Supporting Information

Color-tunable emissive heptagon-embedded polycyclic aromatic dicarboximides

Kritchasorn Kantarod,^[a] Darunee Soorukram,^[a] Chutima Kuhakarn,^[a] Panida Surawatanawong,^[a] Worawat Wattanathana,^[b] Vichai Reutrakul,^[a] and Pawaret Leowanawat^{*[a]}

^[a]Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science Mahidol University 10400 Bangkok (Thailand)

^[b]Department of Materials Engineering, Faculty of Engineering Kasetsart University 10900 Bangkok (Thailand)

*E-mail: pawaret.leo@mahidol.ac.th

Table of Contents

I. General Information S2
II. General Procedure for Preparation of the Starting Materials
III. Optimization of Reaction Conditions
IV. Synthesis of Dibenzopleiadiene Polycyclic Aromatic Dicarboximides Derivatives
V. Characterization of the Products
VI. Synthesis of Push-Pull Heptagon-Embedded PADIs ······S13
VII. X-ray Single Crystal Analysis ······ S19
VIII. Photophysical Properties
IX. DFT Calculations
X. References ······ S38
XI. NMR Spectra S39

I. General Information

All another starting materials, reagents, and solvents were obtained from commercial sources and were used without further purification. Reactions were monitored by Thin-Layer Chromatography and visualized by UV. Purification of the reaction products was carried out by column chromatography on Merck silica gel 60. ¹H NMR,¹³C NMR and ¹⁹F NMR spectra were recorded on Bruker Avance-600, Bruker Avance-500, Bruker Avance-400, or JEOL-400 spectrometer in CDCl₃ by using tetramethylsilane (δ = 0 ppm) or residual non-deuterated solvent peak as an internal standard. ¹H NMR data are assumed to be first order with apparent singlet, doublets, triplets and multiplets reported as s, d, t and m. The structures of known compounds were confirmed by comparing their ¹H NMR and ¹³C NMR data with those in the literature. Melting points were recorded with Buchi Melting Point M-565 apparatus. Infrared spectra were recorded with a Bruker ALPHA FT-IR spectrometer. High resolution mass spectra (HRMS) were obtained on a Bruker micro TOF spectrometer in the APCI mode and JEOL AccuTOF[™]-DART[®] 4G. UV-Vis spectroscopy was performed on a UV-Vis spectrophotometer (Shimadzu UV2600) and all fluorescence spectra were recorded using a spectrofluorometer (Horiba FluoroMax4+, integration time 0.1 s, slit width 3 nm). The fluorescence quantum yields in solution were determined by using the dilution method (A < 0.05). The quantum efficiencies were measured by comparing between solvents as a blank and sample according to this equation (original from Horiba with sphere cuvette correction): $\Phi_{\rm F} = \Delta$ Area under emission curve / Δ Area under absorption curve the default mode for quantum yield measurement was set at slit width 3–2.8 nm, integration time 1 sec.

II. General Procedure for Preparation of the Starting Materials

A. Preparation of Naphthalene Carboximide and Perylene Carboximide Derivatives (1)

Naphthalene Carboximide and Perylene Carboximide Derivatives (1a and 1b) were prepared according to the reported procedures.^[1] The structures of known compounds were confirmed by comparing their ¹H NMR and ¹³C NMR data with those in the literature.

B. General Procedure for Preparation of the Cyclic Diaryliodonium Salts (2)

2-(Trifluoromethyl)dibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2a), 2-fluorodibenzo[b,d]iodol-5ium trifluoromethanesulfonate (2b), diphenyleniodonium trifluoromethanesulfonate (2c). 2methyldibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2d), 2-methoxydibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2e), 2,8-bis(trifluoromethyl)dibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2f), 2,8-difluorodibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2g), 3,7-difluorodibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2h), were prepared according to the reported procedures.^[1] The structures of known compounds were confirmed by comparing their ¹H NMR and ¹³C NMR data with those in the literature. Below are summarized characterization data for newly synthesized substrates.

2',3',5-Trifluoro-[1,1'-biphenyl]-2-amine (2i'):

Prepared following the general procedure using 2-bromo-4-fluoroaniline (2.0 g, 10.58 mmol) and purified by column chromatography on silica gel using 10% EtOAc/Hexanes as eluent to obtain a light-brown oil (2.36 g, 99% yield); IR (neat): 3467, 3377, 2917, 1585, 1470, 1263 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.25–7.08 (m, 3H), 6.94 (td, *J* = 8.5, 3.0 Hz, 1H), 6.86 (dd, *J* = 9.0, 2.9 Hz, 1H), 6.74 (dd, *J* = 8.8, 4.8 Hz, 1H), 3.55 (s, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ = 156.1 (d, *J*_{C,F} = 235.0 Hz), 151.2 (d, *J*_{C,F} = 248.0 Hz), 148.0 (d, *J*_{C,F} = 247.5 Hz), 140.4, 128.1 (d, *J*_{C,F} = 12.5 Hz), 126.4, 124.7 (dd, *J*_{C,F} = 7.5, 5.0 Hz), 121.2 (dd, *J*_{C,F} = 7.5, 1.25 Hz), 117.3 (d, *J*_{C,F} = 23.8 Hz), 117.1 (d, *J*_{C,F} = 6.3 Hz), 117.0 (d, *J*_{C,F} = 2.5 Hz), 116.4 (d, *J*_{C,F} = 22.5 Hz) ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ = -126.78 (s), -136.89 (d, *J* = 22.3 Hz), -139.37 (d, *J* = 21.1 Hz) ppm; HRMS (APCI) *m/z* calcd for C₁₂H₈F₃N+H⁺: 224.0682 [*M*+H]⁺; found: 224.0686

1,2,8-Trifluorodibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2i):

Prepared following the general procedure using 2',3',5-trifluoro-[1,1'-biphenyl]-2-amine (**2i**') (2.36 g, 10.58 mmol) and dried under vacuum to afford a white solid (3.91 g, 77% yield, 2 steps); Mp: 274.5–275.2 °C; IR (neat): 3086, 1572, 1221, 1020 cm⁻¹; ¹H NMR (400 MHz, DMSO) δ = 8.27–8.13 (m, 1H), 8.10–7.93 (m, 2H), 7.88–7.70 (m, 1H), 7.69–7.57 (m, 1H) ppm; ¹³C NMR (100 MHz, DMSO) δ = 162.46 (d, $J_{C,F}$ = 247.0 Hz), 151.2 (d, $J_{C,F}$ = 220.0 Hz), 149.1 (d, $J_{C,F}$ = 246.0 Hz), 140.4, 132.8 (d, $J_{C,F}$ = 9.0 Hz), 131.0 (d, $J_{C,F}$ = 9.0 Hz), 127.5 (dd, $J_{C,F}$ = 7.5, 4.8 Hz), 120.0 (d, $J_{C,F}$ = 19.0 Hz), 119.3 (d, $J_{C,F}$ = 23.0 Hz), 116.6 (dd, $J_{C,F}$ = 25.9, 16.0 Hz), 115.9, 115.7 (d, $J_{C,F}$ = 3.0 Hz) ppm; ¹⁹F NMR (376 MHz, DMSO) δ = -109.23, -135.04 (d, J = 20.3 Hz), -136.60 (d, J = 20.1 Hz) ppm; HRMS (APCI) m/z calcd for C₁₂H₅F₃I⁺: 332.9383 [*M*-OTf]⁺; found: 332.9384.

III. Optimization of Reaction Conditions Table S1 Screening for optimal reaction conditions.^a

2a

1a

Entry	Catalyst	Ligand	Base	Additive	Solvent	% Yield ^b
1 ^c	Pd(OAc) ₂	PPh₃	Cs ₂ CO ₃	-	DMSO	44%
2 ^c	Pd(OAc) ₂	PPh ₃	Cs ₂ CO ₃	-	sulfolane	19%
3 ^c	Pd(OAc) ₂	PPh ₃	Cs ₂ CO ₃	-	mesitylene	43%
4 ^c	Pd(OAc) ₂	PPh₃	Cs ₂ CO ₃	-	NMP	4%
5 ^c	Pd(OAc) ₂	PPh₃	Cs ₂ CO ₃	-	1,2-DCB	21%
6 ^c	Pd(OAc) ₂	PPh ₃	Cs ₂ CO ₃	-	1-chloronaphthalene	41%
7 ^d	Pd(OAc) ₂	PPh ₃	Cs ₂ CO ₃	-	mesitylene	27%
8	Pd(OAc) ₂	PPh₃	Cs ₂ CO ₃	-	mesitylene	50%
9	PdCl ₂	PPh₃	Cs ₂ CO ₃	-	mesitylene	60%
10	Pd(TFA) ₂	PPh ₃	Cs ₂ CO ₃	-	mesitylene	45%
11	Pd(PPh ₃) ₄	PPh ₃	Cs ₂ CO ₃	-	mesitylene	32%
12	PdCl ₂ (PhCN) ₂	PPh₃	Cs ₂ CO ₃	-	mesitylene	34%
13	PdCl ₂ (PPh ₃) ₂	PPh₃	Cs ₂ CO ₃	-	mesitylene	44%
14	PdCl ₂	P(4-CF₃Ph)₃	Cs ₂ CO ₃	-	mesitylene	17%
15	PdCl ₂	P(4-OMePh)₃	Cs ₂ CO ₃	-	mesitylene	33%
16	PdCl ₂	P(4-FPh)₃	Cs ₂ CO ₃	-	mesitylene	45%
17	PdCl ₂	P(o-furly)₃	Cs ₂ CO ₃	-	mesitylene	28%
18	PdCl ₂	-	Cs ₂ CO ₃	-	mesitylene	61%
19	PdCl ₂	-	K ₂ CO ₃	-	mesitylene	23%
20	PdCl ₂	-	K ₃ PO ₄	-	mesitylene	23%
21	PdCl ₂	-	CsF	-	mesitylene	20%
22	PdCl ₂	-	KOAc	-	mesitylene	12%

23	PdCl ₂		Cs ₂ CO ₃	Cul (0.1 equiv)	mesitylene	52%
24	PdCl ₂	-	Cs ₂ CO ₃	CuBr (0.1 equiv)	mesitylene	51%
25	PdCl ₂	-	Cs ₂ CO ₃	CuSO ₄ .H ₂ O (0.1 equiv)	mesitylene	28%
26	PdCl ₂	-	Cs ₂ CO ₃	CuCl ₂ (0.1 equiv)	mesitylene	24%
27	PdCl₂	-	Cs ₂ CO ₃	Ag ₂ CO ₃	mesitylene	84%
28	PdCl ₂	-	Cs ₂ CO ₃	AgOAc	mesitylene	trace
29	PdCl ₂	-	Cs ₂ CO ₃	AgClO ₄	mesitylene	25%
30	PdCl ₂	-	Cs ₂ CO ₃	AgTFA	mesitylene	38%
31	PdCl ₂	-	Cs ₂ CO ₃	Ag ₂ O	mesitylene	55%
32	PdCl ₂	-	Cs ₂ CO ₃	Ag_2CO_3 (2.2 equiv)	mesitylene	73%
33	PdCl ₂	-	Cs ₂ CO ₃	Ag ₂ CO ₃	mesitylene ^e	52%

Conditions: (a) naphthalene monoanhydride (**1a**, 0.25 mmol, 1 equiv), cyclic diphenyliodonium salt (**2a**, 0.50 mmol, 2 equiv), catalyst (0.025 mmol, 0.1 equiv), ligand (0.050 mmol, 0.2 equiv), base (0.275 mmol, 1.1 equiv), additive (0.275 mmol, 1.1 equiv), solvent (3.2 ml), 160 °C, 1h., (b) Isoated yields, (c) solvent (1.6 ml), (d) solvent (0.8 ml), DMSO = dimethyl sulfoxide, NMP = *N*-methyl-2-pyrrolidone, 1,2 DCB = 1,2-dichlorobenzene, P(4-CF₃Ph)₃ = tris(4-trifluoromethylphenyl)phosphine, P(4-OMePh)₃ = tris(4-methoxyphenyl)phosphine, P(4-FPh)₃ = tris(4-fluorophenyl)phosphine, P(*a*-furly)₃ = tri(2-furyl)phosphine, (e) reagent grade without prior purification.

IV. Synthesis of Dibenzopleiadiene Polycyclic Aromatic Dicarboximides Derivatives

A 10 mL oven-dried Schlenk tube was charged with palladium (II) chloride (4.4 mg, 2.5 μ mol, 0.1 equiv), silver carbonate (75 mg, 0.275 mmol, 1.1 equiv), cesium carbonate (89 mg, 0.275 mmol, 1.1 equiv), **1** (0.25 mmol, 1.0 equiv) and cyclic diaryliodonium triflate **2** (0.50 mmol, 2.0 equiv) in anhydrous mesitylene (3.20 mL). The reaction mixture was stirred at 160 °C for 1 h under ambient atmosphere. The reaction mixture was allowed to cool to rt, filtered, and extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. The residue was purified by column chromatography to give the corresponding product **3**.

V. Characterization of the Products

2-Butyl-11-(trifluoromethyl)-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':4,5]naphtho[1,8-cd]pyridine-1,3(2H)dione (3aa):

Prepared following the general procedure using 7-butyl-1H-isochromeno[6,5,4-def]isoquinoline-1,3,6,8(7H)-tetraone (1a) (81 mg, 0.25 mmol), 2-(trifluoromethyl)dibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2a) (248 mg, 0.50 mmol) and purified by column chromatography silica gel using 50% CH₂Cl₂/Hexanes as eluent to obtain the product as a yellow solid (98.7 mg, 84% yield); Mp: 278.5–281.4 °C (from CH₂Cl₂/Hexanes); IR (neat): 3065, 2962, 2856, 1582, 1444, 1096 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ =) 8.62 (d, J = 7.6 Hz, 2H), 8.00 (dd, J = 7.7, 2.6 Hz, 2H), 7.97 (s, 1H), 7.73 (d, J = 7.4 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.52 (dt, J = 22.9, 7.2 Hz, 2H), 7.27 (d, J = 8.6 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 4.19 (t, J = 7.4 Hz, 2H), 1.76-1.69 (m, 2H), 1.51–1.41 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H) ppm; 13 C NMR (100 MHz, CDCl₃) δ = 164.07, 164.05, 143.2, 142.7, 142.0, 139.6, 139.0, 137.0, 136.3, 134.5, 134.1, 131.3, 130.95, 130.9, 129.7, 129.5, 127.8, 127.7, 127.5, 125.19, 125.16, 124.0 (q, $J_{C,F}$ = 271.0 Hz), 122.1, 121.5, 40.5, 30.3, 20.5, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ = -62.65 (s) ppm; HRMS (DART) *m/z* calcd for C₂₉H₂₀F₃NO₂+H⁺: 472.1519 [*M*+H]⁺; found: 472.1525; UV/Vis (CHCl₃): λ_{max} (ε) = 404 nm (11900 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 404 nm): λ_{em} = 470 nm; Quantum yield (CHCl₃): 0.42.

2-Butyl-11-fluoro-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':4,5]naphtho[1,8-cd]pyridine-1,3(2H)-dione (3ab):

Prepared following the general procedure using 7-butyl-1H-isochromeno[6,5,4-def]isoquinoline-1,3,6,8(7H)-tetraone (**1a**) (81 mg, 0.25 mmol), 2-fluorodibenzo[b,d]iodol-5- ium trifluoromethanesulfonate (**2b**) (223 mg, 0.50 mmol) and purified by column chromatography silica gel using 50% CH₂Cl₂/Hexanes as eluent to obtain the product as a yellow solid (60.4 mg, 57% yield); Mp: 257.7–259.2 °C (from CH₂Cl₂/Hexanes); IR (neat): 3055, 2959, 2854, 1641, 1175 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.62 (dd, *J* = 8.9, 7.8 Hz,2H), 8.02 (d, *J* = 7.7 Hz, 1H), 7.95 (d, *J* = 7.7 Hz, 1H), 7.72 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.58–7.39 (m, 3H), 7.20 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.16 (dd, *J* = 6.6, 1.4 Hz, 2H), 4.20 (t, *J* = 7.6 Hz, 2H), 1.77–1.71 (m, 2H), 1.49–1.41 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ = 164.2 (x2), 163.2 (d, *J*_{C,F} = 248.0 Hz), 143.4, 142.8, 140.4 (d, *J*_{C,F} = 8.3 Hz), 139.5, 137.2, 136.22, 136.2, 135.8 (d, *J*_{C,F} = 3.3 Hz), 134.1, 131.2, 131.1, 130.8, 129.5, 129.4, 127.7, 127.3, 127.1, 121.5, 121.3, 117.19 (d, *J*_{C,F} = 22.3 Hz), 116.11 (d, *J*_{C,F} = 21.3 Hz), 40.4, 30.4, 20.6, 14.0 ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ = -112.88 (s) ppm; HRMS (APCI) *m/z* calcd for C₂₈H₂₀FNO₂+H⁺: 422.1551 [*M*+H]⁺; found: 422.1553; UV/Vis (CHCl₃): λ_{max} (ε) = 409 nm (20400 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 409 nm): λ_{em} = 467 nm; Quantum yield (CHCl₃): 0.70.

2-Butyl-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':4,5]naphtho[1,8-cd]pyridine-1,3(2H)-dione (3ac) ^[1]:

Prepared following the general procedure using 7-butyl-1H-isochromeno[6,5,4-def]isoquinoline-1,3,6,8(7H)-tetraone (**1a**) (81 mg, 0.25 mmol), diphenyleniodonium trifluoromethanesulfonate (**2a**) (214 mg, 0.50 mmol) and purified by column chromatography silica gel using 50% CH₂Cl₂/Hexanes as eluent to obtain the product as a yellow solid (33.2 mg, 33% yield); Mp: 220.2–222.1 °C (from CH₂Cl₂/Hexanes); IR (neat): 3064, 2958, 1643, 1568, 1387, 1086 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.62 (d, *J* = 7.7 Hz, 2H), 8.01 (d, *J* = 7.7 Hz, 2H), 7.74 (dd, *J* = 7.7, 1.3 Hz, 2H), 7.63–7.32 (m, 4H), 7.19 (dd, *J* = 7.8, 1.2 Hz, 2H), 4.20 (t, *J* = 7.5 Hz, 2H), 1.80–1.65 (m, 2H), 1.54–1.38 (m, 2H), 0.99 (t, *J* = 7.3 Hz, 3H) ppm; UV/Vis (CHCl₃): λ_{max} (ε) = 412 nm (22700 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 412 nm): λ_{em} = 470 nm; Quantum yield (CHCl₃): 0.79.

2-Butyl-11-methyl-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':4,5]naphtho[1,8-cd]pyridine-1,3(2H)-dione (3ad):

Prepared following the general procedure using 7-butyl-1H-isochromeno[6,5,4-def]isoquinoline-1,3,6,8(7H)-tetraone (**1a**) (81 mg, 0.25 mmol), 2-methyldibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (**2d**) (221 mg, 0.50 mmol) and purified by column chromatography silica gel using 50% CH₂Cl₂/Hexanes as eluent to obtain the product as a yellow solid (41.4 mg, 39% yield); Mp: 217.1–218.1 °C (from CH₂Cl₂/Hexanes); IR (neat): 3025, 2917, 2853, 1640, 1084 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.60 (dd, *J* = 7.7, 2.9 Hz, 2H), 7.97 (dd, *J* = 7.7, 4.2 Hz, 2H), 7.74 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.54 (s, 1H), 7.52–7.42 (m, 2H), 7.29–7.24 (m, 1H), 7.17 (d, *J* = 8.6 Hz, 1H), 7.08 (d, *J* = 8.1 Hz, 1H), 4.20 (t, *J* = 7.5 Hz, 2H), 2.47 (s, 3H), 1.78–1.70 (m, 2H), 1.56–1.38 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 164.4 (x2), 143.9, 143.8, 139.5, 139.3, 138.4, 138.0, 136.9, 136.2, 134.0, 133.9, 131.5, 131.12, 131.0, 130.8, 129.9, 129.2, 128.9, 127.7, 127.1, 126.8, 121.3, 121.0, 40.9, 30.4, 21.3, 20.6, 14.0 ppm; HRMS (APCI) *m/z* calcd for C₂₉H₂₃NO₂+H⁺: 418.1802 [*M*+H]⁺; found: 418.1800; UV/Vis (CHCl₃): λ_{max} (ε) = 416 nm (23200 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 416 nm): λ_{em} = 475 nm; Quantum yield (CHCl₃): 0.81.

2-Butyl-11-methoxy-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':4,5]naphtho[1,8-cd]pyridine-1,3(2H)-dione (3ae):

Prepared following the general procedure using 7-butyl-1H-isochromeno[6,5,4-def]isoquinoline-1,3,6,8(7H)-tetraone (**1a**) (81 mg, 0.25 mmol), 2-methoxydibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (**2e**) (229 mg, 0.50 mmol) and purified by column chromatography silica gel using 50% CH₂Cl₂/Hexanes as eluent to obtain the product as a yellow solid (24.7 mg, 23% yield); Mp: 174.2–176.1 °C (from CH₂Cl₂/Hexanes); IR (neat): 2956, 2830, 1642, 1087 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.61 (dd, *J* = 9.7, 7.8 Hz, 2H), 7.99 (d, *J* = 7.7 Hz, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.75 (d, *J* = 9.0 Hz, 1H), 7.57–7.39 (m, 1H), 7.24 (d, *J* = 2.7 Hz, 1H), 7.19 (d, *J* = 7.8 Hz, 1H), 7.01 (dd, *J* = 8.8, 2.7 Hz, 1H), 4.20 (t, *J* = 7.3 Hz, 2H), 3.92 (s, 3H), 1.77–1.72 (m, 2H), 1.53–1.39 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 164.4, 164.4, 160.2, 143.8, 143.7, 139.6, 139.5, 138.2, 136.0, 135.7, 134.0, 132.5, 131.2, 131.0, 130.8, 129.3, 129.1, 127.8, 127.1, 126.4, 121.4, 120.6, 115.7, 114.9, 55.7, 40.4, 30.4, 20.6, 14.0 ppm ; HRMS (APCl) *m/z* calcd for C₂₉H₂₃NO₃+H⁺: 434.1751 [*M*+H]⁺; found: 434.1752; UV/Vis (CHCl₃): $\lambda_{max}(\varepsilon)$ = 426 nm (15000 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 426 nm): λ_{em} = 494 nm; Quantum yield (CHCl₃): 0.93.

2-Butyl-8,11-bis(trifluoromethyl)-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':4,5]naphtho[1,8-cd]pyridine-1,3(2H)-dione (3af)^[1]:

Prepared following the general procedure using 7-butyl-1H-isochromeno[6,5,4-def]isoquinoline-1,3,6,8(7H)-tetraone (1a) (81 mg, 0.25 mmol), 2,8-bis(trifluoromethyl)dibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (2f) (282 mg, 0.50 mmol) and purified by column chromatography silica gel using 10% EtOAc/Hexanes as eluent to obtain the product as a light-yellow solid (118.6 mg, 88% yield); Mp: >300 °C (from CH₂Cl₂/Hexanes); IR (neat): 3067, 2970, 2880, 1646, 1121 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 8.68 (d, *J* = 7.7 Hz, 2H), 8.07 (d, *J* = 7.7 Hz, 2H), 7.96 (s, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 4.20 (td, *J* = 7.1, 2.5 Hz, 2H), 1.87–1.64 (m, 2H), 1.52–1.39 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H) ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ = -62.67 (s) ppm; UV/Vis (CHCl₃): $\lambda_{max}(\varepsilon)$ = 396 nm (21800 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 396 nm): λ_{em} = 462 nm; Quantum yield (CHCl₃): 0.24.

2-Butyl-8,11-difluoro-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':4,5]naphtho[1,8-cd]pyridine-1,3(2H)-dione (3ag):

Prepared following the general procedure using 7-butyl-1H-isochromeno[6,5,4-def]isoquinoline-1,3,6,8(7H)-tetraone (**1a**) (81 mg, 0.25 mmol), 2,8-difluorodibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (**2g**) (232 mg, 0.50 mmol) and purified by column chromatography silica gel using 50% CH₂Cl₂/Hexanes as eluent to obtain the product as a yellow solid (79.3 mg, 72% yield); Mp: >280°C (decomposition) (from CH₂Cl₂/Hexanes); IR (neat): 3077, 2963, 2857, 1643, 1085 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 8.62 (d, *J* = 7.7 Hz, 2H), 7.96 (d, *J* = 7.7 Hz, 2H), 7.41 (d, *J* = 11.4 Hz, 2H), 7.18 (dd, *J* = 6.4, 3.5 Hz, 4H), 4.19 (t, *J* = 7.2 Hz, 2H), 1.76–1.71 (m, 2H), 1.50–1.42 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ = 164.0, 163.0 (d, *J*_{CF} = 249.0 Hz), 142.3, 139.0 (d, *J*_{CF} = 7.5 Hz), 136.2 (d, *J*_{CF} = 8.8 Hz), 135.9, 135.6 (d, *J*_{CF} = 2.5 Hz), 131.0, 127.6, 127.1, 121.3, 117.1 (d, *J*_{CF} = 22.5 Hz), 116.5 (d, *J*_{CF} = 20.0Hz), 40.3, 30.2, 20.4, 13.9 ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ = -112.43 (s) ppm; HRMS (APCI) *m/z* calcd for C₂₈H₁₉F₂NO₂+H⁺: 440.1457 [*M*+H]⁺; found: 440.1458; UV/Vis (CHCl₃): $\lambda_{max}(\varepsilon)$ = 407 nm (11900 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 407 nm): λ_{em} = 466 nm; Quantum yield (CHCl₃): 0.70.

2-Butyl-7,12-difluoro-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':4,5]naphtho[1,8-cd]pyridine-1,3(2H)-dione (3ah):

Prepared following the general procedure using 7-butyl-1H-isochromeno[6,5,4-def]isoquinoline-1,3,6,8(7H)-tetraone (**1a**) (81 mg, 0.25 mmol), 3,7-difluorodibenzo[b,d]iodol-5-iumtrifluoromethanesulfonate (**2h**) (232 mg, 0.50 mmol) and purified by column chromatography silica gel using 50% CH₂Cl₂/Hexanes as eluent to obtain the product as a yellow solid (79.4 mg, 72% yield); Mp: 250.7–252.3 °C (from CH₂Cl₂/Hexanes); IR (neat): 3064, 2962, 2874, 1644, 1118 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.64 (d, *J* = 7.7 Hz, 2H), 8.00 (d, *J* = 7.7 Hz, 2H), 7.65 (dd, *J* = 8.7, 5.8 Hz, 2H), 7.25–7.16 (m, 2H), 6.91 (dd, *J* = 10.2, 2.7 Hz, 2H), 4.20 (t, *J* = 7.2 Hz, 2H), 1.77–1.72 (m, 2H), 1.49–1.42 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 164.1, 162.6 (d, *J*_{CF} = 247.0 Hz), 142.2, 141.2 (d, *J*_{CF} = 8.0 Hz), 135.8, 133.6 (d, *J*_{CF} = 3.0 Hz), 132.8 (d, *J*_{CF} = 8.0 Hz), 131.2, 127.8, 127.5, 122.0, 120.0 (d, *J*_{CF} = 22.0 Hz), 116.4 (d, *J*_{CF1} = 21.0 Hz), 40.5, 30.4, 20.6, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ = -113.48 (s) ppm; HRMS (APCI) *m/z* calcd for C₂₈H₁₉F₂NO₂+H⁺: 440.1457 [*M*+H]⁺; found: 440.1450; UV/Vis (CHCl₃): λ_{max} (ε) = 408 nm (14200 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 408 nm): λ_{em} = 468 nm; Quantum yield (CHCl₃): 0.63.

2-Butyl-8,10,11-trifluoro-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':4,5]naphtho[1,8-cd]pyridine-1,3(2H)dione (3ai):

Prepared following the general procedure using 7-butyl-1H-isochromeno[6,5,4-def]isoquinoline-1,3,6,8(7H)-tetraone (**1a**) (81 mg, 0.25 mmol), 1,2,8-trifluorodibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (**2g**) (241 mg, 0.50 mmol) and purified by column chromatography silica gel using 50% CH₂Cl₂/Hexanes as eluent to obtain the product as a yellow solid (84.3 mg, 74% yield); Mp: 279.2–280.3 °C (from CH₂Cl₂/Hexanes); IR (neat): 2964, 2856, 1642, 1153 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.62 (t, *J* = 8.0 Hz, 2H), 7.98 (dd, *J* = 7.7, 4.6 Hz, 2H), 7.51 (ddd, *J* = 9.6, 5.7, 2.6 Hz, 1H), 7.30–7.24 (m, 2H), 7.22–7.10 (m, 2H), 6.91 (ddd, *J* = 8.9, 5.0, 1.7 Hz, 1H), 4.19 (t, *J* = 7.6 Hz, 2H), 1.76–1.72 (m, 2H), 1.50–1.43 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ =164.03, 164.0, 162.0 (d, *J*_{CF} = 236.3 Hz), 151.2 (d, *J*_{CF} = 251.5 Hz), 147.7 (d, *J*_{CF} = 249.2 Hz), 142.2, 141.6, 137.1 (d, *J*_{CF} = 6.5, 4.1 Hz), 127.7, 127.24, 127.22, 127.0 (d, *J*_{CF} = 9.0 Hz), 121.9, 121.5, 118.9 (dd, *J*_{CF} = 23.2, 8.9 Hz), 117.7 (d, *J*_{CF} = 16.1 Hz), 117.2 (d, *J*_{CF} = 21.3 Hz), 40.5, 30.3, 20.5, 14.0 ppm; ¹⁹F NMR (417 MHz, CDCl₃) δ = 113.26 (s), -135.12 (d, *J* = 20.8 Hz), -138.41 (d, *J* = 20.8 Hz) ppm; HRMS (APCl) *m/z* calcd for C₂₈H₁₈F₃NO₂+H⁺: 458.1362 [*M*+H]⁺; found: 458.1361; UV/Vis (CHCl₃): $\lambda_{max}(\varepsilon)$ = 401 nm (24800 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 401 nm): λ_{em} = 472 nm; Quantum yield (CHCl₃): 0.50.

10,13-Difluoro-2-octanoyl-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':9,10]peryleno[3,4-cd]pyridine-1,3(2H)dione (3bg):

Prepared following the general procedure using 9-octyl-1H-isochromeno[6',5',4':10,5,6]anthra[2,1,9-def]isoquinoline-1,3,8,10(9H)-tetraone (**1b**) (125.9 mg, 0.25 mmol), 2,8-difluorodibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (**2g**) (232 mg, 0.50 mmol) and purified by column chromatography silica gel using 50% CH₂Cl₂/Hexanes as eluent to obtain the product as a purple solid (91.2 mg, 59% yield); Mp: >300 °C (from CHCl₃/Acetone); IR (neat): 3080, 2921, 2852, 1649, 1133 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.60 (d, *J* = 8.1 Hz, 2H), 8.48 (d, *J* = 8.1 Hz, 2H), 8.43 (d, *J* = 8.2 Hz, 2H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 9.7 Hz, 2H), 7.16 (d, *J* = 6.6 Hz, 4H), 4.18 (t, *J* = 7.6 Hz, 2H), 1.85–1.67 (m, 2H), 1.48–1.21 (m, 12H), 0.88 (t, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (125 MHz, C₂D₂Cl₄) δ = 163.7, 162.5 (d, *J*_{CF} = 246.0 Hz), 139.1, 139.05 (d, *J*_{CF} = 8.8 Hz), 138.6, 136.6, 136.5, 135.6 (d, *J*_{CF} = 7.5 Hz), 131.4, 129.4, 128.1, 127.9, 127.2, 125.8, 123.9, 120.6, 120.3, 116.3 (d, *J*_{CF} = 22.5 Hz), 116.1 (d, *J*_{CF} = 21.3 Hz), 40.4, 31.7, 29.3, 29.2, 28.0, 27.2, 22.6, 14.1 ppm ; ¹⁹F NMR (471 MHz, CDCl₃) δ = -111.71 (s) ppm; HRMS (APCI) *m*/*z* calcd for C₄₂H₃₁F₂NO₂+H⁺: 620.2396 [*M*+H]⁺; found: 620.2394; UV/Vis (CHCl₃: λ_{max} (ε) = 540 nm (35500 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 532 nm): λ_{em} = 611 nm; Quantum yield (CHCl₃): 0.59.

10,12,13-Trifluoro-2-octanoyl-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':9,10]peryleno[3,4-cd]pyridine-1,3(2H)-dione (3bi):

Prepared following the general procedure 9-octyl-1H-isochromeno[6',5',4':10,5,6]anthra[2,1,9-def]isoquinoline-1,3,8,10(9H)-tetraone (**1b**) (125.9 mg, 0.25 mmol), 1,2,8-trifluorodibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (241mg, 0.50 mmol) and purified by column chromatography silica gel using 50% CH₂Cl₂/Hexanes as eluent to obtain the product as a purple solid (98.4 mg, 62% yield); Mp: >300 °C (from CHCl₃/Acetone); IR (neat): 2924, 2852, 1650, 1130 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 8.54 (dd, *J* = 8.0, 1.0 Hz, 2H), 8.41 (dd, *J* = 11.3, 8.1 Hz, 2H), 8.36 (dd, *J* = 8.1, 3.1 Hz, 2H), 7.91–7.76 (m, 2H), 7.50 (ddd, *J* = 8.2, 5.6, 2.5 Hz, 1H), 7.25–7.07 (m, 3H), 6.90 (dd, *J* = 9.2, 4.3 Hz, 1H), 4.13 (t, *J* = 7.2 Hz, 2H), 1.76–1.72 (m, 2H), 1.45–1.25 (m, 12H), 0.88 (t, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (151 MHz, CD₂Cl₂) δ = 163.6 (x2), 161.8 (d, *J*_{CF} = 248.2 Hz), 150.7 (d, *J*_{CF} = 250.5 Hz), 147.4 (d, *J*_{CF} = 249.3 Hz), 139.5, 138.6 (d, *J*_{CF} = 3.0 Hz), 138.5, 138.3, 137.9 (d, *J*_{CF} = 3.0 Hz), 136.4, 136.3, 135.8 (d, *J*_{CF} = 7.6 Hz), 132.1 (d, *J*_{CF} = 6.0 Hz), 131.2, 131.17, 129.6, 129.3 (dd, *J*_{CF} = 6.0, 4.5 Hz), 128.7, 128.3, 128.2, 128.1, 127.4, 127.1 (d, *J*_{CF} = 9.0 Hz), 126.1, 124.0, 123.8, 121.4, 121.3, 120.6, 120.58, 118.0 (dd, *J*_{CF} = 22.7, 9.0 Hz), 117.2 (d, *J*_{CF} = 16.6 Hz),116.6 (d, *J*_{CF} = 21.1 Hz), 40.3, 31.9, 29.4, 29.3, 28.1, 27.2, 22.7, 13.9 ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.36 (s), -136.42 (d, *J* = 20.8 Hz), -139.45 (d, *J* = 20.7 Hz) ppm; HRMS (APCI) *m/z* calcd for C42H₃₀F₃NO₂+H⁺: 638.2301 [*M*+H]⁺; found: 638.2305; UV/Vis (CHCl₃): λ_{max} (ε) = 550 nm (41800 mol⁻¹dm³cm⁻¹; Fluorescence (CHCl₃, λ_{ex} = 550 nm): λ_{em} = 599 nm; Quantum yield (CHCl₃): 0.60.

VI. Synthesis of push-pull heptagon-embedded PADIs

The nucleophilic substitution to synthesize push-pull heptagon-embedded PADIs was adapted from the previous literature. ^[2]

Synthesis of Compound 4

To a Schlenk flask under argon was added **3ag** (43.9 mg, 0.1 mmol), carbazole (50.1 mg, 0.3 mmol), cesium carbonate (162.5 mg, 0.5 mmol), and anhydrous DMF (1.0 mL). The reaction mixture was then heated to 150 °C and stirred for overnight. The residue was extracted with CH_2Cl_2 . The combined organic layers were washed with H_2O and brine, dried over anhydrous MgSO₄, and concentrated by rotary evaporation. The crude product was purified by column chromatography on a silica gel with 50% CH_2Cl_2 /Hexanes as eluent to give compound **4**.

2-Butyl-8,11-di(9H-carbazol-9-yl)-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':4,5]naphtho[1,8-cd]pyridine-1,3(2H)-dione (4):

Light-yellow solid (32.4 mg, 44% yield); Mp: >300 °C (from CH₂Cl₂/MeOH); IR (neat): 3048, 2958, 2856, 1652, 1476, 1220 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 8.73 (d, *J* = 7.7 Hz, 2H), 8.18 (d, *J* = 7.7 Hz, 2H), 8.12 (d, *J* = 7.6 Hz, 4H), 8.00 (d, *J* = 1.9 Hz, 2H), 7.74 (dd, *J* = 8.4, 1.9 Hz, 2H), 7.49 (dd, *J* = 10.9, 8.5 Hz, 6H), 7.34 (t, *J* = 7.6 Hz, 4H), 7.31–7.16 (m, 4H), 4.25 (t, *J* = 7.8 Hz, 2H), 1.82–1.77 (m, 2H), 1.53–1.47 (m, 2H), 1.02 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 164.2, 142.7, 140.4 (x2), 139.1, 139.05, 138.3, 136.2, 136.0, 131.3, 128.3, 128.0, 127.6, 127.4, 126.4 (x2), 123.9 (x2), 121.8, 120.7 (x2). 120.6 (x2), 109.8 (x2), 40.5, 30.4, 20.6, 14.0 ppm; HRMS (APCI) *m/z* calcd for C₅₂H₃₅N₃O₂+H⁺: 734.2804 [*M*+H]⁺; found: 734.2802; UV/Vis (CHCl₃): $\lambda_{max}(\varepsilon)$ = 434 nm (25600 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 434 nm): λ_{em} = 536 nm; Quantum yield (CHCl₃): 0.77.

Synthesis of Compound 5

To a Schlenk flask under argon was added **3ag** (43.9 mg, 0.1 mmol), morpholine (0.1 ml, 1.2 mmol) and anhydrous DMSO (0.5 mL). The reaction mixture was then heated to 150 °C and stirred for overnight. The residue was extracted with CH₂Cl₂. The combined organic layers were washed with H₂O and brine, dried over anhydrous MgSO₄, and concentrated by rotary evaporation. The crude product was purified by column chromatography on a silica gel with CH₂Cl₂ as eluent to give compound **5**.

Orange solid (25.3 mg, 44% yield); Mp: > 250°C (decomposition) (from CH₂Cl₂/MeOH); IR (neat): 3036, 2923, 2852, 1648, 1546, 1448, 1230 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.56 (d, *J* = 7.8 Hz, 2H), 7.89 (d, *J* = 7.8 Hz, 2H), 7.16 (d, *J* = 2.6 Hz, 2H), 7.12 (d, *J* = 8.8 Hz, 2H), 6.99 (dd, *J* = 8.8, 2.6, 2H), 4.19 (t, *J* = 7.2 Hz, 2H), 3.94–3.86 (m, 8H), 3.34–3.25 (m, 8H), 1.75–1.71 (m, 2H), 1.49–1.45 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 164.5, 151.9, 144.0, 139.6, 135.4, 135.3, 131.2, 131.1, 128.0, 125.9, 120.4, 116.2, 115.9, 66.9, 48.6, 40.3, 30.4, 20.6, 14.0 ppm; HRMS (APCI) *m/z* calcd for C₃₆H₃₅N₃O₄+H⁺: 574.2700 [*M*+H]⁺; found: 574.2704; UV/Vis (CHCl₃): λ_{max} (ε) = 459 nm (27000 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 459 nm): λ_{em} = 578 nm; Quantum yield (CHCl₃): 0.75.

Synthesis of Compound 6

To a Schlenk flask under argon was added **3ag** (43.9 mg, 0.1 mmol), phenol (39.5 mg, 0.4 mmol), potassium carbonate (55.3 mg, 0.4 mmol), and anhydrous DMF (1.5 mL). The reaction mixture was then heated to 150 °C and stirred for overnight. The residue was extracted with CH_2Cl_2 . The combined organic layers were washed with H_2O and brine, dried over anhydrous MgSO₄, and concentrated by rotary evaporation. The crude product was purified by column chromatography on a silica gel with 50% CH_2Cl_2 /Hexanes as eluent to give compound **6**.

Light-yellow solid (34.9 mg, 59% yield); Mp: 224.8–225.9 °C (from CH₂Cl₂/MeOH); IR (neat): 3041, 2929, 2872, 1646, 1487, 1221 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.61 (d, *J* = 7.7 Hz, 2H), 7.95 (d, *J* = 7.7 Hz, 2H), 7.43–7.31 (m, 4H), 7.25 (s, 2H), 7.16 (dd, *J* = 17.5, 8.1 Hz, 4H), 7.10–7.02 (m, 6H), 4.20 (t, *J* = 7.5 Hz, 2H), 1.78–1.72 (m, 2H), 1.51–1.42 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 164.3, 158.4, 156.2, 143.2, 139.3, 135.9, 135.8, 134.3, 131.1, 130.2 (x2), 127.8, 126.8, 124.3, 121.0, 119.7 (x2), 119.6, 119.0, 40.4, 30.8, 20.6, 14.0 ppm; HRMS (APCI) *m/z* calcd for C₄₀H₂₉NO₄+H⁺: 588.2169 [*M*+H]⁺; found: 588.2170; UV/Vis (CHCl₃): $\lambda_{max}(\varepsilon)$ = 426 nm (24400 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 426 nm): λ_{em} = 490 nm; Quantum yield (CHCl₃): 0.93.

Synthesis of Compound 7

To a Schlenk flask under argon was added **3ag** (43.9 mg, 0.1 mmol), thiophenol (0.1 ml, 1.05 mmol), cesium carbonate (130.0 mg, 0.4 mmol), and anhydrous DMSO (1.5 mL). The reaction mixture was then heated to 150 °C and stirred for overnight. The residue was extracted with CH_2Cl_2 . The combined organic layers were washed with H_2O and brine, dried over anhydrous MgSO₄, and concentrated by rotary evaporation. The crude product was purified by column chromatography on a silica gel with 50% CH_2Cl_2 /Hexanes as eluent to give compound **7**.

Yellow solid (33.0 mg, 53% yield); Mp: > 146 °C (decomposition) °C (from CH₂Cl₂/MeOH); IR (neat): 2959, 2854, 1650, 1566, 1345, 1068 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 8.59 (d, *J* = 7.8 Hz, 2H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.51 (d, *J* = 1.9 Hz, 2H), 7.45 (dd, *J* = 8.0, 1.5 Hz, 4H), 7.41–7.29 (m, 6H), 7.27–7.22 (m, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 4.18 (t, *J* = 7.2 Hz, 2H), 1.75–1.71 (m, 2H), 1.49–1.42 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 164.2, 143.0, 139.1, 138.2, 137.7, 135.9, 134.7, 133.7, 132.8 (x2), 131.1, 129.8, 129.7 (x2), 128.3 (x2), 127.8, 127.0, 121.4, 40.4, 30.5, 20.5, 14.0 ppm; HRMS (APCI) *m/z* calcd for C₄₀H₂₉NO₂S₂+H⁺: 620.1712 [*M*+H]⁺; found: 620.1715; UV/Vis (CHCl₃): λ_{max} (ε) = 433 nm (18500 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 432 nm): λ_{em} = 505 nm; Quantum yield (CHCl₃): 0.73.

Synthesis of Compound 8a and 8b

To a Schlenk flask under argon was added **3bg** (67.3 mg, 0.1 mmol), morpholine (2.0 mL, 23 mmol), silver carbonate (44 mg, 0.16 mmol), potassium persulfate (518 mg, 1.9 mmol), and water (28.8 μ L, 0.16 mmol). The reaction mixture was then heated to 150 °C and stirred for 60 h. The residue was extracted with CH₂Cl₂. The combined organic layers were washed with H₂O and brine, dried over anhydrous MgSO₄, and concentrated by rotary evaporation. The crude product was purified by column chromatography on a silica gel with CH₂Cl₂ to 1% CH₂Cl₂/MeOH as eluent to give compound **8a** and **8b**.

13-Fluoro-10-morpholino-2-octyl-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':9,10]peryleno[3,4-cd]pyridine-1,3(2H)-dione (8a):

Dark purple solid (28.5 mg, 42% yield); Mp: : > 300 °C (from CH₂Cl₂/MeOH); IR (neat): 3077, 2923, 2850, 1650, 1561, 1162 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.53 (dd, *J* = 8.1, 1.9 Hz, 2H), 8.39 (dd, *J* = 8.1, 3.0 Hz, 2H), 8.33 (dd, *J* = 8.2, 2.3 Hz, 2H), 7.79 (dd, *J* = 11.4, 8.0 Hz, 2H), 7.42 (dd, *J* = 9.9, 2.3 Hz, 1H), 7.18–7.07 (m, 4H), 7.00 (dd, *J* = 8.8, 2.7 Hz, 1H), 4.16 (t, *J* = 7.6 Hz, 2H), 3.93–3.90 (m, 4H), 3.35–3.26 (m, 4H), 1.78–1.72 (m, 2H), 1.43–1.25 (m, 12H), 0.88 (t, *J* = 6.9 Hz, 3H) ppm;¹³C NMR (125 MHz, CDCl₃) δ = 164.1 (x2), 162.8 (d, *J_{CF}* = 247.5 Hz), 151.3, 141.1 (d, *J_{CF}* = 7.5 Hz), 140.1, 139.3, 139.28, 138.3, 137.2, 137.6, 137.0 (d, *J_{CF}* = 2.5 Hz), 135.7 (d, *J_{CF}* = 7.5 Hz), 134.8, 132.3, 131.6, 131.57, 129.9, 128.1, 128.07, 127.5, 127.4, 127.3, 126.2, 124.3, 123.9, 120.9, 120.6, 120.2, 120.1, 116.4 (d, *J_{CF}* = 22.5 Hz), 116.2, 116.0, 115.7 (d, *J_{CF}* = 21.3 Hz), 66.9, 48.7, 40.6, 32.0, 29.5, 29.4, 28.3, 27.4, 22.8, 14.3 ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.09 (s) ppm; HRMS (DART) *m/z* calcd for C₄₆H₃₉FN₂O₃+H⁺: 687.3017 [*M*+H]⁺; found: 687.3013; UV/Vis (CHCl₃): $\lambda_{max}(\varepsilon)$ = 564 nm (30600 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 570 nm): λ_{em} = 678 nm; Quantum yield (CHCl₃): 0.19.

10,13-Dimorpholino-2-octyl-1H-dibenzo[4',5':6',7']cyclohepta[1',2',3':9,10]peryleno[3,4-cd]pyridine-1,3(2H)dione (8b):

Dark purple solid (28.4 mg, 38% yield); Mp: > 300 °C (from CH₂Cl₂/MeOH); IR (neat): 2920, 2848, 1648, 1557, 1349, 1120 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 8.48 (d, *J* = 8.1 Hz, 2H), 8.33 (d, *J* = 8.1 Hz, 2H), 8.26 (d, *J* = 8.2 Hz, 2H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 2.7 Hz, 2H), 7.11 (d, *J* = 8.7 Hz, 2H), 6.98 (dd, *J* = 8.8, 2.6 Hz, 2H), 4.16 (t, *J* = 7.5 Hz, 2H), 3.93–3.90 (m, 8H), 3.34–3.25 (m, 8H), 1.76–1.72 (m, 2H), 1.43–1.25 (m, 12H), 0.87 (t, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 164.1, 151.2, 140.4, 139.8, 139.0, 137.3, 134.8, 132.3, 131.5, 129.8, 127.4, 127.2, 127.1, 126.0, 124.1, 120.3, 119.7, 116.0, 115.8, 66.9, 48.9, 40.6, 32.0, 29.5, 29.4, 28.3, 27.4, 22.8, 14.3 ppm; HRMS (DART) *m/z* calcd for C₅₀H₄₇N₃O₄+H⁺: 734.3639 [*M*+H]⁺; found: 734.3645; UV/Vis (CHCl₃): λ_{max} (ε) = 581 nm (32400 mol⁻¹dm³cm⁻¹); Fluorescence (CHCl₃, λ_{ex} = 586 nm): λ_{em} = 695 nm; Quantum yield (CHCl₃): 0.17.

VII. X-ray Single Crystal Analysis

Experimental details

The X-ray crystallographic data of **4** was collected on a Bruker CCD diffractometer controlled by *APEX3* software, and the cell refinement and data reduction were carried out by *SAINT*.^[3] Absorption correction was done by a multi-scan method using *SADABS*.^[4] The structure solution was done by an intrinsic phasing method in *SHELXT* software.^[5] The structure was then refined on F^2 by a full-matrix least-squares method using *the SHELXL* program package.^[6] All non-hydrogen atoms were treated anisotropically, while the H atoms were refined by a riding model. Olex2^[7] and Mercury^[8] software packages were used to prepare molecular graphics and materials for publication.

CCDC 2178872 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Compound	4
Empirical formula	C ₅₂ H ₃₅ N ₃ O ₂
Formula weight	733.83
Temperature/K	298
Crystal system	triclinic
Space group	P-1
a/Å	9.0827(12)
b/Å	14.2076(18)
c/Å	15.2875(19)
α/°	101.390(4)
β/°	104.212(4)
γ/°	96.122(5)
Volume/ų	1849.6(4)
Z	2
$\rho_{calc}g/cm^3$	1.318
µ/mm⁻¹	0.630
F(000)	768.0
Crystal size/mm ³	$0.05 \times 0.05 \times 0.05$
Radiation	CuKα (λ = 1.54178)
20 range for data collection/°	6.432 to 144.544
Index ranges	-11 ≤ h ≤ 11, -17 ≤ k ≤ 17, -18 ≤ l ≤ 18
Reflections collected	63100
Independent reflections	7167 [R _{int} = 0.0227, R _{sigma} = 0.0125]
Data/restraints/parameters	7167/0/515
Goodness-of-fit on F ²	1.058
Final R indexes [I>=2σ (I)]	$R_1 = 0.0426$, $wR_2 = 0.1234$
Final R indexes [all data]	$R_1 = 0.0467$, $wR_2 = 0.1274$
Largest diff. peak/hole / e Å ⁻³	0.36/-0.22

Table S2 Crystal data, data collection, and refinement details for 4.

Figure S1 A view of molecular packing of **4** showing an $R_2^2(10)$ motif constructed from two C10—H10···O2 interactions (light green dash lines) in the extended structure.

Figure S2 (a) A view of the three-dimensional Hirshfeld surface of **4** plotted over d_{norm} in the range -0.13 to 1.78 a.u. (b) A view of the shape-index Hirshfeld surface plotted over d_{norm} in the range -1.00 to 1.00 a.u.). The presence of red spots near the oxygen (O2) and hydrogen (H1) supports the occurrence of the $R_2^2(10)$ C–H···O interactions and the shape index property of the Hirshfeld surface suggests the absence of the π - π interactions. Both the surfaces are computed by *Crystal Explorer 17.5* software (Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer 17.5*. The University of Western Australia.).

VIII. Photophysical Properties

Compound	$\lambda_{ab}{}^{[a]}$ [nm]	λ _{em} ^[b] [nm]	Stokes shifts [cm ⁻¹]	ε [M ⁻¹ cm ⁻¹]	Fluorescent quantum yield ^[c]
3 aa	404	470	3480	11900	0.42
3ab	409	467	3040	20400	0.70
Bac	412	470	3000	22700	0 79

Table S3 The photophysical properties of all compounds in CHCl₃.

Compound	$\lambda_{ab}^{[a]}$ [nm]	λ _{em^[D] [nm]}	Stokes shifts [cm ⁻¹]	<i>ɛ</i> [M⁻¹ cm⁻¹]	quantum yield $^{[c]}$ [$arPhi_{ extsf{F}}]$
3 aa	404	470	3480	11900	0.42
3ab	409	467	3040	20400	0.70
3ac	412	470	3000	22700	0.79
3ad	416	475	2990	23200	0.81
3ae	426	494	3230	15000	0.93
3af	396	462	3610	21800	0.24
3ag	407	466	3100	11900	0.70
3ah	408	468	3100	14200	0.63
3ai	401	472	3750	24800	0.50
3bg	540	611	2150	35500	0.59
3bi	550	599	1490	41800	0.60 ^[d]
4	434	536	4390	25600	0.77
5	459	578	4490	27000	0.75
6	426	490	3070	24400	0.93
7	433	505	3290	18500	0.73
8a	564	678	2981	30600	0.19
8b	581	695	2820	32400	0.17

^[a] Absorption maxima in CHCl₃ (10⁻⁵ mol/L). ^[b] Emission maxima in CHCl₃ (10⁻⁶ mol/L). ^[c] Absolute quantum yield in CHCl₃ (10⁻⁶ mol/L) was determined by an integrating sphere system. [d] $\lambda_{\rm ex}$ = 500 nm.

Figure S3.1 UV/Vis absorption spectra (solid lines) and fluorescence emission spectra (dashed line) of all compounds in CHCl₃.

Figure S3.2 UV/Vis absorption spectra (solid lines) and fluorescence emission spectra (dashed line) of all compounds in CHCl₃. (con.)

Figure S3.3 UV/Vis absorption spectra (solid lines) and fluorescence emission spectra (dashed line) of all compounds in CHCl₃. (con.)

IX. DFT Calculations

Computation details

Density functional theory and time-dependent density functional theory (TD-DFT) calculations were performed to determine electronic structures and electronic transition energies of **3ag**, **3bg**, **4**, **5**, **6**, **7**, **8a**, and **8b** model compounds, in which the butyl- and octyl-group were truncated to methyl-group. All calculations were performed with Gaussian 09 package.^[9] Ground-state geometry optimizations were calculated in gas phase with B3LYP functional ^[10-12] and 6-31G(d) ^[13,14,15] basis set. The frequency calculation for each optimized geometry was carried out to ensure that each stationary point corresponds to the true minimum. The TD-DFT was performed in chloroform solvent for five singlet excited states using CAM-B3LYP functional^[16] and 6-31++G(d,p) basis set. ^[13,14,15] Conductor like polarizable continuum model (CPCM)^[17,18] was used with chloroform parameters. Molecular orbitals were plotted using GaussView 5.0.^[19]

We performed time-dependent density functional theory (TD-DFT) to calculate the electronic structures and electronic transition energies of compounds **3ag**, **3bg**, **4**, **5**, **6**, **7**, **8a**, and **8b** (Table S4). While the calculated absorption energies are shifted from the experimental absorption energies by 30 - 50 nm as also found in other works, ^[20,21,22,1] the overall trend of the calculated absorption wavelengths is in the order of **3ag** < **6** < **7** ~ **4** < **5** < **3bg** < **8a** < **8b** (Table S3), in good agreement with the experiment.

	Calculation					iment
-	Band assignment	Energy (eV)	$\lambda_{ m ab}$ (nm)	f	λ _{ab} (nm)	З
3ag	H-0 → L+0 (96.9%)	3.27	378.8	0.614	407	11900
6	H-0 → L+0 (94.3%)	3.16	391.8	0.774	426	24400
7	H-0 → L+0 (90.2%)	3.14	394.6	0.808	433	18500
4	H-4→ L+0 (37.3%) H-0 → L+0 (59.0%)	3.16	392.1	0.848	434	25600
5	H-0 → L+0 (90.8%)	3.03	409.1	0.791	459	27000
3bg	H-0 → L+0 (96.9%)	2.42	512.3	1.111	540	35500
8a	H-0 → L+0 (94.8%)	2.35	526.6	1.204	564	30600
8b	H-0 → L+0 (94.8%)	2.31	536.2	1.283	581	32400

Table S4 Calculated electronic transition energies (in eV and nm) and oscillator strength (*f*) of **3ag**, **3bg**, **4**, **5**, **6**, **7**, **8a** and **8b** using CAM-B3LYP/6-31++G(d,p).

LUMO	-1.91	-1.82	-1.86	-1.93	-1.75
			HAR AND		
номо	-7.47	-7.21	-7.15	-7.03	-6.87
			HE CAN		
HOMO-4	-9.19	-8.59	-8.71	-7.69	-8.64
LUMO-HOMO	5.56	5.39	5.29	5.10	5.12
	3ag	6	7	4	5

Figure S4 Frontier molecular orbitals (MOs), MO energies, and HOMO-LUMO energy gaps (in eV) of 3ag, 6, 7, 4, and 5.

LUMO	-2.30	-2.25	-2.20
HOMO	-6.69	-6.53	-6.42
LUMO-HOMO	4.39	4.28	4.22
	3bg	8a	8b

Figure S5 Frontier molecular orbitals (MOs), MO energies, and HOMO-LUMO energy gaps (in eV) of 3bg, 8a, and 8b.

Cartesian coordinates of optimized structures

3ag			
С	1.99204300	-1.87783300	1.53261100
С	0.60189400	-1.99143300	1.39535300
С	-0.13734800	-1.13205500	0.58309200
С	0.53108600	-0.00052900	0.00098000
С	1.96543800	-0.00137000	0.00176500
С	2.68238200	-0.94175700	0.78569600
С	-0.13544200	1.13174800	-0.58236400
С	0.60523100	1.99051900	-1.39399000
С	1.99552100	1.87538100	-1.52997000
С	2.68276300	0.93827800	-0.78210300
С	-1.48249500	-1.57304200	0.12557600
С	-1.48061700	1.57409300	-0.12603400
С	-2.58267100	-0.72522100	-0.14566600
C	-3.76455400	-1.28166900	-0.66553500
C	-3.86347000	-2.64269400	-0.89650200
C	-2.80599000	-3.50212500	-0.63229300
C	-1 63122900	-2 95241100	-0 13545400
C	-2 58201300	0 72745800	0 14399700
C C	-3 76381500	1 28508600	0.66280600
C	-3 86151200	2 64617200	0.89387900
C C	-2 8028/300	3 504/8200	0.63082400
C C	-1 62816/00	2 95356900	0.03002400
C C	4 16484800	-0.93648800	0.13303700
N	4.10484800	-0.93048800	0.02004000
C C	4.81293800	-0.00471400	0.00289000
	4.10505600	1 70521200	1 52021700
0	4.79960700	-1.70551500	1.55921700
0	4.810/2/00	1.08041100	-1.52130800
	6.27904700	0.01743800	-0.01977800
	2.55043700	-2.56019200	2.10450300
н	0.09211000	-2.80/30/00	1.89760400
н	0.09656400	2.80691400	-1.89653600
н	2.55609300	2.55687000	-2.1610/400
н	-4.60924800	-0.649/9200	-0.91442700
н	-2.89633300	-4.56258900	-0.8414/300
н	-0./81//300	-3.60/61/00	0.02124900
Н	-4.60941300	0.65406800	0.91081100
н	-2.89223700	4.56501100	0.84008900
Н	-0.77784200	3.60788100	-0.02064600
Н	6.63175500	-0.74883300	0.66665200
Н	6.63607700	-0.17841300	-1.03378000
Н	6.63905400	1.00290200	0.28568800
F	-5.00504800	3.14172000	1.40426200
F	-5.00703100	-3.13708900	-1.40791000
4			
С	4.90394800	0.83329600	2.27529300
С	3.51406500	1.00059300	2.21705800
С	2.77242600	0.67445800	1.08176300
С	3.43885100	-0.00261600	0.00203200
С	4.87374500	-0.00282200	0.00217300
С	5.59238600	0.40808200	1.15450300
С	2.77233000	-0.67916100	-1.07818700
С	3.51365900	-1.00620300	-2.21346000
С	4.90368800	-0.83915200	-2.27178000

С	5.59083600	-0.41361500	-1.15073200
С	1.42712800	1.28579600	0.91634200
С	1.42630700	-1.28912100	-0.91315100
С	0.32894800	0.69768200	0.24755700
С	-0.84399400	1,44853400	0.06438900
C	-0 98140800	2 74766600	0 55500600
C C	0.00155000	2 22004200	1 24672700
C C	1 26886500	2.52094200	1.24073700
	1.20880500	2.60219200	1.39825800
C	0.32825800	-0.69943400	-0.24555100
C	-0.84588400	-1.44866500	-0.06333400
С	-0.98459600	-2.74770200	-0.55381700
С	0.08834400	-3.32260300	-1.24424000
С	1.26678000	-2.60547300	-1.39473900
С	7.07498500	0.38361900	1.18717200
Ν	7.72220800	-0.00085600	0.00259000
С	7.07177800	-0.38497100	-1.17661500
0	7.71067100	0.68718000	2.18847700
0	7.72382600	-0.68589300	-2.16841300
С	9.18824200	-0.00755300	-0.02975400
Ċ	-5 77611700	-3 79867400	-0 36025900
C C	-4 40385700	-4 02119000	-0 19857400
C C	-3 /8161000	-3 01390500	-0 57802400
C C	-3.40101000	-1.80619400	-0.37802400
C C	-3.91013900 E 20160000	1 60670000	1 20207200
C C	-3.28108800	-1.00070000	-1.28207300
	-0.20897800	-2.36696700	-0.89501000
	-3.02828700	-5.13/14/00	0.30160500
	-2.26324100	-4.76760500	0.20716400
N C	-2.1/8/6800	-3.47462400	-0.33340800
C	-3.97155200	-6.38/35200	0.82863900
C	-2.96156500	-7.24214500	1.25996400
C	-1.61423600	-6.85249800	1.1/833300
C	-1.24581/00	-5.61386700	0.6565/100
С	-1.23722300	5.61420500	-0.65560000
С	-1.60332200	6.85328800	-1.17792400
С	-2.95001500	7.24478100	-1.26116800
С	-3.96168700	6.39142400	-0.83094300
С	-5.77121700	3.80536400	0.35611300
С	-4.39846600	4.02595100	0.19595700
С	-3.47806300	3.01741600	0.57655100
С	-3.90889700	1.81034400	1.13361500
С	-5.28088900	1.61276300	1.27864000
С	-6.20636500	2.59631900	0.89105800
С	-3.62076600	5.14079600	-0.30339800
С	-2.25634300	4.76938400	-0.20732700
N	-2.17429900	3.47634500	0.33349700
н	5.46386900	1.09925000	3.16547800
н	3.00589700	1.44672800	3.06587200
Н	3.00510600	-1.45240900	-3.06200500
Н	5 46437200	-1 10499800	-3 16165800
н	-1 66055700	1 02048000	-0 50549700
н	0.00756000	4.32580100	1.64677300
н	2 10847100	3 08537700	1 88553300
н	-1 66243100	-1 01936900	0 50564500
н	0.00343000	-4 327/5800	-1 64409400
н	2 10622700	-3 08000/00	-1 88105900
н	9 5/702100		-0 27506000
н	9.54793100	0.20621200	0.27550500
11	7.24132200	0.29031300	0.952/5000

Н	9.54458200	0.68275100	-0.79833000
Н	-6.49331500	-4.56335500	-0.07354100
Н	-3.20361600	-1.04812700	-1.45563400
Н	-5.63565000	-0.67006100	-1.70315000
Н	-7.27167500	-2.40306900	-1.02196500
Н	-5.01468100	-6.68271200	0.90520400
н	-3.21509900	-8.21573100	1.66939100
н	-0.83950100	-7.52723400	1.53207800
н	-0 20309100	-5 31850700	0.61327100
н	-0 19496100	5 31740500	-0 61104200
н	-0.82724600	7 52692/00	-1 53082/00
н Ц	-3 20172600	8 21867300	-1 6709000
	5.20172000	6 6 9 9 1 6 0 0	0.00976700
	-5.00451500	0.08821000	-0.90870700
	-0.46/02/00	4.57102200	0.00655400
	-3.20378800	1.05133100	1.45463600
Н	-5.63663700	0.67664600	1.69936800
Н	-7.26946300	2.41189500	1.01622500
5			
с С	-3.83535000	1,18519100	2,10596100
C	-2.44577000	1.34183000	2.03944400
C	-1 68809200	0 83467400	0.98186000
C	-2 34281200	-0.01284100	0.02177200
C C	-3 77779000	-0.01204100	0.00565700
C C	4 51129000	0.01992000	1 06472200
C C	-4.31120000	0.37311400	1.00472300
	-1.05885400	-0.85369400	-0.92390000
	-2.38083400	-1.36/91000	-1.99877800
C	-3.77614000	-1.22510800	-2.09653600
C	-4.4/984100	-0.62164900	-1.0/036600
С	-0.34152600	1.40944800	0.73798300
С	-0.31217600	-1.41444000	-0.65074800
С	0.76967700	0.73541700	0.18758200
С	1.94549900	1.45390500	-0.09671400
С	2.09095300	2.82235500	0.17158100
С	0.98522800	3.47911400	0.74610300
С	-0.18515600	2.78832700	1.00155600
С	0.78257200	-0.72395300	-0.07632400
С	1.95692900	-1.42590900	0.22660500
С	2.12647400	-2.79602900	-0.03460900
С	1.04237300	-3.46777500	-0.62657600
C	-0.13542300	-2.78780900	-0.90411800
C	-5.99187300	0.54915200	1.08509800
N	-6 62379700	-0.03277600	-0.02578500
C	-5 95823900	-0 60515000	-1 11775000
0	-6 64341100	1 01304000	2 013/2000
0	-0.04341100	1.01304000	2.01342900
0	-0.00081700	-1.00988200	-2.03211900
	-8.08801200	-0.05366000	-0.07213800
	3.18122000	4.82933400	-0.75399800
C	4.44756300	2.77219200	-0.55134800
L C	5.70752000	3.62/38000	-0.40883800
C	4.48736200	5.60325400	-0.59843900
C	4.59342300	-2.81364800	0.02836100
С	3.37653000	-4.90658400	0.19032700
С	4.55288600	-5.46330700	0.99281300
С	5.71661000	-3.45194100	0.84166200
Ν	3.28286200	3.52267600	-0.08746800
Ν	3.30999800	-3.45423600	0.34449200

0	5.77951700	-4.85283500	0.62300500
0	5.58892200	4.86063900	-1.09982400
Н	2.36590200	5.40977400	-0.31838300
Н	2.96374500	4.69736500	-1.82832400
н	4.56307100	1.87427100	0.06384400
н	4.33801900	2.45462700	-1.60397600
н	6.56717900	3.10750400	-0.84217300
н	5,90580300	3,80936100	0.66034300
н	4.44887900	6.53263500	-1.17432400
н	4 64781700	5 84993100	0 46417800
н	4 54661900	-1 74780000	0 25976600
н	4.82181600	-2 91522600	-1 04732600
н	2 45299700	-5 35048000	0 57427400
н	3 / 8385600	-5 20129/00	-0.8691/1900
ц	1 66613400	-6 53//3100	0.80514500
ц	4.00013400	-5.31376800	2 06878000
н ц	4.30497300	2 04271000	2.00878000
n u	0.08494500 E E E 202000	-3.04371600	0.55092500
	5.56293000	-3.24110900	1.91295700
п 	-4.40655000	1.59400400	2.93272900
н	-1.94742500	1.92032100	2.8105/500
н	-1.86460300	-1.94111200	-2.75795300
н	-4.32549800	-1.638/1500	-2.935/8500
н	2.74934400	0.91657600	-0.58278200
Н	1.03658400	4.53424700	0.99254800
Н	-1.02991800	3.34263500	1.39599900
Н	2.74716300	-0.88575700	0.73421400
Н	1.09942800	-4.52371800	-0.86231700
Н	-0.96664300	-3.35460600	-1.30973700
Н	-8.44163500	-1.08462400	-0.15369400
Н	-8.44007900	0.49778400	-0.94785400
Н	-8.45431000	0.40600800	0.84318700
6			
С	3.97470100	1.15452300	2.14921200
С	2.59269700	1.32077900	1.99336000
С	1.90872800	0.85611600	0.86900200
С	2.62445800	0.04129800	-0.07570600
С	4.05722300	0.03031500	0.00451500
С	4.71651800	0.58130600	1.13331900
С	2.00614800	-0.76356700	-1.09439600
С	2.80430000	-1.23815600	-2.13633500
С	4.19737000	-1.09361700	-2.13620800
С	4.83136400	-0.53234100	-1.04310500
С	0.57997900	1.44481300	0.55899000
С	0.64444700	-1.33487500	-0.93258300
C	-0.49106800	0.78506900	-0.08663600
C	-1.65896100	1.50394200	-0.39792400
C	-1.80288500	2.84442300	-0.05249900
C	-0 75560200	3 50778700	0 58980300
C	0.40988600	2.81222400	0.86980800
C C	-0 48165600	-0 66253900	-0 40503500
C C	-1 68409100	-1 36845800	-0 21819800
c c	-1 79665200	-2 71478200	-0 55092300
C C	-0 69732700	-3 38833000	-1 08751300
c c	0.03732700	-2 20022300	-1 26071200
C C	6 10105700	0 54275600	1 24664200
N	9.13133100	0.04270000	1.24004200
I N	0.03303000	0.00492300	0.10423000

С	6.31246400	-0.52392500	-0.99613800
0	6.79499800	0.96139200	2.22743400
0	6.99895800	-0.95916100	-1.91245300
С	8.36148300	0.00333900	0.27780200
0	-2.90394000	3.60187800	-0.37330300
0	-2.95569000	-3.44223400	-0.41956100
C	-3 72356100	-2 85808400	1 80857400
C	-3 96111500	-3 02896100	0 44208800
C C	-5 24247600	-2 88051700	-0.08695/00
C C	1 78607600	2.00031/00	2 64691100
C C	-4.78097000	-2.32326400	2.04081100
	-0.07050500	-2.57106500	2.12969100
	-0.30049500	-2.55550200	0.76377800
	-4.13779500	3.00780100	-0.59301300
C	-4.84319700	3.40783200	-1.72746300
C	-6.12405300	2.90083000	-1.95095300
C	-4.69916900	2.11264100	0.32168800
C	-5.9/445100	1.601/3800	0.07942300
С	-6.69093800	1.99335400	-1.05413700
Н	-2.72101000	-2.99180400	2.20255000
Н	-5.39422100	-3.02861200	-1.15133800
Н	-4.60721800	-2.39201400	3.71034900
Н	-6.90207700	-2.12085800	2.78991900
Н	-7.30137500	-2.44698400	0.35496600
Н	-4.38216300	4.11072300	-2.41402900
Н	-6.67561900	3.21338400	-2.83338800
Н	-4.14394800	1.82440600	1.20858800
Н	-6.40582100	0.89503800	0.78284500
Н	-7.68524500	1.59556000	-1.23563300
Н	4.48986800	1.52891200	3.02757000
Н	2.04412300	1.87367400	2.74895700
Н	2.33580600	-1.78214900	-2.95009400
Н	4.80063800	-1.47704900	-2.95220900
н	-2.45768500	1.00718100	-0.93443800
н	-0.85721200	4.56088900	0.83073400
н	1.23618800	3.35225700	1.31859200
н	-2.53723200	-0.85623600	0.20871400
Н	-0.78208200	-4.44227400	-1.33062000
н	1 35535300	-3 24900600	-1 62316100
н	8 66517500	-0 58653600	1 14626200
н	8 72297400	1 02529200	0 41546100
н	8 76311300	-0 42589900	-0 63721100
	0.70311300	0.42505500	0.03721100
7			
C	-3 80739300	1 23527000	2 17185500
C C	-2 /1/79300	1 12936800	2.17103500
C C	-2.41479300	0.48784800	0.0023000
C C	-1.79003300	0.46764600	0.99234100
	-2.02254900	-0.22565100	0.03499400
	-4.05500000	0.04002000	0.07645100
	-4.61121000	0.76286600	1.15129000
	-2.13643500	-1.181/0600	-0.90143100
L C	-2.9//54100	-1.5504/300	-1.95248800
L C	-4.316//600	-1.14596400	-2.01604900
C	-4.86641900	-0.41925900	-0.97604900
С	-0.37048000	0.80016700	0.71244000
С	-0.91272700	-1.98935000	-0.66154600
С	0.57679300	-0.08203000	0.14277700
С	1.86348000	0.39842600	-0.15735300

С	2.25474300	1.70884700	0.11988500
С	1.32750200	2.57921900	0.70118200
С	0.04364600	2.12480200	0.96738300
С	0.30437200	-1.51452300	-0.12060000
С	1.34327200	-2.42569200	0.14070100
С	1.23221100	-3.78298800	-0.15383600
C	0.03388000	-4.25582500	-0.70268400
C	-1 01035900	-3 37209300	-0 92837700
C C	-6.06959500	1 01195200	1 20408400
N	-6.83190100	0 56357900	0 11797000
C	-6 21052200	-0.12816400	-0.00105800
0	6 61247500	1 50057500	2 12969400
0	-0.01247300	1.38837300	2.13808400
0	-7.04041400	-0.47297500	-1.91401400
	-8.26931600	0.84/14/00	0.16942800
C	4.62151400	-3.83053000	1.564/1300
C	3.99928200	-3.98628300	0.32057800
С	4.57333300	-3.41413500	-0.82391800
С	5.80974900	-3.10260100	1.66340700
С	6.37157700	-2.52023900	0.52706300
С	5.75055000	-2.67488400	-0.71562900
С	3.88207000	3.93758600	-0.45874500
С	3.20500200	4.51185300	-1.54415200
С	3.21728300	5.89492000	-1.71786800
С	4.58216200	4.75495000	0.43651600
С	4.60583100	6.13860500	0.24575300
С	3.92065000	6.71018300	-0.82660700
S	3.94859000	2.15542000	-0.25094900
S	2.51205000	-4.98464300	0.19657300
н	4.17331300	-4.27553500	2.44776600
н	4.09625600	-3.55030400	-1.78976100
н	6 28941300	-2 98516700	2 63123600
н	7 29188500	-1 94840900	0.60679600
н	6 18929900	-2 22814400	-1 60363700
н	2 67307400	3 87511000	-2 24447300
ц	2.67507400	6 33583800	-2 55755000
н	5 10313200	4 30641900	1 27693900
н ц	5.10313200	4.30041900	0.04210700
	2 02515000		0.94210700
	4 26085000	1 74200000	-0.97041000
	-4.20965000	1.7450000	3.01117000
	-1.79580500	1.00570800	2.81959000
н	-2.59586100	-2.21435600	-2.72130200
H	-4.95587500	-1.45036100	-2.83804900
Н	2.56846900	-0.26905400	-0.64218600
Н	1.59277100	3.60870800	0.91642200
Н	-0.67897800	2.83081900	1.36226700
Н	2.25248100	-2.05726500	0.60015400
Н	-0.08916500	-5.31047200	-0.93264600
Н	-1.94881000	-3.76787700	-1.30117600
Н	-8.71407900	0.46655900	-0.74719200
Н	-8.43009500	1.92418100	0.25851500
Н	-8.71240300	0.36181500	1.04276400
3bg			

С	-0.08116700	-2.08045700	1.24196900
С	-1.46220200	-2.17841700	1.05702800
С	-2.18786300	-1.20159200	0.38425800
С	-1.50140600	-0.00021200	-0.00005800

С	-0.06115000	0.00005200	-0.00035700
С	0.65307000	-1.04955500	0.66514200
С	-2.18842300	1.20096600	-0.38406300
С	-1.46350500	2.17804200	-1.05728200
С	-0.08253200	2.08058500	-1.24282500
C	0.65224900	1.04996600	-0.66621000
C C	-3 52674700	-1 56125500	-0 15520400
C C	-3 52715000	1.56022300	0.15601500
C C	-1 63466800	-0 68027800	-0.22022200
C C	-4.03400800	1 1 5 2 6 6 0 0	-0.27032300
	-5.81404500	-1.15580000	1 24280500
	-5.90379000	-2.45374400	-1.34380500
C	-4.83859300	-3.33/33600	-1.23/44900
C	-3.6656/500	-2.8/420900	-0.65448900
С	-4.63476600	0.68792300	0.27160500
С	-5.81463500	1.15220700	0.87886500
С	-5.90395700	2.45207900	1.34552100
С	-4.83904700	3.33596800	1.23874200
С	-3.66623800	2.87315300	0.65532400
С	2.12074400	-1.01449600	0.72270000
С	2.82113700	0.00084700	-0.00096700
С	2.11981300	1.01554000	-0.72428500
С	2.86598500	-1.94813400	1.44909800
С	4.26352000	-1.92737500	1.46234900
С	4.96131000	-0.97336400	0.73982500
С	4.25079100	0.00137400	-0.00117400
C	2.86457900	1,94926400	-1.45096700
C	4.26199500	1.92929500	-1.46452600
C	4 96188400	0 97625200	-0 74211000
C C	6 44008100	-0.98277300	0 75411600
C C	6 44215000	0.99329400	-0 76135000
N	7 09942200	0.00264000	0.00194400
C C	7.06642500 9 EE 422000	0.00304000	-0.00184400
	7.09021400	1 82007200	1.40066200
0	7.08031400	1.82097200	-1.40066300
0	7.09574400	-1.80263300	1.38008200
н	0.41677200	-2.8/653900	1.78289900
Н	-1.9/4//200	-3.06552600	1.41580000
Н	-1.97660200	3.06492100	-1.41585900
Н	0.41493900	2.87679900	-1.78399200
Н	-6.66515400	-0.49479000	-1.00811700
Н	-4.92228100	-4.34551300	-1.62885400
Н	-2.81076000	-3.54007700	-0.61508500
Н	-6.66491800	0.49290800	1.01017900
Н	-4.92286600	4.34413300	1.63014800
Н	-2.81152400	3.53925800	0.61554700
Н	2.36528100	-2.71675900	2.02592400
Н	4.82521200	-2.66104900	2.03119800
Н	4.82233500	2.66344000	-2.03387600
н	2.36354300	2.71758000	-2.02791600
Н	8.91212700	0.09372000	1.04431900
н	8.90717900	0.79636500	-0.60569800
Н	8.91352500	-0.98030000	-0.36363100
F	-7.04623300	2.85888100	1.93317400
F	-7.04617400	-2.86083700	-1.93105400
8a			

C	-0.53040000	-2.23780000	0.92880000
С	-1.91130000	-2.30790000	0.73260000

С	-2.63710000	-1.24510000	0.20610000
С	-1.95090000	-0.00030000	-0.00010000
С	-0.51010000	0.00000000	-0.00040000
С	0.20440000	-1.13590000	0.50330000
Ċ	-2 63770000	1 24410000	-0 20600000
C C	-1 91270000	2 30730000	-0 73300000
C C	0 52100000	2.30730000	0.73300000
	-0.33190000	2.23790000	-0.92990000
	0.20350000	1.13630000	-0.50450000
C	-3.97610000	-1.52430000	-0.37960000
С	-3.97650000	1.52280000	0.38050000
С	-5.08090000	-0.64220000	-0.36820000
С	-6.25660000	-1.01800000	-1.04490000
С	-6.37320000	-2.23620000	-1.70350000
С	-5.29160000	-3.11610000	-1.70430000
С	-4.11480000	-2.75260000	-1.06040000
С	-5.08100000	0.64020000	0.36970000
С	-6.25640000	1.01570000	1.04710000
C	-6.37310000	2.23380000	1.70580000
C	-5 29180000	3 11410000	1 70590000
C C	-4 11520000	2 75110000	1 06130000
C C	1 67220000	-1 11360000	0.55700000
C C	2 2720000	0.0000000	0.00100000
	2.37300000	1 11480000	-0.00100000
	1.67130000	1.11480000	-0.55960000
	2.41810000	-2.15150000	1.12520000
	3.81540000	-2.13490000	1.13810000
C	4.51340000	-1.0/8/0000	0.57540000
C	3.80280000	0.00150000	-0.00120000
С	2.41670000	2.15310000	-1.12680000
С	3.81380000	2.13730000	-1.13980000
С	4.51400000	1.08180000	-0.57750000
С	5.99170000	-1.09100000	0.58680000
С	5.99380000	1.10260000	-0.59250000
Ν	6.64010000	0.00350000	-0.00210000
С	8.10580000	-0.02440000	0.01400000
0	6.63260000	2.02290000	-1.08900000
0	6.64800000	-2.00130000	1.07940000
Н	-0.03300000	-3.10300000	1.35130000
Н	-2.42440000	-3.23690000	0.96010000
н	-2 42640000	3 23610000	-0.96030000
н	-0.03500000	3 10320000	-1 35270000
н	-7.08850000	-0 32120000	-1.06590000
н Ц	-7.08850000 5.25100000	4.06760000	2 22540000
п	-3.33100000	-4.00700000	1 11460000
	-3.23940000	-3.41770000	1.06860000
	-7.08800000	0.31850000	1.06860000
H	-5.35130000	4.06560000	2.22700000
H	-3.26010000	3.41650000	1.11500000
н	1.91/90000	-3.00190000	1.5/310000
Н	4.37/10000	-2.95020000	1.58200000
Н	4.37410000	2.95350000	-1.58370000
Н	1.91610000	3.00330000	-1.57450000
Н	8.46420000	-0.06720000	1.04550000
Н	8.45860000	0.87930000	-0.47760000
Н	8.46480000	-0.91390000	-0.50950000
С	-7.37754636	-2.85913562	-3.90243421
С	-8.32074300	-3.79614437	-1.78383004
С	-8.62121318	-3.29451092	-4.65028939
Н	-6.59566851	-3.65958019	-3.98192890

Н	-6.96022199 -1.93251576 -4.37556014
С	-9.56487782 -4.23100742 -2.53124366
Н	-7.58613071 -4.64349058 -1.75744700
Н	-8.58706653 -3.54780432 -0.72371661
Н	-8.35418816 -3.54417372 -5.70993628
Н	-9.35514027 -2.44660943 -4.67844513
Н	-9.98195198 -5.15786268 -2.05844944
н	-10.34665307 -3.43051720 -2.45054015
Ν	-7.67723510 -2.59197479 -2.44141378
0	-9.26641066 -4.49714547 -3.99258859
F	-7.51602226 2.54518978 2.35330684
8b	
C	1 85222200 1 27746800 -2 05842100
C	0 47156700 1 44490900 -1 94325400
C	-0.25673800 0.88751200 -0.89616000
c c	0.43087000 -0.00064300 -0.00010400
C C	
C C	
C C	2.58095300 0.62684200 -1.07175500
C	-0.25/28000 -0.88864800 0.89569/00
C	0.47044600 -1.44644700 1.94299500
С	1.85110000 -1.27942700 2.05867300
С	2.58627700 -0.62884800 1.07232100
С	-1.59704200 1.44854000 -0.59217300
С	-1.59777400 -1.44906700 0.59139400
С	-2.70859700 0.73660500 -0.08165600
С	-3.87821300 1.43086400 0.25366300
С	-4.02724900 2.81734200 0.08189600
С	-2.92720700 3.51293600 -0.44929000
С	-1.75309700 2.83779900 -0.75577000
С	-2.70896700 -0.73652400 0.08091800
С	-3.87890800 -1.43019600 -0.25444400
С	-4.02859600 -2.81662700 -0.08280600
С	-2.92887800 -3.51282800 0.44822400
С	-1.75445300 -2.83826900 0.75480200
C	4.05350100 0.57114900 -1.10648700
C	4 75499000 -0 00112100 0 00095500
C	4 05272400 -0 57330400 1 10771200
C C	4 79952900 1 07127800 -2 17930400
C C	6 1961/200 1 0/778700 -2 18097100
C C	6 205 20100 0 522 76400 1 10261400
C C	6 18500500 0.00110000 0.00146200
c c	4 70847300 1 07326000 2 18070800
C C	4.79847300 -1.07330900 2.18070800
C	6.19496800 -1.04978200 2.18313500
C	6.89610300 -0.53078500 1.10559900
С	8.37255500 0.53189800 -1.11957100
С	8.37485300 -0.53710400 1.13085300
Ν	9.02098000 -0.00110100 0.00364700
С	10.48627500 0.01342300 -0.02534600
0	9.01506000 -0.98325600 2.07629000
0	9.03006900 0.97351700 -2.05541300
Н	2.35093400 1.73576700 -2.90453100
Н	-0.04247900 2.06309700 -2.67250500
Н	-0.04408700 -2.06454500 2.67197200
н	2.34944600 -1.73791600 2.90489800
Н	-4.68190500 0.86849400 0.71415700
н	-2.96891900 4.58297900 -0.61469800

Н	-0.90939200	3.41871200	-1.11355600
Н	-4.68237000	-0.86744200	-0.71486400
Н	-2.97109600	-4.58287900	0.61344400
Н	-0.91102700	-3.41961100	1.11255000
Н	4.29859300	1.49180700	-3.04324600
Н	6.75788000	1.44153500	-3.02175800
Н	6.75544200	-1.44363000	3.02456700
Н	4.29734400	-1.49397900	3.04450100
Н	10.84607400	-0.56377000	-0.88085000
Н	10.83917500	-0.42176900	0.90683500
Н	10.84437700	1.04039500	-0.13192200
С	-5.25822600	-4.92190800	-0.43896300
С	-6.49525100	-2.86448300	-0.10087600
С	-6.44134700	-5.43376500	-1.26122300
Н	-5.34615700	-5.29285900	0.59824900
Н	-4.33575900	-5.32570900	-0.86722900
С	-7.62623700	-3.45326200	-0.94024900
Н	-6.70147400	-3.05215600	0.96786800
Н	-6.46504500	-1.78335000	-0.24942000
Н	-6.53945100	-6.51733100	-1.14677100
Н	-6.27295400	-5.20426900	-2.32627800
Н	-8.59350400	-3.08263100	-0.58772700
Н	-7.49544700	-3.15867800	-1.99470500
С	-5.25574100	4.92330900	0.43791600
С	-6.49388400	2.86644600	0.10041300
С	-6.43845400	5.43590900	1.26029700
Н	-5.34366500	5.29415300	-0.59933400
Н	-4.33300600	5.32671100	0.86597300
С	-7.62440300	3.45600200	0.93987100
Н	-6.70020300	3.05395100	-0.96833800
Н	-6.46422500	1.78534000	0.24925000
Н	-6.53598900	6.51951000	1.14570100
Н	-6.27002100	5.20647500	2.32536000
Н	-8.59192100	3.08578400	0.58760500
Н	-7.49356700	3.16158200	1.99436800
Ν	-5.21112400	-3.46175500	-0.49007600
Ν	-5.20936800	3.46313800	0.48921800
0	-7.66878500	-4.86757000	-0.82850000
0	-7.66625600	4.87029900	0.82783700

X. References

[1] K. Kantarod, T. Worakul, D. Soorukram, C. Kuhakarn, V. Reutrakul, P. Surawatanawong, W. Wattanathana and P. Leowanawat, *Org. Chem. Front.*, 2021, **8**, 522–530.

[2] a) J.-K. Li, X.-Y. Chen, Y.-L. Guo, X.-C. Wang, A. C. H. Sue, X.-Y. Cao and X.-Y. Wang, J. Am. Chem. Soc., 2021, 143, 17958–17963. b) D. Sahoo, V. Sharma, R. Roy, N. Varghese, K. Mohanta and A. L. Koner, Chem. Commun., 2019, 55, 103–106. C) P. Rajdev, D. Basak and S. Ghosh, Macromolecules, 2015, 48, 3360–3367.

[3] Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

[4] Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

[5] G. Sheldrick, *Acta Cryst. A*, 2015, **71**, 3–8.

[6] G. Sheldrick, Acta Cryst. C, 2015, **71**, 3–8

[7] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst. , 2009, 42, 339–341.

[8] C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, *J. Appl. Cryst.*, 2020, **53**, 226-235.

[9] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, revision C.01; Gaussian, Inc.: Wallingford, CT, **2010**.

[10] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.

[11] C. Lee, W. Yang and R. G. Parr, *Phys Rev. B* 1988, **37**, 785–789.

[12] P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627.

[13] P. C. Hariharan and J. A. Pople, *Theor. chimica acta*, 1973, **28**, 213–222.

[14] G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley and J. Mantzaris, J. Chem. Phys. 1988, 89, 2193–2218.

[15] G. A. Petersson and M. A. Al-Laham, J. Chem. Phys. 1991, 94, 6081–6090.

[16] T. Yanai, D. P. Tew and N. C. Handy, *Chem. Phys. Lett.* 2004, **393**, 51–57.

[17] V. Barone and M. Cossi, J. Phys. Chem. A 1998, 102, 1995–2001.

[18] M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem. 2003, 24, 669–681.

[19] GaussView 5.0, R. Dennington, T. A. Keith, J. M. Millam, Gaussian Inc., 2009.

[20] H. Lu , Q. Wang, L. Gai, Z. Li, Y. Deng, X. Xiao, G. Lai and Z. Shen, Chem. Eur. J. 2012, 18, 7852–7861.

[21] M. R. Momeni and A. Brown, J. Chem. Theory Comput. 2015, 11, 2619–2632.

[22] S. Wanwong, P. Surawatanawong, S. Khumsubdee, S. Kanchanakungwankul and J. Wootthikanokkhan, *Heteroat. Chem.* 2016, **27**, 306–315.

XI. NMR Spectra

ő -100 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

		· · ·	· · ·																	·
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200
										f1 (ppm)										

			1																		
0	-	10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm	-110)	-120	-130	-140	-150	-160	-170	-180	-190	-200

0 -10 -20 -30 -40 -50 -60 -70 -80 -100 f1 (ppm) -190 -2 -90 -110 -120 -130 -140 -150 -160 -170 -180

ť f1 (ppm)

S61

-100 -110 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -190 -20 -120 -130 -180 -140 -150 -160 -170

