Asymmetric organocatalytic sulfenylation for construction of diheteroatom-bearing tetrasubstituted carbon centre

Qingfa Tan, Qianping Chen, Zitong Zhu, Xiaohua Liu*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

E-mail: liuxh@scu.edu.cn

Table of Contents

1. General Information	2
2. General procedure for the synthesis of chiral guanidines	3
3. Typical procedure for the synthesis of β-ketoamides	4
4. Optimization of reaction conditions for sulfenylation of acyclic β-ketoamides	5
5. Optimization of reaction conditions for sulfenylation of cyclic β-ketoamides	8
6. Optimization of reaction conditions for sulfenylation of azlactones1	0
7. Optimization of reaction conditions for sulfenylation of β-ketoesters1	3
8. General procedure for the catalytic reactions1	5
9. Experimental Procedure for the Gram-Scale Reaction and Transformations of th	e
Products1	6
10. Failed substrates and unsuccessful substrates1	9
11. X-ray crystal data2	0
12. The NMR study of substrate and G-Ra- <i>p</i> CF ₃ 24	4
13. Comparison of enolization intermediates with different substrates2	6
14. Characterization of the products	7
15. Copies of NMR spectra for products8	2
16. Copies of NMR spectra for the NMR study of substrate and G-Ra- <i>p</i> CF ₃ 16	0
17. Analysis Results of 2D NMR Spectra of the Product 3h (After Recrystallization) .16	1
18. References	5
19. Author Contributions	6

1. General Information

Unless otherwise noted, reagents were obtained from commercial sources and used without further purification.

Column chromatography was generally performed on silica gel (300–400 mesh) and reactions were monitored with thinlayer chromatography (TLC) using 254 nm UV light and basic KMnO₄ aqueous.

NMR characterization data were collected on bruker ASCENDTM operating at 400 MHz and 600 MHz for ¹H NMR, 101 MHz and 151 MHz for ¹³C{1H} NMR (with complete proton decoupling), and 376 MHz and 565 MHz for ¹⁹F{1H} NMR (with complete proton decoupling). ¹H NMR chemical shifts were reported in ppm from tetramethylsilane with the TMS resonance as the internal standard ($\delta = 0.00$). ¹³C NMR spectra chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$, (CD₃)₂CO, $\delta = 206.3$, $\delta = 29.8$). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment.

Enantiomeric excesses (ee) were determined by supercritical fluid chromatography (SFC) analysis using the corresponding commercial chiral column as stated in the experimental procedures at 35 °C.

Optical rotations were measured on Rudolph Research Analytic Automatic Polarimeter, and reported as follows: $[\alpha]^{T}_{D}$ (c g/100 mL, in solvent).

High-resolution mass spectra (HRMS) were performed on Thermo Q-Exactive Focus (FTMS+c ESI) and data were reported as (m/z).

Infrared spectra (IR) were recorded on Bruker Tensor II spectrometer with Plantium ATR accessory and the peaks are reported as absorption maxima (v, cm⁻¹).

All catalytic reactions were run under air conditions. Tetrahydrofuran (THF), toluene, and diethyl ether (Et₂O) were distilled from sodium benzophenone ketyl. Ethyl acetate (EtOAc), dichloromethane (DCM), and chloroform (CHCl₃) were distilled over CaH₂.

The preparation of azlactones¹⁻³, N-thiosuccinimides⁴, followed the literature.

2. General procedure for the synthesis of chiral guanidines.

The chiral guanidines were prepared by the similar procedure in the literatures⁵⁻⁶.

NH Cv

G¹-Pr-CHPh₂ : R = CHPh₂, n = 1 **G¹-Pi-CHPh₂** : R = CHPh₂, n = 2

G¹-Pe-CHPh₂ : R = CHPh₂

G¹-(OH)Pr-CHPh₂ : R = CHPh₂

G¹-Ra-CHPh₂ : R = CHPh₂

BG¹-Pi-Ph₂

G¹-TQ-CHPh₂ : R = CHPh₂

G¹-Pr-Ts: Ar = 4-MeC₆H₄, n = 1 **G¹-Pr-***p***CF**₃: Ar = 4-CF₃C₆H₄, n = 1 **G¹-Pi-Ts**: Ar = 4-MeC₆H₄, n = 2

Ar

G¹-Ra-Ts: Ar = 4-MeC₆H₄ **G¹-Ra-***p***CF**₃: Ar = 4-CF₃C₆H₄

HN Cy^{_NH} Сy

G¹-Pe-Ts: Ar = 4-MeC₆H₄ **G¹-Pe-***p***CF**₃: Ar = 4-CF₃C₆H₄

 G^1 -TQ-Ts: Ar = 4-MeC₆H₄ $G^{1}-TQ-pCF_{3}$: Ar = 4-CF₃C₆H₄ **G¹-TQ-4-Br**: Ar = 4-BrC₆H₄ **G¹-TQ-2,4,6-iPr₃**: Ar = 2,4,6-iPr₃C₆H₂ G^1 -TQ-pOMe: Ar = 4-OMeC₆H₄ **G¹-TQ-2,6-F₂**: Ar = 2,6-F₂C₆H₃ G^{1} -TQ-3,5-(CF₃)₂: Ar = 3,5-(CF₃)₂C₆H₃

G²-TQ-pCF₃: R = iPr **G³-TQ-***p***CF**₃: R =Ph

3. Typical procedure for the synthesis of β-ketoamides

The appropriate acetophenone (10 mmol)were dissolved in dry THF at room temepreture, NaH (60% w/w dispersion in mineral oil, 25 mmol) was added to this system, then raise the temperature to 85 °C for 30 min. 1-Isocyanato-4-methylbenzene was added to the mixture for reflux 6 h. After completion, monitored by TLC (eluent: PE/AcOEt 6: 1), the mixture was cooled to 0 °C and 1 N HCl was added cautiously until the solid completely dissolved. The solution was extracted with ethyl acetate (2 x 20 mL) and the organic phase was washed with brine (20 mL), dried (Na₂SO₄) and concentrated. The resulting residue was further purified by flash column chromatography to afford the amide product.

Ph
$$H$$
 Tol Selectfluor (1.1 equiv.)
MeCN/H₂O (1:1), rt Ph H Tol

General procedure for the synthesis of 2-fluoro-3-oxo-3-phenyl-*N*-(*p*-tolyl)propanamide.⁷ 3-Oxo-3-phenyl-*N*-(*p*-tolyl)propanamide (3 mmol) and selectfluor (3.3 mmol) were added to the solvent of CH₃CN and H₂O (v/v = 1:1, 30 mL). The mixture was sealed and then stirred at room temperature for 4 h. When the reaction was finished, the mixture was extracted by using appropriate ethyl acetate. The obtained organic phase was evaporated to remove the solvent, and the resulting residue was further purified by flash column chromatography to afford the product.

4. Optimization of reaction conditions for sulfenylation of acyclic β -ketoamides

Ph F H	+ 0O SPh	Chiral Guanidine (10 mol %) DCM (0.1 M), r.t.	→ Ph F SPh SPh
1 _a	2 _a		3 _a
Entry ^[a]	Guanidine	Yield [%] ^[b]	ee [%] ^[c]
1	G ¹ -Pr-CHPh ₂	64	37
2	G ¹ -Pi-CHPh ₂	32	12
3	G ¹ -(OH)Pr-CHPh ₂	95	9
4	G ¹ -Ra-CHPh ₂	97	46
5	G ¹ -Pe-CHPh ₂	98	41
6	G ¹ -TQ-CHPh ₂	91	3
7	G ¹ -Pr-Ts	98	68
8	G ¹ -Pi-Ts	96	19
9	G ¹ -Ra-Ts	95	71
10	G ¹ -Pe-Ts	98	71
11	G ¹ -Pr- <i>p</i> CF ₃	95	72
12	G ¹ -TQ- <i>p</i> CF ₃	95	44
13	G ¹ -TQ- <i>p</i> Br	95	46
14	G ¹ -TQ-2,4,6-iPr ₃	97	37
15	G ¹ -TQ-Ts	95	72
16	G ¹ -TQ- <i>p</i> OMe	95	29
17	G ¹ -TQ-2,6-F ₂	94	50
18	G ¹ -Ra- <i>p</i> CF ₃	95	74
19	G ¹ -Pe- <i>p</i> CF ₃	96	70
20	BG ¹ -Pi-Ph ₂	92	0

Table S1: Screening of chiral guanidines^[a].

[a] Unless otherwise noted, the reactions were carried out with 1_a (0.10 mmol), 2_a (0.10 mmol) and the catalyst (10 mol %) in DCM (0.1 M) at rt for 12 h. [b] Determined by ¹H NMR. [c] Determined by chiral SFC.

Scheme 1: Screening of substrates^[a].

[a] Unless otherwise noted, the reactions were carried out under the conditions (Table S1, entry 18), and the yield was determined by ¹H NMR and the ee value was determined by chiral SFC.

		G ₁ -Ra- <i>p</i> CF ₃ (10 mol %)	
Ph N N F	+ 0 / N / 0 SPh	Solvent (0.1 M), r.t.	Ph F SPh H
1a	2a		3a
Entry	Solvent	Yield [%] ^[b]	ee [%] ^[c]
1	DCM	87	86
2	Toluene	89	79
3	THF	91	78
4	DCE	86	84
5	1,4-dioxane	96	78
6	Et ₂ O	88	84
7	EtOAc	84	76
8	MTBE	96	82
9	MECN	94	34
10	CHCl ₃	92	90

Table S2: Screening of solvents^[a].

[a] Unless otherwise noted, the reactions were carried out with 1a (0.10 mmol), 2a (0.10 mmol) and G^1 -Ra- pCF_3 (10 mol %) in solvent (0.1 M) at rt for 12 h. [b] Determined by ¹H NMR [c] Determined by chiral SFC.

Ph F N Tol	+ 0 N SPh	G¹-Ra-<i>p</i>CF₃ (10 mol % CHCl ₃ (0.1 M), T °C	Ph Ph N Tol
1a	2a		3a
Entry	T [°C]	Yield [%] ^[b]	ee [%] ^[c]
1^d	-20	96	85
2	0	97	85
3	rt	90	90

Table S3: Screening of temperature^[a].

4	30	93	88
5	35	88	84

[a] Unless otherwise noted, the reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol) and **G¹-Ra-***p***CF₃** (10 mol %) in CHCl₃ (0.1 M) at T °C for 12 h. [b] Determined by ¹H NMR. [c] Determined by chiral SFC. [d] Reacted for 24 h.

O Ph	F H SPr	SO G ¹ -Ra- <i>p</i> CF ₃ (10 mol %) CHCl ₃ (0.1 M), rt	→ Ph F SPh H F SPh H
	1a 2a		3a
Entry	1a: 2a	Yield [%] ^[b]	ee [%] ^[c]
1	1:1.5	96	81
2	1.5:1	82	86
3	1:1	90	90
4^d	1:1	91	86
5^e	1:1	82	89

Table S4: Screening of the substrate ratio^[a].

[a] Unless otherwise noted, the reactions were carried out with **1a**, **2a** and **G¹-Ra-***p***CF₃** (10 mol %) in CHCl₃(0.1 M) at rt for 12 h. [b] Determined by ¹H NMR. [c] Determined by chiral SFC. [d] **G¹-Ra-***p***CF₃** (5 mol %) was used. [e] **G¹-Ra-***p***CF₃** (20 mol %) was used.

Table S5: Screening of the reaction time^[a].

		G¹-Ra-<i>p</i>CF ₃ (10 mol %)	PhN_Tol
F H	SPh	CHCl ₃ (0.1 M), rt Time	F [°] SPh ^H
1a	2a		3a
Entry	Time (min)	Yield [%] ^[b]	ee [%] ^[c]
1	2	67	89
2	5	84	89
3	15	86	89
4	30	90	90
5	60	86	89

[a] Unless otherwise noted, the reactions were carried out with 1a (0.10 mmol), 2a (0.10 mmol) and G^1 -Ra-*p*CF₃ (10 mol %) in CHCl₃ (0.1 M) at rt for t minutes. [b] isolated yield. [c] Determined by chiral SFC.

5. Optimization of reaction conditions for sulfenylation of cyclic β-ketoamides

Scheme 2: Screening of substrates^[a].

[a] Unless otherwise noted, the reactions were carried out under the conditions (Table S5, entry 4), isolated yield and the ee value was determined by chiral SFC.

Table S6: Screening of guanidines^[a].

	N-S SBn	Chiral Guanidine (10 mol %) DCM (0.1 M), 1 h, r.t.	
7 _a	8		9 _a
Entry ^[a]	Guanidine	Yield [%] ^[b]	ee [%] ^[c]
1	G ¹ -Pr-CHPh ₂	94	18
2	G ¹ -Pi-CHPh ₂	99	16
3	G ¹ -Ra-CHPh ₂	88	14
4	G ¹ -Pe-CHPh ₂	99	7
5	G ¹ -TQ-CHPh ₂	99	7
6	G ¹ -Pr-Ts	88	20
7	G ¹ -Pr-2,4,6-iPr ₃	83	11
8	G ¹ -Pr- <i>p</i> CF ₃	97	18
9	G ¹ -Pi-Ts	76	0
10	G ¹ -Ra-Ts	93	12
11	G ¹ -TQ-Ts	94	0
12	BG ¹ -Pi-Ph ₂	88	0

[a] Unless otherwise noted, the reactions were carried out with 7_a (0.10 mmol), 8 (0.10 mmol) and the catalyst (10 mol %) in DCM (0.1 M) at rt for 1 h. [b] Isolated yield. [c] Determined by chiral SFC.

Table S7: Screening of solvent and temperature^[a].

2	CHCl ₃	98	7
3	DCE	97	19
4	THF	99	14
5	1,4-dioxane	99	11
6	Toluene	88	25
7	Et ₂ O	87	31
8	DME	92	15
9	MTBE	94	25
10^{d}	Et ₂ O	87	40
$11^{d,e}$	Et ₂ O	trace	47
$12^{d,e}$	Toluene	85	61
13 ^{<i>d</i>,<i>e</i>}	Et ₂ O/Toluene (v/v, 1:1)	78	60

[a] Unless otherwise noted, the reactions were carried out with 7_a (0.10 mmol), 8 (0.10 mmol) and G¹-Pr-Ts (10 mol %) in solvent (0.1 M) at rt for 12 h. [b] Determined by ¹H NMR. [c] Determined by chiral SFC. [d] 7 instead of 7_a . [e] At -40 °C.

6. Optimization of reaction conditions for sulfenylation of azlactones

Bn N= Ph	+ $0 \xrightarrow{N}_{I} 0 \xrightarrow{Cr}_{SPh}$	niral Guanidine (10 mol %) DCM (0.1 M), r.t.	► PhS, Bn N= Ph
5a	2a		6a
Entry ^[a]	Guanidine	Yield [%] ^[b]	ee [%] ^[c]
1	G ¹ -Pr-CHPh ₂	98	6
2	G ¹ -Pi-CHPh ₂	94	11
3	G ¹ -(OH)Pr-CHPh ₂	96	0
4	G ¹ -Ra-CHPh ₂	95	<5
5	G ¹ -Pe-CHPh ₂	97	<5
6	G ¹ -TQ-CHPh ₂	96	<5
7	G ¹ -Pr-Ts	98	25
8	G ¹ -Pi-Ts	99	10
9	G ¹ -Ra-Ts	97	25
10	G ¹ -Pe-Ts	95	23
11	G ¹ -TQ-Ts	96	43
12	G ¹ -TQ- <i>p</i> Br	97	44
13	G ¹ -TQ-2,4,6-iPr ₃	97	28
14	G ¹ -TQ- <i>pt</i> Bu	95	26
15	G ¹ -TQ-pOMe	95	40
16	G ¹ -TQ-2,6-F ₂	94	42
17	G ³ -TQ- <i>p</i> CF ₃	98	0
18	G ² -TQ- <i>p</i> CF ₃	97	49
19	G ¹ -TQ- <i>p</i> CF ₃	99	45
20	G ¹ -TQ-3,5-(CF ₃) ₂	97	42
21	G ¹ -Pe- <i>p</i> CF ₃	93	23
22	BG ¹ -Pi-Ph ₂	98	0

Table S8: Screening of guanidines^[a].

[a] Unless otherwise noted, the reactions were carried out with **5a** (0.10 mmol), **2a** (0.10 mmol) and the catalyst (10 mol %) in DCM (0.1 M) at rt for 12 h. [b] Determined by ¹H NMR. [c] Determined by chiral SFC.

	+ 0 N 0 N 0 N 0 N N 0 N	G²-TQ-<i>p</i>CF₃ (10 mol %) solvent (0.1 M), r.t.	PhS, Bn N= Ph
5a	2a		6a
Entry	Solvent	Yield [%] ^[b]	ee [%] ^[c]
1	DCM	96	49
2	CHCl ₃	98	53
3	Et ₂ O	96	61
4	MTBE	97	64
5	1,4-dioxane	96	78

Table S9: Screening of solvents^[a].

6	DME	98	60
7	DCE	99	43
8^d	1,4-dioxane	97	69
9 ^e	1,4-dioxane	96	74

[a] Unless otherwise noted, the reactions were carried out with **5a** (0.10 mmol), **2a** (0.10 mmol) and G^2 -TQ-*p*CF₃ (10 mol %) in solvent (0.1 M) at rt for 12 h. [b] Determined by ¹H NMR. [c] Determined by chiral SFC. [d] 1,4-dioxane (0.05M) .[e] 1,4-dioxane (0.2 M)

Table S10: Screening of temperature^[a].

$Bn \underbrace{\downarrow}_{N= _{N= $	+ 0 N SPh	G²-TQ-pCF₃ (10 mol %) 1,4-dioxane (0.1 M) T °C	PhS, Bn N= Ph
5a	2a		6a
Entry	T [°C]	Yield [%] ^[b]	ee [%] ^[c]
1	rt	96	78
2	30	98	74
3	35	98	72

[a] Unless otherwise noted, the reactions were carried out with **5a** (0.10 mmol), **2a** (0.10 mmol) and **G²-TQ-***p***CF₃** (10 mol %) in 1,4-dioxane (0.1 M) at T $^{\circ}$ C for 12 h. [b] Determined by ¹H NMR. [c] Determined by chiral SFC.

Scheme 3: Screening of sulfenyl reagents ^[a].

[a] Unless otherwise noted, the reactions were carried out under the conditions (Table S10, entry 1), the yield was determined by ¹H NMR and the ee value was determined by chiral SFC.

Table S11: Screening of the substrate ratio and the amount of G²-TQ-4-CF₃^[a].

$Bn \xrightarrow{O}_{N=\langle O \\ Ph \end{pmatrix}} Ph$	+ 0 N O SPh	G²-TQ-<i>p</i>CF₃ (10 mol %) 1,4-dioxane (0.1 M), r.t.	PhS Bn N= Ph
5a	2a		6a
Entry	5a : 2a	Yield [%] ^[b]	ee [%] ^[c]
1	1.2:1	99	70
2	1:1.2	99	74
3	1:1	96	78
4^d	1:1	55	31
5^e	1:1	99	70

S11

6	1:1	90 ^[/]	78
7^g	1:1	90	78

[a] Unless otherwise noted, the reactions were carried out with 5a, 2a and G²-TQ-*p*CF₃ (10 mol %) in CHCl₃(0.1 M) at rt for 12
h. [b] Determined by ¹H NMR. [c] Determined by chiral SFC. [d] G²-TQ-*p*CF₃ (5 mol %) was used. [e] G²-TQ-*p*CF₃ (20 mol %) was used. [f] Isolated yield. [g]The reaction was conducted for 3 h.

7. Optimization of reaction conditions for sulfenylation of β-ketoesters

Ph F	+ 0 N SPh	G¹-Ra- <i>p</i> CF ₃ (10 mol % DCM (0.1 M), T °C	$\stackrel{(6)}{\longrightarrow} Ph \xrightarrow{O} O \longrightarrow{O} O \xrightarrow{O} O \longrightarrow{O} O \to O \to O O \to O O \to O O \to O \to O \to O O \to $
14a	2a		15a
Entry	T [°C]	Yield [%] ^[b]	ee [%] ^[c]
1^d	-20	93	Race
2	-40	86	Race
3	-60	62	Race
4	-78	56	Race

Table S12: Screening of temperature^[a].

[a] Unless otherwise noted, the reactions were carried out with 14a (0.10 mmol), 2a (0.10 mmol) and G¹-Ra-pCF₃ (10 mol %) in CHCl₃ (0.1 M) at T °C for 24 h. [b] Determined by ¹H NMR. [c] Determined by chiral SFC.

		G ₁ -Ra- <i>p</i> CF ₃ (10 mol %)	
Pn † U F	SPh	Solvent (0.1 M), r.t.	F SPh
14a	2a		15a
Entry	Solvent	Yield [%] ^[b]	ee [%] ^[c]
1	DCM	99	Race
2	Toluene	87	8
3	THF	92	<5
4	1,4-dioxane	85	9
5	Et_2O	82	9
6	EtOAc	83	<5
7	MTBE	72	7
8	MECN	95	Race
9	CHCl ₃	64	<5
10 ^d	Et ₂ O	36	9

Table S13: Screening of solvents^[a].

[a] Unless otherwise noted, the reactions were carried out with 14a (0.10 mmol), 2a (0.10 mmol) and G¹-Ra-pCF₃ (10 mol %) in solvent (0.1 M) at rt for 4 h. [b] Determined by ¹H NMR [c] Determined by chiral SFC. [d] At -40°C for 24 h.

`ó^R

Table S14: Screening of guanidines^[a]. Ph F SPh **15a**: R = Et 14a: R = Et 2a **15b**: R = ^{*t*}Bu 14b: R = ^tBu Entry^[a] ee [%]^[c] Guanidine Yield [%]^[b]

1	G ¹ -Pr-CHPh ₂	78	<5
2	G ¹ -Pi-CHPh ₂	72	<5
3	G ¹ -Ra-CHPh ₂	81	<5
4	G ¹ -TQ-CHPh ₂	37	<5
5	G ¹ -Pr-Ts	69	10
6	G ¹ -Pi-Ts	63	<5
7	G ¹ -Ra-Ts	76(69) ^d	11
8	G ¹ -Ra- <i>p</i> CF ₃	85	9
9	BG ¹ -Pi-Ph ₂	76	<5
10 ^e	G ¹ -Ra-Ts	61	19

[a] Unless otherwise noted, the reactions were carried out with 14a (0.10 mmol), 2_a (0.10 mmol) and the catalyst (10 mol %) in

1,4-dioxane (0.1 M) at rt for 4 h. [b] Determined by ¹H NMR. [c] Determined by chiral SFC. [d] Isolated yield. [e] **14b** instead of **14a**.

8. General procedure for the catalytic reactions

1. General procedure for the catalytic asymmetric reaction with ketoamide (synthesis of 3a-3s, 4a-4s):

A dry reaction tube was charged with α -fluoro- β -ketoamide 1 (0.1 mmol) G¹-Ra-*p*CF₃ (10 mol %), *N*-thiosuccinimide 2 (0.1 mmol) and CHCl₃ (1.0 mL). The mixture was stirred at room temperature and detected by TLC. After completion, the crude mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1 to 4:1, as eluent) to afford the desired product. (The desired product **4t-4v** were obtained with dichloromethane as solvent).

2. General procedure for the catalytic asymmetric reaction of azlactone (synthesis of 6a-6e):

A dry reaction tube was charged with azlactone **5** (0.1 mmol), G^2 -TQ-*p*CF₃ (10 mol %), *N*-thiosuccinimide **2a** (0.1 mmol) and 1,4-dioxane (1.0 mL). The mixture was stirred at room temperature and detected by TLC. After completion, the crude mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1 to 2:1, as eluent) to afford the desired product.

3. General procedure for the catalytic asymmetric disulfuration reaction with ketoester (synthesis of 9):

A dry reaction tube was charged with β -ketoester 7 (0.1 mmol), G¹-Pr-Ts (10 mol %), 2-(benzyldisulfanyl)isoindoline-1,3-dione 8 (0.1 mmol) and toluene (1.0 mL). The mixture was stirred at -40 °C after 24 hours. After completion, the crude mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1 as eluent) to afford the desired product.

4. General procedure for the catalytic asymmetric sulfenylation reaction (synthesis of 15a-15b):

A dry reaction tube was charged with azlactone β -ketoester (0.1 mmol), G¹-Ra-Ts (10 mol %), *N*-thiosuccinimide **2a** (0.1 mmol) and 1,4-dioxane (1.0 mL). The mixture was stirred at room temperature and detected by TLC. After completion, the crude mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, as eluent) to afford the desired product.

5. General procedure for the synthesis of racemic products

A dry reaction tube was charged with α -fluoro- β -ketoamide 1 (0.1 mmol), 1,1,3,3-tetramethylguanidine (10 mol %), *N*-thiosuccinimide 2 (0.1 mmol) and DCM (1.0 mL). The mixture was stirred at room temperature and detected by TLC. After completion, the crude mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1 to 4:1, as eluent) to afford the desired product (**3a-3s, 4a-4v**).

A dry reaction tube was charged with azlactone 5 (0.1 mmol), 1,1,3,3-tetramethylguanidine (10 mol %), *N*-thiosuccinimide **2a** (0.1 mmol) and 1,4-dioxane (1.0 mL). The mixture was stirred at room temperature and detected by TLC. After completion, the crude mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1 to 2:1, as eluent) to afford the desired product (**6a-6e**).

9. Experimental Procedure for the Gram-Scale Reaction and Transformations of the Products

An over dried test tube was charged with G^{1} -Ra- pCF_{3} (0.3 mmol, 10 mol%), 1a (3.0 mmol), 2h (3.0 mmol) and CHCl₃ (0.1 M). Then, the reaction mixture was stirred at room temperature for 1 hours and detected by TLC. After the reaction was completed, the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 4:1) to afford the enantioenriched product **3h** (1.215 g, 99% yield, 86% ee), then recrystallized by dichloromethane/petroleum ether to afford the purified product (87% yield, 99% ee).

Cascade procedure for the synthesis of product 10: An over dried test tube was charged with **1a'** (0.1 mmol), selectfluor (0.11 mmol) and the solvent of CH₃CN and H₂O (v/v = 1:1, 1.0 mL). Then, the reaction mixture was stirred at room temperature for 4 hours and detected by TLC. After the reaction was completed, 2 M HCl was added to the above system for another 1 hours. The solvent was evaporated and drained, G^{1} -Ra-*p*CF₃ (0.01 mmol, 10 mol%), **2h** (0.1 mmol), 4 Å MS (100 mg) and CHCl₃ (0.1 M) were added to the tese tube for 1 hours. After the reaction was completed, the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 4:1) to afford the enantioenriched product **3h** (42% yield, 77% ee). (The lower result could be related to the residual water in the system)

colerless oil, 42% yield, 77% ee; $[\alpha]^{24}_{D}$ = -118.5 (*c* 0.33, CH₂Cl₂).

SFC Chiralcel AD-3, $CO_2/MeOH = 80/20$, 1.5 mL/min, $\lambda = 280$ nm, $t_1 = 7.02$ min, $t_2 = 7.83$ min

	Retention Time	Area	% Area
1	7.022	12659798	88.42
2	7.826	1657364	11.58

An oven-dried test tube was charged with **3h** (0.2 mmol, 81.8 mg, 99% ee) and MeOH (0.5 M) followed by adding NaBH₄ (2.3 equiv). The reaction mixture was stirred at room temperature for 0.5 hour and detected by TLC. After the reaction was completed, the reaction was quenched with H₂O (5 mL) and extracted with DCM (2×10 mL). The organic layer was dried over Na₂SO₄ and filtered. The solvent was removed in vacuo and the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 3:1) to afford the desired product **10** (80.2 mg, 98% yield, 99%/99% ee, 78:22 dr)

An oven-dried test tube was charged with **10** (0.1 mmol, 99%/99% ee, 78:22 dr), PPh₃ (2.0 equiv) and THF (1.0 mL) under N₂ atmosphere. After this procedure, cooling this system to 0 °C, DIAD (2.0 equiv) in THF (1.0 ml) was added into the tube and the resulting solution was stirred at 0 °C for 30 min. the reaction was stirred at room temperature overnight. After the reaction was completed, the solvent was removed in vacuo and the residue was subjected to column chromatography (SiO₂, eluent: petroleum ether/ethyl acetate = 8:1) to afford the desired product **11** (24.3. mg, 71% yield, 99% ee, >19:1 dr).

A sample vial (4.0 mL) equipped with a magnetic stirring bar was charged with CH_3CN (2.0 M) and the adduct **6a** (35.9 mg, 0.1 mmol). HCl (5.0 equiv, conc.) was then added in one portion. The stirring was maintained at room temperature until consumption of the starting material. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel (PE/acetone = 1/1) to give the compound **12** as a white solid in 98% yield (35.2 mg) and 78% ee.

A sample vial (4.0 mL) equipped with a magnetic stirring bar was charged with MeOH (2.0 M) and

the adduct **6a** (35.9 mg, 0.1 mmol). TMSCl (1.5 equiv) was subsequently added in one portion. The stirring was maintained at room temperature until consumption of the starting material. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel (PE/EtOAc = 3/1) to give compound **13** as a white solid in 83% yield (29.8 mg) and 75% ee.

10. Failed substrates and unsuccessful substrates

Failed sulfur-reagents and nucleophiles

^a The reaction was carried out under the conditions (Table S1, entry 18), ^b the reactions were carried out with substrate and G¹-Pr-Ts (10 mol %) in toluene (0.1 M) at -40 $^{\circ}$ C for 24 h

11. X-ray crystal data

The absolute configuration of the optically active product **3h** was determined by X-ray chromatography analysis. Single crystal of **3h** was obtained by recrystallization in dichloromethane and petroleum ether at room temperature. The crystal data and further details are listed in Table S12.

CCDC 2133030 (**3h**) contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

The colourless and block-shape crystals were selected and mounted for the single-crystal X-ray diffraction. The data set was collected by a Bruker D8 Venture Photon II at 170K equipped with micro-focus Cu radiation source ($K_{\alpha} = 1.54178$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package^{a, b, c}. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested^d.

Figure S1. The thermal ellipsoid figure of 3h with 50% probabilities

The structure of the catalyst 11 was determined by X-ray chromatography analysis.

Single crystal of 11 was obtained by recrystallization in dichloromethane and petroleum ether at room temperature.

The crystal data and further details are listed in Table S12.

CCDC 2155953 (11) contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

The colourless and plate-shape crystals were selected and mounted for the single-crystal X-ray diffraction. The data set was collected by a Bruker D8 Venture Photon II at 150(2)K equipped with micro-focus Cu radiation source ($K_a = 1.54178$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) program package^{a, b, c}. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested^d.

Figure S2. The thermal ellipsoid figure of 11 with 50% probabilities

The structure of product 12 was determined by X-ray chromatography analysis.

A single crystal of 12 was obtained by recrystallization in dichloromethane and petroleum ether at room temperature.

The crystal data and further details are listed in Table S12.

CCDC 2155952 (12) contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

The colourless and block-shape crystals were selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 140(2)K equipped with micro-focus Mo radiation source ($K_a = 0.71073$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) program package^{a, b, c}. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested^d.

Figure S3. The thermal ellipsoid figure of 12 with 50% probabilities

Formula	$C_{23}H_{20}FNO_{3}S(3h)$	C ₂₃ H ₂₀ FNO ₂ S (11)	C ₂₂ H ₁₉ NO ₃ S (12)
Formula mass (amu)	409.11	393.12	377.11
Space group	P 21	P 21	P 1
a (Å)	18,3227(8)	9.7902(2)	11.3514(3)
<i>c</i> (Å)	6.1273(3)	8.5037(2)	13.3056(4)
<i>c</i> (Å)	54.463(2)	11.6291(3)	14.4521(4)
α (deg)	90	90	72.846(2)
β (deg)	92.615(2)	93.196(1)	79.748(2)
γ (deg)	90	90	68.951(2)
$V(Å^3)$	6108.1(5)	966.65(4)	1940.17(10)
Ζ	2	2	1
λ (Å)	1.54178	1.54178	1.54178
<i>T</i> (K)	173 K	173 K	173 K
$ ho_{ m caled} ({ m g \ cm^{-3}})$	1.336	1.352	1.292
μ (mm ⁻¹)	1.696	1.723	1.659
Transmission factors	0.491, 1.000	0.653, 1.000	0.709, 0.879
$2\theta_{\rm max}$ (deg)	68.377	68.272	68.413
No. of unique data, including $F_0^2 < 0$	21322	3461	13203
No. of unique data, with $F_o^2 > 2\sigma(F_o^2)$	15316	2770	12237
No. of variables	1604	255	1017
$R(F)$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})^{a}$	0.0816	0.0284	0.0359
$R_{\rm w}(F_{ m o}{}^2)^{b}$	0.2070	0.0728	0.0787
Goodness of fit	1.045	1.050	1.066

 $^{a} R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

 ${}^{b} R_{w}(F_{o}{}^{2}) = \left[\sum [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \sum wF_{o}{}^{4}\right]^{1/2}; w^{-1} = \left[\sigma^{2}(F_{o}{}^{2}) + (Ap)^{2} + Bp\right], \text{ where } p = \left[\max(F_{o}{}^{2}, 0) + 2F_{c}{}^{2}\right] / 3.$

References:

^a Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.

^b Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.

^c Sheldrick, G. M. Acta Cryst. 2015, C71, 3–8.

^d Spek, A. L. J. Appl. Cryst. 2003, 36, 7–13.

12. The NMR study of substrate and G-Ra-*p*CF₃

We performed NMR spectra analysis to probe into the decrease reactivity and enantioselectivity. And it manifested that there is less interaction of the catalyst with tert-butyl α -fluoro- β -ketoester (red vs. green), and weak interaction with ethyl α -fluoro- β -ketoester (blue vs. green), which might be the inefficiency of our catalyst system.

The interaction between α -fluoro- β -ketoamide and the catalyst is strong from the NMR analysis (green vs. red). The alkyl substitution at amidine unit has down-field shift, and protons related to stereogenic carbon centers of the catalyst also exhibit obvious chemical shift. The CHF proton shows new split and obvious NH peak at 12.4 ppm indicates strong intermolecular hydrogen-bonding.

\square	G-Ra- <i>p</i> CF ₃ /ppm	G-Ra- <i>p</i> CF ₃ : OEt (1:1) / ppm	G-Ra- <i>p</i> CF ₃ : OtBu (1:1) / ppm	G-Ra- <i>p</i> CF ₃ : NHTol (1:1) / ppm
1	5.04	5.10	5.04	4.74
2	4.48	4.54	4.49	4.33
3	7.54-7.68	7.50-7.64	7.54-7.67	7.63-7.72
4	5.46-5.50	5.38	5.45-5.48	5.18
5	3.94	3.98	3.99	4.55

The changes of chemical shifts after the interaction of **G-Ra**-*p***CF**₃ with substrates in CDCl₃. It indicated that the interaction between α -fluoro- β -ketoamide and the catalyst is stronger than α -fluoro- β -ketoester with the catalyst.

13. Comparison of enolization intermediates with different substrates

It showed that the formation of intramolecular H-bond is more stable, but the ester substituent has stronger steric hindrance closer to the carbonyl group compared with amide substituent.

14. Characterization of the products

(S)-2-fluoro-3-oxo-3-phenyl-2-(phenylthio)-N-(p-tolyl)propanamide (3a):

yellow oil, 90% yield, 90% ee; $[\alpha]^{22}_{D}$ = -92.8 (*c* 0.61, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 5.14 min, t₂ = 5.99 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 – 7.99 (m, 2H), 7.78 (s, 1H), 7.63 – 7.54 (m,

3H), 7.46 – 7.36 (m, 3H), 7.34 – 7.27 (m, 2H), 7.18 – 7.12 (m, 2H), 7.07 (d, *J* =

8.3 Hz, 2H), 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.0 (d, *J* = 25.8 Hz), 161.4 (d, *J* = 26.2 Hz), 136.5, 135.2, 134.3, 133.6, 133.3 (d,

J = 2.8 Hz), 130.4, 130.2 (d, *J* = 4.3 Hz), 129.6, 129.3, 128.6, 127.1, 120.2, 107.2 (d, *J* = 246.5 Hz), 20.9.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –128.52. (s, 1F).

HRMS (ESI) Calculated for C₂₂H₁₈FNO₂S ([M]+Na⁺) = 402.0934, Found 402.0931

IR (neat) 3324, 2922, 1697, 1597, 1522, 1446, 1407, 1317, 1249, 1186, 1028, 815, 691, 505 cm⁻¹.

	Retention Time	Area	% Area
1	5.135	3065556	95.05
2	5.986	159687	4.95

(S)-2-fluoro-2-((2-fluorophenyl)thio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3b):

white solid, m.p. 103–106 °C, 74% yield, 80% ee; $[\alpha]^{22}_{D} = -69.5$ (*c* 1.21, CH₂Cl₂).

SFC Chiralcel AD-3, CO₂/MeOH = 90/10, 1.5 mL/min, λ = 280 nm, t₁ = 11.31 min, t₂ = 12.13 min

¹H NMR (400 MHz, CDCl₃) 8.02 (d, *J* = 8.5 Hz, 2H), 7.90 (s, 1H), 7.55 - 7.48 (m, 2H), 7.39 - 7.28 (m, 3H), 7.13

(d, *J* = 8.4 Hz, 2H), 7.03 – 6.96 (m, 4H), 2.21 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 190.0 (d, *J* = 25.8 Hz), 163.6 (d, *J* = 250.5 Hz), 161.2 (d, *J* = 26.7 Hz), 139.1,

135.2, 134.5, 133.6, 133.1 (d, J = 8.4 Hz), 133.0 (d, J = 2.7 Hz), 130.3 (d, J = 4.4 Hz), 129.6, 128.6, 124.9 (d, J =

4.2 Hz), 120.2, 116.4 (d, *J* = 23.2 Hz), 114.1 (d, *J* = 18.5 Hz), 106.8 (d, *J* = 248.5 Hz), 20.9.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –104.58. (s, 1F), –129.79. (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{17}F_2NO_2S$ ([M]+Na⁺) = 420.0840, Found 420.0837

IR (neat) 3325, 3068, 1696, 1597, 1522, 1474, 1447, 1317, 1256, 1187, 1029, 820, 692, 508 cm⁻¹.

	Retention Time	Area	% Area
1	11.315	455835	10.02
2	12.131	4091497	89.98

(S)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)-2-(m-tolylthio)propanamide (3c):

Yellow solid, m.p. 118–123 °C, 89% yield, 89% ee; $[\alpha]^{21}_{D} = -88.7$ (*c* 0.73, CH₂Cl₂).

SFC Chiralcel AD-3, CO₂/MeOH = 90/10, 1.5 mL/min, λ = 280 nm, t₁ = 11.90 min, t₂ = 14.17 min

¹**H NMR** (600 MHz, CDCl₃) 8.07 (d, *J* = 8.5 Hz, 2H), 7.77 (s, 1H), 7.60 – 7.56 (m, 1H), 7.43 (t, *J* = 7.9 Hz, 2H),

7.38 (s, 2H), 7.19 (d, *J* = 7.2 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.1 Hz, 2H), 2.29 (s, 3H), 2.22 (s, 3H).

 $^{13}C{^{1}H}$ NMR (151 MHz, CDCl₃) δ 190.0 (d, J = 25.9 Hz), 161.6 (d, J = 27.0 Hz), 139.3, 137.2, 135.1, 134.2,

133.6, 133.5, 133.3 (d, J = 2.1 Hz), 131.2, 130.22 (d, J = 4.2 Hz), 129.5, 129.1, 128.6, 126.7, 120.2, 107.2 (d, J =

247.3 Hz), 21.1, 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –128.56. (s, 1F).

HRMS (ESI) Calculated for $C_{23}H_{20}FNO_2S$ ([M]+Na⁺) = 416.1091, Found 416.1088

IR (neat) 3329, 2921, 1681, 1596, 1519, 1475, 1407, 1245, 1186, 1029, 814, 781, 690, 507 cm⁻¹.

	Retention Time	Area	% Area
1	11.903	1745882	94.61
2	14.173	99413	5.39

(S)-2-fluoro-2-((3-fluorophenyl)thio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3d):

colerless oil, 49% yield, 88% ee; $[\alpha]^{18}{}_{D}$ = -110.3 (*c* 0.50, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 90/10, 1.5 mL/min, λ = 280 nm, t₁ = 10.30 min, t₂ = 13.45 min ¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.5 Hz, 2H), 7.84 (s, 1H), 7.63 - 7.57

(m, 1H), 7.44 (t, *J* = 7.9 Hz, 2H), 7.40 – 7.22 (m, 4H), 7.19 (d, *J* = 8.4 Hz, 2H),

7.09 (d, *J* = 8.3 Hz, 3H), 2.30 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 189.6 (d, *J* = 25.4 Hz), 162.3 (d, *J* = 251.5 Hz), 161.1 (d, *J* = 26.4 Hz), 135.4,

134.5, 133.4, 133.1 (d, *J* = 2.8 Hz), 132.1 (d, *J* = 3.6 Hz), 130.6, 130.5, 130.2 (d, *J* = 4.2 Hz), 129.6, 129.0 (d, *J* =

7.7 Hz), 128.7, 123.2 (d, *J* = 22.0 Hz), 120.3, 120.2, 117.6 (d, *J* = 21.0 Hz), 107.2 (d, *J* = 247.1 Hz), 20.9.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –110.96. (s, 1F), –128.52. (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{17}F_2NO_2S$ ([M]+Na⁺) = 420.0840, Found 420.0836.

IR (neat) 3285, 1775, 1705, 1596, 1522, 1474, 1426, 1319, 1244, 1181, 1027, 816, 684, 511 cm⁻¹.

	Retention Time	Area	% Area
1	10.302	2672421	93.98
2	13.447	171286	6.02

(S)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)-2-(p-tolylthio)propanamide (3e):

Colorless oil, 84% yield, 89% ee; $[\alpha]^{22}_{D} = -76.8$ (*c* 1.17, CH₂Cl₂).

SFC Chiralcel AD-3, CO₂/MeOH = 90/10, 1.5 mL/min, λ = 280 nm, t₁ = 14.35 min, t₂ = 16.87 min

¹**H NMR** (600 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 3.1 Hz, 1H),

7.57 (t, *J* = 7.4 Hz, 1H), 7.49 – 7.38 (m, 4H), 7.16 (d, *J* = 8.5 Hz, 2H), 7.08 (dd,

J = 15.2, 8.0 Hz, 4H), 2.31 (s, 3H), 2.29 (s, 3H).

 $^{13}C{^{1}H}$ NMR (151 MHz, CDCl₃) δ 190.2 (d, J = 26.1 Hz), 161.6 (d, J = 26.3 Hz), 140.8, 136.5, 135.1, 134.2,

133.7, 133.3 (d, *J* = 3.0 Hz), 130.3, 130.3 (d, *J* = 4.3 Hz), 129.5, 128.5, 123.4, 120.2, 107.20 (d, *J* = 246.2 Hz),

21.3, 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –128.99. (s, 1F).

HRMS (ESI) Calculated for $C_{23}H_{20}FNO_2S$ ([M]+Na⁺) = 416.1091, Found 416.1086

IR (neat) 3331, 2921, 1681, 1597, 1519, 1448, 1405, 1244, 1185, 1025, 810, 692, 506 cm⁻¹.

	Retention Time	Area	% Area
1	14.351	2861220	94.66
2	16.867	161312	5.34

(S)-2-fluoro-2-((4-isopropylphenyl)thio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3f):

white solid, m.p. 53–55 °C, 96% yield, 91% ee; $[\alpha]^{21}_{D}$ = -103.6 (*c* 1.30, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 90/10, 1.5 mL/min, λ = 280 nm, t₁ = 12.55 min, t₂ = 18.09 min ¹**H** NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 8.5 Hz, 2H), 7.72 (s, 1H), 7.56 (t, *J* =

7.4 Hz, 1H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.41 (t, *J* = 7.9 Hz, 2H), 7.15 (d, *J* = 8.2

Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 7.05 (d, *J* = 8.3 Hz, 2H), 2.86 (p, *J* = 6.9 Hz, 1H), 2.28 (s, 3H), 1.19 (dd, *J* = 6.9, 2.8 Hz, 6H).

 $^{13}C{^{1}H}$ NMR (151 MHz, CDCl₃) δ 190.0 (d, J = 26.1 Hz), 161.6 (d, J = 26.2 Hz), 151.6, 136.8, 135.1, 134.2,

133.6, 133.4 (d, *J* = 3.2 Hz), 130.2 (d, *J* = 4.2 Hz), 130.1, 129.5, 128.6, 127.6, 123.8, 120.2, 107.3 (d, *J* = 246.4

Hz), 34.0, 23.8, 23.7, 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –128.22. (s, 1F).

HRMS (ESI) Calculated for $C_{25}H_{24}FNO_2S$ ([M]+Na⁺) = 444.1404, Found 444.1400

IR (neat) 3324, 2961, 1696, 1597, 1521, 1450, 1407, 1316, 1248, 1186, 1024, 821, 693, 507 cm⁻¹.

	Retention Time	Area	% Area
1	12.548	2754040	95.58
2	18.094	127467	4.42

(S)-2-((4-(tert-butyl)phenyl)thio)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3g):

white solid, m.p. 50–54 °C, 99% yield, 91% ee; $[\alpha]^{19}{}_D = -132.6$ (*c* 0.47, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 90/10, 1.5 mL/min, $\lambda = 280$ nm, t₁ = 11.73 min, t₂ = 16.00 min ¹**H** NMR (600 MHz, CDCl₃) 8.04 (d, *J* = 8.6 Hz, 2H), 7.69 (s, 1H), 7.56 (t, *J* =

7.4 Hz, 1H), 7.51 (d, J = 8.3 Hz, 2H), 7.43 – 7.39 (m, 2H), 7.31 (d, J = 8.4 Hz,

2H), 7.09 (d, *J* = 8.6 Hz, 2H), 7.05 (d, *J* = 8.2 Hz, 2H), 2.28 (s, 3H), 1.26 (s, 9H).

 $^{13}C{^{1}H}$ NMR (151 MHz, CDCl₃) δ 189.9 (d, J = 26.1 Hz), 161.7 (d, J = 26.2 Hz), 153.9, 136.5, 135.1, 134.2,

133.6, 133.3 (d, *J* = 3.0 Hz), 130.1 (d, *J* = 4.3 Hz), 129.5, 128.6, 126.5, 123.6, 120.3, 107.36 (d, *J* = 246.4 Hz),

34.8, 31.2, 20.9.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –128.05. (s, 1F).

HRMS (ESI) Calculated for $C_{26}H_{26}FNO_2S$ ([M]+Na⁺) = 458.1560, Found 458.1557.

IR (neat) 3323, 2962, 1699, 1598, 1524, 1451, 1406, 1317, 1250, 1187, 1022, 820, 693, 508 cm⁻¹.

	Retention Time	Area	% Area
1	11.729	2936439	95.41
2	16.000	141354	4.59

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3h):

colerless oil, 99% yield, 87% ee; $[\alpha]^{22}_{D}$ = -78.4 (*c* 1.30, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 7.00 min, t₂ = 7.75 min ¹**H** NMR (600 MHz, CDCl₃) δ 8.07 (d, *J* = 8.5 Hz, 2H), 7.85 (s, 1H), 7.57 (t, *J*

= 7.5 Hz, 1H), 7.48 (d, J = 8.8 Hz, 2H), 7.45 – 7.39 (m, 2H), 7.18 (d, J = 8.5 Hz,

2H), 7.07 (d, *J* = 8.2 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 3.74 (s, 3H), 2.29 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.3 8 (d, *J* = 26.1 Hz), 161.6 (d, *J* = 26.3 Hz), 161.5, 138.3, 135.1, 134.2,

133.7, 133.4 (d, *J* = 2.2 Hz), 130.2 (d, *J* = 3.9 Hz), 129.5, 128.6, 120.2, 107.2 (d, *J* = 245.4 Hz), 55.4, 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –129.59 (s, 1F).

HRMS (ESI) Calculated for $C_{23}H_{20}FNO_3S$ ([M]+Na+) = 432.1040, Found 432.1037.

IR (neat) 3322, 2923, 1681, 1592, 1519, 1493, 1406, 1291, 1246, 1177, 1027, 826, 691, 506 cm⁻¹.

	Time	Area	% Area
1	7.005	4021355	93.47
2	7.754	281124	6.53

(S)-2-fluoro-2-((4-fluorophenyl)thio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3i):

colerless oil, 91% yield, 88% ee; $[\alpha]^{21}_{D}$ = -90.9 (*c* 1.37, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 90/10, 1.5 mL/min, λ = 280 nm, t₁ = 10.32 min, t₂ = 12.07 min ¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 2H), 7.80 (s, 1H), 7.52 - 7.44 (m, 3H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 8.5 Hz, 2H), 7.00 (d, *J* = 8.2 Hz,

2H), 6.90 (t, *J* = 8.6 Hz, 2H), 2.21 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) 189.9 (d, J = 25.6 Hz), 164.3 (d, J = 252.0 Hz), 161.3 (d, J = 26.2 Hz), 138.8 (d, J = 8.8 Hz), 135.3, 134.4, 133.5, 133.2 (d, J = 2.6 Hz), 130.2 (d, J = 3.9 Hz), 129.6, 128.6, 122.3 (d, J = 3.4 Hz),

120.1, 116.7, 116.5, 107.2 (d, *J* = 246.7 Hz), 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –109.35. (s, 1F), –129.27. (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{17}F_2NO_2S$ ([M]+Na⁺) = 420.0840, Found 420.0836

IR (neat) 3319, 2922, 1696, 1592, 1522, 1489, 1449, 1317, 1233, 1158, 1030, 817, 630, 507 cm⁻¹.

	Retention Time	Area	% Area
1	10.322	1845818	94.20
2	12.070	113629	5.80

(S)-2-((4-chlorophenyl)thio)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3j):

colerless oil, 59% yield, 88% ee; $[\alpha]^{23}_{D}$ = -86.0 (*c* 0.83, CH₂Cl₂). **SFC** Chiralcel OJ-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 3.41 min, t₂ = 4.82 min ¹**H NMR** (600 MHz, CDCl₃) δ 8.08 (d, *J* = 8.5 Hz, 2H), 7.86 (s, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.46 – 7.42 (m, 2H), 7.27 (d, *J* = 8.4 Hz,

2H), 7.18 (d, *J* = 8.4 Hz, 2H), 7.09 (d, *J* = 8.1 Hz, 2H), 2.30 (s, 3H).

 $^{13}C{^{1}H}$ NMR (151 MHz, CDCl₃) δ 189.8 (d, J = 26.0 Hz), 161.2 (d, J = 26.2 Hz), 137.7, 137.1, 136.1, 135.4,

134.5, 133.5, 133.1 (d, *J* = 2.2 Hz), 130.3 (d, *J* = 4.2 Hz), 129.7, 129.6, 128.6, 125.5, 120.4, 120.2, 107.1 (d, *J* =

246.5 Hz), 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –128.99. (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{17}^{35}$ ClFNO₂S ([M]+Na⁺) = 436.0545, Found 436.0545.

HRMS (ESI) Calculated for $C_{22}H_{17}^{37}$ ClFNO₂S ([M]+Na⁺) = 438.0515, Found 438.0514.

IR (neat) 3316, 2923, 1680, 1598, 1521, 1475, 1407, 1317, 1250, 1186, 1094, 1016, 818, 691, 506 cm⁻¹.

	Retention Time	Area	% Area
1	3.406	1455255	93.83
2	4.817	95760	6.17
(S)-2-((4-bromophenyl)thio)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3k):

white solid, m.p. 104–108 °C, 64% yield, 89% ee; $[\alpha]^{22}_{D} = -85.6$ (c 1.05, CH₂Cl₂).

SFC Chiralcel IC-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 5.81 min, t₂ = 6.34 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 8.5 Hz, 2H), 7.78 (s, 1H), 7.51 (t, J =

7.4 Hz, 1H), 7.34 (s, 6H), 7.10 (d, *J* = 8.5 Hz, 2H), 7.01 (d, *J* = 8.2 Hz, 2H), 2.22 (s, 3H).

 $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 189.7 (d, J = 25.5 Hz), 161.2 (d, J = 26.5 Hz), 137.9, 135.4, 134.5, 133.5,

133.1 (d, *J* = 2.2 Hz), 132.5, 130.2 (d, *J* = 3.8 Hz), 129.6, 128.7, 126.2, 125.5, 120.2, 107.1 (d, *J* = 247.0 Hz), 21.0.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –128.85. (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{17}^{79}BrFNO_2S$ ([M]+Na⁺) = 480.0040, Found 480.0039.

HRMS (ESI) Calculated for $C_{22}H_{17}^{81}BrFNO_2S$ ([M]+Na⁺) = 482.0019, Found 482.0017.

IR (neat) 3319, 2923, 1697, 1597, 1522, 1472, 1449, 1316, 1251, 1186, 1010, 815, 691, 507 cm⁻¹.

	Retention Time	Area	% Area
1	5.805	1772143	94.42
2	6.336	104802	5.58

(S)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)-2-((4-(trifluoromethoxy)phenyl)thio)propanamide (3l):

 colerless oil, 70% yield, 89% ee; $[\alpha]^{22}_{D}$ = -81.0 (*c* 0.68, CH₂Cl₂). **HPLC**: Chiralcel ADH, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm, t_{r1} = 30.59 min, t_{r2} = 33.02 min ¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.1 Hz, 2H), 7.80 (s, 1H), 7.60 (dd, *J* = 11.5, 8.1 Hz, 3H), 7.44 (t, *J* = 7.9 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 4H), 7.08 (d, *J* = 8.3 Hz, 2H), 2.30 (s, 3H).

 $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 189.6 (d, J = 25.5 Hz), 161.2 (d, J = 25.8 Hz), 150.9, 138.2, 135.4, 134.5,

133.4, 133.1 (d, *J* = 2.7 Hz), 130.2 (d, *J* = 3.9 Hz), 129.6, 128.7, 121.6, 120.3 (q, *J* = 259.3 Hz), 107.2 (d, *J* = 247.4

Hz), 20.9.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -57.77. (s, 1F), -128.78. (s, 1F).

HRMS (ESI) Calculated for $C_{23}H_{17}F_4NO_3S$ ([M]+Na⁺) = 486.0757, Found 486.0756

IR (neat) 3306, 1697, 1597, 1522, 1449, 1407, 1252, 1166, 1023, 809, 692, 507 cm⁻¹.

	Retention Time	Area	% Area
1	30.589	5245804	94.32
2	33.016	316089	5.68

(S)-2-((4-azidophenyl)thio)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3m):

yellow oil, 55% yield, 89% ee; $[\alpha]^{23}_{D}$ = -86.0 (*c* 0.83, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 85/15, 1.5 mL/min, λ = 280 nm, t₁ = 13.57 min, t₂ = 15.10 min ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, *J* = 8.5 Hz, 2H), 7.89 (s, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.20 (d, *J* = 8.4 Hz,

2H), 7.10 (d, *J* = 8.3 Hz, 2H), 6.94 (d, *J* = 8.5 Hz, 2H), 2.30 (s, 3H).

 $^{13}C{^{1}H}$ NMR (151 MHz, CDCl₃) δ 190.0 (d, J = 26.0 Hz), 161.2 (d, J = 26.3 Hz), 142.7, 138.1, 135.3, 134.4,

133.6, 133.2 (d, *J* = 2.4 Hz), 130.3 (d, *J* = 4.2 Hz), 129.6, 128.6, 122.8, 120.3, 120.1, 119.9, 119.8, 107.2 (d, *J* =

246.4 Hz), 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –129.36. (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{17}FN_4O_2S$ ([M]+Na+) = 443.0948, Found 443.0945

IR (neat) 3328, 2922, 2126, 2094, 1696, 1592, 1522, 1487, 1406, 1293, 1250, 1128, 1028, 816, 693, 508 cm⁻¹.

	Retention Time	Area	% Area
1	13.847	9432886	50.00
2	15.514	9431326	50.00

	Retention Time	Area	% Area
1	13.571	550556	5.34
2	15.100	9767350	94.66

(S)-2-fluoro-2-(naphthalen-2-ylthio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3n):

yelow solid, m.p. 110–114 °C, 88% yield, 90% ee; $[\alpha]^{22}_{D} = -82.6$ (c 0.75, CH₂Cl₂).

HPLC: Chiralcel ADH, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{r1} = 19.60$ min, $t_{r2} = 24.62$ min

¹**H** NMR (400 MHz, CDCl₃) δ 8.14 – 8.06 (m, 3H), 7.80 (d, J = 6.9 Hz, 2H),

7.74 (t, *J* = 8.1 Hz, 2H), 7.60 – 7.58 (m, 1H), 7.57 – 7.53 (m, 1H), 7.53 – 7.45 (m, 2H), 7.42 (dd, *J* = 8.3, 7.4 Hz,

2H), 7.05 - 6.90 (m, 4H), 2.25 (s, 3H).

 $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 190.0 (d, J = 25.5 Hz), 161.5 (d, J = 26.2 Hz), 137.0, 135.1, 134.3, 133.7,

133.5, 133.4, 133.3 (d, J = 2.4 Hz), 132.2, 130.3 (d, J = 3.8 Hz), 129.5, 128.9, 128.6, 128.1, 127.7, 127.6, 126.8,

124.2, 120.2, 107.3 (d, *J* = 246.5 Hz), 20.9.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –128.58. (s, 1F).

HRMS (ESI) Calculated for $C_{26}H_{20}FNO_2S$ ([M]+Na⁺) = 452.1091, Found 452.1089

IR (neat) 3328, 2922, 1696, 1597, 1521, 1449, 1407, 1317, 1249, 1187, 1027, 815, 692, 507 cm⁻¹.

	Retention Time	Area	% Area
1	19.600	1929242	94.87
2	24.624	104388	5.13

(S)-2-(benzylthio)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanamide (30):

white solid, m.p. 147–152 °C, 67% yield, 93% ee; $[\alpha]^{21}_{D}$ = -88.7 (*c* 0.73, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 90/10, 1.5 mL/min, λ = 280 nm, t₁ = 16.40 min, t₂ = 17.84 min ¹**H** NMR (600 MHz, CDCl₃) δ 8.28 (s, 1H), 8.18 (d, *J* = 8.5 Hz, 2H), 7.61 – 7.57

(m, 1H), 7.47 - 7.43 (m, 2H), 7.37 (d, J = 8.5 Hz, 2H), 7.30 - 7.27 (m, 2H), 7.27 - 7.23 (m, 2H), 7.23 - 7.18 (m, 2H), 7.27 - 7.23 (m

1H), 7.12 (d, *J* = 8.1 Hz, 2H), 4.05 – 3.98 (m, 2H), 2.31 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.2 (d, J = 26.2 Hz), 161.5 (d, J = 27.3 Hz), 135.4, 135.2, 134.4, 133.9,

133.2 (d, *J* = 3.1 Hz), 130.6 (d, *J* = 4.4 Hz), 129.6, 129.3, 128.7, 128.5, 127.8, 120.1, 106.2 (d, *J* = 243.1 Hz), 34.1,

21.0.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –134.59. (s, 1F).

HRMS (ESI) Calculated for $C_{23}H_{20}FNO_2S$ ([M]+Na+) = 416.1091, Found 416.1087

IR (neat) 3319, 2922, 1680, 1597, 1521, 1450, 1407, 1317, 1242, 1186, 1026, 813, 694, 508 cm⁻¹.

	Retention Time	Area	% Area
1	16.397	4365243	96.62
2	17.984	152712	3.38

(S)-2-fluoro-2-(octadecylthio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3p):

white solid, m.p. 65–68 °C, 91% yield, 91% ee; $[\alpha]^{22}{}_{D}$ = -92.8 (*c* 0.61, CH₂Cl₂). **SFC** Chiralcel ID-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 3.23 min, t₂ = 3.66 min

 ^{1}H NMR (400 MHz, CDCl_3) δ 8.31 (s, 1H), 8.22 – 8.17 (m, 2H), 7.62 – 7.57 (m,

1H), 7.48 – 7.41 (m, 4H), 7.14 (d, *J* = 8.2 Hz, 2H), 2.78 (qd, *J* = 7.7, 1.7 Hz, 2H), 2.31 (s, 3H), 1.65 – 1.59 (m, 2H),

1.24 (d, *J* = 14.0 Hz, 30H), 0.88 (t, *J* = 6.7 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 191.6 (d, *J* = 26.8 Hz), 161.8 (d, *J* = 28.1 Hz), 135.1, 134.3, 134.0, 133.3 (d, *J*

= 2.5 Hz), 130.6 (d, J = 4.4 Hz), 129.7, 128.5, 120.0, 106.3 (d, J = 242.1 Hz), 32.0, 29.7, 29.7, 29.6, 29.6, 29.6,

29.4, 29.4, 29.0, 29.0, 28.8, 22.7, 20.9 14.2.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –134.40. (s, 1F).

HRMS (ESI) Calculated for $C_{34}H_{50}FNO_2S$ ([M]+Na+) = 578.3438, Found 578.3435

IR (neat) 3333, 2922 1685, 1598, 1524, 1451, 1407, 1316, 1241, 1187, 1025, 813, 691, 507 cm⁻¹.

	Retention Time	Area	% Area
1	3.227	130311	4.52
2	3.661	2753404	95.48

(S)-2-fluoro-2-(isobutylthio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3q):

white solid, m.p. 83–86 °C, 73% yield, 88% ee; $[\alpha]^{22}_{D}$ = -21.9 (*c* 1.03, CH₂Cl₂). SFC Chiralcel ID-3, CO₂/MeOH = 95/5, 1.5 mL/min, λ = 280 nm, t₁ = 5.49 min, t₂ = 6.19 min

¹**H NMR** (600 MHz, CDCl₃) δ 8.25 (s, 1H), 8.12 (d, J = 8.4 Hz, 2H), 7.52 (t, J =

7.4 Hz, 1H), 7.38 (t, J = 7.9 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 8.3 Hz, 2H), 2.64 - 2.60 (m, 1H), 2.56

(dd, *J* = 11.0, 7.2 Hz, 1H), 2.23 (s, 3H), 1.80 (dt, *J* = 13.4, 6.7 Hz, 1H), 0.90 (d, *J* = 6.7 Hz, 6H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.6 (d, J = 26.3 Hz), 161.8 (d, J = 27.4 Hz), 135.1, 134.4, 134.0, 133.3 (d, J

= 1.9 Hz), 130.6 (d, J = 4.4 Hz), 129.7, 128.5, 120.0, 106.2 (d, J = 242.1 Hz), 38.0, 28.3, 22.0, 21.9, 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –134.63. (s, 1F).

HRMS (ESI) Calculated for $C_{20}H_{22}FNO_2S$ ([M]+Na+) = 382.1247, Found 382.1243.

IR (neat) 3329, 2925, 1681, 1597, 1521, 1449, 1317, 1240, 1186, 1025, 813, 690, 508 cm⁻¹.

	Retention Time	Area	% Area
1	5.521	1082423	50.21
2	6.573	1073172	49.79

	Retention Time	Area	% Area
1	5.493	880309	5.51
2	6.192	15094748	94.49

(S)-2-fluoro-2-(hexylthio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3r):

colerless oil, 84% yield, 90% ee; $[\alpha]^{21}_{D}$ = -22.7 (*c* 1.23, CH₂Cl₂). **SFC** Chiralcel ID-3, CO₂/MeOH = 95/5, 1.5 mL/min, λ = 280 nm, t₁ = 7.55 min, t₂ = 8.57 min ¹**H** NMR (600 MHz, CDCl₃) δ 8.25 (s, 1H), 8.12 (d, *J* = 8.4 Hz, 2H), 7.52 (t, *J* =

7.4 Hz, 1H), 7.36 (dd, *J* = 14.4, 8.2 Hz, 4H), 7.06 (d, *J* = 8.2 Hz, 2H), 2.74 –

2.66 (m, 2H), 2.23 (s, 3H), 1.54 (p, *J* = 7.6, 7.1 Hz, 2H), 1.30 – 1.25 (m, 2H), 1.19 – 1.13 (m, 4H), 0.77 (t, *J* = 6.9 Hz, 3H).

 $^{13}C{^{1}H}$ NMR (151 MHz, CDCl₃) δ 191.6 (d, J = 27.1 Hz), 161.8 (d, J = 27.4 Hz), 135.1, 134.4, 134.0, 133.3 (d, J

= 1.8 Hz), 130.6 (d, *J* = 4.3 Hz), 129.7, 128.5, 120.0, 106.4 (d, *J* = 242.0 Hz), 31.2, 29.6, 29.0, 28.4, 22.5, 20.9,

14.0.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –134.26. (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{26}FNO_2S$ ([M]+Na⁺) = 410.1560, Found 410.1559

IR (neat) 3328, 2926, 1681, 1598, 1521, 1449, 1406, 1316, 1240, 1186, 1025, 813, 690, 508 cm⁻¹.

	Retention Time	Area	% Area
1	7.595	311284	50.10
2	9.019	310084	49.90

	Retention Time	Area	% Area
1	7.550	382785	4.74
2	8.573	7690887	95.26

ethyl *N*-(tert-butoxycarbonyl)-*S*-((*S*)-2-fluoro-1,3-dioxo-1-phenyl-3-(*p*-tolylamino)propan-2-yl)-L-cysteinate (3s):

colerless oil, 78% yield, >19:1 dr, [α]²²_D = -35.5 (*c* 0.39, CH₂Cl₂).
¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.12 (m, 2H), 7.60 (t, *J* = 7.3 Hz, 1H),
7.46 (t, *J* = 7.6 Hz, 4H), 7.14 (d, *J* = 8.3 Hz, 2H), 4.56 (s, 1H), 4.18 (qd, *J* = 7.2, 4.8 Hz, 2H), 3.41 (d, *J* = 9.4 Hz, 1H), 3.23 (d, *J* = 12.8 Hz, 1H), 2.32 (s,

3H), 1.43 (d, *J* = 8.0 Hz, 10H), 1.26 (dt, *J* = 12.1, 7.1 Hz, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 190.2 (d, J = 25.7 Hz), 170.0, 161.5 (d, J = 24.8 Hz), 155.3, 135.3, 134.5,

133.9, 132.9 (d, *J* = 2.3 Hz), 130.5 (d, *J* = 3.9 Hz), 129.7, 129.6, 128.6, 120.3, 120.1, 106.1 (d, *J* = 243.0 Hz), 80.4,

62.2, 53.0, 31.7, 28.3, 20.9, 14.1.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –130.89. (s, 1F).

HRMS (ESI) Calculated for $C_{26}H_{31}FN_2O_6S$ ([M]+Na+) = 541.1780, Found 541.1776

IR (neat) 3342, 2979, 1700, 1599, 1519, 1450, 1369, 1317, 1247, 1164, 1025, 816, 693, 509 cm⁻¹.

(S)-2-fluoro-3-oxo-3-phenyl-2-(phenylselanyl)-N-(p-tolyl)propanamide (3t):

yellow oil, 30% yield, race; SFC Chiralcel IC-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 6.01 min, t₂ = 6.54 min ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dt, *J* = 8.6, 1.6 Hz, 2H), 7.70 – 7.65 (m,

2H), 7.65 – 7.56 (m, 2H), 7.46 – 7.38 (m, 3H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.16 – 7.05 (m, 4H), 2.30 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, Chloroform-*d*) δ 191.0 (d, *J* = 23.8 Hz), 162.6 (d, *J* =

24.2 Hz), 137.9, 135.1, 134.2, 133.6, 133.0 (d, *J* = 2.6 Hz), 130.2, 130.1 (d, *J* = 4.3 Hz), 129.5, 129.4, 128.7, 124.5,

120.0, 104.0 (d, *J* = 258.4 Hz), 20.3.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –133.98. (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{18}FNO_2Se$ ([M]+Na+) = 444.0439, Found 444.0441

IR (neat) 3328, 2923, 1693, 1597, 1523, 1447, 1407, 1316, 1253, 1186, 1031, 815, 691, 506 cm⁻¹.

	Retention Time	Area	% Area
1	6.010	3659765	52.62
2	6.536	3294876	47.38
2	6.536	3294876	47.38

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-3-(o-tolyl)-N-(p-tolyl)propanamide (4a):

colerless oil, 99% yield, 89% ee; $[\alpha]^{22}_{D}$ = -65.9 (*c* 1.48, CH₂Cl₂). **SFC** Chiralcel OD-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 3.17 min, t₂ = 3.85 min ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.60 (dd, *J* = 6.5, 3.1 Hz, 1H), 7.56 - 7.46 (m, 2H), 7.36 (td, *J* = 7.5, 1.4 Hz, 1H), 7.25 - 7.21 (m, 3H),

7.17 (t, J = 7.9 Hz, 1H), 7.09 (d, J = 8.2 Hz, 2H), 6.88 – 6.75 (m, 2H), 3.75 (s, 3H), 2.31 (d, J = 14.6 Hz, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 195.1 (d, J = 28.3 Hz), 161.6, 161.2 (d, J = 26.9 Hz), 138.8, 138.3, 135.1, 134.4 (d, J = 2.3 Hz), 133.8, 132.0, 131.6, 129.6, 128.7 (d, J = 6.5 Hz), 125.3, 120.2, 117.5, 114.9, 107.1 (d, J = 246.3 Hz), 55.4, 20.9, 20.5.

 ${}^{19}\mathrm{F}\{{}^{1}\mathrm{H}\}$ NMR (377 MHz, CDCl₃) δ –131.32. (s, 1F).

HRMS (ESI) Calculated for $C_{24}H_{22}FNO_3S$ ([M]+Na⁺) = 446.1196, Found 446.1195

IR (neat) 3345, 2927, 1687, 1592, 1519, 1492, 1458, 1291, 1245, 1176, 1028, 830, 629, 507 cm⁻¹.

	Retention Time	Area	% Area
1	3.165	5893675	94.39
2	3.847	350143	5.61

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-3-(*m*-tolyl)-*N*-(*p*-tolyl)propanamide (4b):

colerless oil, 98% yield, 89% ee; $[\alpha]^{23}_{D} = -75.0$ (*c* 1.33, CH₂Cl₂). **SFC** Chiralcel OD-3, CO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 280$ nm, t₁ = 3.25 min, t₂ = 3.64 min ¹**H** NMR (600 MHz, CDCl₃) δ 7.79 (d, *J* = 7.1 Hz, 2H), 7.74 (s, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.21 (t, *J* = 7.7 Hz, 1H),

7.09 (d, J = 8.1 Hz, 2H), 6.99 (d, J = 8.1 Hz, 2H), 6.72 (d, J = 8.5 Hz, 2H), 3.66 (s, 3H), 2.27 (s, 3H), 2.20 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.6 (d, J = 25.9 Hz), 161.7 (d, J = 26.3 Hz), 161.5, 138.4, 138.4, 135.1, 133.8, 133.4 (d, J = 3.0 Hz), 130.6 (d, J = 4.4 Hz), 129.5, 128.6, 128.4, 127.4, 127.4, 120.2, 117.4, 114.9, 107.2 (d, J = 246.2 Hz), 55.4, 21.4, 20.9.

 ${}^{19}\mathrm{F}\{{}^{1}\mathrm{H}\}$ NMR (565 MHz, CDCl_3) δ –129.69. (s, 1F).

HRMS (ESI) Calculated for C₂₄H₂₂FNO₃S ([M]+Na⁺) = 446.1197, Found 446.1193

IR (neat) 3336, 2923, 1694, 1593, 1522, 1493, 1459, 1291, 1250, 1178, 1029, 830, 630, 509 cm⁻¹.

	Retention Time	Area	% Area
1	3.253	4567860	94.55
2	3.635	263244	5.45

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-N,3-di-ptolylpropanamide (4c):

colerless oil, 99% yield, 89% ee; $[\alpha]^{23}_{D} = -61.5$ (*c* 1.34, CH₂Cl₂). **SFC** Chiralcel OD-3, CO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 280$ nm, t₁ = 3.61 min, t₂ = 4.16 min ¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (dd, *J* = 8.4, 1.6 Hz, 2H), 7.87 (s, 1H), 7.51 - 7.46 (m, 2H), 7.20 (dd, *J* = 14.5, 8.5 Hz, 4H), 7.10 - 7.02 (m,

2H), 6.86 – 6.74 (m, 2H), 3.74 (s, 3H), 2.38 (s, 3H), 2.28 (s, 3H).

 $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 189.7 (d, J = 25.4 Hz), 161.7 (d, J = 26.5 Hz), 161.5, 145.5, 138.3, 135.0,

133.8, 130.8 (d, *J* = 2.8 Hz), 130.4(d, *J* = 4.3 Hz), 129.5, 129.5, 129.3, 120.2, 117.4, 114.9, 107.2 (d, *J* = 245.6 Hz),

55.4, 21.8, 20.9.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –129.48. (s, 1F).

HRMS (ESI) Calculated for $C_{24}H_{22}FNO_3S$ ([M]+Na⁺) = 446.1197, Found 446.1194

IR (neat) 3335, 2922, 1681, 1595, 1520, 1493, 1459, 1291, 1247, 1181, 1027, 830, 639, 506 cm⁻¹.

	Retention Time	Area	% Area
1	3.614	9925817	94.64
2	4.158	562384	5.36

(S)-2-fluoro-3-(4-methoxyphenyl)-2-((4-methoxyphenyl)thio)-3-oxo-N-(p-tolyl)propanamide (4d):

colerless oil, 99% yield, 87% ee; $[\alpha]^{22}_{D}$ = -36.7 (*c* 1.27, CH₂Cl₂). **SFC** Chiralcel IC-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 9.78 min, t₂ = 12.07 min ¹**H NMR** (600 MHz, CDCl₃) δ 8.12 (dd, *J* = 9.0, 1.5 Hz, 2H), 7.92 (d, *J* = 3.0 Hz, 1H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H),

7.07 (d, *J* = 8.3 Hz, 2H), 6.89 (d, *J* = 9.0 Hz, 2H), 6.80 (d, *J* = 8.7 Hz, 2H), 3.84 (s, 3H), 3.75 (s, 3H), 2.28 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 188.4 (d, *J* = 25.0 Hz), 164.5, 161.8 (d, *J* = 26.7 Hz), 161.5, 138.3, 135.0, 133.8, 133.0 (d, *J* = 4.4 Hz), 129.5, 126.0 (d, *J* = 2.2 Hz), 120.2, 117.5, 114.8, 113.9, 107.3 (d, *J* = 245.3 Hz), 55.6, 55.4, 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –129.30. (s, 1F).

HRMS (ESI) Calculated for $C_{24}H_{22}FNO_4S$ ([M]+Na⁺) = 463.1146, Found 462.1142

IR (neat) 3335, 2936, 1690, 1595, 1516, 1494, 1460, 1291, 1250, 1175, 1027, 831, 602, 510 cm⁻¹.

	Retention Time	Area	% Area
1	9.903	7119246	50.02
2	12.067	7114613	49.98

	Retention Time	Area	% Area
1	9.779	34762130	93.37
2	12.069	2467659	6.63

(S)-2-fluoro-3-(4-fluorophenyl)-2-((4-methoxyphenyl)thio)-3-oxo-N-(p-tolyl)propanamide (4e):

colerless oil, 89% yield, 89% ee; $[\alpha]^{22}_{D} = -68.8$ (*c* 1.39, CH₂Cl₂). **SFC** Chiralcel IA-3, CO₂/MeOH = 85/15, 1.5 mL/min, $\lambda = 280$ nm, t₁ = 5.08 min, t₂ = 5.57 min ¹**H** NMR (600 MHz, CDCl₃) δ 8.16 (ddt, *J* = 6.7, 5.4, 1.3 Hz, 2H), 7.88 (d, *J* = 3.2 Hz, 1H), 7.47 (d, *J* = 8.8 Hz, 2H), 7.19 (d, *J* = 8.5 Hz, 2H),

 $7.12 - 7.05 \ (m, 4H), 6.83 - 6.77 \ (m, 2H), 3.75 \ (s, 3H), 2.29 \ (s, 3H).$

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 188.6 (d, *J* = 25.2 Hz), 166.3 (d, *J* = 258.0 Hz), 161.6, 161.4 (d, *J* = 26.3 Hz), 138.3, 135.2, 133.6, 133.4 (dd, *J* = 9.8, 4.3 Hz), 129.6, 120.2, 117.1, 115.8 (d, *J* = 22.0 Hz), 114.9, 107.1 (d, *J* =

245.3 Hz), 55.4, 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –102.26. (s, 1F), –129.43. (s, 1F).

HRMS (ESI) Calculated for $C_{23}H_{19}F_2NO_3S$ ([M]+Na+) = 450.0946, Found 450.0943

IR (neat) 3328, 2940, 1682, 1593, 1520, 1494, 1461, 1292, 1242, 1161, 1028, 829, 643, 508 cm⁻¹.

	Retention Time	Area	% Area
1	5.082	11324535	94.55
2	5.574	652287	5.45

(S)-3-(4-chlorophenyl)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-N-(p-tolyl)propanamide (4f):

colerless oil, 93% yield, 87% ee; $[\alpha]^{23}_{D}$ = -29.7 (*c* 1.37, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 12.00 min, t₂ = 14.01 min ¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (dd, *J* = 8.7, 1.3 Hz, 2H), 7.87 (s, 1H),

7.48 – 7.44 (m, 2H), 7.43 – 7.37 (m, 2H), 7.19 (d, *J* = 8.5 Hz, 2H), 7.08 (d, *J*

= 8.3 Hz, 2H), 6.82 – 6.79 (m, 2H), 3.75 (s, 3H), 2.29 (s, 3H).

 $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 189.1 (d, J = 25.8 Hz), 161.6, 161.3 (d, J = 26.2 Hz), 140.9, 138.3, 135.2,

133.6, 131.8 (d, *J* = 4.2 Hz), 131.6 (d, *J* = 2.4 Hz), 129.6, 129.5, 128.9, 120.4, 120.2, 117.0, 114.9, 114.8, 107.1 (d,

J = 244.9 Hz), 55.4, 20.9.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –129.55. (s, 1F).

HRMS (ESI) Calculated for $C_{23}H_{19}^{35}$ ClFNO₃S ([M]+Na⁺) = 466.0650, Found 466.0652.

HRMS (ESI) Calculated for $C_{23}H_{19}^{37}$ ClFNO₃S ([M]+Na⁺) = 468.0621, Found 468.0620.

IR (neat) 3326, 2940, 1680, 1589, 1520, 1492, 1460, 1291, 1247, 1178, 1029, 830, 643, 507 cm⁻¹.

	Retention Time	Area	% Area
1	12.004	320077	6.40
2	14.010	4683343	93.60

(S)-3-(4-bromophenyl)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-N-(p-tolyl)propanamide (4g):

colerless oil, 90% yield, 89% ee; $[\alpha]^{21}_{D}$ = -38.0 (*c* 1.54, CH₂Cl₂). **SFC** Chiralcel IB-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 3.90 min, t₂ = 4.17 min ¹**H** NMR (400 MHz, CDCl₃) δ 7.96 (dd, *J* = 8.7, 1.3 Hz, 2H), 7.88 (s, 1H), 7.56 (d, *J* = 8.7 Hz, 2H), 7.46 (d, *J* = 8.7 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 3.75 (s,

3H), 2.29 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 189.3 (d, J = 26.1 Hz), 161.6, 161.3 (d, J = 26.5 Hz), 138.3, 135.2, 133.6,

132.1 (d, *J* = 2.4 Hz), 131.9, 131.8 (d, *J* = 4.1 Hz), 129.8, 129.6, 120.2, 117.0, 114.9, 107.1 (d, *J* = 245.5 Hz), 55.4, 20.9.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –129.50. (s, 1F).

HRMS (ESI) Calculated for $C_{23}H_{19}^{79}BrFNO_3S$ ([M]+Na⁺) = 510.0145, Found 510.0146.

HRMS (ESI) Calculated for $C_{23}H_{19}^{81}BrFNO_3S$ ([M]+Na⁺) = 510.0125, Found 510.0125.

IR (neat) 3324, 2923, 1682, 1586, 1521, 1493, 1460, 1291, 1248, 1176, 1029, 829, 641, 507 cm⁻¹.

	Retention Time	Area	% Area
1	3.904	5531706	94.39
2	4.166	328755	5.61

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-N-(p-tolyl)acetamide (4h):

white solid, m.p. 118–123 °C, 41% yield, 26% ee; $[\alpha]^{22}_{D} = -57.6$ (*c* 0.50, CH₂Cl₂).

SFC Chiralcel AD-3, $CO_2/MeOH = 80/20$, 1.5 mL/min, $\lambda = 280$ nm,

 $t_1 = 4.39 \text{ min}, t_2 = 6.36 \text{ min}$

¹**H NMR** (600 MHz, CDCl₃) δ 7.52 (d, J = 8.8 Hz, 2H), 7.50 – 7.45 (m, 1H), 7.18 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.5 Hz, 2H), 7.

8.2 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.13 (s, 1H), 6.05 (s, 1H), 3.76 (s, 3H), 2.30 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 163.0 (d, *J* = 23.0 Hz), 161.1, 137.2, 135.0, 133.6, 129.5, 120.4, 119.1, 114.8,

97.9 (d, J = 236.8 Hz), 55.4, 20.9.

 $^{19}F{^1H} NMR (565 \text{ MHz}, \text{CDCl}_3) \delta -155.50. (s, 1F).$

HRMS (ESI) Calculated for $C_{16}H_{16}FNO_2S$ ([M]+Na+) = 328.0780, Found 328.0775

IR (neat) 3392, 2924, 1677, 1594, 1529, 1494, 1460, 1289, 1248, 1177, 1028, 821, 640, 510 cm⁻¹.

(S)-3-(benzo[d][1,3]dioxol-5-yl)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-N-(p-tolyl)propanamide (4i):

colerless oil, 99% yield, 88% ee; $[\alpha]^{21}_{D}$ = -38.0 (*c* 1.54, CH₂Cl₂). **SFC** Chiralcel IA-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 7.41 min, t₂ = 8.05 min ¹**H** NMR (600 MHz, CDCl₃) δ 7.87 (s, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.55 (t, *J* = 1.4 Hz, 1H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.19 – 7.16 (m, 2H),

7.07 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 8.6 Hz, 3H), 6.02 (s, 2H), 3.75 (s, 3H), 2.29 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 187.9 (d, *J* = 25.0 Hz), 161.8 (d, *J* = 27.1 Hz), 161.5, 152.9, 148.0, 138.3, 135.0, 133.8, 129.5, 127.6, 127.55 (d, *J* = 3.0 Hz)., 120.2, 117.4, 114.9, 110.0 (d, *J* = 3.4 Hz), 108.1, 107.3 (d, *J* =

245.2 Hz), 102.1, 55.4, 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –128.80. (s, 1F).

HRMS (ESI) Calculated for $C_{24}H_{20}FNO_5S$ ([M]+Na⁺) = 476.0938, Found 476.0936

IR (neat) 3337, 2910, 1687, 1593, 1520, 1491, 1442, 1284, 1249, 1177, 1032, 813, 625, 508 cm⁻¹.

	Retention Time	Area	% Area
1	7.415	925243	6.12
2	8.050	14203808	93.88

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-3-(naphthalen-2-yl)-3-oxo-N-(p-tolyl)propanamide (4j):

white solid, m.p. 52–57 °C, 95% yield, 40% ee; $[\alpha]^{22}_{D} = -2.3$ (*c* 0.78, CH₂Cl₂).

SFC Chiralcel AD-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm,

 $t_1 = 4.35 \text{ min}, t_2 = 6.09 \text{ min}$

¹**H NMR** (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.04 (d, *J* = 8.8 Hz, 1H),

7.97 – 7.89 (m, 2H), 7.84 (dd, *J* = 8.5, 3.8 Hz, 2H), 7.61 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.55 – 7.49 (m, 3H), 7.24 – 7.18 (m, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 3.75 (s, 3H), 2.29 (s, 3H).

 $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 190.3 (d, J = 25.9 Hz), 161.6 (d, J = 27.9 Hz), 161.5, 138.3, 137.2, 135.9,

135.1, 133.7, 133.1 (d, *J* = 6.2 Hz), 132.2, 130.6 (d, *J* = 2.7 Hz), 130.2, 129.6, 129.5, 129.3, 128.4, 127.7, 126.9,

125.1, 125.0, 120.3, 120.2, 117.3, 114.9, 114.8, 107.3 (d, *J* = 245.5 Hz), 55.4, 20.9.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –129.43. (s, 1F).

HRMS (ESI) Calculated for C₂₇H₂₂FNO₃S ([M]+Na⁺) = 482.1197, Found 482.1197

IR (neat) 3332, 2923, 1691, 1593, 1522, 1494, 1407, 1285, 1250, 1178, 1029, 815, 761, 508 cm⁻¹.

	Retention Time	Area	% Area
1	4.350	260066	29.63
2	6.092	617501	70.37

(S)-2-fluoro-3-(furan-2-yl)-2-((4-methoxyphenyl)thio)-3-oxo-N-(p-tolyl)propanamide (4k):

white solid, m.p. 137–140 °C, 99% yield, 87% ee; $[\alpha]^{23}_{D} = -18.8$ (*c* 1.23, CH₂Cl₂).

SFC Chiralcel IA-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 4.25 min, t₂ = 4.64 min

¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 7.59 (d, *J* = 1.6 Hz, 1H), 7.54 (t,

J = 3.5 Hz, 1H), 7.41 (d, *J* = 8.7 Hz, 2H), 7.20 – 7.13 (m, 3H), 7.01 (d, *J* = 8.2 Hz, 2H), 6.72 (d, *J* = 8.8 Hz, 2H), 6.46 (dd, *J* = 3.8, 1.6 Hz, 1H), 3.67 (s, 3H), 2.22 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 178.3 (d, *J* = 28.2 Hz), 160.7 (d, *J* = 26.3 Hz), 160.6, 149.0, 148.7 (d, *J* = 3.2 Hz), 138.3, 135.0, 133.8, 129.5, 129.4, 124.7 (d, *J* = 10.5 Hz), 120.2, 116.9, 114.9, 113.0, 105.7 (d, *J* = 244.2 Hz), 55.4, 20.9.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –136.30. (s, 1F).

HRMS (ESI) Calculated for C₂₁H₁₈FNO₄S ([M]+Na⁺) = 422.0833, Found 422.0827

IR (neat) 3334, 2923, 1690, 1592, 1520, 1493, 1457, 1289, 1249, 1175, 1027, 813, 643, 509 cm⁻¹.

	Retention Time	Area	% Area
1	4.252	304022	6.43
2	4.644	4421562	93.57

(S)-3-cyclohexyl-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-N-(p-tolyl)propanamide (4l):

colerless oil, 95% yield, 86% ee; $[\alpha]^{22}_{D}$ = -45.9 (*c* 1.27, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 4.79 min, t₂ = 5.97 min ¹**H** NMR (600 MHz, CDCl₃) δ 8.10 (s, 1H), 7.49 (d, *J* = 8.7 Hz, 2H), 7.26 (d,

J = 8.4 Hz, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 3.77 (s,

3H), 2.30 (s, 3H), 1.86 – 1.82 (m, 1H), 1.74 (s, 2H), 1.64 (d, *J* = 13.1 Hz, 2H), 1.32 – 1.13 (m, 6H).

 $^{13}C{^{1}H}$ NMR (151 MHz, CDCl₃) δ 205.2 (d, J = 27.2 Hz), 161.5, 160.6 (d, J = 26.3 Hz), 138.2, 134.9, 133.9,

129.6, 120.1, 117.2, 114.9, 105.9 (d, *J* = 245.1 Hz), 55.4, 46.8, 28.5, 28.2, 25.6, 25.5, 25.3, 20.9.

 $^{19}F{^1H} NMR (565 \text{ MHz}, \text{CDCl}_3) \delta -142.09. (s, 1F).$

HRMS (ESI) Calculated for $C_{23}H_{26}FNO_3S$ ([M]+Na+) = 438.1510, Found 438.1507

IR (neat) 3343, 2930, 1689, 1593, 1522, 1494, 1448, 1292, 1249, 1177, 1028, 830, 643, 509 cm⁻¹.

	Retention Time	Area	% Area
1	4.789	234778	6.78
2	2 5.974	3229118	93.22
4	5.774	5227110	15.22

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-N-phenylbutanamide (4m):

colorless oi; 75% yield, 87% ee; $[\alpha]^{22}_{D}$ = -64.5 (*c* 0.81, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 2.97 min, t₂ =

3.85 min

¹H NMR (600 MHz, CDCl₃) δ 8.12 (s, 1H), 7.51 (d, J = 8.7 Hz, 2H), 7.40 (d, J = 7.3

Hz, 2H), 7.33 (d, *J* = 7.4 Hz, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 6.86 (d, *J* = 8.9 Hz, 2H),

3.78 (s, 3H), 2.36 (d, *J* = 3.3 Hz, 3H).

 $^{13}C{^{1}H}$ NMR (151 MHz, CDCl₃) δ 198.9 (d, J = 28.3 Hz), 161.6, 160.6 (d, J = 25.1 Hz), 138.0, 136.3, 129.1,

125.4, 120.2, 116.8, 115.0, 105.9 (d, *J* = 244.3 Hz), 55.4, 26.8.

 $^{19}F{^{1}H} NMR (565 \text{ MHz}, CDCl_3) \delta -139.00. (s, 1F).$

HRMS (ESI) Calculated for $C_{17}H_{16}FNO_3S$ ([M]+Na⁺) = 356.0727, Found 356.0724

IR (neat) 3339, 2939, 1690, 1594, 1532, 1494, 1443, 1292, 1249, 1178, 1028, 831, 692, 502 cm⁻¹.

	Retention Time	Area	% Area
1	2.972	445048	49.94
2	3.869	446131	50.06

	Retention Time	Area	% Area
1	2.973	655176	6.68
2	3.848	9158453	93.32

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-4-methyl-3-oxo-N-phenylpentanamide (4n):

colorless oil;, 97% yield, 89% ee; $[\alpha]^{21}_{D}$ = -43.7 (c 0.65, CH₂Cl₂). SFC Chiralcel AD-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 2.33 min, t₂ = 2.74 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.50 (d, J = 8.8 Hz, 2H), 7.40 (d, J =

7.7 Hz, 2H), 7.34 – 7.28 (m, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.87 – 6.81 (m, 2H),

3.78 (s, 3H), 3.16 (pd, *J* = 6.8, 2.6 Hz, 1H), 1.09 (d, *J* = 6.9 Hz, 3H), 0.99 (d, *J* = 6.7 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 206.6 (d, J = 27.6 Hz), 161.6, 160.6 (d, J = 26.6 Hz), 138.2, 136.4, 129.1,

125.2, 120.0, 117.1, 114.9, 105.8 (d, *J* = 244.9 Hz), 55.4, 37.2, 18.3, 18.3, 18.0.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –142.55. (s, 1F).

HRMS (ESI) Calculated for $C_{20}H_{22}FNO_3S$ ([M]+Na+) = 398.1197, Found 398.1195

IR (neat) 3345, 2975, 2937, 1719, 1691, 1595, 1532, 1495, 1443, 1292, 1250, 1177, 1028, 832, 692, 502 cm⁻¹.

	Retention Time	Area	% Area
1	2.330	216694	5.65
2	2.735	3618224	94.35

(R)-2-chloro-2-((4-methoxyphenyl)thio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (40):

white solid, m.p. 47–52 °C, 94% yield, 93% ee; $[\alpha]^{21}_{D} = -97.0$ (*c* 1.48, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 280$ nm, t₁ =

7.48 min, $t_2 = 10.81$ min

¹**H NMR** (600 MHz, CDCl₃) δ 8.03 (d, *J* = 7.6 Hz, 2H), 7.72 (s, 1H), 7.54 (t,

J = 7.4 Hz, 1H), 7.50 (d, J = 8.8 Hz, 2H), 7.42 – 7.39 (m, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.42 – 7.39 (m, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.42 – 7.39 (m, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.42 – 7.39 (m, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.42 – 7.39 (m, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.42 – 7.39 (m, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.42 – 7.39 (m, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.42 – 7.39 (m, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.11 (d,

6.82 (d, *J* = 8.7 Hz, 2H), 3.76 (s, 3H), 2.30 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 187.6, 162.6, 161.8, 139.1, 135.3, 133.9, 133.7, 132.5, 130.0, 129.6, 128.6,

120.1, 118.3, 114.8, 83.9, 55.4, 21.0.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –136.30. (s, 1F).

HRMS (ESI) Calculated for $C_{23}H_{20}^{34.9689}$ ClNO₃S ([M]+H⁺) = 426.0925, Found 429.0932.

HRMS (ESI) Calculated for $C_{23}H_{20}^{36.9659}$ ClNO₃S ([M]+H⁺) = 428.0896, Found 428.0881.

IR (neat) 3336, 2939, 1676, 1592, 1517, 1493, 1447, 1292, 1247, 1177, 1024, 809, 656, 506 cm⁻¹.

	Retention Time	Area	% Area
1	7.478	22598468	96.54
2	10.805	810249	3.46

(S)-N-(tert-butyl)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-3-phenylpropanamide (4p):

white solid, m.p. 101–105 °C, 83% yield, 82% ee; $[\alpha]^{21}_{D}$ = -58.7 (*c* 1.26, CH₂Cl₂). **SFC** Chiralcel IC-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 3.13 min, t₂ = 3.93 min ¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (dt, *J* = 8.6, 1.3 Hz, 2H), 7.60 – 7.55 (m, 1H),

7.51 – 7.47 (m, 2H), 7.43 (t, *J* = 7.8 Hz, 2H), 6.89 – 6.85 (m, 2H), 5.91 (s, 1H),

3.81 (s, 3H), 1.18 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 190.0 (d, *J* = 26.0 Hz), 162.6 (d, *J* = 25.1 Hz), 162.7, 162.5, 161.3, 138.3, 133.9, 133.5 (d, *J* = 2.7 Hz), 130.1 (d, *J* = 3.6 Hz), 128.4, 118.0, 114.7, 107.1 (d, *J* = 244.9 Hz), 55.4, 52.1, 28.3. ¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –126.26. (s, 1F).

HRMS (ESI) Calculated for $C_{20}H_{22}FNO_3S$ ([M]+Na⁺) = 398.1197, Found 398.1194

IR (neat) 3371, 2970, 1683, 1592, 1518, 1494, 1454, 1287, 1249, 1179, 1028, 826, 641, 529 cm⁻¹.

(S)-N-((3R,5R,7R)-adamantan-1-yl)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-3-phenylpropanamide (4q):

white solid, m.p. 52–58 °C, 76% yield, 83% ee; $[\alpha]^{21}_D$ = -48.4 (*c* 1.87, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 4.54 min, t₂ = 6.12 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (dt, J = 8.5, 1.3 Hz, 2H), 7.56 (d, J = 7.5 Hz, 1H),

3.3 Hz, 1H), 3.81 (s, 3H), 2.01 (s, 3H), 1.83 – 1.76 (m, 6H), 1.61 (dt, *J* = 6.4, 3.0 Hz, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 190.0 (d, *J* = 25.5 Hz), 162.3 (d, *J* = 25.2 Hz), 161.3, 138.3, 133.9, 133.4 (d, *J* = 2.2 Hz), 130.1 (d, *J* = 3.6 Hz), 128.4, 118.0, 114.7, 114.6, 107.0 (d, *J* = 244.8 Hz), 55.5, 52.8, 41.0, 36.1, 29.3. ¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ –125.89. (s, 1F).

HRMS (ESI) Calculated for $C_{26}H_{28}FNO_3S$ ([M]+Na⁺) = 476.1666, Found 476.1664

IR (neat) 3417, 2906, 1682, 1592, 1517, 1450, 1360, 1248, 1178, 1028, 828, 693, 528 cm⁻¹.

	Retention Time	Area	% Area
1	4.544	12463524	50.00
2	6.079	12465489	50.00

	Retention Time	Area	% Area
1	4.544	8746430	91.39
2	6.117	824329	8.61

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-N,3-diphenylpropanamide (4r):

white solid, m.p. 126–128 °C, 96% yield, 90% ee; $[\alpha]^{22}_{D} = -75.4$ (*c* 1.21, CH₂Cl₂).

SFC Chiralcel IC-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 4.78 min, t₂ = 5.22 min

¹**H NMR** (600 MHz, CDCl₃) δ 8.07 (d, *J* = 8.5 Hz, 2H), 7.92 (s, 1H), 7.57 (t, *J*

= 7.3 Hz, 1H), 7.49 (d, *J* = 8.7 Hz, 2H), 7.42 (dd, *J* = 8.4, 7.4 Hz, 2H), 7.32 – 7.30 (m, 2H), 7.29 – 7.26 (m, 2H), 7.12 (t, *J* = 7.2 Hz, 1H), 6.80 (d, *J* = 8.8 Hz, 2H), 3.74 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.3 (d, *J* = 26.1 Hz), 161.7 (d, *J* = 26.5 Hz), 161.6, 138.3, 136.3, 134.3,

133.4 (d, *J* = 3.1 Hz), 130.2 (d, *J* = 4.3 Hz), 129.1, 128.6, 125.3, 120.3, 120.1, 117.2, 114.9, 107.2 (d, *J* = 245.3

Hz), 55.4.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –129.78. (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{18}FNO_3S$ ([M]+Na⁺) = 418.0884, Found 418.0880

IR (neat) 3336, 3063, 1697, 1595, 1532, 1495, 1445, 1292, 1250, 1178, 1028, 833, 637, 502 cm⁻¹.

	Retention Time	Area	% Area
1	4.776	4297211	94.95
2	5.215	228551	5.05

(S)-2-fluoro-N-(4-fluorophenyl)-2-((4-methoxyphenyl)thio)-3-oxo-3-phenylpropanamide (4s):

SFC Chiralcel IC-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 3.52 min, t₂ = 3.84 min **¹H NMR** (600 MHz, CDCl₃) δ 8.07 (d, *J* = 8.5 Hz, 2H), 7.99 (s, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.43 (dd, *J* = 8.4, 7.4 Hz, 2H),

colorless oil, 89% yield, 90% ee; $[\alpha]^{21}_{D} = -71.1$ (*c* 1.24, CH₂Cl₂).

7.27 (dd, *J* = 9.1, 4.7 Hz, 2H), 6.99 – 6.94 (m, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 3.75 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.3 (d, J = 26.1 Hz), 161.8 (d, J = 26.5 Hz), 161.6, 159.9 (d, J = 245.1 Hz),
138.3, 134.3, 133.3 (d, J = 2.2 Hz), 132.3 (d, J = 3.1 Hz), 130.2 (d, J = 4.3 Hz), 128.6, 122.0 (d, J = 7.7 Hz), 117.2,
115.8 115.7, 114.9, 107.1 (d, J = 245.3 Hz), 55.4.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –116.38 (s, 1F), 129.99 (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{17}F_2NO_3S$ ([M]+Na⁺) = 436.0789, Found 436.0788

IR (neat) 3325, 3070, 1696, 1592, 1511, 1447, 1291, 1250, 1178, 1029, 831, 627, 516 cm⁻¹.

	Retention Time	Area	% Area
1	3.522	3606910	94.95
2	3.839	191762	5.05

(S)-N-ethyl-2-fluoro-3-oxo-3-phenyl-2-(phenylthio)propanamide (4t):

white solid, m.p. 92–94 °C, 75% yield, 73% ee; $[\alpha]^{30}_{D}$ = -49.2 (*c* 0.24, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 90/10, 1.5 mL/min, λ = 280 nm, t₁ = 4.29 min, t₂ = 4.64 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 – 7.98 (m, 2H), 7.57 (d, J = 7.4 Hz, 3H), 7.42 (q, J

= 7.7 Hz, 3H), 7.33 (t, *J* = 7.4 Hz, 2H), 6.17 (d, *J* = 6.1 Hz, 1H), 3.15 (m, *J* = 17.3, 7.0 Hz, 2H), 0.94 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 189.8 (d, J = 25.9 Hz), 163.4 (d, J = 26.2 Hz), 136.4, 134.1, 133.4 (d, J = 2.2 Hz), 130.2 (d, J = 2.0 Hz), 130.1, 129.2, 128.4, 127.5, 107.5 (d, J = 245.0 Hz), 34.9, 14.3. ¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -128.23. (s, 1F).

HRMS (ESI) Calculated for $C_{17}H_{16}FNO_2S$ ([M]+Na⁺) = 340.0778, Found 340.0775

IR (neat) 3325, 2932, 2855, 1699, 1666, 1526, 1187, 993, 840, 747, 632 cm⁻¹.

	Retention Time	Area	% Area
1	4.299	3692183	86.36
2	4.652	583088	13.64

(S)-2-fluoro-N-isopropyl-3-oxo-3-phenyl-2-(phenylthio)propanamide (4u):

white solid, m.p. 127–129 °C, 74% yield, 70% ee; $[\alpha]^{31}_{D}$ = -118.7 (*c* 0.24, CH₂Cl₂). **HPLC:** Chiralcel ADH, hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 280 nm, t₁ = 6.16 min, t₂ = 7.10 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (m, *J* = 8.5, 1.4 Hz, 2H), 7.63 – 7.55 (m, 3H), 7.48

- 7.38 (m, 3H), 7.34 (dd, *J* = 8.3, 6.6 Hz, 2H), 6.07 - 5.82 (m, 1H), 4.02 - 3.77 (m, 1H), 1.05 (d, *J* = 6.6 Hz, 3H), 0.85 (d, *J* = 6.6 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ δ 189.5 (d, *J* = 25.5 Hz), 162.7 (d, *J* = 26.2 Hz), 136.4, 134.1, 133.3 (d, *J* = 2.2 Hz), 130.1, 130.1, 129.2, 128.4, 127.6, 107.5 (d, *J* = 244.8 Hz), 42.1, 22.3, 22.0.

 ${}^{19}\mathrm{F}\{{}^{1}\mathrm{H}\}$ NMR (377 MHz, CDCl₃) $\delta\,$ -127.40. (s, 1F).

HRMS (ESI) Calculated for C₁₈H₁₈FNO₂S ([M]+Na⁺) = 354.0934, Found 354.0931

IR (neat) 3319, 2974, 1697, 1663, 1540, 1451, 1252, 1155, 991, 806, 691 cm⁻¹.

	Retention Time	Area	% Area
1	6.157	139991	84.75
2	7.098	25187	15.25

(S)-N-cyclohexyl-2-fluoro-3-oxo-3-phenyl-2-(phenylthio)propanamide (4v):

white solid, m.p. 128–131 °C, 57% yield, 49% ee; $[\alpha]^{30}_{D}$ = -86.7 (*c* 0.23, CH₂Cl₂). **SFC** Chiralcel AD-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 6.16 min, t₂ = 7.10 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 – 7.96 (m, 2H), 7.57 (m, *J* = 7.0, 6.1, 1.3 Hz, 3H),

7.47 - 7.38 (m, 3H), 7.34 (m, J = 8.3, 6.5 Hz, 2H), 6.10 - 5.91 (m, 1H), 3.58 (m, J = 11.1, 8.2, 4.0 Hz, 1H), 1.80 - 1.73 (m, 1H), 1.67 - 1.53 (m, 3H), 1.46 (m, J = 10.4, 3.8, 1.9 Hz, 1H), 1.25 (m, J = 11.7, 9.9, 3.3 Hz, 2H), 1.08 (m, J = 22.5, 15.3, 10.5, 3.7 Hz, 2H), 0.82 (qd, J = 11.6, 3.5 Hz, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 189.6 (d, *J* = 25.3 Hz), 162.0 (d, *J* = 26.2 Hz), 136.4, 134.1, 133.3 (d, *J* = 2.2 Hz), 130.2, 130.1 (d, *J* = 2.4 Hz), 129.2, 128.4, 127.6, 107.5 (d, *J* = 244.9 Hz), 48.7, 32.6, 32.2, 25.3, 24.6.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -127.37. (s, 1F).

HRMS (ESI) Calculated for $C_{21}H_{22}FNO_2S$ ([M]+Na⁺) = 394.1247, Found 394.1245

IR (neat) 3325, 2931, 2855, 1698, 1665, 1597, 1448, 1187, 747, 632 cm⁻¹.

	Retention Time	Area	% Area
1	2.461	7163659	74.32
2	2.779	2475066	25.68

(*R*)-4-benzyl-2-phenyl-4-(phenylthio)oxazol-5(4H)-one (6a):

Hz, 2H), 7.28 – 7.23 (m, 3H), 7.22 – 7.12 (m, 5H), 3.52 (q, *J* = 13.5 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 175.5, 160.8, 137.1, 133.7, 132.9, 130.3, 129.0, 128.6, 128.4, 128.0, 127.8,

127.6, 125.0, 80.1, 41.5.

HRMS (ESI) Calculated for $C_{22}H_{17}NO_2S$ ([M]+Na⁺) = 382.0872, Found 382.0867

IR (neat) 3061, 2925, 1817, 1643, 1579, 1494, 1451, 1321, 1239, 1176, 1026, 748, 695, 508 cm⁻¹.

	Retention Time	Area	% Area
1	3.701	17427438	88.94
2	4.251	2166603	11.06

(*R*)-4-benzyl-4-(phenylthio)-2-(p-tolyl)oxazol-5(4H)-one (6b):

 ${}^{13}C{}^{1}H} NMR (151 \text{ MHz}, \text{CDCl}_3) \\ \delta 175.6, 160.9, 143.7, 137.1, 133.7, 130.3, 130.3, 129.4, 129.0, 128.4, 128.1, 139.7, 139.3, 139.3, 139.4, 129.0, 128.4, 128.1, 139.4,$

127.8, 127.5, 127.2, 122.2, 80.1, 41.6, 21.7.

HRMS (ESI) Calculated for $C_{23}H_{19}NO_2S$ ([M]+Na⁺) = 396.1029, Found 396.1025

IR (neat) 3033, 2924, 1817, 1641, 1573, 1511, 1437, 1316, 1296, 1237, 1180, 1062, 828, 697, 488 cm⁻¹.

	Retention Time	Area	% Area
1	1.759	3125717	87.33
2	1.931	453532	12.67

(*R*)-4-benzyl-2-(3,5-dimethoxyphenyl)-4-(phenylthio)oxazol-5(4H)-one (6c):

2H).

 $^{13}C\{^{1}H\} \ NMR \ (101 \ MHz, CDCl_{3}) \ \delta \ 175.4, \ 160.7, \ 160.7, \ 137.1, \ 133.6, \ 130.4, \ 130.3, \ 129.6, \ 129.1, \ 128.5, \ 128.4$

128.0, 127.6, 127.3, 126.6, 105.7, 105.4, 80.1, 55.6, 41.6.

HRMS (ESI) Calculated for $C_{24}H_{21}NO_4S$ ([M]+H⁺) = 420.1264, Found 420.1264

IR (neat) 2936, 2840, 1821, 1643, 1595, 1458, 1427, 1315, 1232, 1158, 1045, 847, 698, 615 cm⁻¹.

7.489

565687

12.71
(*R*)-4-(4-fluorobenzyl)-2-phenyl-4-(phenylthio)oxazol-5(4H)-one (6d):

¹**H NMR** (600 MHz, CDCl₃) δ 7.60 (d, J = 7.7 Hz, 2H), 7.43 (d, J = 7.3 Hz, 3H), 7.29 (t, J

= 7.7 Hz, 2H), 7.19 (d, *J* = 7.3 Hz, 1H), 7.15 – 7.09 (m, 4H), 6.82 (d, *J* = 8.6 Hz, 2H), 3.45 – 3.37 (m, 2H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 175.5, 162.2 (d, J = 246.1 Hz), 160.9, 137.1, 133.0, 131.9 (d, J = 7.7 Hz),

130.4, 129.4 (d, *J* = 3.6 Hz), 129.0, 128.7, 127.8, 127.8, 124.8, 115.3 (d, *J* = 20.9 Hz), 80.0, 40.7.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –114.69 (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{16}FNO_2S$ ([M]+H⁺) = 378.0959, Found 378.0954

IR (neat) 3063, 2927, 1818, 1643, 1579, 1509, 1447, 1321, 1293, 1225, 1159, 1066, 834, 694, 487 cm⁻¹.

	Retention Time	Area	% Area
1	1.462	2638376	87.06
2	1.749	392270	12.94

(*R*)-4-(4-bromobenzyl)-2-(4-fluorophenyl)-4-(phenylthio)oxazol-5(4H)-one (6e):

colorless oil, 82% yield, 82% ee; $[\alpha]^{22}_{D} = 19.3$ (*c* 0.67, CH₂Cl₂).

SFC Chiralcel AD-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 254 nm, t₁ = 2.03 min, t₂

= 2.60 min

¹**H NMR** (600 MHz, CDCl₃) δ 7.69 (dd, J = 8.8, 5.2 Hz, 2H), 7.49 (d, J = 6.9 Hz, 2H),

7.33 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 9.0 Hz, 1H), 7.18 (t, J = 7.7 Hz, 2H), 7.11 (d, J = 7.3

8.4 Hz, 2H), 7.06 (t, *J* = 8.6 Hz, 2H), 3.50 – 3.41 (m, 2H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 175.2, 165.6 (d, J = 255.9 Hz), 160.1, 137.2, 132.6, 132.0, 131.6, 130.5, 130.3

(d, *J* = 8.9 Hz), 129.0, 127.7, 121.9, 121.0 (d, *J* = 3.2 Hz), 116.1 (d, *J* = 21.9 Hz), 79.7, 40.8.

 $^{19}F\{^{1}H\}$ NMR (565 MHz, CDCl₃) δ –104.36 (s, 1F).

HRMS (ESI) Calculated for $C_{22}H_{15}^{78.9183}BrFNO_2S$ ([M]+H⁺) = 456.0064, Found 456.0066.

HRMS (ESI) Calculated for $C_{22}H_{15}^{80.9163}BrFNO_2S$ ([M]+H⁺) = 458.0043, Found 458.0040.

IR (neat) 2927, 1819, 1644, 1602, 1508, 1438, 1412, 1295, 1234, 1157, 1069, 847, 694, 505 cm⁻¹.

	Retention Time	Area	% Area
1	2.029	8490121	90.89
2	2.597	850977	9.11

(3*S*)-adamantan-1-yl (2*S*)-2-((*S*)-benzylsulfinothioyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (9):

colorless oil, 85% yield, 61% ee; $[\alpha]^{23}_{D}$ = -5.19 (*c* 0.42, CH₂Cl₂).

 D_2Ad SFC Chiralcel IB-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t_1 = 3.74 min, t_2 = 8n 4.27.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.6 Hz, 1H), 7.67 (t, *J* = 6.9 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.27 – 7.20 (m, 3H), 7.10 (dd, *J* = 7.6, 1.9 Hz, 2H), 3.92 – 3.83 (m, 2H), 3.75 (d, *J* = 12.0 Hz, 1H), 3.47 (d, *J* = 18.0 Hz, 1H), 2.19 – 2.08 (m, 10H), 1.63 (d, *J* = 3.0 Hz, 7H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.2, 167.0, 151.9, 136.5, 135.6, 134.9, 129.4, 128.5, 128.1, 127.5, 126.2,

125.0, 83.9, 65.1, 43.9, 41.1, 39.3, 36.0, 30.9.

HRMS (ESI) Calculated for $C_{27}H_{28}O_3S_2$ ([M]+Na⁺) = 487.1372, Found 487.1369

IR (neat) 2910, 1710, 1605, 1494, 1457, 1423, 1351, 1238, 1179, 1047, 761, 699, 470 cm⁻¹.

	Retention Time	Area	% Area
1	3.741	1752304	50.25
2	4.266	1734932	49.75

	Retention Time	Area	% Area
1	3.739	1603919	19.65
2	4.272	6557269	80.35

(2*S*,3*R*)-2-fluoro-3-hydroxy-2-((4-methoxyphenyl)thio)-3-phenyl-N-(p-tolyl)propanamide (10):

white solid, m.p. 147-149 °C, 98% yield, 99% ee/99% ee, 78:22 dr; $[\alpha]^{21}_{D} =$ -15.3 (*c* 0.69, CH₂Cl₂). **SFC** Chiralcel OX-3, CO₂/MeOH = 82/18, 1.5 mL/min, $\lambda = 280$ nm, t₁ = 10.34 min, t₂ = 11.55 min, t₃ = 13.30 min

¹**H NMR** (400 MHz, CDOD₃) δ 7.53 – 7.48 (m, 2H), 7.45 (d, J = 8.2 Hz,

2H), 7.42 – 7.37 (m, 1H), 7.33 – 7.23 (m, 3H), 7.01 (s, 1H), 6.92 (d, *J* = 8.1 Hz, 2H), 6.81 (d, *J* = 8.9 Hz, 2H), 6.66 (d, *J* = 8.4 Hz, 2H), 5.44 (d, *J* = 23.0 Hz, 1H), 3.69 (s, 3H), 2.20 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDOD₃) δ 165.3 (d, *J* = 25.3 Hz), 161.2, 138.5, 137.9, 134.8, 133.5, 128.5, 128.4, 127.7

(d, *J* = 25.3 Hz), 127.6, 122.0, 119.4, 114.1, 111.0 (d, *J* = 246.3 Hz), 76.00 (d, *J* = 19.7 Hz), 54.4, 19.5.

¹⁹F{¹H} NMR (377 MHz, CDOD₃) δ –150.32 (s, 1F).

HRMS (ESI) Calculated for $C_{23}H_{22}FNO_3S$ ([M]+Na⁺) = 434.1198, Found 434.1197

IR (neat) 3414, 2922, 1664, 1591, 1517, 1437, 1401, 1289, 1249, 1177, 1028, 829, 701, 507 cm⁻¹.

	Retention Time	Area	% Area
1	10.342	36728	0.51
2	11.548	5578626	77.41
3	13.295	1591171	22.08

(3*S*,4*S*)-3-fluoro-3-((4-methoxyphenyl)thio)-4-phenyl-1-(*p*-tolyl)azetidin-2-one (11):

white solid, m.p. 164-168 °C, 71% yield, 99% ee, >19:1 dr; $[\alpha]^{18}_{D} = 349.3$ (*c* 0.14, CH₂Cl₂).

SFC Chiralcel IA-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 254 nm, t₁ = 3.03 min, t₂ = 3.89 min.

¹**H NMR** (600 MHz, CDCl₃) δ 7.57 (d, J = 8.4 Hz, 2H), 7.30 (dd, J = 11.4, 7.1 Hz, 3H), 7.18 (d, J = 8.2 Hz, 2H), 7.07 (d, J = 8.2 Hz, 2H), 6.98 (d, J = 7.3 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 5.20 (s, 1H), 3.85 (s, 3H), 2.28 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 161.2, 159.3 (d, J = 29.5 Hz), 137.2, 134.8, 134.1 (d, J = 3.1 Hz), 131.6, 129.8, 129.2, 128.8, 127.5, 118.3, 117.7, 114.9, 105.0 (d, J = 276.8 Hz), 68.3 (d, J = 26.4 Hz), 55.5, 21.0.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –141.13 (s, 1F).

HRMS (ESI) Calculated for $C_{23}H_{20}FNO_2S$ ([M]+Na⁺) = 416.1091, Found 416.1089

IR (neat) 2923, 2855, 1759, 1590, 1515, 1493, 1458, 1385, 1290, 1249, 1163, 1129, 1104, 1029, 985, 825, 700,

511 cm⁻¹.

	Retention Time	Area	% Area
1	3.026	7721148	99.70
2	3.891	23105	0.30

(R)-2-benzamido-3-phenyl-2-(phenylthio)propanoic acid (12):

white solid, m.p. 148-152 °C, 98% yield, 78% ee; $[\alpha]^{21}_{D} = -199.5$ (*c* 0.85, CH₃COCH₃).

HPLC: Chiralcel ADH, hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$

nm, $t_1 = 12.70$ min, $t_2 = 18.38$ min.

¹**H NMR** (400 MHz, CD₃COCD₃) δ 7.60 – 7.35 (m, 8H), 7.33 – 7.25 (m, 4H), 7.25 – 7.14 (m, 4H), 4.43 (d, *J* =

13.3 Hz, 1H), 3.59 (d, *J* = 13.3 Hz, 1H).

¹³C{¹H} NMR (101 MHz, CD₃COCD₃) δ 171.0, 165.4, 136.9, 135.9, 135.3, 131.6, 130.6, 130.0, 129.9, 129.0,

128.6, 128.2, 127.1, 126.6, 71.3, 38.7.

HRMS (ESI) Calculated for $C_{22}H_{19}NO_3S$ ([M]+Na⁺) = 400.0978, Found 400.0974

IR (neat) 3357, 3059, 1629, 1579, 1508, 1437, 1382, 1213, 1111, 1027, 695, 501 cm⁻¹.

	Retention Time	Area	% Area
1	11.934	1170902	49.20
2	17.857	1208875	50.80

	Retention	Area	% Area
	Time		
1	12.695	9659297	89.10
2	18.377	1181226	10.90

methyl (R)-2-benzamido-3-phenyl-2-(phenylthio)propanoate (13):

colorless oil, 83% yield, 75% ee; $[\alpha]^{21}_{D}$ = -183.0 (*c* 0.73, CH₂Cl₂). **SFC** Chiralcel OX-3, CO₂/MeOH = 80/20, 1.5 mL/min, λ = 280 nm, t₁ = 2.54 min, t₂ = 2.89 min

¹**H NMR** (600 MHz, CDCl₃) δ 7.55 (s, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.43 – 7.32 (m, 5H), 7.28 – 7.23 (m, 2H),

7.22 – 7.12 (m, 5H), 7.06 (s, 1H), 4.49 (d, *J* = 13.6 Hz, 1H), 3.83 (s, 3H), 3.58 (d, *J* = 13.7 Hz, 1H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 170.8, 166.3, 137.0, 135.5, 135.0, 131.8, 130.0, 129.9, 129.0, 128.7, 128.4,

127.3, 126.8, 72.0, 53.2, 39.0.

HRMS (ESI) Calculated for $C_{23}H_{21}NO_3S$ ([M]+Na⁺) = 414.1134, Found 414.1130

IR (neat) 3340, 2951, 1728, 1674, 1601, 1507, 1481, 1440, 1308, 1255, 1081, 1040, 824, 700, 499 cm⁻¹.

	Retention Time	Area	% Area
1	2.540	1942149	87.48
2	2.885	278070	12.52

ethyl 2-fluoro-3-oxo-3-phenyl-2-(phenylthio)propanoate (15a):

colorless oil, 69% yield, 11% ee; $[\alpha]^{27}_{D}$ = 19.5 (c 0.21, CH₂Cl₂). SFC Chiralcel OJ-3, CO₂/MeOH = 90/10, 1.5 mL/min, λ = 254 nm, t₁ = 4.20 min, t₂ = 6.35 min.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.04 – 7.97 (m, 2H), 7.61 – 7.55 (m, 3H),

7.47 – 7.41 (m, 3H), 7.36 (t, *J* = 7.6 Hz, 2H), 4.14 – 4.05 (m, 2H), 1.07 (t, *J* = 7.1 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 187.3 (d, *J* = 25.7 Hz), 164.5 (d, *J* = 30.5 Hz), 136.3, 134.4, 132.8 (d, *J* = 2.9 Hz), 130.2, 129.9 (d, *J* = 4.1 Hz), 129.2, 128.7, 127.2, 105.9 (d, *J* = 242.1 Hz), 63.2, 13.8.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ –127.16. (s, 1F).

HRMS (ESI) Calculated for $C_{17}H_{15}FO_3S$ ([M]+Na⁺) = 341.0618, Found 341.0613.

IR (neat) 2984, 2361, 1756, 1700, 1597, 1474, 1446, 1264, 1229, 1046, 843, 691 639 cm⁻¹.

tert-butyl 2-fluoro-3-oxo-3-phenyl-2-(phenylthio)propanoate (15b):

colorless oil, 61% yield, 19% ee; $[\alpha]^{29}_D = -18.5$ (c 0.21, CH₂Cl₂). **SFC** Chiralcel OJ-3, CO₂/MeOH = 90/10, 1.5 mL/min, $\lambda = 280$ nm, t₁ = 1.83 min, t₂ = 4.26 min

¹**H** NMR (400 MHz, CDCl₃) δ 8.02 (m *J* = 8.6, 1.3 Hz, 2H), 7.59 (m, *J* = 5.0,

1.4 Hz, 3H), 7.48 - 7.42 (m, 2H), 7.42 - 7.37 (m, 1H), 7.37 - 7.32 (m, 2H), 1.23 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 187.5 (d, *J* = 25.4 Hz), 163.2 (d, *J* = 29.8 Hz), 136.1, 134.1, 133.1 (d, *J* = 2.7 Hz), 133.0, 129.9, 129.8 (d, *J* = 3.7 Hz), 129.7, 129.0, 128.6, 127.6, 105.46 (d, *J* = 242.2 Hz), 85.0, 27.5.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -125.60. (s, 1F).

HRMS (ESI) Calculated for $C_{19}H_{19}FO_3S$ ([M]+Na⁺) = 369.0931, Found 369.0927

IR (neat) 2988, 2358, 2339, 1754, 1701, 1281, 1155, 843, 754, 686 cm⁻¹.

	Retention Time	Area	% Area
1	1.832	1681809	59.25
2	4.259	1156520	40.75

15. Copies of NMR spectra for products

(S)-2-fluoro-3-oxo-3-phenyl-2-(phenylthio)-*N*-(*p*-tolyl)propanamide (3a):

Parameter	Value
¹ Title	as-20211117-TQF-42.3.1.1
² Solvent	CDC13
³ Temperature	295.5
⁴ Number of Scans	16
⁵ Spectrometer Freque	ncy376.55
⁶ Nucleus	19F

(S)-2-fluoro-2-((2-fluorophenyl)thio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3b):

-20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150

(S)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)-2-(m-tolylthio)propanamide (3c):

8.08 8.06 8.06 7.77 7.59 7.58 7.58 7.58 7.58 7.58 7.58 7.42 7.42 7.18 7.18 7.18 7.18 7.18 7.07

110 100 90 f1 (ppm)

-10

-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 f1 (ppm)

(S)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)-2-(p-tolylthio)propanamide (3e):

-65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 f1 (ppm)

-20

-25 -30 -35 -40 -45 -50 -55 -60

-80 -85 -90 -95 -100 -105 -110 -115 -125 -130 -135 -140 -145 -150 f1 (ppm)

(S)-2-((4-(tert-butyl)phenyl)thio)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3g):

-94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 f1 (ppm)

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3h):

-86 -90 -94 -98 -102 -106 -110 -114 -118 -122 -126 -130 -134 -138 -142 -146 -150 -15 f1 (ppm)

Parameter	Value
1 Title	as-20211019-TQF-26.3.1.1
2 Solvent	CDCl3
3 Temperature	295.8
4 Number of Scans	16
5 Spectrometer Frequency376.55	
6 Nucleus	19F

CONTRACTOR OF STREET, S

-86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 f1 (ppm)

(S)-2-((4-bromophenyl)thio)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3k):

-30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 fl (ppm)

(S)-2-((4-azidophenyl)thio)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3m):

-96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 fl (ppm)

(S)-2-(benzylthio)-2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanamide (30):

110 100 90 f1 (ppm)

-115 -117 -119 -121 -123 -125 -127 -129 -131 -133 -135 -137 -139 -141 -143 -145 -147 -149 -151 -153 f1 (ppm)

S106

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

(S)-2-fluoro-2-(hexylthio)-3-oxo-3-phenyl-N-(p-tolyl)propanamide (3r):
Parameter	Value
1 Title	as-20211022-TOF-30.9.1.1
2 Solvent	CDCl3
3 Temperature	294.6
4 Number of Scans	16
5 Spectrometer Frequer	acy564.72
6 Nucleus	19F

Ethyl *N*-(tert-butoxycarbonyl)-*S*-((*S*)-2-fluoro-1,3-dioxo-1-phenyl-3-(*p*-tolylamino)propan-2-yl)-L-cysteinate (3s):

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

-60 -70

-80

-40 -50

10 0 -10 -20 -30

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2.

Parameter	Value	
1 Title	as-20211220-TQF-48.3.1.1	
2 Solvent	CDC13	
³ Temperature	293.0	
⁴ Number of Scans	16	
⁵ Spectrometer Frequency376.55		
⁶ Nucleus	19F	

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-3-(o-tolyl)-N-(p-tolyl)propanamide (4a):

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-3-(*m*-tolyl)-*N*-(*p*-tolyl)propanamide (4b):

- 3.66

2.27
2.20

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-90 -75 -80 -85 -95 -110 f1 (ppm) -15 -100 -105 -115 -120 -125 -130 -135 -140 -145

(S) - 2 - fluoro - 3 - (4 - methoxy phenyl) - 2 - ((4 - methoxy phenyl) thio) - 3 - oxo - N - (p - tolyl) propanamide (4d):

(S) - 3 - (4 - chlorophenyl) - 2 - fluoro - 2 - ((4 - methoxyphenyl)thio) - 3 - oxo - N - (p - tolyl) propanamide (4f):

-124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134 -135 -136 -137 -138 -139 -140 -141 -142 -143 -144 -145 -146 -147 -148 fl (ppm)

(*S*)-3-(benzo[d][1,3]dioxol-5-yl)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-*N*-(*p*-tolyl)propanamide (4i):

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-3-(naphthalen-2-yl)-3-oxo-N-(p-tolyl)propanamide (4j):

$\begin{array}{c} 178.4 \\ 178.2 \\ 161.6 \\ 160.8 \\ 160.6 \\ 148.7 \\ 160.6 \\ 148.7 \\ 138.3 \\ 138.3 \\ 138.3 \\ 138.3 \\ 138.3 \\ 138.3 \\ 138.3 \\ 138.3 \\ 138.3 \\ 138.3 \\ 138.3 \\ 138.3 \\ 118.3 \\ 138.3 \\ 118.3 \\$

Value Parameter
 rarameter
 value

 rarameter
 value

 1 Title
 as-20211001-TQF-11.15.1.1

 2 Solvent
 CDC13

 3 Temperature
 295.0

 4 Number of Scans
 256

 5 Spectrometer Frequency 150.91
 6 Nucleus
 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 60 50 40 30 20 10 0 80 70 Value Parameter
 rarameter
 value

 1 Title
 as-20211001-TQF-11.14.1.1r

 2 Solvent
 CDC13

 3 Temperature
 294.4

 4 Number of Scans
 16

 5 Spectrometer Frequency564.72
 6 Nucleus

- 55.4

-20.9

 $(S) \label{eq:solution} -3 \label{eq:soluti$

-40

-50 -60 -70 -80 -90

10 0 -10 -20 -30

-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) $\begin{array}{c} -8.10\\ \swarrow 7.50\\ \swarrow 7.25\\ \swarrow 7.25\\ \swarrow 7.11\\ \circlearrowright 7.10\\ \circlearrowright 6.83\end{array}$

- 3.77

С

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134 -135 -136 -137 -138 -139 -140 -141 -142 -143 -144 -145 -146 -147 -148 -149 -150 -151 -152 -153 -151 (ppm)

(S)-2-fluoro-2-((4-methoxyphenyl)thio)-4-methyl-3-oxo-N-phenylpentanamide (4n):

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 -10 f1 (ppm)

(S)-N-((3R,5R,7R)-adamantan-1-yl)-2-fluoro-2-((4-methoxyphenyl)thio)-3-oxo-3-

phenylpropanamide (4q):

-82 -86 -90 -94 -98 -102 -106 -110 -114 -118 -122 -126 -130 -134 -138 -142 -146

 $(S) \hbox{-} 2-fluoro-N-(4-fluorophenyl) \hbox{-} 2-((4-methoxyphenyl)thio) \hbox{-} 3-oxo-3-phenylpropanamide (4s):$

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150

(S)-N-ethyl-2-fluoro-3-oxo-3-phenyl-2-(phenylthio)propanamide (4t):

(S)-2-fluoro-N-isopropyl-3-oxo-3-phenyl-2-(phenylthio)propanamide (4u):

 $\underset{0.86}{\swarrow}^{1.05}_{0.84}$

Title Solver Tempo Numb pdata/ 1 CDC13 295.0 16 400.18 2 3 4 5 ć ć 1.15 0.95 f1 (ppm) 0.75 1.05 0.85 g ć 7.60 7.50 7.40 7.30 fl (ppm) 1.02^{-1} 3.12H 3.13H 2.00H 1.02 -3.00₄ 3.054 2.084 . 0 4.5 4.0 f1 (ppm) 7.5 1.0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 3.5 3.0 2.5 2.0 1.5 0.5 0.0 $<_{189.6}^{189.6}$ $<_{162.5}^{162.8}$ ~ 108.7 ~ 106.3 136.4 134.1 133.3 133.3 130.1 130.1 130.1 129.2 128.4 127.6 $<_{22.0}^{22.3}$ — 42.1 Title Solvent Temperatu Number of Spectrome Nucleus pdata/ 1 CDCl3 295.4 256 100.63 13C 2 3 4 5 137 131 127 135 133 129 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

(S) - N - cyclohexyl - 2 - fluoro - 3 - oxo - 3 - phenyl - 2 - (phenylthio) propanamide (4v):

(*R*)-4-benzyl-2-phenyl-4-(phenylthio)oxazol-5(4H)-one (6a):

(*R*)-4-benzyl-4-(phenylthio)-2-(*p*-tolyl)oxazol-5(4H)-one (6b):

7.155 7.555 7.751 7.751 7.725 7.724 7.17 7.17 7.14	23.55 23.55 3.52 3.46 3.46	- 2.36	
--	--	--------	--

. 70

THE STREET

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

$(3S) - adamantan - 1 - yl \quad (2S) - 2 - ((S) - benzyl sulfinothioyl) - 1 - oxo - 2, 3 - dihydro - 1H - indene - 2 - carboxylate$

S151

(2*S*,3*R*)-2-fluoro-3-hydroxy-2-((4-methoxyphenyl)thio)-3-phenyl-*N*-(*p*-tolyl)propanamide (10):

(3*S*,4*S*)-3-fluoro-3-((4-methoxyphenyl)thio)-4-phenyl-1-(*p*-tolyl)azetidin-2-one (11):

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

(R)-2-benzamido-3-phenyl-2-(phenylthio)propanoic acid (12):

$\begin{array}{c} 7.57\\ 7.56\\ 7.58\\ 7.58\\ 7.58\\ 7.58\\ 7.58\\ 7.58\\ 7.58\\ 7.58\\ 7.58\\ 7.58\\ 7.58\\ 7.58\\ 7.58\\ 7.75\\$

110 100 f1 (ppm) -10

Methyl (R)-2-benzamido-3-phenyl-2-(phenylthio)propanoate (13):

-1 f1 (ppm)

tert-butyl 2-fluoro-3-oxo-3-phenyl-2-(phenylthio)propanoate (15b):

16. Copies of NMR spectra for the NMR study of substrate and G-Ra-*p*CF₃

17. Analysis Results of 2D NMR Spectra of the Product 3h (After Recrystallization)

Number of atom	H (ppm)	C (ppm)	Number of atom	H (ppm)	C (ppm)
1	8.0	129.1	13	-	160.4
2	7.3	127.5	14	6.7	113.8
3	7.5	133.2	15	7.4	137.3
4	7.3	127.5	16	3.6	54.3
5	8.0	129.1	17	-	132.6
6	-	132.2	18	7.1	119.2
7	-	(189.2, 189.0)	19	7.0	128.5
8	-	(105.3, 107.0)	20	-	134.0
9	-	(160.6, 160.4)	21	7.0	128.5
10	-	116.1	22	7.1	119.2
11	7.4	137.3	23	2.2	19.9
12	6.7	113.8	-	-	-

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f2 (ppm)

18. References

1. S. X. Dong, X. H. Liu, X. H. Chen, X. F. Mei, Y. L. Zhang, B. Gao, L. L. Lin, X. M. Feng, Chiral Bisguanidine-Catalyzed Inverse-Electron-Demand Hetero-Diels-Alder Reaction of Chalcones with Azlactones. *J. Am. Chem. Soc.* 2010, **132**, 10650-10651.

2. S. X. Dong, X. H. Liu, Y. L. Zhang, L. L. Lin, X. M. Feng, Asymmetric Synthesis of 3,4-Diaminochroman-2-ones Promoted by Guanidine and Bisguanidium Salt. *Org. Lett.* 2011, **13**, 5060-5063.

3. L. H. Xie, S. X. Dong, Q. Zhang, X. M. Feng, X. H. Liu, Asymmetric construction of dihydrobenzofuran-2,5-dione derivatives via desymmetrization of p-quinols with azlactones. *Chem. Commun.* 2019, **55**, 87-90.

4. C. J. Nalbandian, E. M. Miller, S. T. Toenjes, J. L. Gustafson, A conjugate Lewis base-Brønsted acid catalyst for the sulfenylation of nitrogen containing heterocycles under mild conditions .*Chem. Commun.*, 2017, **53**, 1494-1497.

5. Z. P. Yu, X. H. Liu, L. Zhou, L. L. Lin, X. M. Feng, Bifunctional guanidine via an amino amide skeleton for asymmetric Michael reactions of beta-ketoesters with nitroolefins: a concise synthesis of bicyclic beta-amino acids. *Angew. Chem. Int. Ed.*, 2009, **48**, 5195-5198.

6. S. Ruan, X. B. Lin, L. H. Xie, L. L. Lin, X. M. Feng, X. H. Liu, Asymmetric synthesis of 3-aminodihydrocoumarins via the chiral guanidine catalyzed cascade reaction of azlactones. *Org. Chem. Front.*, 2018, **5**, 32-35.

7. L. Tang, Z. Yang, J. C. Jiao, Y. Cui, G. D. Zou, Q. J. Zhou, Y. Q. Zhou, W. H. Rao, X. T. Ma, Chemoselective Monoand Difluorination of 1,3-Dicarbonyl Compounds. *J. Org. Chem.*, 2019, **84**, 10449-10458.

19. Author Contributions

Q.F.T conducted the experiments, analyzed the results, wrote the Supporting Information and manuscript. Q.P.C. synthesized some starting materials and catalysts. Z.T.Z. repeated some experiments. X.H.L. helped with modifying the Supporting Information and manuscript.