Synthetic procedure for compound 1

Method 1

$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(475 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{HL}^{1}(252 \mathrm{mg}, 2 \mathrm{mmol})$ and MeONa ($108 \mathrm{~mL}, 2 \mathrm{mmol}$) were dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and refluxed at $65^{\circ} \mathrm{C}$ for 40 minutes. After filtration and cooling to room temperature, the mother liquor was allowed to slowly diffuse with acetone vapours, affording metallic light blue crystals suitable for X-ray diffraction. Elemental analysis (\%) calculated for $\mathrm{Ni}_{14} \mathrm{O}_{37} \mathrm{~N}_{32} \mathrm{C}_{102} \mathrm{H}_{176} \mathrm{Cl}_{14}$: C, 32.57 \%; H, 4.72 \%; N, 11.92 \%. Found: C, 32.98 \%; H, 5.15 \%; N, 12.02 \%. Yield ≤ 20 \%.

Method 2
$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(475 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{HL}^{2}(192 \mathrm{mg}, 2 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(140 \mu \mathrm{~L}, 2 \mathrm{mmol})$ were dissolved in a mixture of MeOH and HCOOH ($9: 1$ ratio, 10 mL) and stirred for 1 hour. After filtration, the mother liquor was allowed to slowly diffuse with acetone, affording metallic light blue crystals suitable for X ray diffraction. The diffusion can also be successfully performed with $\mathrm{Et}_{2} \mathrm{O}$. Yield $\leq 40 \%$.

Method 3
$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(475 \mathrm{mg}, 2 \mathrm{mmol})$ and $\mathrm{HL}^{2}(192 \mathrm{mg}, 2 \mathrm{mmol})$ were dissolved in a mixture of MeOH and $\mathrm{HCOOH}(9: 1$ ratio, 10 mL) and stirred for 1 hour. After filtration, the mother liquor was allowed to slowly diffuse with acetone, affording metallic light blue crystals suitable for X-ray diffraction. The diffusion can also be successfully performed with $\mathrm{Et}_{2} \mathrm{O}$. Yield $\leq 35 \%$.

Method 4

$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(475 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{HL}^{2}(192 \mathrm{mg}, 2 \mathrm{mmol})$ and HCOONa ($136 \mathrm{mg}, 2 \mathrm{mmol}$) were dissolved in $\mathrm{MeOH}(15 \mathrm{~mL})$ and stirred for 1 hour. After filtration, the mother liquor was allowed to slowly diffuse with acetone, affording metallic light blue crystals suitable for X-ray diffraction. The diffusion can also be successfully performed with $\mathrm{Et}_{2} \mathrm{O}$. Yield $\leq 40 \%$.

X-ray crystallography

A suitable crystal of 1 with dimensions $0.85 \times 0.12 \times 0.09 \mathrm{~mm}^{3}$ was selected and mounted on a Rigaku Oxford Diffraction SuperNova diffractometer. The crystal was kept at a steady $T=120.15 \mathrm{~K}$ during data collection. The structure was solved with the SheIXT solution program using iterative methods and by using Olex2 as the graphical interface. The model was refined with ShelXL using full matrix least squares minimisation on F^{2}. Full details are provided in Table S1. ${ }^{1-3}$ Powder XRD measurements were collected on freshly prepared samples of 1 using a Bruker D2 PHASER with nickel filtered Cu radiation at power 30 kW and current 10 mA . Diffraction patterns were measured from $2 \theta=5^{\circ}-30^{\circ}$, step size 0.0101°.

Magnetic Measurements

Variable-temperature, solid-state direct current (dc) magnetic susceptibility data down to $T=1.8 \mathrm{~K}$ and in fields up to $B=9$ T were collected on a Quantum Design PPMS Dynacool. The crystalline sample was embedded in eicosane in a gelatine capsule. Diamagnetic corrections were applied to the observed paramagnetic susceptibility.

Computational Details

Density Functional Theory (DFT) has been used to compute the magnetic exchange coupling constants on three model complexes (models 1A-C, Figure S3) created from 1 in the Gaussian 09 suite 4 of programs. We have employed the hybrid B3LYP functional ${ }^{5}$ together with the TZVP basis set for the $\mathrm{Ni}, \mathrm{Zn}, \mathrm{Cl}, \mathrm{O}$ and N atoms and the SVP basis set for the C and H atoms. ${ }^{6}$ Model $\mathbf{1 A}$ is a tetra-metallic model in which the two terminal $\mathrm{Ni}^{\prime \prime}$ ions have been replaced with two $\mathrm{Zn}^{\prime \prime}$ ions. The latter is employed to replicate the electronic environment at the $\mathrm{Ni}^{\prime \prime}$ centres. Models 1B-C are pentametallic containing three $\mathrm{Ni}^{\prime \prime}$ ions and two terminal $\mathrm{Zn}^{\prime \prime}$ ions. To estimate the magnetic exchange coupling constants we have used Noodleman's broken symmetry approach. ${ }^{7}$ Spin configurations used to estimate the magnetic exchange coupling constants for models 1A-C are summarized in Table S2-3. To qualitatively explain the sign and magnitude of the magnetic interactions present we have performed overlap integral calculations using singly occupied molecular orbitals (SOMOs) of both paramagnetic centres in bimetallic models. In bimetallic complexes with bridging ligands, to split the molecule into two independent, chemically meaningful monomers, we have used broken-symmetry orbitals. As reported by Ruiz et al., ${ }^{8}$ the larger the overlap integral between the two orbitals the larger the $J_{A F}$ part of the total magnetic exchange $\left(J=J_{\text {AF }}+J_{F}\right)$. A small overlap integral means the orbitals are orthogonal and will thus add to the J_{F} part of the total magnetic exchange interaction.

We have employed ORCA software (version ORCA 4.0) to estimate the zero-field splitting parameters for each $\mathrm{Ni}^{\prime \prime}$ centre. This is based on a trimetallic $\mathrm{Zn}-\mathrm{Ni}-\mathrm{Zn}$ model created from 1. ${ }^{9}$ The zeroth-order regular approximation (ZORA) method, together with the ZORA contracted version of the basis set (ZORA-def2-TZVPP for Ni, Zn and ZORA-def-TZVP for rest of the atoms) has been used for the resolution of identity (RI) approximation. ${ }^{10}$ For each $\mathrm{Nil}^{\prime \prime}$ centre during state-average complete active space self-consistent field (SA-CASSCF) calculations, we have considered eight electrons in five dorbitals (CAS (8 electrons/5 3d-orbitals)) in the active space. Ten triplet and fifteen singlet roots are considered during CASSCF calculations. To estimate the zero-field splitting parameter accurately and consider the dynamic correlation we have performed $2^{\text {nd }}$ order N-electron valence perturbation theory. ${ }^{11}$ We have used integration Grid 6 for Cl, Ni and Zn , and Grid 5 for the remaining atoms.

Table 1. Crystallographic details for compound 1.

Compound	1
Formula	$\mathrm{C}_{87} \mathrm{H}_{140} \mathrm{Cl}_{14} \mathrm{~N}_{24} \mathrm{Ni}_{14} \mathrm{O}_{34}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.359
μ / mm^{-1}	1.841
Formula Weight	3384.46
Colour	metallic light blue
Shape	rect. prism-shaped
Size/mm ${ }^{3}$	$0.85 \times 0.12 \times 0.09$
T/K	120.15
Crystal System	tetragonal
Space Group	$P 4_{2} / n$
a / \AA	37.1760(2)
b/Å	37.1760(2)
c / \AA	11.96640 (10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	16538.2(2)
Z	4
Z^{\prime}	0.5
Wavelength/Å	0.71073
Radiation type	Mo K ${ }_{\alpha}$
$\Theta_{\text {min }} /{ }^{\circ}$	3.195
$\Theta_{\max } /{ }^{\circ}$	26.732
Measured Refl's.	152030
Indep't Refl's	17519
Refl's I ≥ 2 (I)	15915
$R_{\text {int }}$	0.0499
Parameters	820
Restraints	25
Largest Peak	1.234
Deepest Hole	-0.615
GooF	1.172
$w R_{2}$ (all data)	0.1300
$w R_{2}$	0.1273
R_{1} (all data)	0.0634
R_{1}	0.0570
CCDC	2169986

Fig. S1. Powder X-ray diffraction of 1. Experimental data (red) and calculated (black) data.

Fig. S2. The extended structure of 1 viewed down the c-axis of the cell in (left) polyhedral, and (right) space-filling representation. Colour code: $\mathrm{Ni}=$ green, $\mathrm{O}=$ red, $\mathrm{N}=$ blue, $\mathrm{C}=$ black, $\mathrm{H}=$ white, $\mathrm{Cl}=$ yellow.

Fig. S3. Complete set of simulation data: (a) Magnetic susceptibility data potted as the χ T product versus T measured in a field, $B=0.1 \mathrm{~T}$ between $T=300-2.0 \mathrm{~K}$; red - Heisenberg Hamiltonian only with DFT exchange interactions scaled by 1.4, black - Heisenberg Hamiltonian only with the same nearestneighbour exchange for all interactions, magenta - substitute system of $2 \mathrm{Ni}_{7}$ rings with only Heisenberg Hamiltonian to show that the approximation is reasonable also for the susceptibility, blue - same as magenta, but no with single-ion anisotropy. (b) M vs B data in fields $B=0.5-9 \mathrm{~T}$ and temperature range $T=1.8-10 \mathrm{~K}$. The curves are simulations of the experimental data (solid, dashed, dotted in (b) for the three temperatures); colour code as in (a). Black and magenta are shown to demonstrate that the replacement of Ni_{14} by two Ni_{7} is appropriate for the purpose. The blue curve is the major result; it proves that single-ion anisotropy has a major impact on the magnetization.

Fig.S4. (a-b) Temperature dependence of the in-phase (χ^{\prime}) and out-of-phase ($\chi^{\prime \prime}$) ac susceptibility data for $\mathbf{1}$ under zero external dc field. (c) $\chi^{\prime \prime}$ vs χ^{\prime} plot of the ac magnetic susceptibility of $\mathbf{1}$ in zero dc field. The solid lines are guides.

Table S2. Spin configurations used for model 1A. Red arrows represent spin-up and blue arrows spindown.

	S value	Ni1	Ni2	Ni3	Ni4
HS	4				
BS-1	2				
BS-2	2				
BS-3	2				
BS-4	2				
BS-5	0				
BS-6	0				

Table S3. Spin configurations used for models 1B-C. Red arrows represent spin-up and blue arrows spin-down.

	S value	Ni1	Ni2	Ni3
HS	$\mathbf{3}$			
BS-1	1			
BS-2	$\mathbf{1}$			
BS-3	$\mathbf{1}$			

Table S4. Pertinent structural parameters for 1 alongside the seven calculated magnetic exchange interactions, J.

	Avg. $\mathrm{Ni}-\mu_{2} \mathrm{O} / \mathrm{Cl}$ distance (Å)	$\mathrm{Ni}-\mathrm{O}-\mathrm{Ni}$ angle $\left({ }^{\circ}\right)$	$\mathrm{Ni}-\mathrm{Cl}-\mathrm{Ni}$ angle $\left({ }^{\circ}\right)$	$\mathrm{Ni}-\mathrm{Cl}-\mathrm{Ni}-\mathrm{O}$ Dihedral $\left({ }^{\circ}\right)$	$\mathrm{Ni} \cdots \mathrm{Ni}$ distance (\AA)	$J\left(\mathrm{~cm}^{-1}\right)$
Ni 1 Ni 2	2.258	105.3	83.5	17.9	3.272	+1.7
Ni 2 Ni 3	2.249	103.5	83.2	22.3	3.237	+3.5
Ni 3 Ni 4	2.246	102.9	83.4	17.7	3.229	+2.7
Ni 4 Ni 5	2.250	103.1	82.6	22.5	3.228	+3.0
Ni 5 Ni 6	2.237	103.2	83.8	19.3	3.226	+2.5
Ni6Ni7	2.233	102.5	85.1	21.0	3.234	+3.9
Ni7Ni1 ${ }^{\prime}$	2.252	104.5	83.8	16.9	3.261	+2.1

Fig. S5. Models 1A-C on which DFT calculations have been performed in order to estimate the seven magnetic exchange interactions. Colour code: green Ni , light blue Zn , yellow Cl , red O , blue N and black C. H atoms removed for clarity.

Fig. S6. (a) Model 1D along with (b) DFT computed spin density on important atoms. Colour code is same as Figure S2. (c-f) DFT computed representative overlap integrals figures showing $\mathrm{Ni}(\mathrm{II})$ based SOMO(s)-SOMO(s) overlap interactions for 1D. One moderate $\left\langle\mathrm{Ni}(\alpha) \mathrm{d}_{\mathrm{x}}{ }^{2}-{ }^{2}{ }^{2}\right| \mid \mathrm{Ni}(\beta) \mathrm{d}_{\mathrm{z}}{ }^{2}>$ and three remaining weak interactions result in weak ferromagnetic interaction.

Fig. S7. DFT computed spin density plots for Models 1A-C. The iso-density surface shown corresponds to a value of $0.003 \mathrm{e}^{-} / \mathrm{bohr}^{3}$. Spin density analysis suggests strong spin delocalisation, with spin densities on the $\mathrm{Ni}^{\prime \prime}$ ions in the range 1.668-1.682. Note that the $\mu-\mathrm{Cl}$ ions has the largest spin density of the bridging atoms.

Fig. S8. Model 1E on which we have estimated the next-nearest neighbour magnetic exchange interaction. The paramagnetic centres are connected through an syn, anti-formate group (Ni-O-C-ONi) resulting in a very small ferromagnetic interaction $\left(J=+0.5 \mathrm{~cm}^{-1}\right)$.

Table S5. SHAPE analysis performed on all seven unique Ni centres in $1 .{ }^{12}$ The distorted octahedral environment in each case would be expected to lead to small ZFS parameters ($|D| \leq 10 \mathrm{~cm}^{-1}$). ${ }^{11}$

HP-6	1 D6h	Hexagon				
PPY-6	2 C 5 v	v Pentago	nal pyram			
OC-6	3 Oh	Octahed				
TPR-6	4 D3h	h Trigonal	prism			
JPPY-6	5 C 5 v	v Johnso	pentago	pyramid		
Structure [M	ML6]	HP-6	PPY-6	OC-6	TPR-6	JPPY-6
Ni1-Ni14	,	31.122,	27.597,	1.011,	15.290,	30.845
Ni2-Ni14	,	30.989,	27.949,	0.969,	15.351,	31.123
Ni3-Ni14	,	30.860,	27.995,	1.035,	15.531,	31.002
Ni4-Ni14	,	31.301,	28.228,	0.905,	16.029,	31.248
Ni5-Ni14	,	31.265,	27.951,	0.920,	15.237,	31.245
Ni6-Ni14	,	30.868,	28.126,	0.950,	15.431,	31.316
Ni7-Ni14	,	30.666,	26.969,	1.060,	15.159,	30.081

Table S6. The NEVPT2 excited states, multiplicity of the states and the transition energies of the ligand field states for Ni1. An electronic transition between the same M_{L} level magnetic orbitals results in a negative value of D, whereas it is positive between different M_{L} level magnetic orbitals. The relative small magnitude of D can be attributed to the large energy separation between the orbitals involved in the transitions. For the first four states the dominant electronic arrangements are $\left\{\left(d_{x z}\right)^{2}\left(d_{y z}\right)^{2}\left(d_{x y}\right)^{2}\left(d_{x}{ }^{2}-y^{2}\right)^{1}\left(d_{z}^{2}\right)^{1}\right\},\left\{\left(d_{x z}\right)^{2}\left(d_{y z}\right)^{2}\left(d_{x y}\right)^{1}\left(d_{x}{ }^{2}-y^{2}\right)^{2}\left(d_{z}^{2}\right)^{1}\right\}$, $\left\{\left(d_{x z}\right)^{2}\left(d_{y z}\right)^{1}\left(d_{x y}\right)^{2}\left(d_{x}^{2}-y^{2}\right)^{2}\left(d_{z}^{2}\right)^{1}\right\}$ and $\left\{\left(d_{x z}\right)^{1}\left(d_{y z}\right)^{2}\left(d_{x y}\right)^{2}\left(d_{x}^{2}-y^{2}\right)^{2}\left(d_{z}^{2}\right)^{1}\right\}$. The major contribution to the negative D parameter is coming from the ground to the first excited state electronic transition ($d_{x y} \rightarrow d_{x}^{2}-{ }^{2}$). The electronic transitions from the ground to the second and third excited states $\left(d_{x z / y z} \rightarrow d_{x}^{2}-y^{2}\right)$ contribute to positive D values.

$$
D=-4.9 \mathrm{~cm}^{-1} ; E / D=0.28
$$

$g_{\mathrm{xx}}, g_{\mathrm{yy}}, g_{\mathrm{zz}}\left(g_{\mathrm{iso}}\right)=2.233,2.253,2.280(2.255)$
Energies of $d_{x z}(0.0), d_{y z}(168.9), d_{x y}(722.7), d_{x}{ }^{2}-y^{2}$ (7001.9) and d_{z}^{2} (8745.4) orbitals in cm^{-1}

NEVPT2 excited states	Multiplicity	NEVPT2 energy levels cm^{-1}	Contribution to D cm^{-1}	Contribution to E cm^{-1}
0	3	0.0	0.0	0.0
1	3	8135.9	-50.9	0.1
2	3	8914.9	23.2	-23.3
3	3	9708.9	21.1	21.4
4	3	14614.9	0.3	0.1
5	3	15465.4	0.0	0.0
6	1	15674.8	0.0	0.0
7	3	15772.6	0.0	0.0
8	1	15951.6	0.0	0.0
9	1	23575.5	15.0	0.0
10	1	24237.8	-7.2	6.5
11	1	24975.2	-6.9	-6.1
12	3	26218.7	0.0	0.0
13	1	26629.7	0.0	0.0
14	3	26848.8	0.0	0.0
15	3	27293.0	0.0	0.0
16	1	29213.6	0.0	0.0
17	1	30458.6	0.0	0.0
18	1	31047.5	0.0	0.0
19	1	36123.6	0.0	0.0
20	1	36234.9	0.2	0.0
21	1	36631.5	0.1	-0.2
22	1	37073.0	0.2	0.3
23	1	37339.4	-0.7	-0.3
24	1	63581.7	0.0	0.0

Table S7. The NEVPT2 excited states, multiplicity of the states and the transition energies of the ligand field states for Ni 2 .

$\begin{gathered} D=-4.7 \mathrm{~cm}^{-1} ; E / D=0.22 \\ g_{\mathrm{xx}}, g_{\mathrm{yy}}, g_{\mathrm{zz}}\left(g_{\mathrm{iso}}\right)=2.233,2.248,2.276(2.252) \end{gathered}$ Energies of $\mathrm{d}_{\mathrm{xz}}(0.0), \mathrm{d}_{\mathrm{yz}}(268.1), \mathrm{d}_{\mathrm{xy}}$ (798.0), $\mathrm{d}_{\mathrm{x}}{ }^{2}-\mathrm{y}^{2}$ (7258.5) and $\mathrm{d}_{\mathrm{z}}{ }^{2}$ (8737.9) orbitals in cm^{-1}				
NEVPT2 excited states	Multiplicity	NEVPT2 energy levels cm^{-1}	Contribution to D cm^{-1}	Contribution to E cm^{-1}
0	3	0.0	0.0	0.0
1	3	8259.5	-50.3	-0.1
2	3	9180.6	22.5	-22.3
3	3	9661.3	21.4	20.9
4	3	14842.5	0.2	0.2
5	3	15479.5	0.0	0.0
6	1	15774.3	0.0	0.0
7	3	15877.0	0.0	0.0
8	1	15928.1	0.0	0.0
9	1	23714.2	15.0	0.0
10	1	24521.5	-7.1	5.0
11	1	24841.4	-7.0	-4.6
12	3	26392.7	0.0	0.0
13	1	26575.0	0.0	0.0
14	3	26944.3	0.0	0.0
15	3	27321.4	0.0	0.0
16	1	29678.3	0.0	0.0
17	1	30129.2	0.0	0.0
18	1	31043.3	0.0	0.0
19	1	36237.3	0.0	0.0
20	1	36320.4	0.4	0.0
21	1	36762.7	-0.7	-0.7
22	1	37252.5	0.9	-0.2
23	1	37486.5	-0.8	0.7
24	1	63667.0	0.0	0.0

Table S8. The NEVPT2 excited states, multiplicity of the states, along with the transition energies of the ligand field states for Ni 3 .

$\begin{gathered} D=-6.5 \mathrm{~cm}^{-1} ; E / D=0.19 \\ g_{\mathrm{xx}}, g_{\mathrm{yy}}, g_{\mathrm{zz}}\left(g_{\mathrm{iso}}\right)=2.227,2.243,2.285(2.252) \end{gathered}$ Energies of $\mathrm{d}_{\mathrm{xz}}(0.0), \mathrm{d}_{\mathrm{yz}}$ (344.1), d_{xy} (931.1), $\mathrm{d}_{\mathrm{x}}{ }^{2}-{ }^{2}$ (7114.8) and $\mathrm{d}_{\mathrm{z}}{ }^{2}$ (9128.9) orbitals in cm^{-1}				
NEVPT2 excited states	Multiplicity	NEVPT2 energy levels cm^{-1}	Contribution to D cm^{-1}	Contribution to E cm^{-1}
Ground state	3	0.0	0.0	0.0
1	3	8014.8	-52.2	0.0
2	3	9363.8	22.5	-21.3
3	3	9799.3	20.8	19.5
4	3	14962.1	0.4	0.4
5	3	15536.6	0.0	0.0
6	1	15602.4	0.0	0.0
7	1	15911.3	0.0	0.0
8	3	16072.3	0.0	0.0
9	1	23490.2	15.3	0.0
10	1	24655.1	-7.1	4.4
11	1	24944.9	-6.9	-4.0
12	3	26323.1	0.0	0.0
13	1	26742.7	0.0	0.0
14	3	27071.2	0.0	0.0
15	3	27558.5	0.0	0.0
16	1	29591.2	0.0	0.0
17	1	30146.1	0.0	0.0
18	1	31434.4	0.0	0.0
19	1	36256.2	0.3	0.0
20	1	36434.3	0.2	0.0
21	1	36832.2	-0.9	-0.9
22	1	37423.9	0.9	-0.1
23	1	37688.1	-0.9	0.8
24	1	63762.7	0.0	0.0

Table S9. The NEVPT2 excited states, multiplicity of the states, along with the transition energies of the ligand field states for Ni 4 .

$\begin{gathered} D=-6.5 \mathrm{~cm}^{-1} ; E / D=0.16 \\ g_{\mathrm{xx}}, g_{\mathrm{yy}}, g_{\mathrm{zz}}\left(g_{\text {iso }}\right)=2.223,2.238,2.279(2.247) \end{gathered}$ Energies of $\mathrm{d}_{\mathrm{xz}}(0.0), \mathrm{d}_{\mathrm{yz}}$ (320.1), d_{xy} (828.9), $\mathrm{d}_{\mathrm{x}-\mathrm{y}}{ }^{2}$ (7279.4) and $\mathrm{d}_{\mathrm{z}}{ }^{2}$ (9225.3) orbitals in cm^{-1}				
NEVPT2 excited states	Multiplicity	NEVPT2 energy levels cm^{-1}	Contribution to D cm^{-1}	Contribution to E cm^{-1}
0	3	0.0	0.0	0.0
1	3	8185.6	-50.4	-0.2
2	3	9537.3	21.2	-21.1
3	3	10038.6	20.4	19.8
4	3	15238.7	0.4	0.3
5	1	15621.5	0.0	0.0
6	3	15805.8	0.0	0.0
7	1	15919.3	0.0	0.0
8	3	16379.9	0.0	0.0
9	1	23676.8	15.2	0.0
10	1	24807.9	-7.0	4.5
11	1	25226	-6.8	-4.2
12	3	26597.9	0.0	0.0
13	1	26774.1	0.0	0.0
14	3	27281.3	0.0	0.0
15	3	27794.3	0.0	0.0
16	1	29656	-0.1	-0.1
17	1	30531.5	0.0	0.0
18	1	31439	0.0	0.0
19	1	36610.7	0.2	0.0
20	1	36818.4	0.1	0.0
21	1	37197.4	-0.4	-0.7
22	1	37714	0.4	0.3
23	1	37960.6	-0.7	0.5
24	1	63988.5	0.0	0.0

Table S10. The NEVPT2 excited states, multiplicity of the states, along with the transition energies of the ligand field states for Ni 5 .

$\begin{gathered} D=-1.9 \mathrm{~cm}^{-1} ; E / D=0.00 \\ g_{\mathrm{xx}}, g_{\mathrm{yy}}, g_{\mathrm{zz}}\left(g_{\mathrm{iso}}\right)=2.250,2.258,2.266(2.258) \end{gathered}$ Energies of d_{xz} (0.0), $\mathrm{d}_{\mathrm{yz}}(500.5), \mathrm{d}_{\mathrm{xy}}$ (825.4), $\mathrm{d}_{\mathrm{x}-\mathrm{y}}{ }^{2}$ (7722.2) and $\mathrm{d}_{\mathrm{z}}{ }^{2}$ (7972.8) orbitals in cm^{-1}				
NEVPT2 excited states	Multiplicity	NEVPT2 energy levels cm^{-1}	Contribution to D cm^{-1}	Contribution to E cm^{-1}
0	3	0.0	0.0	0.0
1	3	8620.0	-46.3	0.0
2	3	8720.8	24.3	-19.2
3	3	9114.7	24.0	19.8
4	3	14520.6	-0.1	0.0
5	3	14873.2	0.0	0.0
6	3	15413.2	0.0	0.0
7	1	15984.0	0.0	0.0
8	1	16002.3	0.0	0.0
9	1	24146.1	13.7	0.0
10	1	24162.8	-7.3	-0.7
11	1	24325.6	-6.9	0.7
12	3	26358.4	0.0	0.0
13	1	26393.8	0.0	0.0
14	3	26410.4	0.0	0.0
15	3	26911.5	0.0	0.0
16	1	29715.8	0.0	0.0
17	1	29717.9	0.0	0.0
18	1	30611.5	0.0	0.0
19	1	35603.8	0.1	0.1
20	1	36150.6	0.0	0.0
21	1	36154.0	0.3	0.0
22	1	36901.3	-0.9	0.3
23	1	36913.5	-0.9	-0.3
24	1	63435.6	0.0	0.0

Table S11. The NEVPT2 excited states, multiplicity of the states, along with the transition energies of the ligand field states for Ni6.

$\begin{gathered} D=-4.7 \mathrm{~cm}^{-1} ; E / D=0.21 \\ g_{\mathrm{xx}}, g_{\mathrm{yy}}, g_{\mathrm{zz}}\left(g_{\mathrm{iso}}\right)=2.234,2.247,2.276(2.252) \end{gathered}$ Energies of $\mathrm{d}_{\mathrm{xz}}(0.0), \mathrm{d}_{\mathrm{yz}}(439.3), \mathrm{d}_{\mathrm{xy}}$ (784.3), $\mathrm{d}_{\mathrm{x}-\mathrm{y}}{ }^{2}$ (7378.4) and $\mathrm{d}_{\mathrm{z}}{ }^{2}$ (8652.7) orbitals in cm^{-1}				
NEVPT2 excited states	Multiplicity	NEVPT2 energy levels cm^{-1}	Contribution to D cm^{-1}	Contribution to E cm^{-1}
0	3	0.0	0.0	0.0
1	3	8250.5	-50.5	0.0
2	3	9216.0	22.8	-22.3
3	3	9630.0	21.4	21.1
4	3	14844.3	0.2	0.2
5	3	15380.3	0.0	0.0
6	1	15829.7	0.0	0.0
7	3	15840.3	0.0	0.0
8	1	15947.6	0.0	0.0
9	1	23732.8	15.0	0.0
10	1	24547.0	-7.1	4.8
11	1	24795.8	-7.0	-4.5
12	3	26402.9	0.0	0.0
13	1	26527.1	0.0	0.0
14	3	26974.5	0.0	0.0
15	3	27148.7	0.0	0.0
16	1	29703.6	0.0	0.0
17	1	30301.6	0.0	0.0
18	1	30743.0	0.0	0.0
19	1	36073.8	0.3	0.0
20	1	36457.1	0.1	0.0
21	1	36662.7	-1.0	-0.9
22	1	37230.7	1.3	0.0
23	1	37354.6	-0.9	0.7
24	1	63622.3	0.0	0.0

Table S12. The NEVPT2 excited states, multiplicity of the states, along with the transition energies of the ligand field states for Ni 7 .

$\begin{gathered} D=-5.1 \mathrm{~cm}^{-1} ; E / D=0.29 \\ g_{\mathrm{xx}}, g_{\mathrm{yy}}, g_{\mathrm{zz}}\left(g_{\mathrm{iso}}\right)=2.226,2.248,2.275(2.249) \end{gathered}$ Energies of $d_{x z}(0.0), d_{y z}(344.3), d_{x y}(824.0), d_{x}{ }^{2}{ }^{2}{ }^{2}$ (7308.0) and d_{z}^{2} (9006.2) orbitals in cm^{-1}				
NEVPT2 excited states	Multiplicity	NEVPT2 energy levels cm^{-1}	Contribution to D cm^{-1}	Contribution to E cm^{-1}
0	3	0.0	0.0	0.0
1	3	8289.9	-49.3	0.2
2	3	9140.0	22.0	-22.5
3	3	10003.7	20.6	20.7
4	3	14982.3	0.2	0.1
5	1	15663.7	0.0	0.0
6	3	15665.9	0.0	0.0
7	1	15941.8	0.0	0.0
8	3	16184.0	0.0	0.0
9	1	23755.9	15.0	0.0
10	1	24437.3	-7.1	6.4
11	1	25244.3	-6.8	-6.0
12	3	26441.5	0.0	0.0
13	1	26652.7	0.0	0.0
14	3	27245.6	0.0	0.0
15	3	27476.9	0.0	0.0
16	1	29344.1	0.0	0.0
17	1	30825.0	0.0	0.0
18	1	31022.1	0.0	0.0
19	1	36365.6	0.1	0.0
20	1	36697.4	0.0	0.1
21	1	36946.7	-0.4	-0.3
22	1	37515.7	0.5	0.3
23	1	37717.5	-0.5	-0.2
24	1	63807.0	0.0	0.0

Fig. S9. The NEVPT2 computed $D_{z z}$ (cyan coloured bars) and $g_{z z}$ axes (brown coloured bars) for (a) Ni1, (b) Ni 5 and (c) 1. Note that all the $\mathrm{Ni}^{\prime \prime}$ ions have both (coincident) $D_{z z}$ and $g_{z z}$ axes oriented along N atom of HL and an O atom of a formate, with the exception of Ni 5 where both axes are slightly tilted away from the donor atoms.

References

1. G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
3. G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
4. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
5. (a) A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3101; b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; c) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785.
6. (a) A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571; (b) A. Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835.
7. L. Noodleman, J. Chem. Phys., 1981, 74, 5737.
8. C. Desplanches, E. Ruiz, A. Rodríguez-Fortea and S. Alvarez, J. Am. Chem. Soc., 2002, 124, 5197-5205.
9. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73-78.
10. (a) K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, Chem. Phys. Lett., 1995, 242, 652660; (b) K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor. Chem. Acc., 1997, 97, 119-124.
11. (a) C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger and J.-P. Malrieu, J. Chem. Phys., 2001, 114, 10252; (b) C. Angeli, R. Cimiraglia and J.-P. Malrieu, J. Chem. Phys., 2002, 117, 9138; (c) C. Angeli, R. Cimiraglia and J.-P. Malrieu, Chem. Phys. Lett., 2001, 350, 297-305.
12. SHAPE, version 2.0; continuous shape measures calculation; Electronic Structure Group, Universiat de Barcelona: Barcelona, Spain, 2010.
