | 3.836724 | 1.074028 |
| H | -1.601781 | 2.563883 | 1.758087 |
| H | 1.722583 | 3.149575 | -0.911652 |
| H | 2.439975 | 2.116186 | 0.337524 |
| H | 2.109471 | 1.459365 | -1.270442 |
| H | -2.198106 | 1.447137 | -1.114430 |
| H | -1.173398 | 2.696771 | -1.843397 |
| H | -0.873058 | 0.994286 | -2.197974 |
| H | -2.439975 | -2.116186 | 0.337524 |
| H | -2.109471 | -1.459365 | -1.270442 |
| H | -1.722583 | -3.149575 | -0.911652 |
| H | 0.873058 | -0.994286 | -2.197974 |
| H | 2.198106 | -1.447137 | -1.114430 |
| H | 1.173398 | -2.696771 | -1.843397 |
| H | 1.601781 | -2.563883 | 1.758087 |
| H | -0.071587 | -2.756405 | 2.311155 |
| H | 0.577633 | -3.836724 | 1.074028 |
| H | 0.000000 | 0.000000 | 1.783285 |

## References

1 A. López, A. Parra, C. Jarava-Barrera and M. Tortosa, Chem. Commun., 2015, 51, 17684.
2 Y. Lou, P. Cao, T. Jia, Y. Zhang, M. Wang and J. Liao, Angew. Chem. Int. Ed., 2015, 54, 12134.

3 W.-D. Chu, L.-F. Zhang, X. Bao, X.-H. Zhao, C. Zeng, J.-Y. Du, G.-B. Zhang, F.-X. Wang, X.-Y. Ma and C.-A. Fan, Angew. Chem. Int. Ed., 2013, 52, 9229.

4 K. G. Ghosh, P. Chandu, S. Mondal and D. Sureshkumar, Tetrahedron, 2019, 75, 4471.
5 V. Reddy and R.V. Anand, Org. Lett., 2015, 17, 3390.
6 S. Santra, A. Porey and J. Guin, Asian J. Org. Chem., 2018, 7, 477.
7 M. A. Fakhfakh, A. Fournet, E. Prina, J. F. Mouscadet, X. Franck, R. Hocquemiller and B. Figadere, Bioorg. Med. Chem., 2003, 11, 5013.
8 C. B. P. Ligiero, L.C. Visentin, R. Giacomini, C. A. L. Filgueiras and P. C. M. L. Miranda, Tetrahedron Lett., 2009, 50, 4030.
9 A. D. Dunn, Org. Prep. Proceed. Int., 1999, 31, 120.
10 E.-C. Liu and J. J. Topczewski, J. Am. Chem. Soc., 2021, 143, 5308.
11 G. Yahioglu, L. R. Milgrom and P. J. F. Dempsey, Tetrahedron, 1996, 52, 9877.
12 J. W. Coe and M. G. Vetelino, Tetrahedron Lett., 1994, 35, 219.
13 R. Kumar, H. Jain, P. Gahlyan, A. Joshi and C. N. Ramachandran, New J. Chem., 2018, 42, 8567.
14 M.L.N. Rao, D. N. Jadhav and P. Dasgupta, Org. Lett., 2010, 12, 2048.
15 M. A. Fakhfakh, A. Fournet, E. Prina, J.-F. Mouscadet, X. Franck, R. Hocquemiller and B. Figade 're, Bioorg. Med. Chem., 2003, 11, 5013.
16 J. R. Frost, C. B. Cheong and T. J. Donohoe, Synthesis, 2017, 49, 910.
17 C.-X. Song, G.-X. Cai, R. Thomas, F. R. Farrell, Z.-P. Jiang, H. Li, L.-B. Gan and Z.-J. Shi, Chem. Commun., 2009, 6002.
18 D. A. Petrone, M. Isomura, I. Franzoni, S. L. Rössler and E. M. Carreira, J. Am. Chem. Soc., 2018, 140, 4697.
19 J. Chen, S. Gao and M. Chen, Org. Lett., 2019, 21, 8800.
20 L. Zhang, X. Li, Y. Liu and D. Zhang, Chem. Commun., 2015, 51, 6633.
21 A. Massaro, A. Mordini, A. Mingardi, J. Klein and D. Andreotti, Eur. J. Org. Chem., 2011, 271.

22 H.-C. Chiu and I. A. Tonks, Angew. Chem. Int. Ed., 2018, 57, 6090.
23 J. G. Kettle, K. McAulay, E. A. Hoyt, M. Thomas, M. Schimpl, M. S. Bodnarchuk, H. J. Lewis, D. Barratt, D. Bhavsar, D.M. Robinson, M. J. Deery, D. J. Ogg, G. J. L. Bernardes, R. A. Ward and M. J. Waring, J. Am. Chem. Soc., 2020, 142, 10358.

24 (a) Y. Hu, R. L. Bishop, A. Luxenburger, S. Dong and L. A. Paquette, Org. Lett., 2006, 8, 2735; (b) G. Jiménez-Osés, C. Aydillo, J. H. Busto, M. M. Zurbano, J. M. Peregrina and A. Avenoza, J. Org. Chem., 2007, 72, 5399; (c). W. Bao, H. Kossen and U. Schneider, J. Am. Chem. Soc., 2017, 139, 4362; (d) R. K. Boeckman, D. J. Boehmler, R. A. Musselman, Org. Lett., 2001, 3, 3777; (e) E. Shirakawa, K.-i. Itoh, T. Higashino and T. Hayashi, J. Am. Chem. Soc., 2010, 132, 15537; (f) R. E. Mulvey and S. D. Robertson, Angew. Chem. Int. Ed., 2013, 52, 11470.

25 (a) M. Lautens and M. Yoshida, J. Org. Chem., 2003, 68, 762; (b) M. Lautens and M. Yoshida, Org. Lett., 2002, 4, 123.
26 (a) C.-H. Ding and X.-L. Hou, Chem. Rev., 2011, 111, 1914; (b) Y. Yamashita, Y. Cui, P. Xie and S. Kobayashi, Org. Lett., 2015, 17, 6042; (c) C. A. Osborne, T. B. D. Endean and E. R. Jarvo, Org. Lett., 2015, 17, 5340; (d) H. M. Wisniewska and E. R. Jarvo, J. Org. Chem., 2013, 78, 11629 ; (e) M. Suzuki, Y. Morita and R. Noyori, J. Org. Chem., 1990, 55, 441; (f) J. M. Fukuto and F. R. Jensen, Acc. Chem. Res., 1983, 16, 177.
27 P. Quinio, C. François, A. E. Cuesta, A. K. Steib, F. Achrainer, H. Zipse, K. Karaghiosoff and P. Knochel, Org. Lett., 2015, 17, 1010.

${ }^{1} \mathrm{H}$ NMR of $1 \mathrm{a}^{\prime}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



F NG O
N~~ N


${ }^{1} \mathrm{H}$ NMR of $1 \mathrm{~b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Nom



${ }^{1} \mathrm{H}$ NMR of $1 \mathrm{~d}-\mathrm{Int}-1\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 d}$-Int-1 $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 f}-\mathrm{Int}-1\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 f}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$$
\begin{aligned}
& \text { ITIT }
\end{aligned}
$$

|
$\stackrel{\square}{i}$

${ }^{3} \mathrm{C}$ NMR of $\mathbf{1 f}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 g - I n t - 1}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$\stackrel{m}{\ddagger}$
$\infty$
$\infty$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 g}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$\stackrel{\text { ® }}{\text { ® }}$
$\stackrel{\oplus}{\oplus}$


[^0]
${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 h}$-Int-1 $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 h}-\mathrm{Int}-\mathbf{1}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $1 \mathrm{i}-\mathrm{Int}-1\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 i - I n t - 1}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





## 


${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra







> | ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ |
| :--- |
| Expanded spectra |

1 H NMR of $\mathbf{3 a b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra
$-212.65$


${ }^{3} \mathrm{C}$ NMR of $\mathbf{3 a b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Expanded spectra






$$
{ }^{1} \mathrm{H} \text { NMR of } \mathbf{3 a d}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$


${ }^{13} \mathrm{C}$ NMRof $\mathbf{3 a d}$ ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR of $3 \mathbf{a e}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of 3ae $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra
$\begin{array}{llll}7.70 & 7.65 & 7.60 & 7\end{array}$



${ }^{1} \mathrm{H}$ NMR of 3 af $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



| $\begin{array}{l}{ }^{1} \mathrm{H} \text { NMR of } 3 \text { af }\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \\ \text { Expanded spectra }\end{array}$ |
| :--- |



${ }^{13} \mathrm{C}$ NMR of 3af ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



| $\begin{array}{l}1 \mathrm{H} \text { NMR of } \mathbf{3 a g}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \\ \text { Expanded spectra }\end{array}$ |
| :--- |




${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{ah}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra


${ }^{13} \mathrm{C}$ NMR of 3 ah $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR of 3ai $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra








| $\begin{array}{l}{ }^{1} \mathrm{H} \text { NMR of } \mathbf{3 a k}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \\ \text { Expanded spectra }\end{array}$ |
| :--- |

Expanded spectra



${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a l}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




Expanded spectra
$\qquad$ M


${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a l}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{am}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{am}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Expanded spectra


[^1]
${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a n}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{an}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Expanded spectra




[^2]


${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a p}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

No


[^3]


## 


${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a q}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## $\underbrace{\circ}$ <br>  <br> 8808.9 7918.9 1998.9 $69 \angle 8.9$ $2888^{.9}$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a q}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra





${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ar}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a} \mathbf{a} \mathbf{a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra

M $\qquad$ NW
 M





${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{da}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$











${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra




${ }^{1} \mathrm{H}$ NMR of 3 ha $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$-213.92$



${ }^{13} \mathrm{C}$ NMR of $\mathbf{3}$ ha $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

${ }^{1} \mathrm{H}$ NMR of $3 \mathbf{i a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of 3ia ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra




${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



W N
$\stackrel{\sim}{n}$
$\infty$
$\infty$
$\infty$



${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra


${ }^{1} \mathrm{H}$ NMR of $4 \mathrm{ad}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $4 \mathrm{ad}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra



${ }^{1} \mathrm{H}$ NMR of 4ai $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $4 \mathbf{a i}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Expanded spectra



${ }^{1} \mathrm{H}$ NMR of 4 ak ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Expanded spectra


|

${ }^{13} \mathrm{C}$ NMR of $4 \mathbf{a k}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


[^4]
${ }^{19} \mathrm{~F}$ NMR of $\mathbf{4 a k}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## 





${ }^{1} \mathrm{H}$ NMR of $4 \mathrm{al}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## 



${ }^{1} \mathrm{H}$ NMR of $4 \mathbf{a l}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra



$\stackrel{\circ}{ㅇ}$

${ }^{1} \mathrm{H}$ NMR of $4 \mathrm{aq}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra

, $1 \sin _{n}^{\prime}$ $\qquad$ $M$ $\longrightarrow \int \sqrt{n}$



${ }^{13} \mathrm{C}$ NMR of $4 \mathrm{aq}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 c a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR of $4 \mathrm{da}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## N N ल $\infty$ $\infty$


${ }^{1} \mathrm{H}$ NMR of $4 \mathrm{da}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Expanded spectra

${ }^{13} \mathrm{C}$ NMR of 4 da $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 g a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 g a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra







${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 j a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




${ }^{1} \mathrm{H}$ NMR of $4 \mathrm{ja}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Expanded spectra

$\qquad$






${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra

$-212.33$


${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

$\qquad$ N

ค่ ำำํㅜํ
ल

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra



${ }^{1} \mathrm{H}$ NMR of $5 \mathbf{c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra


${ }^{11} \mathrm{~B}$ NMR of $\mathbf{5 c}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





1 H NMR of $\mathbf{5 d}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra


${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 d}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## 


${ }^{1} \mathrm{H}$ NMR of $5 \mathrm{e}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 e}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra



${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra







${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Expanded spectra



## 


${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$$
\underbrace{1} \mathrm{H} \text { NMR of } \mathbf{6 c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$



|  | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40 | 30 | 20 | 10 | ppm |  |  |  |  |  |  |  |  |  |  |  |


[^0]:    $\begin{array}{llllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

[^1]:    $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

[^2]:    ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a o}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Expanded spectra

[^3]:    ${ }^{13} \mathrm{C}$ NMR of $3 \mathrm{ap}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )
    Expanded spectra

[^4]:    $\begin{array}{lllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & p p m\end{array}$

